neverlib 0.2.8__py3-none-any.whl → 0.3.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (466) hide show
  1. neverlib/Docs/audio_aug/test_volume.ipynb +8 -8
  2. neverlib/Docs/filter/biquad.ipynb +1 -1
  3. neverlib/Docs/filter/filter_family.ipynb +4 -4
  4. neverlib/Docs/vad/VAD_WebRTC.ipynb +4 -4
  5. neverlib/Docs/vad/VAD_whisper.ipynb +2 -2
  6. neverlib/LLM/__init__.py +37 -0
  7. neverlib/LLM/bailian.py +342 -0
  8. neverlib/LLM/image.py +73 -0
  9. neverlib/LLM/text.py +32 -0
  10. neverlib/QA/ImpactNoiseRejection.py +119 -0
  11. neverlib/QA/gen_init.py +13 -16
  12. neverlib/__init__.py +5 -5
  13. neverlib/audio_aug/HarmonicDistortion.py +11 -11
  14. neverlib/audio_aug/README.md +3 -0
  15. neverlib/audio_aug/__init__.py +2 -2
  16. neverlib/audio_aug/audio_aug.py +18 -18
  17. neverlib/audio_aug/coder_aug.py +25 -25
  18. neverlib/audio_aug/coder_aug2.py +10 -10
  19. neverlib/audio_aug/loss_packet_aug.py +16 -16
  20. neverlib/audio_aug/quant_aug.py +7 -7
  21. neverlib/data_analyze/README.md +1 -1
  22. neverlib/data_analyze/__init__.py +2 -2
  23. neverlib/data_analyze/dataset_analyzer.py +2 -2
  24. neverlib/data_analyze/quality_metrics.py +12 -12
  25. neverlib/data_analyze/statistics.py +1 -1
  26. neverlib/data_analyze/visualization.py +1 -1
  27. neverlib/filter/README.md +3 -3
  28. neverlib/filter/__init__.py +2 -2
  29. neverlib/filter/auto_eq/README.md +2 -2
  30. neverlib/filter/auto_eq/__init__.py +2 -2
  31. neverlib/filter/auto_eq/de_eq.py +1 -1
  32. neverlib/filter/auto_eq/ga_eq_advanced.py +2 -2
  33. neverlib/filter/auto_eq/ga_eq_basic.py +1 -1
  34. neverlib/filter/biquad.py +1 -1
  35. neverlib/filter/core.py +8 -5
  36. neverlib/metrics/README.md +35 -0
  37. neverlib/metrics/__init__.py +2 -2
  38. neverlib/metrics/dnsmos.py +2 -2
  39. neverlib/metrics/lpc_lsp.py +8 -8
  40. neverlib/metrics/pesq_c/PESQ +0 -0
  41. neverlib/metrics/snr.py +5 -5
  42. neverlib/metrics/spec.py +23 -23
  43. neverlib/metrics/test_pesq.py +3 -3
  44. neverlib/signal_gen/babble_noise_generate.py +113 -0
  45. neverlib/tests/__init__.py +2 -2
  46. neverlib/tests/test_imports.py +1 -1
  47. neverlib/utils/README.md +29 -0
  48. neverlib/utils/__init__.py +24 -16
  49. neverlib/utils/audio_split.py +21 -21
  50. neverlib/utils/checkGPU.py +52 -79
  51. neverlib/utils/floder.py +115 -0
  52. neverlib/utils/lazy_expose.py +1 -1
  53. neverlib/utils/lazy_module.py +6 -6
  54. neverlib/utils/message.py +2 -3
  55. neverlib/utils/pcm.py +42 -0
  56. neverlib/utils/utils.py +108 -91
  57. neverlib/vad/README.md +5 -5
  58. neverlib/vad/__init__.py +2 -2
  59. neverlib/vad/utils.py +1 -1
  60. {neverlib-0.2.8.dist-info → neverlib-0.3.0.dist-info}/METADATA +17 -3
  61. neverlib-0.3.0.dist-info/RECORD +120 -0
  62. neverlib/.claude/settings.local.json +0 -9
  63. neverlib/.history/Docs/audio_aug/del_20250827162530.py +0 -0
  64. neverlib/.history/Docs/audio_aug/del_20250827162540.py +0 -2
  65. neverlib/.history/Docs/audio_aug/del_20250827162541.py +0 -7
  66. neverlib/.history/Docs/audio_aug/del_20250827162606.py +0 -7
  67. neverlib/.history/Docs/audio_aug/del_20250827162637.py +0 -8
  68. neverlib/.history/Docs/audio_aug/del_20250827162645.py +0 -8
  69. neverlib/.history/Docs/audio_aug/del_20250827162723.py +0 -9
  70. neverlib/.history/Docs/audio_aug/del_20250827162739.py +0 -9
  71. neverlib/.history/Docs/audio_aug/test_snr_20250806011311.py +0 -0
  72. neverlib/.history/Docs/audio_aug/test_snr_20250806011331.py +0 -75
  73. neverlib/.history/Docs/audio_aug/test_snr_20250806011342.py +0 -57
  74. neverlib/.history/Docs/audio_aug/test_snr_20250806011352.py +0 -57
  75. neverlib/.history/Docs/audio_aug/test_snr_20250806011403.py +0 -57
  76. neverlib/.history/Docs/audio_aug/test_snr_20250806011413.py +0 -57
  77. neverlib/.history/Docs/audio_aug/test_snr_20250806011435.py +0 -55
  78. neverlib/.history/Docs/audio_aug/test_snr_20250827161751.py +0 -55
  79. neverlib/.history/Docs/audio_aug/test_snr_20250827161754.py +0 -55
  80. neverlib/.history/Docs/audio_aug/test_snr_20250827161833.py +0 -54
  81. neverlib/.history/Docs/audio_aug/test_snr_20250827162017.py +0 -56
  82. neverlib/.history/Docs/audio_aug/test_snr_20250827162021.py +0 -57
  83. neverlib/.history/Docs/audio_aug/test_snr_20250827162028.py +0 -57
  84. neverlib/.history/Docs/audio_aug/test_snr_20250827162033.py +0 -55
  85. neverlib/.history/Docs/audio_aug_test/del_20250827162738.py +0 -9
  86. neverlib/.history/Docs/audio_aug_test/del_20250827162819.py +0 -9
  87. neverlib/.history/Docs/audio_aug_test/del_20250827162830.py +0 -9
  88. neverlib/.history/Docs/audio_aug_test/del_20250827162846.py +0 -9
  89. neverlib/.history/Docs/audio_aug_test/del_20250827162851.py +0 -9
  90. neverlib/.history/Docs/audio_aug_test/del_20250827162903.py +0 -10
  91. neverlib/.history/Docs/audio_aug_test/del_20250827162921.py +0 -10
  92. neverlib/.history/Docs/audio_aug_test/del_20250827162926.py +0 -10
  93. neverlib/.history/Docs/audio_aug_test/del_20250827163030.py +0 -10
  94. neverlib/.history/Docs/audio_aug_test/del_20250827163032.py +0 -10
  95. neverlib/.history/Docs/vad/1_20250810032405.py +0 -0
  96. neverlib/.history/Docs/vad/1_20250810032417.py +0 -39
  97. neverlib/.history/QA/html2markdown_20250822234112.md +0 -0
  98. neverlib/.history/QA/html2markdown_20250822234140.py +0 -9
  99. neverlib/.history/QA/html2markdown_20250822234141.md +0 -9
  100. neverlib/.history/QA/html2markdown_20250822234159.py +0 -12
  101. neverlib/.history/QA/html2markdown_20250822234200.py +0 -17
  102. neverlib/.history/QA/html2markdown_20250822234236.py +0 -17
  103. neverlib/.history/QA/html2markdown_20250822234340.py +0 -14
  104. neverlib/.history/QA/html2markdown_20250822234522.py +0 -18
  105. neverlib/.history/QA/html2markdown_20250822234601.py +0 -20
  106. neverlib/.history/QA/html2markdown_20250822234615.py +0 -22
  107. neverlib/.history/QA/html2markdown_20250822234715.py +0 -28
  108. neverlib/.history/QA/html2markdown_20250822234720.py +0 -27
  109. neverlib/.history/QA/html2markdown_20250822234903.py +0 -27
  110. neverlib/.history/__init___20250805234212.py +0 -41
  111. neverlib/.history/__init___20250904102635.py +0 -39
  112. neverlib/.history/__init___20250904102836.py +0 -34
  113. neverlib/.history/__init___20250904102838.py +0 -39
  114. neverlib/.history/__init___20250904102851.py +0 -33
  115. neverlib/.history/audio_aug/audio_aug_20250806010451.py +0 -125
  116. neverlib/.history/audio_aug/audio_aug_20250806010750.py +0 -138
  117. neverlib/.history/audio_aug/audio_aug_20250806010759.py +0 -140
  118. neverlib/.history/audio_aug/audio_aug_20250806010803.py +0 -140
  119. neverlib/.history/audio_aug/audio_aug_20250806010809.py +0 -140
  120. neverlib/.history/audio_aug/audio_aug_20250806011108.py +0 -140
  121. neverlib/.history/audio_aug/audio_aug_20250826155913.py +0 -158
  122. neverlib/.history/audio_aug/audio_aug_20250826164159.py +0 -159
  123. neverlib/.history/audio_aug/audio_aug_20250826164217.py +0 -160
  124. neverlib/.history/audio_aug/audio_aug_20250826164408.py +0 -161
  125. neverlib/.history/audio_aug/audio_aug_20250826164423.py +0 -161
  126. neverlib/.history/audio_aug/audio_aug_20250826164529.py +0 -161
  127. neverlib/.history/audio_aug/audio_aug_20250826164824.py +0 -161
  128. neverlib/.history/audio_aug/audio_aug_20250826164932.py +0 -162
  129. neverlib/.history/audio_aug/audio_aug_20250826164947.py +0 -162
  130. neverlib/.history/audio_aug/audio_aug_20250826165403.py +0 -162
  131. neverlib/.history/audio_aug/audio_aug_20250826165421.py +0 -162
  132. neverlib/.history/audio_aug/audio_aug_20250826165509.py +0 -163
  133. neverlib/.history/audio_aug/audio_aug_20250826165702.py +0 -163
  134. neverlib/.history/audio_aug/audio_aug_20250826165732.py +0 -165
  135. neverlib/.history/audio_aug/audio_aug_20250826170041.py +0 -163
  136. neverlib/.history/audio_aug/audio_aug_20250826170105.py +0 -164
  137. neverlib/.history/audio_aug/audio_aug_20250826170154.py +0 -164
  138. neverlib/.history/audio_aug/audio_aug_20250826170220.py +0 -165
  139. neverlib/.history/audio_aug/audio_aug_20250826170221.py +0 -165
  140. neverlib/.history/audio_aug/audio_aug_20250826170228.py +0 -165
  141. neverlib/.history/audio_aug/audio_aug_20250826170231.py +0 -165
  142. neverlib/.history/audio_aug/audio_aug_20250826212001.py +0 -165
  143. neverlib/.history/audio_aug/audio_aug_20250826220038.py +0 -165
  144. neverlib/.history/audio_aug/audio_aug_20250826220133.py +0 -165
  145. neverlib/.history/audio_aug/audio_aug_20250826220148.py +0 -165
  146. neverlib/.history/audio_aug/audio_aug_20250826220154.py +0 -165
  147. neverlib/.history/audio_aug/audio_aug_20250826220156.py +0 -165
  148. neverlib/.history/audio_aug/audio_aug_20250826220314.py +0 -165
  149. neverlib/.history/audio_aug/audio_aug_20250826220343.py +0 -184
  150. neverlib/.history/audio_aug/audio_aug_20250826220345.py +0 -184
  151. neverlib/.history/audio_aug/audio_aug_20250826220349.py +0 -184
  152. neverlib/.history/audio_aug/audio_aug_20250826220429.py +0 -184
  153. neverlib/.history/audio_aug/audio_aug_20250826220447.py +0 -184
  154. neverlib/.history/audio_aug/audio_aug_20250826220601.py +0 -186
  155. neverlib/.history/audio_aug/audio_aug_20250826220638.py +0 -186
  156. neverlib/.history/audio_aug/audio_aug_20250826220641.py +0 -186
  157. neverlib/.history/audio_aug/audio_aug_20250826220647.py +0 -186
  158. neverlib/.history/audio_aug/audio_aug_20250826220653.py +0 -186
  159. neverlib/.history/audio_aug/audio_aug_20250826220655.py +0 -186
  160. neverlib/.history/audio_aug/audio_aug_20250826220731.py +0 -185
  161. neverlib/.history/audio_aug/audio_aug_20250826220739.py +0 -185
  162. neverlib/.history/audio_aug/audio_aug_20250826220747.py +0 -185
  163. neverlib/.history/audio_aug/audio_aug_20250826220801.py +0 -186
  164. neverlib/.history/audio_aug/audio_aug_20250826220822.py +0 -186
  165. neverlib/.history/audio_aug/audio_aug_20250826220901.py +0 -186
  166. neverlib/.history/audio_aug/audio_aug_20250826221107.py +0 -187
  167. neverlib/.history/audio_aug/audio_aug_20250826221310.py +0 -188
  168. neverlib/.history/audio_aug/audio_aug_20250826221353.py +0 -191
  169. neverlib/.history/audio_aug/audio_aug_20250826221821.py +0 -191
  170. neverlib/.history/audio_aug/audio_aug_20250826221838.py +0 -191
  171. neverlib/.history/audio_aug/audio_aug_20250826221906.py +0 -191
  172. neverlib/.history/audio_aug/audio_aug_20250826221930.py +0 -191
  173. neverlib/.history/audio_aug/audio_aug_20250826221939.py +0 -191
  174. neverlib/.history/audio_aug/audio_aug_20250826221955.py +0 -191
  175. neverlib/.history/audio_aug/audio_aug_20250826222008.py +0 -197
  176. neverlib/.history/audio_aug/audio_aug_20250826222017.py +0 -200
  177. neverlib/.history/audio_aug/audio_aug_20250826222046.py +0 -203
  178. neverlib/.history/audio_aug/audio_aug_20250826222105.py +0 -203
  179. neverlib/.history/audio_aug/audio_aug_20250826222206.py +0 -203
  180. neverlib/.history/audio_aug/audio_aug_20250826222302.py +0 -203
  181. neverlib/.history/audio_aug/audio_aug_20250826222336.py +0 -203
  182. neverlib/.history/audio_aug/audio_aug_20250826222455.py +0 -204
  183. neverlib/.history/audio_aug/audio_aug_20250826222526.py +0 -204
  184. neverlib/.history/audio_aug/audio_aug_20250826222541.py +0 -204
  185. neverlib/.history/audio_aug/audio_aug_20250826222624.py +0 -202
  186. neverlib/.history/audio_aug/audio_aug_20250826222714.py +0 -205
  187. neverlib/.history/audio_aug/audio_aug_20250826222820.py +0 -205
  188. neverlib/.history/audio_aug/audio_aug_20250826222827.py +0 -205
  189. neverlib/.history/audio_aug/audio_aug_20250826222927.py +0 -232
  190. neverlib/.history/audio_aug/audio_aug_20250826223009.py +0 -232
  191. neverlib/.history/audio_aug/audio_aug_20250826223054.py +0 -232
  192. neverlib/.history/audio_aug/audio_aug_20250826223225.py +0 -233
  193. neverlib/.history/audio_aug/audio_aug_20250826223344.py +0 -236
  194. neverlib/.history/audio_aug/audio_aug_20250826223356.py +0 -236
  195. neverlib/.history/audio_aug/audio_aug_20250826223955.py +0 -242
  196. neverlib/.history/audio_aug/audio_aug_20250826224210.py +0 -240
  197. neverlib/.history/audio_aug/audio_aug_20250826224250.py +0 -242
  198. neverlib/.history/audio_aug/audio_aug_20250826224323.py +0 -280
  199. neverlib/.history/audio_aug/audio_aug_20250826224452.py +0 -263
  200. neverlib/.history/audio_aug/audio_aug_20250826224455.py +0 -263
  201. neverlib/.history/audio_aug/audio_aug_20250826224502.py +0 -263
  202. neverlib/.history/audio_aug/audio_aug_20250826224528.py +0 -263
  203. neverlib/.history/audio_aug/audio_aug_20250826224658.py +0 -263
  204. neverlib/.history/audio_aug/audio_aug_20250826224833.py +0 -264
  205. neverlib/.history/audio_aug/audio_aug_20250826225013.py +0 -269
  206. neverlib/.history/audio_aug/audio_aug_20250826225050.py +0 -269
  207. neverlib/.history/audio_aug/audio_aug_20250826225241.py +0 -268
  208. neverlib/.history/audio_aug/audio_aug_20250826225315.py +0 -266
  209. neverlib/.history/audio_aug/audio_aug_20250826225404.py +0 -266
  210. neverlib/.history/audio_aug/audio_aug_20250826225502.py +0 -265
  211. neverlib/.history/audio_aug/audio_aug_20250826225950.py +0 -267
  212. neverlib/.history/audio_aug/audio_aug_20250826225959.py +0 -268
  213. neverlib/.history/audio_aug/audio_aug_20250826230222.py +0 -271
  214. neverlib/.history/audio_aug/audio_aug_20250826230248.py +0 -270
  215. neverlib/.history/audio_aug/audio_aug_20250826230638.py +0 -266
  216. neverlib/.history/audio_aug/audio_aug_20250826230755.py +0 -266
  217. neverlib/.history/audio_aug/audio_aug_20250826230941.py +0 -265
  218. neverlib/.history/audio_aug/audio_aug_20250826231054.py +0 -266
  219. neverlib/.history/audio_aug/audio_aug_20250826231117.py +0 -266
  220. neverlib/.history/audio_aug/audio_aug_20250826231219.py +0 -266
  221. neverlib/.history/audio_aug/audio_aug_20250826232330.py +0 -266
  222. neverlib/.history/audio_aug/audio_aug_20250826232352.py +0 -266
  223. neverlib/.history/audio_aug/audio_aug_20250827152748.py +0 -268
  224. neverlib/.history/audio_aug/audio_aug_20250827152806.py +0 -268
  225. neverlib/.history/audio_aug/audio_aug_20250827152808.py +0 -268
  226. neverlib/.history/audio_aug/audio_aug_20250827152917.py +0 -283
  227. neverlib/.history/audio_aug/audio_aug_20250827152929.py +0 -281
  228. neverlib/.history/audio_aug/audio_aug_20250827153100.py +0 -286
  229. neverlib/.history/audio_aug/audio_aug_20250827153102.py +0 -286
  230. neverlib/.history/audio_aug/audio_aug_20250827153301.py +0 -295
  231. neverlib/.history/audio_aug/audio_aug_20250827153331.py +0 -298
  232. neverlib/.history/audio_aug/audio_aug_20250827153525.py +0 -303
  233. neverlib/.history/audio_aug/audio_aug_20250827153533.py +0 -304
  234. neverlib/.history/audio_aug/audio_aug_20250827153541.py +0 -321
  235. neverlib/.history/audio_aug/audio_aug_20250827153805.py +0 -322
  236. neverlib/.history/audio_aug/audio_aug_20250827153832.py +0 -323
  237. neverlib/.history/audio_aug/audio_aug_20250827153836.py +0 -324
  238. neverlib/.history/audio_aug/audio_aug_20250827153846.py +0 -324
  239. neverlib/.history/audio_aug/audio_aug_20250827153859.py +0 -325
  240. neverlib/.history/audio_aug/audio_aug_20250827154453.py +0 -337
  241. neverlib/.history/audio_aug/audio_aug_20250827154513.py +0 -355
  242. neverlib/.history/audio_aug/audio_aug_20250827154538.py +0 -356
  243. neverlib/.history/audio_aug/audio_aug_20250827154541.py +0 -357
  244. neverlib/.history/audio_aug/audio_aug_20250827154612.py +0 -357
  245. neverlib/.history/audio_aug/audio_aug_20250827154657.py +0 -360
  246. neverlib/.history/audio_aug/audio_aug_20250827154708.py +0 -360
  247. neverlib/.history/audio_aug/audio_aug_20250827154728.py +0 -366
  248. neverlib/.history/audio_aug/audio_aug_20250827154755.py +0 -367
  249. neverlib/.history/audio_aug/audio_aug_20250827154800.py +0 -367
  250. neverlib/.history/audio_aug/audio_aug_20250827154917.py +0 -368
  251. neverlib/.history/audio_aug/audio_aug_20250827154928.py +0 -369
  252. neverlib/.history/audio_aug/audio_aug_20250827154932.py +0 -370
  253. neverlib/.history/audio_aug/audio_aug_20250827154947.py +0 -372
  254. neverlib/.history/audio_aug/audio_aug_20250827155015.py +0 -375
  255. neverlib/.history/audio_aug/audio_aug_20250827155106.py +0 -375
  256. neverlib/.history/audio_aug/audio_aug_20250827155114.py +0 -393
  257. neverlib/.history/audio_aug/audio_aug_20250827155207.py +0 -415
  258. neverlib/.history/audio_aug/audio_aug_20250827155300.py +0 -415
  259. neverlib/.history/audio_aug/audio_aug_20250827155321.py +0 -471
  260. neverlib/.history/audio_aug/audio_aug_20250827164703.py +0 -471
  261. neverlib/.history/audio_aug/audio_aug_20250827164749.py +0 -471
  262. neverlib/.history/audio_aug/audio_aug_20250827165252.py +0 -472
  263. neverlib/.history/audio_aug/audio_aug_20250827165334.py +0 -472
  264. neverlib/.history/audio_aug/audio_aug_20250827165404.py +0 -473
  265. neverlib/.history/audio_aug/audio_aug_20250827165610.py +0 -473
  266. neverlib/.history/audio_aug/audio_aug_20250827165805.py +0 -473
  267. neverlib/.history/audio_aug/audio_aug_20250827170056.py +0 -473
  268. neverlib/.history/audio_aug/audio_aug_20250827170106.py +0 -472
  269. neverlib/.history/audio_aug/audio_aug_20250827170143.py +0 -472
  270. neverlib/.history/audio_aug/audio_aug_20250827170216.py +0 -472
  271. neverlib/.history/audio_aug/audio_aug_20250827170218.py +0 -472
  272. neverlib/.history/audio_aug/audio_aug_20250827170314.py +0 -472
  273. neverlib/.history/audio_aug/audio_aug_20250827171500.py +0 -471
  274. neverlib/.history/audio_aug/audio_aug_20250827172347.py +0 -471
  275. neverlib/.history/audio_aug/audio_aug_20250827172558.py +0 -470
  276. neverlib/.history/audio_aug/audio_aug_20250827172559.py +0 -470
  277. neverlib/.history/audio_aug/audio_aug_20250827172801.py +0 -470
  278. neverlib/.history/audio_aug/audio_aug_20250827182522.py +0 -470
  279. neverlib/.history/audio_aug/audio_aug_20250827182526.py +0 -470
  280. neverlib/.history/audio_aug/audio_aug_20250827182626.py +0 -470
  281. neverlib/.history/audio_aug/audio_aug_20250827182715.py +0 -470
  282. neverlib/.history/audio_aug/audio_aug_20250904185444.py +0 -470
  283. neverlib/.history/audio_aug/audio_aug_20250904185538.py +0 -445
  284. neverlib/.history/dataAnalyze/__init___20250805234204.py +0 -87
  285. neverlib/.history/dataAnalyze/__init___20250806204125.py +0 -14
  286. neverlib/.history/dataAnalyze/__init___20250806204139.py +0 -14
  287. neverlib/.history/dataAnalyze/__init___20250806204159.py +0 -14
  288. neverlib/.history/data_analyze/__init___20250806204158.py +0 -14
  289. neverlib/.history/data_analyze/__init___20250827163248.py +0 -14
  290. neverlib/.history/filter/__init___20250820103351.py +0 -70
  291. neverlib/.history/filter/__init___20250821102348.py +0 -70
  292. neverlib/.history/filter/__init___20250821102405.py +0 -14
  293. neverlib/.history/filter/auto_eq/__init___20250819213121.py +0 -36
  294. neverlib/.history/filter/auto_eq/__init___20250821102241.py +0 -36
  295. neverlib/.history/filter/auto_eq/__init___20250821102259.py +0 -36
  296. neverlib/.history/filter/auto_eq/__init___20250821102307.py +0 -36
  297. neverlib/.history/filter/auto_eq/__init___20250821102310.py +0 -36
  298. neverlib/.history/filter/auto_eq/__init___20250821102318.py +0 -36
  299. neverlib/.history/filter/auto_eq/__init___20250821102507.py +0 -36
  300. neverlib/.history/filter/auto_eq/de_eq_20250820103848.py +0 -361
  301. neverlib/.history/filter/auto_eq/de_eq_20250821102422.py +0 -360
  302. neverlib/.history/filter/auto_eq/freq_eq_20250805234206.py +0 -75
  303. neverlib/.history/filter/auto_eq/freq_eq_20250820140732.py +0 -75
  304. neverlib/.history/filter/auto_eq/freq_eq_20250820140745.py +0 -75
  305. neverlib/.history/filter/auto_eq/freq_eq_20250820140816.py +0 -75
  306. neverlib/.history/filter/auto_eq/freq_eq_20250820140938.py +0 -77
  307. neverlib/.history/filter/auto_eq/freq_eq_20250820141003.py +0 -77
  308. neverlib/.history/filter/auto_eq/freq_eq_20250820141006.py +0 -77
  309. neverlib/.history/filter/auto_eq/freq_eq_20250820141019.py +0 -77
  310. neverlib/.history/filter/auto_eq/freq_eq_20250820141049.py +0 -77
  311. neverlib/.history/filter/auto_eq/freq_eq_20250820141211.py +0 -77
  312. neverlib/.history/filter/auto_eq/freq_eq_20250820141227.py +0 -77
  313. neverlib/.history/filter/auto_eq/freq_eq_20250820141311.py +0 -78
  314. neverlib/.history/filter/auto_eq/freq_eq_20250820141340.py +0 -78
  315. neverlib/.history/filter/auto_eq/freq_eq_20250820141712.py +0 -78
  316. neverlib/.history/filter/auto_eq/freq_eq_20250820141733.py +0 -78
  317. neverlib/.history/filter/auto_eq/freq_eq_20250820141755.py +0 -78
  318. neverlib/.history/filter/auto_eq/freq_eq_20250821102434.py +0 -76
  319. neverlib/.history/filter/auto_eq/freq_eq_20250821102500.py +0 -76
  320. neverlib/.history/filter/auto_eq/freq_eq_20250821102502.py +0 -76
  321. neverlib/.history/filter/auto_eq/freq_eq_20250821143140.py +0 -76
  322. neverlib/.history/filter/auto_eq/freq_eq_20250821153208.py +0 -76
  323. neverlib/.history/filter/auto_eq/freq_eq_20250821153214.py +0 -76
  324. neverlib/.history/filter/auto_eq/ga_eq_basic_20250820102957.py +0 -380
  325. neverlib/.history/filter/auto_eq/ga_eq_basic_20250820113054.py +0 -380
  326. neverlib/.history/filter/auto_eq/ga_eq_basic_20250820113150.py +0 -380
  327. neverlib/.history/filter/auto_eq/ga_eq_basic_20250820113520.py +0 -385
  328. neverlib/.history/filter/auto_eq/ga_eq_basic_20250820113525.py +0 -385
  329. neverlib/.history/filter/auto_eq/ga_eq_basic_20250821102212.py +0 -385
  330. neverlib/.history/filter/auto_eq/ga_eq_basic_20250901110521.py +0 -385
  331. neverlib/.history/filter/auto_eq/ga_eq_basic_20250901110652.py +0 -385
  332. neverlib/.history/filter/common_20250806002134.py +0 -37
  333. neverlib/.history/filter/common_20250821120448.py +0 -49
  334. neverlib/.history/filter/common_20250821120453.py +0 -49
  335. neverlib/.history/metrics/dnsmos_20250806001612.py +0 -160
  336. neverlib/.history/metrics/dnsmos_20250815180659.py +0 -160
  337. neverlib/.history/metrics/dnsmos_20250815180701.py +0 -158
  338. neverlib/.history/metrics/dnsmos_20250815181321.py +0 -154
  339. neverlib/.history/metrics/dnsmos_20250815181327.py +0 -154
  340. neverlib/.history/metrics/dnsmos_20250815181331.py +0 -154
  341. neverlib/.history/metrics/dnsmos_20250815181620.py +0 -154
  342. neverlib/.history/metrics/dnsmos_20250815181631.py +0 -154
  343. neverlib/.history/metrics/dnsmos_20250815181742.py +0 -154
  344. neverlib/.history/metrics/dnsmos_20250815181824.py +0 -153
  345. neverlib/.history/metrics/dnsmos_20250815181834.py +0 -153
  346. neverlib/.history/metrics/dnsmos_20250815181922.py +0 -153
  347. neverlib/.history/metrics/dnsmos_20250815182011.py +0 -147
  348. neverlib/.history/metrics/dnsmos_20250815182036.py +0 -144
  349. neverlib/.history/metrics/dnsmos_20250815182936.py +0 -143
  350. neverlib/.history/metrics/dnsmos_20250815182942.py +0 -143
  351. neverlib/.history/metrics/dnsmos_20250815183032.py +0 -137
  352. neverlib/.history/metrics/dnsmos_20250815183101.py +0 -144
  353. neverlib/.history/metrics/dnsmos_20250815183121.py +0 -144
  354. neverlib/.history/metrics/dnsmos_20250815183123.py +0 -143
  355. neverlib/.history/metrics/dnsmos_20250815183214.py +0 -143
  356. neverlib/.history/metrics/dnsmos_20250815183240.py +0 -143
  357. neverlib/.history/metrics/dnsmos_20250815183248.py +0 -144
  358. neverlib/.history/metrics/dnsmos_20250815183407.py +0 -142
  359. neverlib/.history/metrics/dnsmos_20250815183409.py +0 -142
  360. neverlib/.history/metrics/dnsmos_20250815183431.py +0 -142
  361. neverlib/.history/metrics/dnsmos_20250815183507.py +0 -140
  362. neverlib/.history/metrics/dnsmos_20250815183513.py +0 -139
  363. neverlib/.history/metrics/dnsmos_20250815183618.py +0 -139
  364. neverlib/.history/metrics/dnsmos_20250815183709.py +0 -140
  365. neverlib/.history/metrics/dnsmos_20250815183756.py +0 -137
  366. neverlib/.history/metrics/dnsmos_20250815183815.py +0 -128
  367. neverlib/.history/metrics/dnsmos_20250815183827.py +0 -129
  368. neverlib/.history/metrics/dnsmos_20250815183913.py +0 -117
  369. neverlib/.history/metrics/dnsmos_20250815183914.py +0 -117
  370. neverlib/.history/metrics/dnsmos_20250815184003.py +0 -118
  371. neverlib/.history/metrics/dnsmos_20250815184040.py +0 -118
  372. neverlib/.history/metrics/dnsmos_20250815184049.py +0 -118
  373. neverlib/.history/metrics/dnsmos_20250815184104.py +0 -117
  374. neverlib/.history/metrics/dnsmos_20250815184200.py +0 -117
  375. neverlib/.history/metrics/lpc_lsp_metric_20250816015944.py +0 -128
  376. neverlib/.history/metrics/lpc_lsp_metric_20250816020142.py +0 -128
  377. neverlib/.history/metrics/lpc_lsp_metric_20250816020156.py +0 -128
  378. neverlib/.history/metrics/lpc_lsp_metric_20250816020554.py +0 -130
  379. neverlib/.history/metrics/lpc_lsp_metric_20250816020600.py +0 -125
  380. neverlib/.history/metrics/lpc_lsp_metric_20250816020631.py +0 -120
  381. neverlib/.history/metrics/lpc_lsp_metric_20250816020746.py +0 -118
  382. neverlib/.history/metrics/lpc_me_20250816013111.py +0 -0
  383. neverlib/.history/metrics/lpc_me_20250816013129.py +0 -121
  384. neverlib/.history/metrics/lpc_me_20250816015430.py +0 -103
  385. neverlib/.history/metrics/lpc_me_20250816015535.py +0 -96
  386. neverlib/.history/metrics/lpc_me_20250816015542.py +0 -96
  387. neverlib/.history/metrics/lpc_me_20250816015636.py +0 -97
  388. neverlib/.history/metrics/lpc_me_20250816015658.py +0 -104
  389. neverlib/.history/metrics/lpc_me_20250816015703.py +0 -100
  390. neverlib/.history/metrics/lpc_me_20250816015945.py +0 -128
  391. neverlib/.history/metrics/snr_20250806010538.py +0 -177
  392. neverlib/.history/metrics/snr_20250806211634.py +0 -184
  393. neverlib/.history/metrics/snr_20250827224201.py +0 -182
  394. neverlib/.history/metrics/snr_20250827234019.py +0 -186
  395. neverlib/.history/metrics/snr_20250827234028.py +0 -186
  396. neverlib/.history/metrics/snr_20250827234030.py +0 -186
  397. neverlib/.history/metrics/spec_20250805234209.py +0 -45
  398. neverlib/.history/metrics/spec_20250816135530.py +0 -11
  399. neverlib/.history/metrics/spec_20250816135654.py +0 -16
  400. neverlib/.history/metrics/spec_20250816135736.py +0 -68
  401. neverlib/.history/metrics/spec_20250816135904.py +0 -75
  402. neverlib/.history/metrics/spec_20250816135921.py +0 -82
  403. neverlib/.history/metrics/spec_20250816140111.py +0 -82
  404. neverlib/.history/metrics/spec_20250816140543.py +0 -136
  405. neverlib/.history/metrics/spec_20250816140559.py +0 -172
  406. neverlib/.history/metrics/spec_20250816140602.py +0 -172
  407. neverlib/.history/metrics/spec_20250816140608.py +0 -172
  408. neverlib/.history/metrics/spec_20250816140654.py +0 -148
  409. neverlib/.history/metrics/spec_20250816140705.py +0 -144
  410. neverlib/.history/metrics/spec_20250816140755.py +0 -138
  411. neverlib/.history/metrics/spec_20250816140823.py +0 -170
  412. neverlib/.history/metrics/spec_20250816140832.py +0 -170
  413. neverlib/.history/metrics/spec_20250816140833.py +0 -170
  414. neverlib/.history/metrics/spec_20250816140922.py +0 -147
  415. neverlib/.history/metrics/spec_20250816141148.py +0 -107
  416. neverlib/.history/metrics/spec_20250816141219.py +0 -123
  417. neverlib/.history/metrics/spec_20250816141732.py +0 -178
  418. neverlib/.history/metrics/spec_20250816141740.py +0 -178
  419. neverlib/.history/metrics/spec_20250816142030.py +0 -178
  420. neverlib/.history/metrics/spec_20250816142107.py +0 -135
  421. neverlib/.history/metrics/spec_20250816142126.py +0 -135
  422. neverlib/.history/metrics/spec_20250816142410.py +0 -135
  423. neverlib/.history/metrics/spec_20250816142415.py +0 -136
  424. neverlib/.history/metrics/spec_metric_20250816135156.py +0 -0
  425. neverlib/.history/metrics/spec_metric_20250816135226.py +0 -5
  426. neverlib/.history/metrics/spec_metric_20250816135227.py +0 -10
  427. neverlib/.history/metrics/spec_metric_20250816135306.py +0 -15
  428. neverlib/.history/metrics/spec_metric_20250816135442.py +0 -31
  429. neverlib/.history/metrics/spec_metric_20250816135448.py +0 -31
  430. neverlib/.history/metrics/spec_metric_20250816135520.py +0 -29
  431. neverlib/.history/metrics/spec_metric_20250816135537.py +0 -63
  432. neverlib/.history/metrics/spec_metric_20250816135653.py +0 -65
  433. neverlib/.history/utils/audio_split_20250805234209.py +0 -268
  434. neverlib/.history/utils/audio_split_20250904185309.py +0 -268
  435. neverlib/.history/utils/utils_20250813165516.py +0 -330
  436. neverlib/.history/utils/utils_20250904181341.py +0 -328
  437. neverlib/.history/utils/utils_20250904185546.py +0 -352
  438. neverlib/.history/utils/utils_20250904185548.py +0 -353
  439. neverlib/.history/utils/utils_20250904185603.py +0 -353
  440. neverlib/.history/utils/utils_20250904185636.py +0 -353
  441. neverlib/.history/utils/utils_20250904185658.py +0 -358
  442. neverlib/.history/utils/utils_20250904190053.py +0 -359
  443. neverlib/.history/vad/PreProcess_20250805234211.py +0 -63
  444. neverlib/.history/vad/PreProcess_20250809232455.py +0 -63
  445. neverlib/.history/vad/PreProcess_20250816020725.py +0 -66
  446. neverlib/.history/vad/VAD_Silero_20250805234211.py +0 -50
  447. neverlib/.history/vad/VAD_Silero_20250809232456.py +0 -50
  448. neverlib/.history/vad/VAD_WebRTC_20250805234211.py +0 -61
  449. neverlib/.history/vad/VAD_WebRTC_20250809232456.py +0 -61
  450. neverlib/.history/vad/VAD_funasr_20250805234211.py +0 -54
  451. neverlib/.history/vad/VAD_funasr_20250809232456.py +0 -54
  452. neverlib/.history/vad/VAD_vadlib_20250805234211.py +0 -70
  453. neverlib/.history/vad/VAD_vadlib_20250809232455.py +0 -70
  454. neverlib/.history/vad/VAD_whisper_20250805234211.py +0 -55
  455. neverlib/.history/vad/VAD_whisper_20250809232456.py +0 -55
  456. neverlib/.specstory/.what-is-this.md +0 -69
  457. neverlib/.specstory/history/2025-08-05_17-06Z-/350/277/231/344/270/200/346/255/245/347/232/204/347/233/256/347/232/204/346/230/257/344/273/200/344/271/210.md +0 -424
  458. neverlib/.specstory/history/2025-08-22_02-10Z-/345/256/214/345/226/204/345/207/275/346/225/260/347/232/204/345/212/237/350/203/275/345/222/214/345/217/230/351/207/217/345/220/215/345/273/272/350/256/256.md +0 -247
  459. neverlib/.specstory/history/2025-08-26_11-54Z-oserror-missing-shared-object-file.md +0 -87
  460. neverlib/.specstory/history/2025-08-27_08-07Z-/345/256/214/345/226/204/346/265/213/350/257/225/346/226/207/346/241/243/347/232/204/350/256/250/350/256/272.md +0 -296
  461. neverlib/.specstory/history/2025-08-27_08-29Z-delete-python-file-command.md +0 -211
  462. neverlib/.specstory/history/2025-08-27_09-05Z-/345/234/250jupyter/344/270/255/346/222/255/346/224/276/351/237/263/351/242/221/347/232/204/344/273/243/347/240/201/344/277/256/346/224/271.md +0 -357
  463. neverlib-0.2.8.dist-info/RECORD +0 -510
  464. {neverlib-0.2.8.dist-info → neverlib-0.3.0.dist-info}/WHEEL +0 -0
  465. {neverlib-0.2.8.dist-info → neverlib-0.3.0.dist-info}/licenses/LICENSE +0 -0
  466. {neverlib-0.2.8.dist-info → neverlib-0.3.0.dist-info}/top_level.txt +0 -0
@@ -1,360 +0,0 @@
1
- # -*- coding:utf-8 -*-
2
- # Author: AI Assistant based on User's Demand
3
- # Date: 2023-10-27 (Using Differential Evolution)
4
- # Modified: 2025-01-05 (Adapted for new filters.py structure)
5
- import sys
6
- sys.path.append("..")
7
- import numpy as np
8
- import librosa
9
- import soundfile as sf
10
- from scipy import signal as sp_signal
11
- from scipy import optimize as sp_optimize # Keep for potential 'polish' if not using internal
12
- from scipy.optimize import differential_evolution # Import differential_evolution
13
- import warnings
14
- import matplotlib.pyplot as plt
15
- from neverlib.filter import EQFilter
16
-
17
-
18
- def get_filter_function(filter_type, fs):
19
- """获取滤波器函数, 返回配置好采样率的EQFilter实例的方法"""
20
- eq_filter = EQFilter(fs=fs)
21
- filter_func_map = {
22
- 'peak': eq_filter.PeakingFilter,
23
- 'low_shelf': eq_filter.LowshelfFilter,
24
- 'high_shelf': eq_filter.HighshelfFilter,
25
- 'low_pass': eq_filter.LowpassFilter,
26
- 'high_pass': eq_filter.HighpassFilter,
27
- }
28
- return filter_func_map.get(filter_type)
29
-
30
-
31
- def _calculate_spectrum(audio_data, target_sr, n_fft, hop_length):
32
- S = librosa.stft(audio_data, n_fft=n_fft, hop_length=hop_length, win_length=n_fft)
33
- mag = np.mean(np.abs(S), axis=1)
34
- epsilon = 1e-9 # IMPORTANT: Add epsilon to avoid log(0)
35
- spec_db = 20 * np.log10(mag + epsilon)
36
- freq_axis = librosa.fft_frequencies(sr=target_sr, n_fft=n_fft)
37
- return spec_db, freq_axis
38
-
39
-
40
- def _load_audio_data(audio_path, target_sr):
41
- data, sr_orig = sf.read(audio_path, dtype='float32')
42
- if data.ndim > 1:
43
- data = np.mean(data, axis=1)
44
- if sr_orig != target_sr:
45
- data = librosa.resample(data, orig_sr=sr_orig, target_sr=target_sr)
46
- return data
47
-
48
-
49
- def _apply_eq_cascade(audio_data, eq_params_list, fs):
50
- if not eq_params_list:
51
- return audio_data
52
- processed_audio = audio_data.copy()
53
-
54
- for params in eq_params_list:
55
- filter_type, fc, Q, db_gain = params['filter_type'], params['fc'], params['Q'], params.get('dBgain')
56
- filter_func = get_filter_function(filter_type, fs)
57
-
58
- if filter_func is None:
59
- warnings.warn(f"Unknown filter type: {filter_type}")
60
- continue
61
-
62
- # 根据滤波器类型调用相应的方法
63
- if db_gain is not None:
64
- b, a = filter_func(fc=fc, Q=Q, dBgain=db_gain)
65
- else:
66
- b, a = filter_func(fc=fc, Q=Q)
67
-
68
- if not np.issubdtype(processed_audio.dtype, np.floating):
69
- processed_audio = processed_audio.astype(np.float32)
70
- processed_audio = sp_signal.lfilter(b, a, processed_audio)
71
- return processed_audio
72
-
73
-
74
- def _objective_function(flat_params, band_definitions, target_response_db, freq_axis, fs, n_fft):
75
- current_cascade_response_db = np.zeros_like(freq_axis)
76
- param_idx_counter = 0
77
-
78
- for band_def in band_definitions:
79
- band_type = band_def['type']
80
- # Safety check for parameter length (can happen if bounds are wrong for DE)
81
- if param_idx_counter + 1 >= len(flat_params):
82
- warnings.warn(
83
- f"Parameter array too short in objective function. Expected at least {param_idx_counter + 2} elements, got {len(flat_params)}")
84
- return np.finfo(np.float64).max # Return large error
85
-
86
- fc, q_val = flat_params[param_idx_counter], flat_params[param_idx_counter + 1]
87
- param_idx_counter += 2
88
-
89
- filter_func = get_filter_function(band_type, fs)
90
- if filter_func is None:
91
- warnings.warn(f"Unknown filter type: {band_type}")
92
- return np.finfo(np.float64).max
93
-
94
- try:
95
- if band_type in ['peak', 'low_shelf', 'high_shelf']:
96
- if param_idx_counter >= len(flat_params):
97
- warnings.warn(f"Parameter array too short for gain parameter in objective function.")
98
- return np.finfo(np.float64).max
99
- db_gain = flat_params[param_idx_counter]
100
- param_idx_counter += 1
101
- b, a = filter_func(fc=fc, Q=q_val, dBgain=db_gain)
102
- else:
103
- b, a = filter_func(fc=fc, Q=q_val)
104
-
105
- w, h = sp_signal.freqz(b, a, worN=freq_axis, fs=fs)
106
- # Add epsilon to avoid log(0) which results in -inf and can break mean calculation
107
- h_abs = np.abs(h)
108
- h_db = 20 * np.log10(h_abs + 1e-9)
109
- current_cascade_response_db += h_db
110
-
111
- except Exception as e:
112
- warnings.warn(f"Error computing filter response for {band_type}: {e}")
113
- return np.finfo(np.float64).max
114
-
115
- error = np.mean((current_cascade_response_db - target_response_db)**2)
116
- if np.isnan(error) or np.isinf(error): # Handle potential nan/inf from objective
117
- # This might happen if parameters lead to unstable filters or extreme responses
118
- # print(f"Objective function returned NaN/Inf. Current error: {error}")
119
- # print(f"Params (first few): {flat_params[:6]}")
120
- return np.finfo(np.float64).max # Return a very large number
121
- return error
122
-
123
-
124
- def _get_initial_params_and_bounds(band_definitions, fs, target_response_db, freq_axis):
125
- x0, bounds_list = [], [] # Changed bounds to bounds_list
126
- min_fc, max_fc = 20.0, fs / 2.0 * 0.98
127
- num_gain_filters = sum(1 for bd in band_definitions if bd['type'] in ['peak', 'low_shelf', 'high_shelf'])
128
- log_fcs = np.logspace(np.log10(max(min_fc, 30)), np.log10(min(max_fc, fs / 2.1)), num_gain_filters, endpoint=True) if num_gain_filters > 0 else []
129
- gain_filter_idx = 0
130
- for band_def in band_definitions:
131
- band_type = band_def['type']
132
- initial_fc = band_def.get('initial_fc')
133
- if initial_fc is None:
134
- if band_type in ['peak', 'low_shelf', 'high_shelf'] and gain_filter_idx < len(log_fcs):
135
- initial_fc = log_fcs[gain_filter_idx]
136
- elif band_type == 'low_shelf':
137
- initial_fc = np.clip(80, min_fc, max_fc)
138
- elif band_type == 'high_shelf':
139
- initial_fc = np.clip(8000, min_fc, max_fc)
140
- elif band_type == 'low_pass':
141
- initial_fc = np.clip(fs / 2.2, min_fc, max_fc)
142
- elif band_type == 'high_pass':
143
- initial_fc = np.clip(40, min_fc, max_fc)
144
- else:
145
- initial_fc = (min_fc + max_fc) / 2
146
- x0.append(np.clip(initial_fc, min_fc, max_fc))
147
- bounds_list.append((min_fc, max_fc))
148
- initial_q = band_def.get('initial_Q', 1.0 if band_type == 'peak' else 0.707)
149
- x0.append(initial_q)
150
- bounds_list.append((0.1, 20.0))
151
- if band_type in ['peak', 'low_shelf', 'high_shelf']:
152
- fc_idx = np.argmin(np.abs(freq_axis - initial_fc))
153
- initial_gain_default = target_response_db[fc_idx] if len(target_response_db) > 0 and fc_idx < len(target_response_db) else 0.0
154
- initial_gain = band_def.get('initial_dBgain', initial_gain_default)
155
- x0.append(np.clip(initial_gain, -20.0, 20.0))
156
- bounds_list.append((-30.0, 30.0))
157
- gain_filter_idx += 1
158
- return np.array(x0), bounds_list # Return bounds_list for differential_evolution
159
-
160
-
161
- def plot_spectra_comparison(spectra_data, freq_axis, title="Spectra Comparison"):
162
- plt.figure(figsize=(12, 7))
163
- for label, spec_db in spectra_data.items():
164
- plt.plot(freq_axis, spec_db, label=label, alpha=0.8)
165
- plt.xscale('log') # Re-enabled log scale for frequency axis
166
- plt.xlabel("Frequency (Hz)")
167
- plt.ylabel("Magnitude (dB)")
168
- plt.title(title)
169
- plt.legend()
170
- plt.grid(True, which="both", ls="-", alpha=0.5) # Added which="both" for log grid
171
- if len(freq_axis) > 0:
172
- plt.xlim([20, freq_axis[-1]])
173
- valid_spectra = [s[np.isfinite(s)] for s in spectra_data.values() if s is not None and len(s[np.isfinite(s)]) > 0]
174
- if valid_spectra:
175
- min_y = min(np.min(s) for s in valid_spectra) - 10
176
- max_y = max(np.max(s) for s in valid_spectra) + 10
177
- if np.isfinite(min_y) and np.isfinite(max_y):
178
- plt.ylim([min_y, max_y])
179
- plt.tight_layout()
180
- try:
181
- clean_title = "".join(c if c.isalnum() or c in [' ', '_', '-'] else '_' for c in title) # Sanitize more robustly
182
- plt.savefig(f"{clean_title.replace(' ', '_')}.png")
183
- # if plt.isinteractive():
184
- # plt.show()
185
- plt.close()
186
- except Exception as e:
187
- print(f"Error saving/showing plot: {e}")
188
- finally:
189
- plt.close()
190
-
191
-
192
- def match_frequency_response(
193
- source_audio_path: str,
194
- target_audio_path: str,
195
- output_eq_audio_path: str = "source_eq_matched.wav",
196
- num_eq_bands: int = 10,
197
- sampling_rate: int = 16000,
198
- fft_size: int = 1024,
199
- hop_length_ratio: float = 0.25,
200
- eq_band_config_list: list = None,
201
- optimizer_options: dict = None, # For DE, e.g., {'popsize': 20, 'maxiter': 500, 'workers': -1}
202
- plot_results: bool = True,
203
- verbose: bool = False
204
- ):
205
- hop_length = int(fft_size * hop_length_ratio)
206
- if verbose:
207
- print(f"SR={sampling_rate}, FFT={fft_size}, Hop={hop_length}")
208
- print("Spectrum smoothing is DISABLED.")
209
-
210
- source_data = _load_audio_data(source_audio_path, sampling_rate)
211
- target_data = _load_audio_data(target_audio_path, sampling_rate)
212
-
213
- source_spec_db, freq_axis = _calculate_spectrum(source_data, sampling_rate, fft_size, hop_length)
214
- target_spec_db, _ = _calculate_spectrum(target_data, sampling_rate, fft_size, hop_length)
215
-
216
- target_eq_overall_response_db = target_spec_db - source_spec_db
217
-
218
- # _get_initial_params_and_bounds returns x0 and a list of (min,max) tuples for bounds
219
- actual_num_bands = len(eq_band_config_list)
220
- _, de_bounds = _get_initial_params_and_bounds(eq_band_config_list, sampling_rate, target_eq_overall_response_db, freq_axis)
221
-
222
- if verbose:
223
- print(f"EQ bands: {len(eq_band_config_list)}, Total params: {len(de_bounds)}")
224
-
225
- # Default options for differential_evolution
226
- # Note: popsize is often set to N_params * 10 or 15.
227
- # maxiter might need to be lower than for L-BFGS-B for similar runtime, or higher for better solution.
228
- num_params_to_optimize = len(de_bounds)
229
- default_de_options = {
230
- 'strategy': 'best1bin',
231
- 'maxiter': 200 * actual_num_bands if actual_num_bands > 0 else 200, # Max generations
232
- 'popsize': 15, # Population size per generation (popsize * num_params_to_optimize evaluations per generation)
233
- 'tol': 0.01,
234
- 'mutation': (0.5, 1),
235
- 'recombination': 0.7,
236
- 'disp': verbose,
237
- 'polish': True, # Apply a local minimizer (L-BFGS-B) at the end
238
- 'updating': 'deferred', # For parallel processing
239
- 'workers': -1 # Use all available CPU cores
240
- }
241
- if optimizer_options:
242
- default_de_options.update(optimizer_options)
243
-
244
- obj_args = (eq_band_config_list, target_eq_overall_response_db, freq_axis, sampling_rate, fft_size)
245
-
246
- if verbose:
247
- print(f"Starting Differential Evolution, options: {default_de_options} (Smoothing DISABLED)...")
248
-
249
- result = differential_evolution(
250
- _objective_function,
251
- bounds=de_bounds, # Pass the list of (min, max) tuples
252
- args=obj_args,
253
- **default_de_options # Pass all other options as keyword arguments
254
- )
255
-
256
- if verbose:
257
- print(f"DE Optimization: Success={result.success}, Msg='{result.message}', NFEV={result.nfev},nit={result.nit}, FunVal={result.fun:.4e}")
258
-
259
- optimized_params_flat = result.x
260
- # ... (Rest of the function: formatting parameters, applying EQ, plotting - remains the same) ...
261
- optimized_eq_parameters_list = []
262
- current_param_idx = 0
263
- for i, band_def in enumerate(eq_band_config_list):
264
- params = {'filter_type': band_def['type'], 'fs': float(sampling_rate)}
265
- params['fc'] = float(optimized_params_flat[current_param_idx])
266
- params['Q'] = float(optimized_params_flat[current_param_idx + 1])
267
- current_param_idx += 2
268
- if params['filter_type'] in ['peak', 'low_shelf', 'high_shelf']:
269
- params['dBgain'] = float(optimized_params_flat[current_param_idx])
270
- current_param_idx += 1
271
- else:
272
- params['dBgain'] = None
273
- optimized_eq_parameters_list.append(params)
274
-
275
- eq_audio_data = None
276
- if output_eq_audio_path:
277
- eq_audio_data = _apply_eq_cascade(source_data, optimized_eq_parameters_list, sampling_rate)
278
- max_val = np.max(np.abs(eq_audio_data))
279
- if max_val > 1.0:
280
- eq_audio_data /= max_val
281
- warnings.warn(f"EQ'd audio clipped (max: {max_val:.2f}), scaled.")
282
- elif max_val == 0 and len(eq_audio_data) > 0:
283
- warnings.warn(f"EQ'd audio is all zeros.")
284
- sf.write(output_eq_audio_path, eq_audio_data, sampling_rate, subtype='FLOAT')
285
- if verbose:
286
- print(f"EQ'd audio saved: {output_eq_audio_path}")
287
-
288
- if plot_results:
289
- spectra_to_plot = {"Source": source_spec_db, "Target": target_spec_db}
290
- plot_title_main = f"Spectra (DE) - {len(eq_band_config_list)} bands - No Smoothing"
291
- eq_spec_db, _ = _calculate_spectrum(eq_audio_data, sampling_rate, fft_size, hop_length)
292
- spectra_to_plot["EQ'd Source"] = eq_spec_db
293
- plot_spectra_comparison(spectra_to_plot, freq_axis, title=plot_title_main)
294
- return optimized_eq_parameters_list, eq_audio_data
295
-
296
-
297
- # --- Example Usage ---
298
- if __name__ == '__main__':
299
- source_file = "../data/white.wav"
300
- target_file = "../data/white_EQ.wav"
301
- output_eq_file = "../data/white_EQ_matched_DE.wav"
302
-
303
- SR = 16000
304
- NFFT = 1024
305
-
306
- custom_band_config = [
307
- {'type': 'high_pass', 'initial_fc': 40, 'initial_Q': 0.7},
308
- {'type': 'low_shelf', 'initial_fc': 150, 'initial_Q': 0.7},
309
- {'type': 'peak', 'initial_fc': 250},
310
- {'type': 'peak', 'initial_fc': 500},
311
- {'type': 'peak', 'initial_fc': 750},
312
- {'type': 'peak', 'initial_fc': 1000},
313
- {'type': 'peak', 'initial_fc': 1500},
314
- {'type': 'peak', 'initial_fc': 2500},
315
- {'type': 'peak', 'initial_fc': 3500},
316
- {'type': 'peak', 'initial_fc': 5000},
317
- {'type': 'peak', 'initial_fc': 6500},
318
- {'type': 'high_shelf', 'initial_fc': 7000, 'initial_Q': 0.7},
319
- ] # 12 bands
320
-
321
- # Differential Evolution optimizer options
322
- # popsize * (maxiter+1) * N_params = total evaluations (approx, due to strategy)
323
- # For 12 bands, ~34 params. popsize=15*34=510 is very large.
324
- # Let's try popsize = 15 (relative to num_params, so DEAP default like), or fixed like 50-100.
325
- # maxiter for DE is number of generations.
326
- de_opt_options = {
327
- 'maxiter': 300, # Number of generations. Start smaller, e.g., 100-500.
328
- 'popsize': 20, # Population size multiplier. popsize * N_params individuals.
329
- # For ~34 params, 20*34=680 individuals per generation. This is large.
330
- # Let's set popsize directly to a number like 100 for now.
331
- # 'popsize': 100, # Try a fixed population size
332
- 'mutation': (0.5, 1.0),
333
- 'recombination': 0.7,
334
- 'workers': -1, # Use all CPU cores for parallel fitness evaluation
335
- 'polish': True, # Recommended: polish the best solution with L-BFGS-B
336
- 'disp': True # Show progress
337
- }
338
- # Recalculate popsize for verbose message if using multiplier:
339
- # num_total_params = 0
340
- # for band in custom_band_config:
341
- # num_total_params +=2 # fc, Q
342
- # if band['type'] in ['peak', 'low_shelf', 'high_shelf']: num_total_params +=1
343
- # print(f"Total parameters to optimize: {num_total_params}")
344
- # de_opt_options['popsize'] = 10 * num_total_params # Example: 10 times the number of parameters
345
-
346
- optimized_parameters, eq_processed_audio = match_frequency_response(
347
- source_audio_path=source_file, target_audio_path=target_file,
348
- output_eq_audio_path=output_eq_file, eq_band_config_list=custom_band_config,
349
- sampling_rate=SR, fft_size=NFFT,
350
- optimizer_options=de_opt_options, # Pass DE options
351
- plot_results=True, verbose=True
352
- )
353
-
354
- if optimized_parameters:
355
- print("\n优化后的EQ参数 (差分进化, 未平滑):")
356
- for i, params in enumerate(optimized_parameters):
357
- print(f" 频段 {i + 1}: 类型={params['filter_type']}, Fc={params['fc']:.1f}, Q={params['Q']:.2f}" +
358
- (f", 增益={params['dBgain']:.2f}" if params['dBgain'] is not None else ""))
359
- else:
360
- print("未生成EQ参数或处理中发生错误。")
@@ -1,75 +0,0 @@
1
- '''
2
- Author: 凌逆战 | Never
3
- Date: 2025-08-04 21:49:05
4
- Description: 自动EQ补偿
5
- '''
6
- import os
7
- import numpy as np
8
- import librosa
9
- import soundfile as sf
10
- import pandas
11
- import matplotlib.pyplot as plt
12
-
13
- np.set_printoptions(precision=8)
14
- np.set_printoptions(suppress=True) # 打印不使用科学计数法
15
-
16
-
17
- def compute_frequency_eq(reference_audio, target_audio, sample_rate, fft_size, window_size, plot_results=False):
18
- freq_bins = np.fft.rfftfreq(fft_size, d=1.0 / sample_rate) # [0, 31.25, 62.5,.....]
19
-
20
- stft_reference = librosa.stft(reference_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
21
- stft_target = librosa.stft(target_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
22
- magnitude_reference, magnitude_target = np.abs(stft_reference), np.abs(stft_target) # (F,T)
23
- # 求时间平均, 频响曲线 Frequency_Response_curve
24
- reference_response = np.mean(magnitude_reference, axis=1)
25
- target_response = np.mean(magnitude_target, axis=1)
26
-
27
- reference_response_db = 20 * np.log10(reference_response) # 取对数幅度谱, 以便更好地可视化
28
- target_response_db = 20 * np.log10(target_response) # 取对数幅度谱, 以便更好地可视化
29
-
30
- eq_curve = target_response_db - reference_response_db # 补偿曲线 (28208, 1)
31
- # print("补偿EQ曲线: ", len(eq_curve), np.array2string(np.power(10, eq_curve / 20), separator=', '))
32
-
33
- if plot_results:
34
- plt.figure(figsize=(10, 5))
35
- plt.plot(freq_bins, target_response_db, label="Target Response")
36
- plt.plot(freq_bins, eq_curve, label="EQ Curve")
37
- compensated_response = reference_response_db + eq_curve # 补偿后的曲线
38
- plt.plot(freq_bins, compensated_response, label="Compensated Response")
39
- plt.xlabel('Frequency (Hz)')
40
- plt.ylabel('Amplitude (dB)')
41
- plt.title('Frequency Response Compensation')
42
- plt.grid(True)
43
- plt.legend()
44
- plt.xscale('log')
45
- plt.grid(True, ls="--", alpha=0.4)
46
- plt.tight_layout()
47
- # plt.show()
48
- plt.savefig(f"./frequency_eq_fft{window_size}.png")
49
-
50
- # 拿到EQ之后我们对音频进行EQ补偿
51
- reference_phase = np.angle(stft_reference) # (F,T)
52
- for freq_idx in range(magnitude_reference.shape[0]):
53
- magnitude_reference[freq_idx, :] *= np.power(10, eq_curve[freq_idx] / 20)
54
- compensated_spectrum = magnitude_reference * np.exp(1.0j * reference_phase)
55
- compensated_audio = librosa.istft(compensated_spectrum, hop_length=window_size // 2, win_length=window_size, n_fft=fft_size, window="hann")
56
-
57
- return eq_curve, compensated_audio
58
-
59
-
60
- if __name__ == "__main__":
61
- SAMPLE_RATE = 16000
62
- WINDOW_SIZE = FFT_SIZE = 512
63
- reference_audio_path = "../data/white.wav"
64
- target_audio_path = "../data/white_EQ.wav"
65
-
66
- # 读取音频文件
67
- reference_audio, _ = sf.read(reference_audio_path, dtype='float32')
68
- target_audio, _ = sf.read(target_audio_path, dtype='float32')
69
-
70
- eq_curve, compensated_audio = compute_frequency_eq(
71
- reference_audio, target_audio,
72
- SAMPLE_RATE, FFT_SIZE, WINDOW_SIZE,
73
- plot_results=False
74
- )
75
- sf.write("../data/frequency_eq.wav", compensated_audio, SAMPLE_RATE)
@@ -1,75 +0,0 @@
1
- '''
2
- Author: 凌逆战 | Never
3
- Date: 2025-08-04 21:49:05
4
- Description: 自动EQ补偿
5
- '''
6
- import os
7
- import numpy as np
8
- import librosa
9
- import soundfile as sf
10
- import pandas
11
- import matplotlib.pyplot as plt
12
-
13
- np.set_printoptions(precision=8)
14
- np.set_printoptions(suppress=True) # 打印不使用科学计数法
15
-
16
-
17
- def compute_frequency_eq(reference_audio, target_audio, sample_rate, fft_size, window_size, plot_results=False):
18
- freq_bins = np.fft.rfftfreq(fft_size, d=1.0 / sample_rate) # [0, 31.25, 62.5,.....]
19
-
20
- stft_reference = librosa.stft(reference_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
21
- stft_target = librosa.stft(target_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
22
- magnitude_reference, magnitude_target = np.abs(stft_reference), np.abs(stft_target) # (F,T)
23
- # 求时间平均, 频响曲线 Frequency_Response_curve
24
- reference_response = np.mean(magnitude_reference, axis=1)
25
- target_response = np.mean(magnitude_target, axis=1)
26
-
27
- reference_response_db = 20 * np.log10(reference_response) # 取对数幅度谱, 以便更好地可视化
28
- target_response_db = 20 * np.log10(target_response) # 取对数幅度谱, 以便更好地可视化
29
-
30
- eq_curve = target_response_db - reference_response_db # 补偿曲线 (28208, 1)
31
- # print("补偿EQ曲线: ", len(eq_curve), np.array2string(np.power(10, eq_curve / 20), separator=', '))
32
-
33
- if plot_results:
34
- plt.figure(figsize=(10, 5))
35
- # plt.plot(freq_bins, target_response_db, label="Target Response")
36
- plt.plot(freq_bins, eq_curve, label="EQ Curve")
37
- # compensated_response = reference_response_db + eq_curve # 补偿后的曲线
38
- # plt.plot(freq_bins, compensated_response, label="Compensated Response")
39
- plt.xlabel('Frequency (Hz)')
40
- plt.ylabel('Amplitude (dB)')
41
- plt.title('Frequency Response Compensation')
42
- plt.grid(True)
43
- plt.legend()
44
- plt.xscale('log')
45
- plt.grid(True, ls="--", alpha=0.4)
46
- plt.tight_layout()
47
- # plt.show()
48
- plt.savefig(f"./frequency_eq_fft{window_size}.png")
49
-
50
- # 拿到EQ之后我们对音频进行EQ补偿
51
- reference_phase = np.angle(stft_reference) # (F,T)
52
- for freq_idx in range(magnitude_reference.shape[0]):
53
- magnitude_reference[freq_idx, :] *= np.power(10, eq_curve[freq_idx] / 20)
54
- compensated_spectrum = magnitude_reference * np.exp(1.0j * reference_phase)
55
- compensated_audio = librosa.istft(compensated_spectrum, hop_length=window_size // 2, win_length=window_size, n_fft=fft_size, window="hann")
56
-
57
- return eq_curve, compensated_audio
58
-
59
-
60
- if __name__ == "__main__":
61
- SAMPLE_RATE = 16000
62
- WINDOW_SIZE = FFT_SIZE = 512
63
- reference_audio_path = "../data/white.wav"
64
- target_audio_path = "../data/white_EQ.wav"
65
-
66
- # 读取音频文件
67
- reference_audio, _ = sf.read(reference_audio_path, dtype='float32')
68
- target_audio, _ = sf.read(target_audio_path, dtype='float32')
69
-
70
- eq_curve, compensated_audio = compute_frequency_eq(
71
- reference_audio, target_audio,
72
- SAMPLE_RATE, FFT_SIZE, WINDOW_SIZE,
73
- plot_results=False
74
- )
75
- sf.write("../data/frequency_eq.wav", compensated_audio, SAMPLE_RATE)
@@ -1,75 +0,0 @@
1
- '''
2
- Author: 凌逆战 | Never
3
- Date: 2025-08-04 21:49:05
4
- Description: 自动EQ补偿
5
- '''
6
- import os
7
- import numpy as np
8
- import librosa
9
- import soundfile as sf
10
- import pandas
11
- import matplotlib.pyplot as plt
12
-
13
- np.set_printoptions(precision=8)
14
- np.set_printoptions(suppress=True) # 打印不使用科学计数法
15
-
16
-
17
- def compute_frequency_eq(reference_audio, target_audio, sample_rate, fft_size, window_size, plot_results=False):
18
- freq_bins = np.fft.rfftfreq(fft_size, d=1.0 / sample_rate) # [0, 31.25, 62.5,.....]
19
-
20
- stft_reference = librosa.stft(reference_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
21
- stft_target = librosa.stft(target_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
22
- magnitude_reference, magnitude_target = np.abs(stft_reference), np.abs(stft_target) # (F,T)
23
- # 求时间平均, 频响曲线 Frequency_Response_curve
24
- reference_response = np.mean(magnitude_reference, axis=1)
25
- target_response = np.mean(magnitude_target, axis=1)
26
-
27
- reference_response_db = 20 * np.log10(reference_response) # 取对数幅度谱, 以便更好地可视化
28
- target_response_db = 20 * np.log10(target_response) # 取对数幅度谱, 以便更好地可视化
29
-
30
- eq_curve = target_response_db - reference_response_db # 补偿曲线 (28208, 1)
31
- # print("补偿EQ曲线: ", len(eq_curve), np.array2string(np.power(10, eq_curve / 20), separator=', '))
32
-
33
- if plot_results:
34
- plt.figure(figsize=(10, 5))
35
- plt.plot(freq_bins, target_response_db, label="Target Response")
36
- plt.plot(freq_bins, eq_curve, label="EQ Curve")
37
- compensated_response = reference_response_db + eq_curve # 补偿后的曲线
38
- plt.plot(freq_bins, compensated_response, label="Compensated Response")
39
- plt.xlabel('Frequency (Hz)')
40
- plt.ylabel('Amplitude (dB)')
41
- plt.title('Frequency Response Compensation')
42
- plt.grid(True)
43
- plt.legend()
44
- plt.xscale('log')
45
- plt.grid(True, ls="--", alpha=0.4)
46
- plt.tight_layout()
47
- # plt.show()
48
- plt.savefig(f"./frequency_eq_fft{window_size}.png")
49
-
50
- # 拿到EQ之后我们对音频进行EQ补偿
51
- reference_phase = np.angle(stft_reference) # (F,T)
52
- for freq_idx in range(magnitude_reference.shape[0]):
53
- magnitude_reference[freq_idx, :] *= np.power(10, eq_curve[freq_idx] / 20)
54
- compensated_spectrum = magnitude_reference * np.exp(1.0j * reference_phase)
55
- compensated_audio = librosa.istft(compensated_spectrum, hop_length=window_size // 2, win_length=window_size, n_fft=fft_size, window="hann")
56
-
57
- return eq_curve, compensated_audio
58
-
59
-
60
- if __name__ == "__main__":
61
- SAMPLE_RATE = 16000
62
- WINDOW_SIZE = FFT_SIZE = 512
63
- reference_audio_path = "../data/white.wav"
64
- target_audio_path = "../data/white_EQ.wav"
65
-
66
- # 读取音频文件
67
- reference_audio, _ = sf.read(reference_audio_path, dtype='float32')
68
- target_audio, _ = sf.read(target_audio_path, dtype='float32')
69
-
70
- eq_curve, compensated_audio = compute_frequency_eq(
71
- reference_audio, target_audio,
72
- SAMPLE_RATE, FFT_SIZE, WINDOW_SIZE,
73
- plot_results=False
74
- )
75
- sf.write("../data/frequency_eq.wav", compensated_audio, SAMPLE_RATE)
@@ -1,75 +0,0 @@
1
- '''
2
- Author: 凌逆战 | Never
3
- Date: 2025-08-04 21:49:05
4
- Description: 自动EQ补偿
5
- '''
6
- import os
7
- import numpy as np
8
- import librosa
9
- import soundfile as sf
10
- import pandas
11
- import matplotlib.pyplot as plt
12
-
13
- np.set_printoptions(precision=8)
14
- np.set_printoptions(suppress=True) # 打印不使用科学计数法
15
-
16
-
17
- def compute_frequency_eq(reference_audio, target_audio, sample_rate, fft_size, window_size, plot_results=False):
18
- freq_bins = np.fft.rfftfreq(fft_size, d=1.0 / sample_rate) # [0, 31.25, 62.5,.....]
19
-
20
- stft_reference = librosa.stft(reference_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
21
- stft_target = librosa.stft(target_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
22
- magnitude_reference, magnitude_target = np.abs(stft_reference), np.abs(stft_target) # (F,T)
23
- # 求时间平均, 频响曲线 Frequency_Response_curve
24
- reference_response = np.mean(magnitude_reference, axis=1)
25
- target_response = np.mean(magnitude_target, axis=1)
26
-
27
- reference_response_db = 20 * np.log10(reference_response) # 取对数幅度谱, 以便更好地可视化
28
- target_response_db = 20 * np.log10(target_response) # 取对数幅度谱, 以便更好地可视化
29
-
30
- eq_curve = target_response_db - reference_response_db # 补偿曲线 (28208, 1)
31
- # print("补偿EQ曲线: ", len(eq_curve), np.array2string(np.power(10, eq_curve / 20), separator=', '))
32
-
33
- if plot_results:
34
- plt.figure(figsize=(10, 5))
35
- # plt.plot(freq_bins, target_response_db, label="Target Response")
36
- plt.plot(freq_bins, eq_curve, label="EQ Curve")
37
- # compensated_response = reference_response_db + eq_curve # 补偿后的曲线
38
- # plt.plot(freq_bins, compensated_response, label="Compensated Response")
39
- plt.xlabel('Frequency (Hz)')
40
- plt.ylabel('Amplitude (dB)')
41
- plt.title('Frequency Response Compensation')
42
- plt.grid(True)
43
- plt.legend()
44
- plt.xscale('log')
45
- plt.grid(True, ls="--", alpha=0.4)
46
- plt.tight_layout()
47
- # plt.show()
48
- plt.savefig(f"./frequency_eq_fft{window_size}.png")
49
-
50
- # 拿到EQ之后我们对音频进行EQ补偿
51
- reference_phase = np.angle(stft_reference) # (F,T)
52
- for freq_idx in range(magnitude_reference.shape[0]):
53
- magnitude_reference[freq_idx, :] *= np.power(10, eq_curve[freq_idx] / 20)
54
- compensated_spectrum = magnitude_reference * np.exp(1.0j * reference_phase)
55
- compensated_audio = librosa.istft(compensated_spectrum, hop_length=window_size // 2, win_length=window_size, n_fft=fft_size, window="hann")
56
-
57
- return eq_curve, compensated_audio
58
-
59
-
60
- if __name__ == "__main__":
61
- SAMPLE_RATE = 16000
62
- WINDOW_SIZE = FFT_SIZE = 512
63
- reference_audio_path = "../data/white.wav"
64
- target_audio_path = "../data/white_EQ.wav"
65
-
66
- # 读取音频文件
67
- reference_audio, _ = sf.read(reference_audio_path, dtype='float32')
68
- target_audio, _ = sf.read(target_audio_path, dtype='float32')
69
-
70
- eq_curve, compensated_audio = compute_frequency_eq(
71
- reference_audio, target_audio,
72
- SAMPLE_RATE, FFT_SIZE, WINDOW_SIZE,
73
- plot_results=False
74
- )
75
- sf.write("../data/frequency_eq.wav", compensated_audio, SAMPLE_RATE)