nexaai 1.0.16rc10__cp310-cp310-macosx_14_0_universal2.whl → 1.0.16rc11__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

@@ -0,0 +1,281 @@
1
+ #!/usr/bin/env python3
2
+ """
3
+ Command line interface for text-to-image generation using MLX backend.
4
+ """
5
+
6
+ import argparse
7
+ import sys
8
+ import os
9
+ from pathlib import Path
10
+ from typing import Optional
11
+
12
+ # Add the parent directory to the path to import the interface
13
+ sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
14
+
15
+ from interface import ImageGen, ImageSamplerConfig
16
+ from ml import (
17
+ ImageGenCreateInput,
18
+ ImageGenTxt2ImgInput,
19
+ ImageGenerationConfig,
20
+ ImageSamplerConfig as MLImageSamplerConfig,
21
+ SchedulerConfig,
22
+ ModelConfig
23
+ )
24
+
25
+
26
+ def create_default_config() -> ImageGenerationConfig:
27
+ """Create a default image generation configuration."""
28
+ sampler_config = MLImageSamplerConfig(
29
+ method="ddim",
30
+ steps=4, # SDXL Turbo optimized
31
+ guidance_scale=0.0, # SDXL Turbo works well with no guidance
32
+ eta=0.0,
33
+ seed=-1
34
+ )
35
+
36
+ scheduler_config = SchedulerConfig(
37
+ type="ddim",
38
+ num_train_timesteps=1000,
39
+ steps_offset=0,
40
+ beta_start=0.00085,
41
+ beta_end=0.012,
42
+ beta_schedule="scaled_linear",
43
+ prediction_type="epsilon",
44
+ timestep_type="discrete",
45
+ timestep_spacing="linspace",
46
+ interpolation_type="linear"
47
+ )
48
+
49
+ return ImageGenerationConfig(
50
+ prompts=[""], # Will be set by user input
51
+ sampler_config=sampler_config,
52
+ scheduler_config=scheduler_config,
53
+ strength=1.0,
54
+ negative_prompts=None,
55
+ height=512,
56
+ width=512
57
+ )
58
+
59
+
60
+ def parse_arguments():
61
+ """Parse command line arguments."""
62
+ parser = argparse.ArgumentParser(
63
+ description="Generate images from text prompts using MLX backend",
64
+ formatter_class=argparse.RawDescriptionHelpFormatter,
65
+ epilog="""
66
+ Examples:
67
+ python main.py "a beautiful sunset over mountains"
68
+ python main.py "a cat sitting on a chair" --output output.png --width 1024 --height 1024
69
+ python main.py "a futuristic city" --model-path ./models/sdxl-turbo --steps 8 --seed 42
70
+ """
71
+ )
72
+
73
+ # Required arguments
74
+ parser.add_argument(
75
+ "prompt",
76
+ help="Text prompt for image generation"
77
+ )
78
+
79
+ # Optional arguments
80
+ parser.add_argument(
81
+ "--output", "-o",
82
+ type=str,
83
+ help="Output image path (default: generated_image.png)"
84
+ )
85
+
86
+ parser.add_argument(
87
+ "--model-path", "-m",
88
+ type=str,
89
+ default="stabilityai/sdxl-turbo",
90
+ help="Path to the model or HuggingFace model name (default: stabilityai/sdxl-turbo)"
91
+ )
92
+
93
+ parser.add_argument(
94
+ "--width", "-w",
95
+ type=int,
96
+ default=512,
97
+ help="Image width (must be divisible by 16, default: 512)"
98
+ )
99
+
100
+ parser.add_argument(
101
+ "--height", "-h",
102
+ type=int,
103
+ default=512,
104
+ help="Image height (must be divisible by 16, default: 512)"
105
+ )
106
+
107
+ parser.add_argument(
108
+ "--steps", "-s",
109
+ type=int,
110
+ default=4,
111
+ help="Number of denoising steps (default: 4 for SDXL Turbo)"
112
+ )
113
+
114
+ parser.add_argument(
115
+ "--guidance-scale", "-g",
116
+ type=float,
117
+ default=0.0,
118
+ help="Guidance scale (default: 0.0 for SDXL Turbo)"
119
+ )
120
+
121
+ parser.add_argument(
122
+ "--seed",
123
+ type=int,
124
+ default=-1,
125
+ help="Random seed (-1 for random, default: -1)"
126
+ )
127
+
128
+ parser.add_argument(
129
+ "--negative-prompt", "-n",
130
+ type=str,
131
+ help="Negative prompt to avoid certain elements"
132
+ )
133
+
134
+ parser.add_argument(
135
+ "--device-id",
136
+ type=str,
137
+ help="Device ID to use (default: auto-detect)"
138
+ )
139
+
140
+ parser.add_argument(
141
+ "--verbose", "-v",
142
+ action="store_true",
143
+ help="Enable verbose logging"
144
+ )
145
+
146
+ return parser.parse_args()
147
+
148
+
149
+ def validate_arguments(args):
150
+ """Validate command line arguments."""
151
+ # Check dimensions are divisible by 16
152
+ if args.width % 16 != 0:
153
+ raise ValueError(f"Width must be divisible by 16, got {args.width}")
154
+ if args.height % 16 != 0:
155
+ raise ValueError(f"Height must be divisible by 16, got {args.height}")
156
+
157
+ # Check steps is positive
158
+ if args.steps <= 0:
159
+ raise ValueError(f"Steps must be positive, got {args.steps}")
160
+
161
+ # Check guidance scale is non-negative
162
+ if args.guidance_scale < 0:
163
+ raise ValueError(f"Guidance scale must be non-negative, got {args.guidance_scale}")
164
+
165
+
166
+ def main():
167
+ """Main function for command line interface."""
168
+ try:
169
+ # Parse arguments
170
+ args = parse_arguments()
171
+
172
+ # Validate arguments
173
+ validate_arguments(args)
174
+
175
+ # Set up output path
176
+ if args.output:
177
+ output_path = Path(args.output)
178
+ else:
179
+ output_path = Path("generated_image.png")
180
+
181
+ # Ensure output directory exists
182
+ output_path.parent.mkdir(parents=True, exist_ok=True)
183
+
184
+ if args.verbose:
185
+ print(f"Initializing image generation...")
186
+ print(f"Model: {args.model_path}")
187
+ print(f"Prompt: {args.prompt}")
188
+ print(f"Output: {output_path}")
189
+ print(f"Dimensions: {args.width}x{args.height}")
190
+ print(f"Steps: {args.steps}")
191
+ print(f"Guidance scale: {args.guidance_scale}")
192
+ print(f"Seed: {args.seed}")
193
+ if args.negative_prompt:
194
+ print(f"Negative prompt: {args.negative_prompt}")
195
+
196
+ # Create model configuration
197
+ model_config = ModelConfig(
198
+ name="sdxl-turbo",
199
+ version="1.0",
200
+ description="SDXL Turbo model for fast image generation"
201
+ )
202
+
203
+ # Create image generator
204
+ create_input = ImageGenCreateInput(
205
+ model_name="sdxl-turbo",
206
+ model_path=args.model_path,
207
+ config=model_config,
208
+ scheduler_config_path="", # Not used for SDXL Turbo
209
+ plugin_id="mlx",
210
+ device_id=args.device_id
211
+ )
212
+
213
+ image_gen = ImageGen(create_input)
214
+
215
+ # Create generation configuration
216
+ sampler_config = MLImageSamplerConfig(
217
+ method="ddim",
218
+ steps=args.steps,
219
+ guidance_scale=args.guidance_scale,
220
+ eta=0.0,
221
+ seed=args.seed
222
+ )
223
+
224
+ scheduler_config = SchedulerConfig(
225
+ type="ddim",
226
+ num_train_timesteps=1000,
227
+ steps_offset=0,
228
+ beta_start=0.00085,
229
+ beta_end=0.012,
230
+ beta_schedule="scaled_linear",
231
+ prediction_type="epsilon",
232
+ timestep_type="discrete",
233
+ timestep_spacing="linspace",
234
+ interpolation_type="linear"
235
+ )
236
+
237
+ generation_config = ImageGenerationConfig(
238
+ prompts=[args.prompt],
239
+ sampler_config=sampler_config,
240
+ scheduler_config=scheduler_config,
241
+ strength=1.0,
242
+ negative_prompts=[args.negative_prompt] if args.negative_prompt else None,
243
+ height=args.height,
244
+ width=args.width
245
+ )
246
+
247
+ # Create text-to-image input
248
+ txt2img_input = ImageGenTxt2ImgInput(
249
+ prompt=args.prompt,
250
+ config=generation_config,
251
+ output_path=str(output_path)
252
+ )
253
+
254
+ if args.verbose:
255
+ print("Generating image...")
256
+
257
+ # Generate image
258
+ result = image_gen.txt2img(txt2img_input)
259
+
260
+ if args.verbose:
261
+ print(f"Image generated successfully!")
262
+ print(f"Saved to: {result.output_image_path}")
263
+ else:
264
+ print(f"Image saved to: {result.output_image_path}")
265
+
266
+ # Clean up
267
+ image_gen.close()
268
+
269
+ except KeyboardInterrupt:
270
+ print("\nGeneration cancelled by user.")
271
+ sys.exit(1)
272
+ except Exception as e:
273
+ print(f"Error: {e}", file=sys.stderr)
274
+ if args.verbose:
275
+ import traceback
276
+ traceback.print_exc()
277
+ sys.exit(1)
278
+
279
+
280
+ if __name__ == "__main__":
281
+ main()
@@ -0,0 +1,306 @@
1
+ # Copyright © 2023-2024 Apple Inc.
2
+
3
+ import time
4
+ from typing import Optional, Tuple
5
+
6
+ import mlx.core as mx
7
+
8
+ from .model_io import (
9
+ _DEFAULT_MODEL,
10
+ load_autoencoder,
11
+ load_diffusion_config,
12
+ load_text_encoder,
13
+ load_tokenizer,
14
+ load_unet,
15
+ )
16
+ from .sampler import SimpleEulerAncestralSampler, SimpleEulerSampler
17
+
18
+
19
+ class StableDiffusion:
20
+ def __init__(self, model: str = _DEFAULT_MODEL, float16: bool = False):
21
+ self.dtype = mx.float16 if float16 else mx.float32
22
+ self.diffusion_config = load_diffusion_config(model)
23
+ self.unet = load_unet(model, float16)
24
+ self.text_encoder = load_text_encoder(model, float16)
25
+ self.autoencoder = load_autoencoder(model, False)
26
+ self.sampler = SimpleEulerSampler(self.diffusion_config)
27
+ self.tokenizer = load_tokenizer(model)
28
+
29
+ def ensure_models_are_loaded(self):
30
+ mx.eval(self.unet.parameters())
31
+ mx.eval(self.text_encoder.parameters())
32
+ mx.eval(self.autoencoder.parameters())
33
+
34
+ def _tokenize(self, tokenizer, text: str, negative_text: Optional[str] = None):
35
+ # Tokenize the text
36
+ tokens = [tokenizer.tokenize(text)]
37
+ if negative_text is not None:
38
+ tokens += [tokenizer.tokenize(negative_text)]
39
+ lengths = [len(t) for t in tokens]
40
+ N = max(lengths)
41
+ tokens = [t + [0] * (N - len(t)) for t in tokens]
42
+ tokens = mx.array(tokens)
43
+
44
+ return tokens
45
+
46
+ def _get_text_conditioning(
47
+ self,
48
+ text: str,
49
+ n_images: int = 1,
50
+ cfg_weight: float = 7.5,
51
+ negative_text: str = "",
52
+ ):
53
+ # Tokenize the text
54
+ tokens = self._tokenize(
55
+ self.tokenizer, text, (negative_text if cfg_weight > 1 else None)
56
+ )
57
+
58
+ # Compute the features
59
+ conditioning = self.text_encoder(tokens).last_hidden_state
60
+
61
+ # Repeat the conditioning for each of the generated images
62
+ if n_images > 1:
63
+ conditioning = mx.repeat(conditioning, n_images, axis=0)
64
+
65
+ return conditioning
66
+
67
+ def _denoising_step(
68
+ self, x_t, t, t_prev, conditioning, cfg_weight: float = 7.5, text_time=None
69
+ ):
70
+ x_t_unet = mx.concatenate([x_t] * 2, axis=0) if cfg_weight > 1 else x_t
71
+ t_unet = mx.broadcast_to(t, [len(x_t_unet)])
72
+ eps_pred = self.unet(
73
+ x_t_unet, t_unet, encoder_x=conditioning, text_time=text_time
74
+ )
75
+
76
+ if cfg_weight > 1:
77
+ eps_text, eps_neg = eps_pred.split(2)
78
+ eps_pred = eps_neg + cfg_weight * (eps_text - eps_neg)
79
+
80
+ x_t_prev = self.sampler.step(eps_pred, x_t, t, t_prev)
81
+
82
+ return x_t_prev
83
+
84
+ def _denoising_loop(
85
+ self,
86
+ x_T,
87
+ T,
88
+ conditioning,
89
+ num_steps: int = 50,
90
+ cfg_weight: float = 7.5,
91
+ text_time=None,
92
+ ):
93
+ x_t = x_T
94
+ for t, t_prev in self.sampler.timesteps(
95
+ num_steps, start_time=T, dtype=self.dtype
96
+ ):
97
+ x_t = self._denoising_step(
98
+ x_t, t, t_prev, conditioning, cfg_weight, text_time
99
+ )
100
+ yield x_t
101
+
102
+ def generate_latents(
103
+ self,
104
+ text: str,
105
+ n_images: int = 1,
106
+ num_steps: int = 50,
107
+ cfg_weight: float = 7.5,
108
+ negative_text: str = "",
109
+ latent_size: Tuple[int] = (64, 64),
110
+ seed=None,
111
+ ):
112
+ # Set the PRNG state
113
+ seed = int(time.time()) if seed is None else seed
114
+ mx.random.seed(seed)
115
+
116
+ # Get the text conditioning
117
+ conditioning = self._get_text_conditioning(
118
+ text, n_images, cfg_weight, negative_text
119
+ )
120
+
121
+ # Create the latent variables
122
+ x_T = self.sampler.sample_prior(
123
+ (n_images, *latent_size, self.autoencoder.latent_channels), dtype=self.dtype
124
+ )
125
+
126
+ # Perform the denoising loop
127
+ yield from self._denoising_loop(
128
+ x_T, self.sampler.max_time, conditioning, num_steps, cfg_weight
129
+ )
130
+
131
+ def generate_latents_from_image(
132
+ self,
133
+ image,
134
+ text: str,
135
+ n_images: int = 1,
136
+ strength: float = 0.8,
137
+ num_steps: int = 50,
138
+ cfg_weight: float = 7.5,
139
+ negative_text: str = "",
140
+ seed=None,
141
+ ):
142
+ # Set the PRNG state
143
+ seed = int(time.time()) if seed is None else seed
144
+ mx.random.seed(seed)
145
+
146
+ # Define the num steps and start step
147
+ start_step = self.sampler.max_time * strength
148
+ num_steps = int(num_steps * strength)
149
+
150
+ # Get the text conditioning
151
+ conditioning = self._get_text_conditioning(
152
+ text, n_images, cfg_weight, negative_text
153
+ )
154
+
155
+ # Get the latents from the input image and add noise according to the
156
+ # start time.
157
+ x_0, _ = self.autoencoder.encode(image[None])
158
+ x_0 = mx.broadcast_to(x_0, (n_images,) + x_0.shape[1:])
159
+ x_T = self.sampler.add_noise(x_0, mx.array(start_step))
160
+
161
+ # Perform the denoising loop
162
+ yield from self._denoising_loop(
163
+ x_T, start_step, conditioning, num_steps, cfg_weight
164
+ )
165
+
166
+ def decode(self, x_t):
167
+ x = self.autoencoder.decode(x_t)
168
+ x = mx.clip(x / 2 + 0.5, 0, 1)
169
+ return x
170
+
171
+
172
+ class StableDiffusionXL(StableDiffusion):
173
+ def __init__(self, model: str = _DEFAULT_MODEL, float16: bool = False):
174
+ super().__init__(model, float16)
175
+
176
+ self.sampler = SimpleEulerAncestralSampler(self.diffusion_config)
177
+
178
+ self.text_encoder_1 = self.text_encoder
179
+ self.tokenizer_1 = self.tokenizer
180
+ del self.tokenizer, self.text_encoder
181
+
182
+ self.text_encoder_2 = load_text_encoder(
183
+ model,
184
+ float16,
185
+ model_key="text_encoder_2",
186
+ )
187
+ self.tokenizer_2 = load_tokenizer(
188
+ model,
189
+ merges_key="tokenizer_2_merges",
190
+ vocab_key="tokenizer_2_vocab",
191
+ )
192
+
193
+ def ensure_models_are_loaded(self):
194
+ mx.eval(self.unet.parameters())
195
+ mx.eval(self.text_encoder_1.parameters())
196
+ mx.eval(self.text_encoder_2.parameters())
197
+ mx.eval(self.autoencoder.parameters())
198
+
199
+ def _get_text_conditioning(
200
+ self,
201
+ text: str,
202
+ n_images: int = 1,
203
+ cfg_weight: float = 7.5,
204
+ negative_text: str = "",
205
+ ):
206
+ tokens_1 = self._tokenize(
207
+ self.tokenizer_1,
208
+ text,
209
+ (negative_text if cfg_weight > 1 else None),
210
+ )
211
+ tokens_2 = self._tokenize(
212
+ self.tokenizer_2,
213
+ text,
214
+ (negative_text if cfg_weight > 1 else None),
215
+ )
216
+
217
+ conditioning_1 = self.text_encoder_1(tokens_1)
218
+ conditioning_2 = self.text_encoder_2(tokens_2)
219
+ conditioning = mx.concatenate(
220
+ [conditioning_1.hidden_states[-2], conditioning_2.hidden_states[-2]],
221
+ axis=-1,
222
+ )
223
+ pooled_conditioning = conditioning_2.pooled_output
224
+
225
+ if n_images > 1:
226
+ conditioning = mx.repeat(conditioning, n_images, axis=0)
227
+ pooled_conditioning = mx.repeat(pooled_conditioning, n_images, axis=0)
228
+
229
+ return conditioning, pooled_conditioning
230
+
231
+ def generate_latents(
232
+ self,
233
+ text: str,
234
+ n_images: int = 1,
235
+ num_steps: int = 2,
236
+ cfg_weight: float = 0.0,
237
+ negative_text: str = "",
238
+ latent_size: Tuple[int] = (64, 64),
239
+ seed=None,
240
+ ):
241
+ # Set the PRNG state
242
+ seed = int(time.time()) if seed is None else seed
243
+ mx.random.seed(seed)
244
+
245
+ # Get the text conditioning
246
+ conditioning, pooled_conditioning = self._get_text_conditioning(
247
+ text, n_images, cfg_weight, negative_text
248
+ )
249
+ text_time = (
250
+ pooled_conditioning,
251
+ mx.array([[512, 512, 0, 0, 512, 512.0]] * len(pooled_conditioning)),
252
+ )
253
+
254
+ # Create the latent variables
255
+ x_T = self.sampler.sample_prior(
256
+ (n_images, *latent_size, self.autoencoder.latent_channels), dtype=self.dtype
257
+ )
258
+
259
+ # Perform the denoising loop
260
+ yield from self._denoising_loop(
261
+ x_T,
262
+ self.sampler.max_time,
263
+ conditioning,
264
+ num_steps,
265
+ cfg_weight,
266
+ text_time=text_time,
267
+ )
268
+
269
+ def generate_latents_from_image(
270
+ self,
271
+ image,
272
+ text: str,
273
+ n_images: int = 1,
274
+ strength: float = 0.8,
275
+ num_steps: int = 2,
276
+ cfg_weight: float = 0.0,
277
+ negative_text: str = "",
278
+ seed=None,
279
+ ):
280
+ # Set the PRNG state
281
+ seed = seed or int(time.time())
282
+ mx.random.seed(seed)
283
+
284
+ # Define the num steps and start step
285
+ start_step = self.sampler.max_time * strength
286
+ num_steps = int(num_steps * strength)
287
+
288
+ # Get the text conditioning
289
+ conditioning, pooled_conditioning = self._get_text_conditioning(
290
+ text, n_images, cfg_weight, negative_text
291
+ )
292
+ text_time = (
293
+ pooled_conditioning,
294
+ mx.array([[512, 512, 0, 0, 512, 512.0]] * len(pooled_conditioning)),
295
+ )
296
+
297
+ # Get the latents from the input image and add noise according to the
298
+ # start time.
299
+ x_0, _ = self.autoencoder.encode(image[None])
300
+ x_0 = mx.broadcast_to(x_0, (n_images,) + x_0.shape[1:])
301
+ x_T = self.sampler.add_noise(x_0, mx.array(start_step))
302
+
303
+ # Perform the denoising loop
304
+ yield from self._denoising_loop(
305
+ x_T, start_step, conditioning, num_steps, cfg_weight, text_time=text_time
306
+ )
@@ -0,0 +1,116 @@
1
+ # Copyright © 2023-2024 Apple Inc.
2
+
3
+ from dataclasses import dataclass
4
+ from typing import List, Optional
5
+
6
+ import mlx.core as mx
7
+ import mlx.nn as nn
8
+
9
+ from .config import CLIPTextModelConfig
10
+
11
+ _ACTIVATIONS = {"quick_gelu": nn.gelu_fast_approx, "gelu": nn.gelu}
12
+
13
+
14
+ @dataclass
15
+ class CLIPOutput:
16
+ # The last_hidden_state indexed at the EOS token and possibly projected if
17
+ # the model has a projection layer
18
+ pooled_output: Optional[mx.array] = None
19
+
20
+ # The full sequence output of the transformer after the final layernorm
21
+ last_hidden_state: Optional[mx.array] = None
22
+
23
+ # A list of hidden states corresponding to the outputs of the transformer layers
24
+ hidden_states: Optional[List[mx.array]] = None
25
+
26
+
27
+ class CLIPEncoderLayer(nn.Module):
28
+ """The transformer encoder layer from CLIP."""
29
+
30
+ def __init__(self, model_dims: int, num_heads: int, activation: str):
31
+ super().__init__()
32
+
33
+ self.layer_norm1 = nn.LayerNorm(model_dims)
34
+ self.layer_norm2 = nn.LayerNorm(model_dims)
35
+
36
+ self.attention = nn.MultiHeadAttention(model_dims, num_heads)
37
+ # Add biases to the attention projections to match CLIP
38
+ self.attention.query_proj.bias = mx.zeros(model_dims)
39
+ self.attention.key_proj.bias = mx.zeros(model_dims)
40
+ self.attention.value_proj.bias = mx.zeros(model_dims)
41
+ self.attention.out_proj.bias = mx.zeros(model_dims)
42
+
43
+ self.linear1 = nn.Linear(model_dims, 4 * model_dims)
44
+ self.linear2 = nn.Linear(4 * model_dims, model_dims)
45
+
46
+ self.act = _ACTIVATIONS[activation]
47
+
48
+ def __call__(self, x, attn_mask=None):
49
+ y = self.layer_norm1(x)
50
+ y = self.attention(y, y, y, attn_mask)
51
+ x = y + x
52
+
53
+ y = self.layer_norm2(x)
54
+ y = self.linear1(y)
55
+ y = self.act(y)
56
+ y = self.linear2(y)
57
+ x = y + x
58
+
59
+ return x
60
+
61
+
62
+ class CLIPTextModel(nn.Module):
63
+ """Implements the text encoder transformer from CLIP."""
64
+
65
+ def __init__(self, config: CLIPTextModelConfig):
66
+ super().__init__()
67
+
68
+ self.token_embedding = nn.Embedding(config.vocab_size, config.model_dims)
69
+ self.position_embedding = nn.Embedding(config.max_length, config.model_dims)
70
+ self.layers = [
71
+ CLIPEncoderLayer(config.model_dims, config.num_heads, config.hidden_act)
72
+ for i in range(config.num_layers)
73
+ ]
74
+ self.final_layer_norm = nn.LayerNorm(config.model_dims)
75
+
76
+ if config.projection_dim is not None:
77
+ self.text_projection = nn.Linear(
78
+ config.model_dims, config.projection_dim, bias=False
79
+ )
80
+
81
+ def _get_mask(self, N, dtype):
82
+ indices = mx.arange(N)
83
+ mask = indices[:, None] < indices[None]
84
+ mask = mask.astype(dtype) * (-6e4 if dtype == mx.float16 else -1e9)
85
+ return mask
86
+
87
+ def __call__(self, x):
88
+ # Extract some shapes
89
+ B, N = x.shape
90
+ eos_tokens = x.argmax(-1)
91
+
92
+ # Compute the embeddings
93
+ x = self.token_embedding(x)
94
+ x = x + self.position_embedding.weight[:N]
95
+
96
+ # Compute the features from the transformer
97
+ mask = self._get_mask(N, x.dtype)
98
+ hidden_states = []
99
+ for l in self.layers:
100
+ x = l(x, mask)
101
+ hidden_states.append(x)
102
+
103
+ # Apply the final layernorm and return
104
+ x = self.final_layer_norm(x)
105
+ last_hidden_state = x
106
+
107
+ # Select the EOS token
108
+ pooled_output = x[mx.arange(len(x)), eos_tokens]
109
+ if "text_projection" in self:
110
+ pooled_output = self.text_projection(pooled_output)
111
+
112
+ return CLIPOutput(
113
+ pooled_output=pooled_output,
114
+ last_hidden_state=last_hidden_state,
115
+ hidden_states=hidden_states,
116
+ )