neverlib 0.2.8__py3-none-any.whl → 0.2.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (430) hide show
  1. neverlib/QA/ImpactNoiseRejection.py +119 -0
  2. neverlib/QA/impact_noise_rejection.png +0 -0
  3. neverlib/QA/out.pcm +0 -0
  4. neverlib/QA/out.wav +0 -0
  5. neverlib/audio_aug/README.md +3 -0
  6. neverlib/audio_aug/__init__.py +0 -54
  7. neverlib/data_analyze/__init__.py +0 -44
  8. neverlib/filter/__init__.py +0 -23
  9. neverlib/filter/auto_eq/__init__.py +0 -36
  10. neverlib/filter/core.py +8 -5
  11. neverlib/metrics/README.md +35 -0
  12. neverlib/metrics/__init__.py +0 -36
  13. neverlib/metrics/pesq_c/PESQ +0 -0
  14. neverlib/signal_gen/babble_noise_generate.py +113 -0
  15. neverlib/tests/__init__.py +0 -17
  16. neverlib/utils/README.md +29 -0
  17. neverlib/utils/__init__.py +6 -50
  18. neverlib/utils/audio_split.py +20 -20
  19. neverlib/utils/checkGPU.py +52 -79
  20. neverlib/utils/floder.py +115 -0
  21. neverlib/utils/pcm.py +42 -0
  22. neverlib/utils/utils.py +3 -92
  23. neverlib/vad/__init__.py +0 -38
  24. {neverlib-0.2.8.dist-info → neverlib-0.2.9.dist-info}/METADATA +15 -1
  25. neverlib-0.2.9.dist-info/RECORD +119 -0
  26. neverlib/.claude/settings.local.json +0 -9
  27. neverlib/.history/Docs/audio_aug/del_20250827162530.py +0 -0
  28. neverlib/.history/Docs/audio_aug/del_20250827162540.py +0 -2
  29. neverlib/.history/Docs/audio_aug/del_20250827162541.py +0 -7
  30. neverlib/.history/Docs/audio_aug/del_20250827162606.py +0 -7
  31. neverlib/.history/Docs/audio_aug/del_20250827162637.py +0 -8
  32. neverlib/.history/Docs/audio_aug/del_20250827162645.py +0 -8
  33. neverlib/.history/Docs/audio_aug/del_20250827162723.py +0 -9
  34. neverlib/.history/Docs/audio_aug/del_20250827162739.py +0 -9
  35. neverlib/.history/Docs/audio_aug/test_snr_20250806011311.py +0 -0
  36. neverlib/.history/Docs/audio_aug/test_snr_20250806011331.py +0 -75
  37. neverlib/.history/Docs/audio_aug/test_snr_20250806011342.py +0 -57
  38. neverlib/.history/Docs/audio_aug/test_snr_20250806011352.py +0 -57
  39. neverlib/.history/Docs/audio_aug/test_snr_20250806011403.py +0 -57
  40. neverlib/.history/Docs/audio_aug/test_snr_20250806011413.py +0 -57
  41. neverlib/.history/Docs/audio_aug/test_snr_20250806011435.py +0 -55
  42. neverlib/.history/Docs/audio_aug/test_snr_20250827161751.py +0 -55
  43. neverlib/.history/Docs/audio_aug/test_snr_20250827161754.py +0 -55
  44. neverlib/.history/Docs/audio_aug/test_snr_20250827161833.py +0 -54
  45. neverlib/.history/Docs/audio_aug/test_snr_20250827162017.py +0 -56
  46. neverlib/.history/Docs/audio_aug/test_snr_20250827162021.py +0 -57
  47. neverlib/.history/Docs/audio_aug/test_snr_20250827162028.py +0 -57
  48. neverlib/.history/Docs/audio_aug/test_snr_20250827162033.py +0 -55
  49. neverlib/.history/Docs/audio_aug_test/del_20250827162738.py +0 -9
  50. neverlib/.history/Docs/audio_aug_test/del_20250827162819.py +0 -9
  51. neverlib/.history/Docs/audio_aug_test/del_20250827162830.py +0 -9
  52. neverlib/.history/Docs/audio_aug_test/del_20250827162846.py +0 -9
  53. neverlib/.history/Docs/audio_aug_test/del_20250827162851.py +0 -9
  54. neverlib/.history/Docs/audio_aug_test/del_20250827162903.py +0 -10
  55. neverlib/.history/Docs/audio_aug_test/del_20250827162921.py +0 -10
  56. neverlib/.history/Docs/audio_aug_test/del_20250827162926.py +0 -10
  57. neverlib/.history/Docs/audio_aug_test/del_20250827163030.py +0 -10
  58. neverlib/.history/Docs/audio_aug_test/del_20250827163032.py +0 -10
  59. neverlib/.history/Docs/vad/1_20250810032405.py +0 -0
  60. neverlib/.history/Docs/vad/1_20250810032417.py +0 -39
  61. neverlib/.history/QA/html2markdown_20250822234112.md +0 -0
  62. neverlib/.history/QA/html2markdown_20250822234140.py +0 -9
  63. neverlib/.history/QA/html2markdown_20250822234141.md +0 -9
  64. neverlib/.history/QA/html2markdown_20250822234159.py +0 -12
  65. neverlib/.history/QA/html2markdown_20250822234200.py +0 -17
  66. neverlib/.history/QA/html2markdown_20250822234236.py +0 -17
  67. neverlib/.history/QA/html2markdown_20250822234340.py +0 -14
  68. neverlib/.history/QA/html2markdown_20250822234522.py +0 -18
  69. neverlib/.history/QA/html2markdown_20250822234601.py +0 -20
  70. neverlib/.history/QA/html2markdown_20250822234615.py +0 -22
  71. neverlib/.history/QA/html2markdown_20250822234715.py +0 -28
  72. neverlib/.history/QA/html2markdown_20250822234720.py +0 -27
  73. neverlib/.history/QA/html2markdown_20250822234903.py +0 -27
  74. neverlib/.history/__init___20250805234212.py +0 -41
  75. neverlib/.history/__init___20250904102635.py +0 -39
  76. neverlib/.history/__init___20250904102836.py +0 -34
  77. neverlib/.history/__init___20250904102838.py +0 -39
  78. neverlib/.history/__init___20250904102851.py +0 -33
  79. neverlib/.history/audio_aug/audio_aug_20250806010451.py +0 -125
  80. neverlib/.history/audio_aug/audio_aug_20250806010750.py +0 -138
  81. neverlib/.history/audio_aug/audio_aug_20250806010759.py +0 -140
  82. neverlib/.history/audio_aug/audio_aug_20250806010803.py +0 -140
  83. neverlib/.history/audio_aug/audio_aug_20250806010809.py +0 -140
  84. neverlib/.history/audio_aug/audio_aug_20250806011108.py +0 -140
  85. neverlib/.history/audio_aug/audio_aug_20250826155913.py +0 -158
  86. neverlib/.history/audio_aug/audio_aug_20250826164159.py +0 -159
  87. neverlib/.history/audio_aug/audio_aug_20250826164217.py +0 -160
  88. neverlib/.history/audio_aug/audio_aug_20250826164408.py +0 -161
  89. neverlib/.history/audio_aug/audio_aug_20250826164423.py +0 -161
  90. neverlib/.history/audio_aug/audio_aug_20250826164529.py +0 -161
  91. neverlib/.history/audio_aug/audio_aug_20250826164824.py +0 -161
  92. neverlib/.history/audio_aug/audio_aug_20250826164932.py +0 -162
  93. neverlib/.history/audio_aug/audio_aug_20250826164947.py +0 -162
  94. neverlib/.history/audio_aug/audio_aug_20250826165403.py +0 -162
  95. neverlib/.history/audio_aug/audio_aug_20250826165421.py +0 -162
  96. neverlib/.history/audio_aug/audio_aug_20250826165509.py +0 -163
  97. neverlib/.history/audio_aug/audio_aug_20250826165702.py +0 -163
  98. neverlib/.history/audio_aug/audio_aug_20250826165732.py +0 -165
  99. neverlib/.history/audio_aug/audio_aug_20250826170041.py +0 -163
  100. neverlib/.history/audio_aug/audio_aug_20250826170105.py +0 -164
  101. neverlib/.history/audio_aug/audio_aug_20250826170154.py +0 -164
  102. neverlib/.history/audio_aug/audio_aug_20250826170220.py +0 -165
  103. neverlib/.history/audio_aug/audio_aug_20250826170221.py +0 -165
  104. neverlib/.history/audio_aug/audio_aug_20250826170228.py +0 -165
  105. neverlib/.history/audio_aug/audio_aug_20250826170231.py +0 -165
  106. neverlib/.history/audio_aug/audio_aug_20250826212001.py +0 -165
  107. neverlib/.history/audio_aug/audio_aug_20250826220038.py +0 -165
  108. neverlib/.history/audio_aug/audio_aug_20250826220133.py +0 -165
  109. neverlib/.history/audio_aug/audio_aug_20250826220148.py +0 -165
  110. neverlib/.history/audio_aug/audio_aug_20250826220154.py +0 -165
  111. neverlib/.history/audio_aug/audio_aug_20250826220156.py +0 -165
  112. neverlib/.history/audio_aug/audio_aug_20250826220314.py +0 -165
  113. neverlib/.history/audio_aug/audio_aug_20250826220343.py +0 -184
  114. neverlib/.history/audio_aug/audio_aug_20250826220345.py +0 -184
  115. neverlib/.history/audio_aug/audio_aug_20250826220349.py +0 -184
  116. neverlib/.history/audio_aug/audio_aug_20250826220429.py +0 -184
  117. neverlib/.history/audio_aug/audio_aug_20250826220447.py +0 -184
  118. neverlib/.history/audio_aug/audio_aug_20250826220601.py +0 -186
  119. neverlib/.history/audio_aug/audio_aug_20250826220638.py +0 -186
  120. neverlib/.history/audio_aug/audio_aug_20250826220641.py +0 -186
  121. neverlib/.history/audio_aug/audio_aug_20250826220647.py +0 -186
  122. neverlib/.history/audio_aug/audio_aug_20250826220653.py +0 -186
  123. neverlib/.history/audio_aug/audio_aug_20250826220655.py +0 -186
  124. neverlib/.history/audio_aug/audio_aug_20250826220731.py +0 -185
  125. neverlib/.history/audio_aug/audio_aug_20250826220739.py +0 -185
  126. neverlib/.history/audio_aug/audio_aug_20250826220747.py +0 -185
  127. neverlib/.history/audio_aug/audio_aug_20250826220801.py +0 -186
  128. neverlib/.history/audio_aug/audio_aug_20250826220822.py +0 -186
  129. neverlib/.history/audio_aug/audio_aug_20250826220901.py +0 -186
  130. neverlib/.history/audio_aug/audio_aug_20250826221107.py +0 -187
  131. neverlib/.history/audio_aug/audio_aug_20250826221310.py +0 -188
  132. neverlib/.history/audio_aug/audio_aug_20250826221353.py +0 -191
  133. neverlib/.history/audio_aug/audio_aug_20250826221821.py +0 -191
  134. neverlib/.history/audio_aug/audio_aug_20250826221838.py +0 -191
  135. neverlib/.history/audio_aug/audio_aug_20250826221906.py +0 -191
  136. neverlib/.history/audio_aug/audio_aug_20250826221930.py +0 -191
  137. neverlib/.history/audio_aug/audio_aug_20250826221939.py +0 -191
  138. neverlib/.history/audio_aug/audio_aug_20250826221955.py +0 -191
  139. neverlib/.history/audio_aug/audio_aug_20250826222008.py +0 -197
  140. neverlib/.history/audio_aug/audio_aug_20250826222017.py +0 -200
  141. neverlib/.history/audio_aug/audio_aug_20250826222046.py +0 -203
  142. neverlib/.history/audio_aug/audio_aug_20250826222105.py +0 -203
  143. neverlib/.history/audio_aug/audio_aug_20250826222206.py +0 -203
  144. neverlib/.history/audio_aug/audio_aug_20250826222302.py +0 -203
  145. neverlib/.history/audio_aug/audio_aug_20250826222336.py +0 -203
  146. neverlib/.history/audio_aug/audio_aug_20250826222455.py +0 -204
  147. neverlib/.history/audio_aug/audio_aug_20250826222526.py +0 -204
  148. neverlib/.history/audio_aug/audio_aug_20250826222541.py +0 -204
  149. neverlib/.history/audio_aug/audio_aug_20250826222624.py +0 -202
  150. neverlib/.history/audio_aug/audio_aug_20250826222714.py +0 -205
  151. neverlib/.history/audio_aug/audio_aug_20250826222820.py +0 -205
  152. neverlib/.history/audio_aug/audio_aug_20250826222827.py +0 -205
  153. neverlib/.history/audio_aug/audio_aug_20250826222927.py +0 -232
  154. neverlib/.history/audio_aug/audio_aug_20250826223009.py +0 -232
  155. neverlib/.history/audio_aug/audio_aug_20250826223054.py +0 -232
  156. neverlib/.history/audio_aug/audio_aug_20250826223225.py +0 -233
  157. neverlib/.history/audio_aug/audio_aug_20250826223344.py +0 -236
  158. neverlib/.history/audio_aug/audio_aug_20250826223356.py +0 -236
  159. neverlib/.history/audio_aug/audio_aug_20250826223955.py +0 -242
  160. neverlib/.history/audio_aug/audio_aug_20250826224210.py +0 -240
  161. neverlib/.history/audio_aug/audio_aug_20250826224250.py +0 -242
  162. neverlib/.history/audio_aug/audio_aug_20250826224323.py +0 -280
  163. neverlib/.history/audio_aug/audio_aug_20250826224452.py +0 -263
  164. neverlib/.history/audio_aug/audio_aug_20250826224455.py +0 -263
  165. neverlib/.history/audio_aug/audio_aug_20250826224502.py +0 -263
  166. neverlib/.history/audio_aug/audio_aug_20250826224528.py +0 -263
  167. neverlib/.history/audio_aug/audio_aug_20250826224658.py +0 -263
  168. neverlib/.history/audio_aug/audio_aug_20250826224833.py +0 -264
  169. neverlib/.history/audio_aug/audio_aug_20250826225013.py +0 -269
  170. neverlib/.history/audio_aug/audio_aug_20250826225050.py +0 -269
  171. neverlib/.history/audio_aug/audio_aug_20250826225241.py +0 -268
  172. neverlib/.history/audio_aug/audio_aug_20250826225315.py +0 -266
  173. neverlib/.history/audio_aug/audio_aug_20250826225404.py +0 -266
  174. neverlib/.history/audio_aug/audio_aug_20250826225502.py +0 -265
  175. neverlib/.history/audio_aug/audio_aug_20250826225950.py +0 -267
  176. neverlib/.history/audio_aug/audio_aug_20250826225959.py +0 -268
  177. neverlib/.history/audio_aug/audio_aug_20250826230222.py +0 -271
  178. neverlib/.history/audio_aug/audio_aug_20250826230248.py +0 -270
  179. neverlib/.history/audio_aug/audio_aug_20250826230638.py +0 -266
  180. neverlib/.history/audio_aug/audio_aug_20250826230755.py +0 -266
  181. neverlib/.history/audio_aug/audio_aug_20250826230941.py +0 -265
  182. neverlib/.history/audio_aug/audio_aug_20250826231054.py +0 -266
  183. neverlib/.history/audio_aug/audio_aug_20250826231117.py +0 -266
  184. neverlib/.history/audio_aug/audio_aug_20250826231219.py +0 -266
  185. neverlib/.history/audio_aug/audio_aug_20250826232330.py +0 -266
  186. neverlib/.history/audio_aug/audio_aug_20250826232352.py +0 -266
  187. neverlib/.history/audio_aug/audio_aug_20250827152748.py +0 -268
  188. neverlib/.history/audio_aug/audio_aug_20250827152806.py +0 -268
  189. neverlib/.history/audio_aug/audio_aug_20250827152808.py +0 -268
  190. neverlib/.history/audio_aug/audio_aug_20250827152917.py +0 -283
  191. neverlib/.history/audio_aug/audio_aug_20250827152929.py +0 -281
  192. neverlib/.history/audio_aug/audio_aug_20250827153100.py +0 -286
  193. neverlib/.history/audio_aug/audio_aug_20250827153102.py +0 -286
  194. neverlib/.history/audio_aug/audio_aug_20250827153301.py +0 -295
  195. neverlib/.history/audio_aug/audio_aug_20250827153331.py +0 -298
  196. neverlib/.history/audio_aug/audio_aug_20250827153525.py +0 -303
  197. neverlib/.history/audio_aug/audio_aug_20250827153533.py +0 -304
  198. neverlib/.history/audio_aug/audio_aug_20250827153541.py +0 -321
  199. neverlib/.history/audio_aug/audio_aug_20250827153805.py +0 -322
  200. neverlib/.history/audio_aug/audio_aug_20250827153832.py +0 -323
  201. neverlib/.history/audio_aug/audio_aug_20250827153836.py +0 -324
  202. neverlib/.history/audio_aug/audio_aug_20250827153846.py +0 -324
  203. neverlib/.history/audio_aug/audio_aug_20250827153859.py +0 -325
  204. neverlib/.history/audio_aug/audio_aug_20250827154453.py +0 -337
  205. neverlib/.history/audio_aug/audio_aug_20250827154513.py +0 -355
  206. neverlib/.history/audio_aug/audio_aug_20250827154538.py +0 -356
  207. neverlib/.history/audio_aug/audio_aug_20250827154541.py +0 -357
  208. neverlib/.history/audio_aug/audio_aug_20250827154612.py +0 -357
  209. neverlib/.history/audio_aug/audio_aug_20250827154657.py +0 -360
  210. neverlib/.history/audio_aug/audio_aug_20250827154708.py +0 -360
  211. neverlib/.history/audio_aug/audio_aug_20250827154728.py +0 -366
  212. neverlib/.history/audio_aug/audio_aug_20250827154755.py +0 -367
  213. neverlib/.history/audio_aug/audio_aug_20250827154800.py +0 -367
  214. neverlib/.history/audio_aug/audio_aug_20250827154917.py +0 -368
  215. neverlib/.history/audio_aug/audio_aug_20250827154928.py +0 -369
  216. neverlib/.history/audio_aug/audio_aug_20250827154932.py +0 -370
  217. neverlib/.history/audio_aug/audio_aug_20250827154947.py +0 -372
  218. neverlib/.history/audio_aug/audio_aug_20250827155015.py +0 -375
  219. neverlib/.history/audio_aug/audio_aug_20250827155106.py +0 -375
  220. neverlib/.history/audio_aug/audio_aug_20250827155114.py +0 -393
  221. neverlib/.history/audio_aug/audio_aug_20250827155207.py +0 -415
  222. neverlib/.history/audio_aug/audio_aug_20250827155300.py +0 -415
  223. neverlib/.history/audio_aug/audio_aug_20250827155321.py +0 -471
  224. neverlib/.history/audio_aug/audio_aug_20250827164703.py +0 -471
  225. neverlib/.history/audio_aug/audio_aug_20250827164749.py +0 -471
  226. neverlib/.history/audio_aug/audio_aug_20250827165252.py +0 -472
  227. neverlib/.history/audio_aug/audio_aug_20250827165334.py +0 -472
  228. neverlib/.history/audio_aug/audio_aug_20250827165404.py +0 -473
  229. neverlib/.history/audio_aug/audio_aug_20250827165610.py +0 -473
  230. neverlib/.history/audio_aug/audio_aug_20250827165805.py +0 -473
  231. neverlib/.history/audio_aug/audio_aug_20250827170056.py +0 -473
  232. neverlib/.history/audio_aug/audio_aug_20250827170106.py +0 -472
  233. neverlib/.history/audio_aug/audio_aug_20250827170143.py +0 -472
  234. neverlib/.history/audio_aug/audio_aug_20250827170216.py +0 -472
  235. neverlib/.history/audio_aug/audio_aug_20250827170218.py +0 -472
  236. neverlib/.history/audio_aug/audio_aug_20250827170314.py +0 -472
  237. neverlib/.history/audio_aug/audio_aug_20250827171500.py +0 -471
  238. neverlib/.history/audio_aug/audio_aug_20250827172347.py +0 -471
  239. neverlib/.history/audio_aug/audio_aug_20250827172558.py +0 -470
  240. neverlib/.history/audio_aug/audio_aug_20250827172559.py +0 -470
  241. neverlib/.history/audio_aug/audio_aug_20250827172801.py +0 -470
  242. neverlib/.history/audio_aug/audio_aug_20250827182522.py +0 -470
  243. neverlib/.history/audio_aug/audio_aug_20250827182526.py +0 -470
  244. neverlib/.history/audio_aug/audio_aug_20250827182626.py +0 -470
  245. neverlib/.history/audio_aug/audio_aug_20250827182715.py +0 -470
  246. neverlib/.history/audio_aug/audio_aug_20250904185444.py +0 -470
  247. neverlib/.history/audio_aug/audio_aug_20250904185538.py +0 -445
  248. neverlib/.history/dataAnalyze/__init___20250805234204.py +0 -87
  249. neverlib/.history/dataAnalyze/__init___20250806204125.py +0 -14
  250. neverlib/.history/dataAnalyze/__init___20250806204139.py +0 -14
  251. neverlib/.history/dataAnalyze/__init___20250806204159.py +0 -14
  252. neverlib/.history/data_analyze/__init___20250806204158.py +0 -14
  253. neverlib/.history/data_analyze/__init___20250827163248.py +0 -14
  254. neverlib/.history/filter/__init___20250820103351.py +0 -70
  255. neverlib/.history/filter/__init___20250821102348.py +0 -70
  256. neverlib/.history/filter/__init___20250821102405.py +0 -14
  257. neverlib/.history/filter/auto_eq/__init___20250819213121.py +0 -36
  258. neverlib/.history/filter/auto_eq/__init___20250821102241.py +0 -36
  259. neverlib/.history/filter/auto_eq/__init___20250821102259.py +0 -36
  260. neverlib/.history/filter/auto_eq/__init___20250821102307.py +0 -36
  261. neverlib/.history/filter/auto_eq/__init___20250821102310.py +0 -36
  262. neverlib/.history/filter/auto_eq/__init___20250821102318.py +0 -36
  263. neverlib/.history/filter/auto_eq/__init___20250821102507.py +0 -36
  264. neverlib/.history/filter/auto_eq/de_eq_20250820103848.py +0 -361
  265. neverlib/.history/filter/auto_eq/de_eq_20250821102422.py +0 -360
  266. neverlib/.history/filter/auto_eq/freq_eq_20250805234206.py +0 -75
  267. neverlib/.history/filter/auto_eq/freq_eq_20250820140732.py +0 -75
  268. neverlib/.history/filter/auto_eq/freq_eq_20250820140745.py +0 -75
  269. neverlib/.history/filter/auto_eq/freq_eq_20250820140816.py +0 -75
  270. neverlib/.history/filter/auto_eq/freq_eq_20250820140938.py +0 -77
  271. neverlib/.history/filter/auto_eq/freq_eq_20250820141003.py +0 -77
  272. neverlib/.history/filter/auto_eq/freq_eq_20250820141006.py +0 -77
  273. neverlib/.history/filter/auto_eq/freq_eq_20250820141019.py +0 -77
  274. neverlib/.history/filter/auto_eq/freq_eq_20250820141049.py +0 -77
  275. neverlib/.history/filter/auto_eq/freq_eq_20250820141211.py +0 -77
  276. neverlib/.history/filter/auto_eq/freq_eq_20250820141227.py +0 -77
  277. neverlib/.history/filter/auto_eq/freq_eq_20250820141311.py +0 -78
  278. neverlib/.history/filter/auto_eq/freq_eq_20250820141340.py +0 -78
  279. neverlib/.history/filter/auto_eq/freq_eq_20250820141712.py +0 -78
  280. neverlib/.history/filter/auto_eq/freq_eq_20250820141733.py +0 -78
  281. neverlib/.history/filter/auto_eq/freq_eq_20250820141755.py +0 -78
  282. neverlib/.history/filter/auto_eq/freq_eq_20250821102434.py +0 -76
  283. neverlib/.history/filter/auto_eq/freq_eq_20250821102500.py +0 -76
  284. neverlib/.history/filter/auto_eq/freq_eq_20250821102502.py +0 -76
  285. neverlib/.history/filter/auto_eq/freq_eq_20250821143140.py +0 -76
  286. neverlib/.history/filter/auto_eq/freq_eq_20250821153208.py +0 -76
  287. neverlib/.history/filter/auto_eq/freq_eq_20250821153214.py +0 -76
  288. neverlib/.history/filter/auto_eq/ga_eq_basic_20250820102957.py +0 -380
  289. neverlib/.history/filter/auto_eq/ga_eq_basic_20250820113054.py +0 -380
  290. neverlib/.history/filter/auto_eq/ga_eq_basic_20250820113150.py +0 -380
  291. neverlib/.history/filter/auto_eq/ga_eq_basic_20250820113520.py +0 -385
  292. neverlib/.history/filter/auto_eq/ga_eq_basic_20250820113525.py +0 -385
  293. neverlib/.history/filter/auto_eq/ga_eq_basic_20250821102212.py +0 -385
  294. neverlib/.history/filter/auto_eq/ga_eq_basic_20250901110521.py +0 -385
  295. neverlib/.history/filter/auto_eq/ga_eq_basic_20250901110652.py +0 -385
  296. neverlib/.history/filter/common_20250806002134.py +0 -37
  297. neverlib/.history/filter/common_20250821120448.py +0 -49
  298. neverlib/.history/filter/common_20250821120453.py +0 -49
  299. neverlib/.history/metrics/dnsmos_20250806001612.py +0 -160
  300. neverlib/.history/metrics/dnsmos_20250815180659.py +0 -160
  301. neverlib/.history/metrics/dnsmos_20250815180701.py +0 -158
  302. neverlib/.history/metrics/dnsmos_20250815181321.py +0 -154
  303. neverlib/.history/metrics/dnsmos_20250815181327.py +0 -154
  304. neverlib/.history/metrics/dnsmos_20250815181331.py +0 -154
  305. neverlib/.history/metrics/dnsmos_20250815181620.py +0 -154
  306. neverlib/.history/metrics/dnsmos_20250815181631.py +0 -154
  307. neverlib/.history/metrics/dnsmos_20250815181742.py +0 -154
  308. neverlib/.history/metrics/dnsmos_20250815181824.py +0 -153
  309. neverlib/.history/metrics/dnsmos_20250815181834.py +0 -153
  310. neverlib/.history/metrics/dnsmos_20250815181922.py +0 -153
  311. neverlib/.history/metrics/dnsmos_20250815182011.py +0 -147
  312. neverlib/.history/metrics/dnsmos_20250815182036.py +0 -144
  313. neverlib/.history/metrics/dnsmos_20250815182936.py +0 -143
  314. neverlib/.history/metrics/dnsmos_20250815182942.py +0 -143
  315. neverlib/.history/metrics/dnsmos_20250815183032.py +0 -137
  316. neverlib/.history/metrics/dnsmos_20250815183101.py +0 -144
  317. neverlib/.history/metrics/dnsmos_20250815183121.py +0 -144
  318. neverlib/.history/metrics/dnsmos_20250815183123.py +0 -143
  319. neverlib/.history/metrics/dnsmos_20250815183214.py +0 -143
  320. neverlib/.history/metrics/dnsmos_20250815183240.py +0 -143
  321. neverlib/.history/metrics/dnsmos_20250815183248.py +0 -144
  322. neverlib/.history/metrics/dnsmos_20250815183407.py +0 -142
  323. neverlib/.history/metrics/dnsmos_20250815183409.py +0 -142
  324. neverlib/.history/metrics/dnsmos_20250815183431.py +0 -142
  325. neverlib/.history/metrics/dnsmos_20250815183507.py +0 -140
  326. neverlib/.history/metrics/dnsmos_20250815183513.py +0 -139
  327. neverlib/.history/metrics/dnsmos_20250815183618.py +0 -139
  328. neverlib/.history/metrics/dnsmos_20250815183709.py +0 -140
  329. neverlib/.history/metrics/dnsmos_20250815183756.py +0 -137
  330. neverlib/.history/metrics/dnsmos_20250815183815.py +0 -128
  331. neverlib/.history/metrics/dnsmos_20250815183827.py +0 -129
  332. neverlib/.history/metrics/dnsmos_20250815183913.py +0 -117
  333. neverlib/.history/metrics/dnsmos_20250815183914.py +0 -117
  334. neverlib/.history/metrics/dnsmos_20250815184003.py +0 -118
  335. neverlib/.history/metrics/dnsmos_20250815184040.py +0 -118
  336. neverlib/.history/metrics/dnsmos_20250815184049.py +0 -118
  337. neverlib/.history/metrics/dnsmos_20250815184104.py +0 -117
  338. neverlib/.history/metrics/dnsmos_20250815184200.py +0 -117
  339. neverlib/.history/metrics/lpc_lsp_metric_20250816015944.py +0 -128
  340. neverlib/.history/metrics/lpc_lsp_metric_20250816020142.py +0 -128
  341. neverlib/.history/metrics/lpc_lsp_metric_20250816020156.py +0 -128
  342. neverlib/.history/metrics/lpc_lsp_metric_20250816020554.py +0 -130
  343. neverlib/.history/metrics/lpc_lsp_metric_20250816020600.py +0 -125
  344. neverlib/.history/metrics/lpc_lsp_metric_20250816020631.py +0 -120
  345. neverlib/.history/metrics/lpc_lsp_metric_20250816020746.py +0 -118
  346. neverlib/.history/metrics/lpc_me_20250816013111.py +0 -0
  347. neverlib/.history/metrics/lpc_me_20250816013129.py +0 -121
  348. neverlib/.history/metrics/lpc_me_20250816015430.py +0 -103
  349. neverlib/.history/metrics/lpc_me_20250816015535.py +0 -96
  350. neverlib/.history/metrics/lpc_me_20250816015542.py +0 -96
  351. neverlib/.history/metrics/lpc_me_20250816015636.py +0 -97
  352. neverlib/.history/metrics/lpc_me_20250816015658.py +0 -104
  353. neverlib/.history/metrics/lpc_me_20250816015703.py +0 -100
  354. neverlib/.history/metrics/lpc_me_20250816015945.py +0 -128
  355. neverlib/.history/metrics/snr_20250806010538.py +0 -177
  356. neverlib/.history/metrics/snr_20250806211634.py +0 -184
  357. neverlib/.history/metrics/snr_20250827224201.py +0 -182
  358. neverlib/.history/metrics/snr_20250827234019.py +0 -186
  359. neverlib/.history/metrics/snr_20250827234028.py +0 -186
  360. neverlib/.history/metrics/snr_20250827234030.py +0 -186
  361. neverlib/.history/metrics/spec_20250805234209.py +0 -45
  362. neverlib/.history/metrics/spec_20250816135530.py +0 -11
  363. neverlib/.history/metrics/spec_20250816135654.py +0 -16
  364. neverlib/.history/metrics/spec_20250816135736.py +0 -68
  365. neverlib/.history/metrics/spec_20250816135904.py +0 -75
  366. neverlib/.history/metrics/spec_20250816135921.py +0 -82
  367. neverlib/.history/metrics/spec_20250816140111.py +0 -82
  368. neverlib/.history/metrics/spec_20250816140543.py +0 -136
  369. neverlib/.history/metrics/spec_20250816140559.py +0 -172
  370. neverlib/.history/metrics/spec_20250816140602.py +0 -172
  371. neverlib/.history/metrics/spec_20250816140608.py +0 -172
  372. neverlib/.history/metrics/spec_20250816140654.py +0 -148
  373. neverlib/.history/metrics/spec_20250816140705.py +0 -144
  374. neverlib/.history/metrics/spec_20250816140755.py +0 -138
  375. neverlib/.history/metrics/spec_20250816140823.py +0 -170
  376. neverlib/.history/metrics/spec_20250816140832.py +0 -170
  377. neverlib/.history/metrics/spec_20250816140833.py +0 -170
  378. neverlib/.history/metrics/spec_20250816140922.py +0 -147
  379. neverlib/.history/metrics/spec_20250816141148.py +0 -107
  380. neverlib/.history/metrics/spec_20250816141219.py +0 -123
  381. neverlib/.history/metrics/spec_20250816141732.py +0 -178
  382. neverlib/.history/metrics/spec_20250816141740.py +0 -178
  383. neverlib/.history/metrics/spec_20250816142030.py +0 -178
  384. neverlib/.history/metrics/spec_20250816142107.py +0 -135
  385. neverlib/.history/metrics/spec_20250816142126.py +0 -135
  386. neverlib/.history/metrics/spec_20250816142410.py +0 -135
  387. neverlib/.history/metrics/spec_20250816142415.py +0 -136
  388. neverlib/.history/metrics/spec_metric_20250816135156.py +0 -0
  389. neverlib/.history/metrics/spec_metric_20250816135226.py +0 -5
  390. neverlib/.history/metrics/spec_metric_20250816135227.py +0 -10
  391. neverlib/.history/metrics/spec_metric_20250816135306.py +0 -15
  392. neverlib/.history/metrics/spec_metric_20250816135442.py +0 -31
  393. neverlib/.history/metrics/spec_metric_20250816135448.py +0 -31
  394. neverlib/.history/metrics/spec_metric_20250816135520.py +0 -29
  395. neverlib/.history/metrics/spec_metric_20250816135537.py +0 -63
  396. neverlib/.history/metrics/spec_metric_20250816135653.py +0 -65
  397. neverlib/.history/utils/audio_split_20250805234209.py +0 -268
  398. neverlib/.history/utils/audio_split_20250904185309.py +0 -268
  399. neverlib/.history/utils/utils_20250813165516.py +0 -330
  400. neverlib/.history/utils/utils_20250904181341.py +0 -328
  401. neverlib/.history/utils/utils_20250904185546.py +0 -352
  402. neverlib/.history/utils/utils_20250904185548.py +0 -353
  403. neverlib/.history/utils/utils_20250904185603.py +0 -353
  404. neverlib/.history/utils/utils_20250904185636.py +0 -353
  405. neverlib/.history/utils/utils_20250904185658.py +0 -358
  406. neverlib/.history/utils/utils_20250904190053.py +0 -359
  407. neverlib/.history/vad/PreProcess_20250805234211.py +0 -63
  408. neverlib/.history/vad/PreProcess_20250809232455.py +0 -63
  409. neverlib/.history/vad/PreProcess_20250816020725.py +0 -66
  410. neverlib/.history/vad/VAD_Silero_20250805234211.py +0 -50
  411. neverlib/.history/vad/VAD_Silero_20250809232456.py +0 -50
  412. neverlib/.history/vad/VAD_WebRTC_20250805234211.py +0 -61
  413. neverlib/.history/vad/VAD_WebRTC_20250809232456.py +0 -61
  414. neverlib/.history/vad/VAD_funasr_20250805234211.py +0 -54
  415. neverlib/.history/vad/VAD_funasr_20250809232456.py +0 -54
  416. neverlib/.history/vad/VAD_vadlib_20250805234211.py +0 -70
  417. neverlib/.history/vad/VAD_vadlib_20250809232455.py +0 -70
  418. neverlib/.history/vad/VAD_whisper_20250805234211.py +0 -55
  419. neverlib/.history/vad/VAD_whisper_20250809232456.py +0 -55
  420. neverlib/.specstory/.what-is-this.md +0 -69
  421. neverlib/.specstory/history/2025-08-05_17-06Z-/350/277/231/344/270/200/346/255/245/347/232/204/347/233/256/347/232/204/346/230/257/344/273/200/344/271/210.md +0 -424
  422. neverlib/.specstory/history/2025-08-22_02-10Z-/345/256/214/345/226/204/345/207/275/346/225/260/347/232/204/345/212/237/350/203/275/345/222/214/345/217/230/351/207/217/345/220/215/345/273/272/350/256/256.md +0 -247
  423. neverlib/.specstory/history/2025-08-26_11-54Z-oserror-missing-shared-object-file.md +0 -87
  424. neverlib/.specstory/history/2025-08-27_08-07Z-/345/256/214/345/226/204/346/265/213/350/257/225/346/226/207/346/241/243/347/232/204/350/256/250/350/256/272.md +0 -296
  425. neverlib/.specstory/history/2025-08-27_08-29Z-delete-python-file-command.md +0 -211
  426. neverlib/.specstory/history/2025-08-27_09-05Z-/345/234/250jupyter/344/270/255/346/222/255/346/224/276/351/237/263/351/242/221/347/232/204/344/273/243/347/240/201/344/277/256/346/224/271.md +0 -357
  427. neverlib-0.2.8.dist-info/RECORD +0 -510
  428. {neverlib-0.2.8.dist-info → neverlib-0.2.9.dist-info}/WHEEL +0 -0
  429. {neverlib-0.2.8.dist-info → neverlib-0.2.9.dist-info}/licenses/LICENSE +0 -0
  430. {neverlib-0.2.8.dist-info → neverlib-0.2.9.dist-info}/top_level.txt +0 -0
@@ -1,360 +0,0 @@
1
- # -*- coding:utf-8 -*-
2
- # Author: AI Assistant based on User's Demand
3
- # Date: 2023-10-27 (Using Differential Evolution)
4
- # Modified: 2025-01-05 (Adapted for new filters.py structure)
5
- import sys
6
- sys.path.append("..")
7
- import numpy as np
8
- import librosa
9
- import soundfile as sf
10
- from scipy import signal as sp_signal
11
- from scipy import optimize as sp_optimize # Keep for potential 'polish' if not using internal
12
- from scipy.optimize import differential_evolution # Import differential_evolution
13
- import warnings
14
- import matplotlib.pyplot as plt
15
- from neverlib.filter import EQFilter
16
-
17
-
18
- def get_filter_function(filter_type, fs):
19
- """获取滤波器函数, 返回配置好采样率的EQFilter实例的方法"""
20
- eq_filter = EQFilter(fs=fs)
21
- filter_func_map = {
22
- 'peak': eq_filter.PeakingFilter,
23
- 'low_shelf': eq_filter.LowshelfFilter,
24
- 'high_shelf': eq_filter.HighshelfFilter,
25
- 'low_pass': eq_filter.LowpassFilter,
26
- 'high_pass': eq_filter.HighpassFilter,
27
- }
28
- return filter_func_map.get(filter_type)
29
-
30
-
31
- def _calculate_spectrum(audio_data, target_sr, n_fft, hop_length):
32
- S = librosa.stft(audio_data, n_fft=n_fft, hop_length=hop_length, win_length=n_fft)
33
- mag = np.mean(np.abs(S), axis=1)
34
- epsilon = 1e-9 # IMPORTANT: Add epsilon to avoid log(0)
35
- spec_db = 20 * np.log10(mag + epsilon)
36
- freq_axis = librosa.fft_frequencies(sr=target_sr, n_fft=n_fft)
37
- return spec_db, freq_axis
38
-
39
-
40
- def _load_audio_data(audio_path, target_sr):
41
- data, sr_orig = sf.read(audio_path, dtype='float32')
42
- if data.ndim > 1:
43
- data = np.mean(data, axis=1)
44
- if sr_orig != target_sr:
45
- data = librosa.resample(data, orig_sr=sr_orig, target_sr=target_sr)
46
- return data
47
-
48
-
49
- def _apply_eq_cascade(audio_data, eq_params_list, fs):
50
- if not eq_params_list:
51
- return audio_data
52
- processed_audio = audio_data.copy()
53
-
54
- for params in eq_params_list:
55
- filter_type, fc, Q, db_gain = params['filter_type'], params['fc'], params['Q'], params.get('dBgain')
56
- filter_func = get_filter_function(filter_type, fs)
57
-
58
- if filter_func is None:
59
- warnings.warn(f"Unknown filter type: {filter_type}")
60
- continue
61
-
62
- # 根据滤波器类型调用相应的方法
63
- if db_gain is not None:
64
- b, a = filter_func(fc=fc, Q=Q, dBgain=db_gain)
65
- else:
66
- b, a = filter_func(fc=fc, Q=Q)
67
-
68
- if not np.issubdtype(processed_audio.dtype, np.floating):
69
- processed_audio = processed_audio.astype(np.float32)
70
- processed_audio = sp_signal.lfilter(b, a, processed_audio)
71
- return processed_audio
72
-
73
-
74
- def _objective_function(flat_params, band_definitions, target_response_db, freq_axis, fs, n_fft):
75
- current_cascade_response_db = np.zeros_like(freq_axis)
76
- param_idx_counter = 0
77
-
78
- for band_def in band_definitions:
79
- band_type = band_def['type']
80
- # Safety check for parameter length (can happen if bounds are wrong for DE)
81
- if param_idx_counter + 1 >= len(flat_params):
82
- warnings.warn(
83
- f"Parameter array too short in objective function. Expected at least {param_idx_counter + 2} elements, got {len(flat_params)}")
84
- return np.finfo(np.float64).max # Return large error
85
-
86
- fc, q_val = flat_params[param_idx_counter], flat_params[param_idx_counter + 1]
87
- param_idx_counter += 2
88
-
89
- filter_func = get_filter_function(band_type, fs)
90
- if filter_func is None:
91
- warnings.warn(f"Unknown filter type: {band_type}")
92
- return np.finfo(np.float64).max
93
-
94
- try:
95
- if band_type in ['peak', 'low_shelf', 'high_shelf']:
96
- if param_idx_counter >= len(flat_params):
97
- warnings.warn(f"Parameter array too short for gain parameter in objective function.")
98
- return np.finfo(np.float64).max
99
- db_gain = flat_params[param_idx_counter]
100
- param_idx_counter += 1
101
- b, a = filter_func(fc=fc, Q=q_val, dBgain=db_gain)
102
- else:
103
- b, a = filter_func(fc=fc, Q=q_val)
104
-
105
- w, h = sp_signal.freqz(b, a, worN=freq_axis, fs=fs)
106
- # Add epsilon to avoid log(0) which results in -inf and can break mean calculation
107
- h_abs = np.abs(h)
108
- h_db = 20 * np.log10(h_abs + 1e-9)
109
- current_cascade_response_db += h_db
110
-
111
- except Exception as e:
112
- warnings.warn(f"Error computing filter response for {band_type}: {e}")
113
- return np.finfo(np.float64).max
114
-
115
- error = np.mean((current_cascade_response_db - target_response_db)**2)
116
- if np.isnan(error) or np.isinf(error): # Handle potential nan/inf from objective
117
- # This might happen if parameters lead to unstable filters or extreme responses
118
- # print(f"Objective function returned NaN/Inf. Current error: {error}")
119
- # print(f"Params (first few): {flat_params[:6]}")
120
- return np.finfo(np.float64).max # Return a very large number
121
- return error
122
-
123
-
124
- def _get_initial_params_and_bounds(band_definitions, fs, target_response_db, freq_axis):
125
- x0, bounds_list = [], [] # Changed bounds to bounds_list
126
- min_fc, max_fc = 20.0, fs / 2.0 * 0.98
127
- num_gain_filters = sum(1 for bd in band_definitions if bd['type'] in ['peak', 'low_shelf', 'high_shelf'])
128
- log_fcs = np.logspace(np.log10(max(min_fc, 30)), np.log10(min(max_fc, fs / 2.1)), num_gain_filters, endpoint=True) if num_gain_filters > 0 else []
129
- gain_filter_idx = 0
130
- for band_def in band_definitions:
131
- band_type = band_def['type']
132
- initial_fc = band_def.get('initial_fc')
133
- if initial_fc is None:
134
- if band_type in ['peak', 'low_shelf', 'high_shelf'] and gain_filter_idx < len(log_fcs):
135
- initial_fc = log_fcs[gain_filter_idx]
136
- elif band_type == 'low_shelf':
137
- initial_fc = np.clip(80, min_fc, max_fc)
138
- elif band_type == 'high_shelf':
139
- initial_fc = np.clip(8000, min_fc, max_fc)
140
- elif band_type == 'low_pass':
141
- initial_fc = np.clip(fs / 2.2, min_fc, max_fc)
142
- elif band_type == 'high_pass':
143
- initial_fc = np.clip(40, min_fc, max_fc)
144
- else:
145
- initial_fc = (min_fc + max_fc) / 2
146
- x0.append(np.clip(initial_fc, min_fc, max_fc))
147
- bounds_list.append((min_fc, max_fc))
148
- initial_q = band_def.get('initial_Q', 1.0 if band_type == 'peak' else 0.707)
149
- x0.append(initial_q)
150
- bounds_list.append((0.1, 20.0))
151
- if band_type in ['peak', 'low_shelf', 'high_shelf']:
152
- fc_idx = np.argmin(np.abs(freq_axis - initial_fc))
153
- initial_gain_default = target_response_db[fc_idx] if len(target_response_db) > 0 and fc_idx < len(target_response_db) else 0.0
154
- initial_gain = band_def.get('initial_dBgain', initial_gain_default)
155
- x0.append(np.clip(initial_gain, -20.0, 20.0))
156
- bounds_list.append((-30.0, 30.0))
157
- gain_filter_idx += 1
158
- return np.array(x0), bounds_list # Return bounds_list for differential_evolution
159
-
160
-
161
- def plot_spectra_comparison(spectra_data, freq_axis, title="Spectra Comparison"):
162
- plt.figure(figsize=(12, 7))
163
- for label, spec_db in spectra_data.items():
164
- plt.plot(freq_axis, spec_db, label=label, alpha=0.8)
165
- plt.xscale('log') # Re-enabled log scale for frequency axis
166
- plt.xlabel("Frequency (Hz)")
167
- plt.ylabel("Magnitude (dB)")
168
- plt.title(title)
169
- plt.legend()
170
- plt.grid(True, which="both", ls="-", alpha=0.5) # Added which="both" for log grid
171
- if len(freq_axis) > 0:
172
- plt.xlim([20, freq_axis[-1]])
173
- valid_spectra = [s[np.isfinite(s)] for s in spectra_data.values() if s is not None and len(s[np.isfinite(s)]) > 0]
174
- if valid_spectra:
175
- min_y = min(np.min(s) for s in valid_spectra) - 10
176
- max_y = max(np.max(s) for s in valid_spectra) + 10
177
- if np.isfinite(min_y) and np.isfinite(max_y):
178
- plt.ylim([min_y, max_y])
179
- plt.tight_layout()
180
- try:
181
- clean_title = "".join(c if c.isalnum() or c in [' ', '_', '-'] else '_' for c in title) # Sanitize more robustly
182
- plt.savefig(f"{clean_title.replace(' ', '_')}.png")
183
- # if plt.isinteractive():
184
- # plt.show()
185
- plt.close()
186
- except Exception as e:
187
- print(f"Error saving/showing plot: {e}")
188
- finally:
189
- plt.close()
190
-
191
-
192
- def match_frequency_response(
193
- source_audio_path: str,
194
- target_audio_path: str,
195
- output_eq_audio_path: str = "source_eq_matched.wav",
196
- num_eq_bands: int = 10,
197
- sampling_rate: int = 16000,
198
- fft_size: int = 1024,
199
- hop_length_ratio: float = 0.25,
200
- eq_band_config_list: list = None,
201
- optimizer_options: dict = None, # For DE, e.g., {'popsize': 20, 'maxiter': 500, 'workers': -1}
202
- plot_results: bool = True,
203
- verbose: bool = False
204
- ):
205
- hop_length = int(fft_size * hop_length_ratio)
206
- if verbose:
207
- print(f"SR={sampling_rate}, FFT={fft_size}, Hop={hop_length}")
208
- print("Spectrum smoothing is DISABLED.")
209
-
210
- source_data = _load_audio_data(source_audio_path, sampling_rate)
211
- target_data = _load_audio_data(target_audio_path, sampling_rate)
212
-
213
- source_spec_db, freq_axis = _calculate_spectrum(source_data, sampling_rate, fft_size, hop_length)
214
- target_spec_db, _ = _calculate_spectrum(target_data, sampling_rate, fft_size, hop_length)
215
-
216
- target_eq_overall_response_db = target_spec_db - source_spec_db
217
-
218
- # _get_initial_params_and_bounds returns x0 and a list of (min,max) tuples for bounds
219
- actual_num_bands = len(eq_band_config_list)
220
- _, de_bounds = _get_initial_params_and_bounds(eq_band_config_list, sampling_rate, target_eq_overall_response_db, freq_axis)
221
-
222
- if verbose:
223
- print(f"EQ bands: {len(eq_band_config_list)}, Total params: {len(de_bounds)}")
224
-
225
- # Default options for differential_evolution
226
- # Note: popsize is often set to N_params * 10 or 15.
227
- # maxiter might need to be lower than for L-BFGS-B for similar runtime, or higher for better solution.
228
- num_params_to_optimize = len(de_bounds)
229
- default_de_options = {
230
- 'strategy': 'best1bin',
231
- 'maxiter': 200 * actual_num_bands if actual_num_bands > 0 else 200, # Max generations
232
- 'popsize': 15, # Population size per generation (popsize * num_params_to_optimize evaluations per generation)
233
- 'tol': 0.01,
234
- 'mutation': (0.5, 1),
235
- 'recombination': 0.7,
236
- 'disp': verbose,
237
- 'polish': True, # Apply a local minimizer (L-BFGS-B) at the end
238
- 'updating': 'deferred', # For parallel processing
239
- 'workers': -1 # Use all available CPU cores
240
- }
241
- if optimizer_options:
242
- default_de_options.update(optimizer_options)
243
-
244
- obj_args = (eq_band_config_list, target_eq_overall_response_db, freq_axis, sampling_rate, fft_size)
245
-
246
- if verbose:
247
- print(f"Starting Differential Evolution, options: {default_de_options} (Smoothing DISABLED)...")
248
-
249
- result = differential_evolution(
250
- _objective_function,
251
- bounds=de_bounds, # Pass the list of (min, max) tuples
252
- args=obj_args,
253
- **default_de_options # Pass all other options as keyword arguments
254
- )
255
-
256
- if verbose:
257
- print(f"DE Optimization: Success={result.success}, Msg='{result.message}', NFEV={result.nfev},nit={result.nit}, FunVal={result.fun:.4e}")
258
-
259
- optimized_params_flat = result.x
260
- # ... (Rest of the function: formatting parameters, applying EQ, plotting - remains the same) ...
261
- optimized_eq_parameters_list = []
262
- current_param_idx = 0
263
- for i, band_def in enumerate(eq_band_config_list):
264
- params = {'filter_type': band_def['type'], 'fs': float(sampling_rate)}
265
- params['fc'] = float(optimized_params_flat[current_param_idx])
266
- params['Q'] = float(optimized_params_flat[current_param_idx + 1])
267
- current_param_idx += 2
268
- if params['filter_type'] in ['peak', 'low_shelf', 'high_shelf']:
269
- params['dBgain'] = float(optimized_params_flat[current_param_idx])
270
- current_param_idx += 1
271
- else:
272
- params['dBgain'] = None
273
- optimized_eq_parameters_list.append(params)
274
-
275
- eq_audio_data = None
276
- if output_eq_audio_path:
277
- eq_audio_data = _apply_eq_cascade(source_data, optimized_eq_parameters_list, sampling_rate)
278
- max_val = np.max(np.abs(eq_audio_data))
279
- if max_val > 1.0:
280
- eq_audio_data /= max_val
281
- warnings.warn(f"EQ'd audio clipped (max: {max_val:.2f}), scaled.")
282
- elif max_val == 0 and len(eq_audio_data) > 0:
283
- warnings.warn(f"EQ'd audio is all zeros.")
284
- sf.write(output_eq_audio_path, eq_audio_data, sampling_rate, subtype='FLOAT')
285
- if verbose:
286
- print(f"EQ'd audio saved: {output_eq_audio_path}")
287
-
288
- if plot_results:
289
- spectra_to_plot = {"Source": source_spec_db, "Target": target_spec_db}
290
- plot_title_main = f"Spectra (DE) - {len(eq_band_config_list)} bands - No Smoothing"
291
- eq_spec_db, _ = _calculate_spectrum(eq_audio_data, sampling_rate, fft_size, hop_length)
292
- spectra_to_plot["EQ'd Source"] = eq_spec_db
293
- plot_spectra_comparison(spectra_to_plot, freq_axis, title=plot_title_main)
294
- return optimized_eq_parameters_list, eq_audio_data
295
-
296
-
297
- # --- Example Usage ---
298
- if __name__ == '__main__':
299
- source_file = "../data/white.wav"
300
- target_file = "../data/white_EQ.wav"
301
- output_eq_file = "../data/white_EQ_matched_DE.wav"
302
-
303
- SR = 16000
304
- NFFT = 1024
305
-
306
- custom_band_config = [
307
- {'type': 'high_pass', 'initial_fc': 40, 'initial_Q': 0.7},
308
- {'type': 'low_shelf', 'initial_fc': 150, 'initial_Q': 0.7},
309
- {'type': 'peak', 'initial_fc': 250},
310
- {'type': 'peak', 'initial_fc': 500},
311
- {'type': 'peak', 'initial_fc': 750},
312
- {'type': 'peak', 'initial_fc': 1000},
313
- {'type': 'peak', 'initial_fc': 1500},
314
- {'type': 'peak', 'initial_fc': 2500},
315
- {'type': 'peak', 'initial_fc': 3500},
316
- {'type': 'peak', 'initial_fc': 5000},
317
- {'type': 'peak', 'initial_fc': 6500},
318
- {'type': 'high_shelf', 'initial_fc': 7000, 'initial_Q': 0.7},
319
- ] # 12 bands
320
-
321
- # Differential Evolution optimizer options
322
- # popsize * (maxiter+1) * N_params = total evaluations (approx, due to strategy)
323
- # For 12 bands, ~34 params. popsize=15*34=510 is very large.
324
- # Let's try popsize = 15 (relative to num_params, so DEAP default like), or fixed like 50-100.
325
- # maxiter for DE is number of generations.
326
- de_opt_options = {
327
- 'maxiter': 300, # Number of generations. Start smaller, e.g., 100-500.
328
- 'popsize': 20, # Population size multiplier. popsize * N_params individuals.
329
- # For ~34 params, 20*34=680 individuals per generation. This is large.
330
- # Let's set popsize directly to a number like 100 for now.
331
- # 'popsize': 100, # Try a fixed population size
332
- 'mutation': (0.5, 1.0),
333
- 'recombination': 0.7,
334
- 'workers': -1, # Use all CPU cores for parallel fitness evaluation
335
- 'polish': True, # Recommended: polish the best solution with L-BFGS-B
336
- 'disp': True # Show progress
337
- }
338
- # Recalculate popsize for verbose message if using multiplier:
339
- # num_total_params = 0
340
- # for band in custom_band_config:
341
- # num_total_params +=2 # fc, Q
342
- # if band['type'] in ['peak', 'low_shelf', 'high_shelf']: num_total_params +=1
343
- # print(f"Total parameters to optimize: {num_total_params}")
344
- # de_opt_options['popsize'] = 10 * num_total_params # Example: 10 times the number of parameters
345
-
346
- optimized_parameters, eq_processed_audio = match_frequency_response(
347
- source_audio_path=source_file, target_audio_path=target_file,
348
- output_eq_audio_path=output_eq_file, eq_band_config_list=custom_band_config,
349
- sampling_rate=SR, fft_size=NFFT,
350
- optimizer_options=de_opt_options, # Pass DE options
351
- plot_results=True, verbose=True
352
- )
353
-
354
- if optimized_parameters:
355
- print("\n优化后的EQ参数 (差分进化, 未平滑):")
356
- for i, params in enumerate(optimized_parameters):
357
- print(f" 频段 {i + 1}: 类型={params['filter_type']}, Fc={params['fc']:.1f}, Q={params['Q']:.2f}" +
358
- (f", 增益={params['dBgain']:.2f}" if params['dBgain'] is not None else ""))
359
- else:
360
- print("未生成EQ参数或处理中发生错误。")
@@ -1,75 +0,0 @@
1
- '''
2
- Author: 凌逆战 | Never
3
- Date: 2025-08-04 21:49:05
4
- Description: 自动EQ补偿
5
- '''
6
- import os
7
- import numpy as np
8
- import librosa
9
- import soundfile as sf
10
- import pandas
11
- import matplotlib.pyplot as plt
12
-
13
- np.set_printoptions(precision=8)
14
- np.set_printoptions(suppress=True) # 打印不使用科学计数法
15
-
16
-
17
- def compute_frequency_eq(reference_audio, target_audio, sample_rate, fft_size, window_size, plot_results=False):
18
- freq_bins = np.fft.rfftfreq(fft_size, d=1.0 / sample_rate) # [0, 31.25, 62.5,.....]
19
-
20
- stft_reference = librosa.stft(reference_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
21
- stft_target = librosa.stft(target_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
22
- magnitude_reference, magnitude_target = np.abs(stft_reference), np.abs(stft_target) # (F,T)
23
- # 求时间平均, 频响曲线 Frequency_Response_curve
24
- reference_response = np.mean(magnitude_reference, axis=1)
25
- target_response = np.mean(magnitude_target, axis=1)
26
-
27
- reference_response_db = 20 * np.log10(reference_response) # 取对数幅度谱, 以便更好地可视化
28
- target_response_db = 20 * np.log10(target_response) # 取对数幅度谱, 以便更好地可视化
29
-
30
- eq_curve = target_response_db - reference_response_db # 补偿曲线 (28208, 1)
31
- # print("补偿EQ曲线: ", len(eq_curve), np.array2string(np.power(10, eq_curve / 20), separator=', '))
32
-
33
- if plot_results:
34
- plt.figure(figsize=(10, 5))
35
- plt.plot(freq_bins, target_response_db, label="Target Response")
36
- plt.plot(freq_bins, eq_curve, label="EQ Curve")
37
- compensated_response = reference_response_db + eq_curve # 补偿后的曲线
38
- plt.plot(freq_bins, compensated_response, label="Compensated Response")
39
- plt.xlabel('Frequency (Hz)')
40
- plt.ylabel('Amplitude (dB)')
41
- plt.title('Frequency Response Compensation')
42
- plt.grid(True)
43
- plt.legend()
44
- plt.xscale('log')
45
- plt.grid(True, ls="--", alpha=0.4)
46
- plt.tight_layout()
47
- # plt.show()
48
- plt.savefig(f"./frequency_eq_fft{window_size}.png")
49
-
50
- # 拿到EQ之后我们对音频进行EQ补偿
51
- reference_phase = np.angle(stft_reference) # (F,T)
52
- for freq_idx in range(magnitude_reference.shape[0]):
53
- magnitude_reference[freq_idx, :] *= np.power(10, eq_curve[freq_idx] / 20)
54
- compensated_spectrum = magnitude_reference * np.exp(1.0j * reference_phase)
55
- compensated_audio = librosa.istft(compensated_spectrum, hop_length=window_size // 2, win_length=window_size, n_fft=fft_size, window="hann")
56
-
57
- return eq_curve, compensated_audio
58
-
59
-
60
- if __name__ == "__main__":
61
- SAMPLE_RATE = 16000
62
- WINDOW_SIZE = FFT_SIZE = 512
63
- reference_audio_path = "../data/white.wav"
64
- target_audio_path = "../data/white_EQ.wav"
65
-
66
- # 读取音频文件
67
- reference_audio, _ = sf.read(reference_audio_path, dtype='float32')
68
- target_audio, _ = sf.read(target_audio_path, dtype='float32')
69
-
70
- eq_curve, compensated_audio = compute_frequency_eq(
71
- reference_audio, target_audio,
72
- SAMPLE_RATE, FFT_SIZE, WINDOW_SIZE,
73
- plot_results=False
74
- )
75
- sf.write("../data/frequency_eq.wav", compensated_audio, SAMPLE_RATE)
@@ -1,75 +0,0 @@
1
- '''
2
- Author: 凌逆战 | Never
3
- Date: 2025-08-04 21:49:05
4
- Description: 自动EQ补偿
5
- '''
6
- import os
7
- import numpy as np
8
- import librosa
9
- import soundfile as sf
10
- import pandas
11
- import matplotlib.pyplot as plt
12
-
13
- np.set_printoptions(precision=8)
14
- np.set_printoptions(suppress=True) # 打印不使用科学计数法
15
-
16
-
17
- def compute_frequency_eq(reference_audio, target_audio, sample_rate, fft_size, window_size, plot_results=False):
18
- freq_bins = np.fft.rfftfreq(fft_size, d=1.0 / sample_rate) # [0, 31.25, 62.5,.....]
19
-
20
- stft_reference = librosa.stft(reference_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
21
- stft_target = librosa.stft(target_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
22
- magnitude_reference, magnitude_target = np.abs(stft_reference), np.abs(stft_target) # (F,T)
23
- # 求时间平均, 频响曲线 Frequency_Response_curve
24
- reference_response = np.mean(magnitude_reference, axis=1)
25
- target_response = np.mean(magnitude_target, axis=1)
26
-
27
- reference_response_db = 20 * np.log10(reference_response) # 取对数幅度谱, 以便更好地可视化
28
- target_response_db = 20 * np.log10(target_response) # 取对数幅度谱, 以便更好地可视化
29
-
30
- eq_curve = target_response_db - reference_response_db # 补偿曲线 (28208, 1)
31
- # print("补偿EQ曲线: ", len(eq_curve), np.array2string(np.power(10, eq_curve / 20), separator=', '))
32
-
33
- if plot_results:
34
- plt.figure(figsize=(10, 5))
35
- # plt.plot(freq_bins, target_response_db, label="Target Response")
36
- plt.plot(freq_bins, eq_curve, label="EQ Curve")
37
- # compensated_response = reference_response_db + eq_curve # 补偿后的曲线
38
- # plt.plot(freq_bins, compensated_response, label="Compensated Response")
39
- plt.xlabel('Frequency (Hz)')
40
- plt.ylabel('Amplitude (dB)')
41
- plt.title('Frequency Response Compensation')
42
- plt.grid(True)
43
- plt.legend()
44
- plt.xscale('log')
45
- plt.grid(True, ls="--", alpha=0.4)
46
- plt.tight_layout()
47
- # plt.show()
48
- plt.savefig(f"./frequency_eq_fft{window_size}.png")
49
-
50
- # 拿到EQ之后我们对音频进行EQ补偿
51
- reference_phase = np.angle(stft_reference) # (F,T)
52
- for freq_idx in range(magnitude_reference.shape[0]):
53
- magnitude_reference[freq_idx, :] *= np.power(10, eq_curve[freq_idx] / 20)
54
- compensated_spectrum = magnitude_reference * np.exp(1.0j * reference_phase)
55
- compensated_audio = librosa.istft(compensated_spectrum, hop_length=window_size // 2, win_length=window_size, n_fft=fft_size, window="hann")
56
-
57
- return eq_curve, compensated_audio
58
-
59
-
60
- if __name__ == "__main__":
61
- SAMPLE_RATE = 16000
62
- WINDOW_SIZE = FFT_SIZE = 512
63
- reference_audio_path = "../data/white.wav"
64
- target_audio_path = "../data/white_EQ.wav"
65
-
66
- # 读取音频文件
67
- reference_audio, _ = sf.read(reference_audio_path, dtype='float32')
68
- target_audio, _ = sf.read(target_audio_path, dtype='float32')
69
-
70
- eq_curve, compensated_audio = compute_frequency_eq(
71
- reference_audio, target_audio,
72
- SAMPLE_RATE, FFT_SIZE, WINDOW_SIZE,
73
- plot_results=False
74
- )
75
- sf.write("../data/frequency_eq.wav", compensated_audio, SAMPLE_RATE)
@@ -1,75 +0,0 @@
1
- '''
2
- Author: 凌逆战 | Never
3
- Date: 2025-08-04 21:49:05
4
- Description: 自动EQ补偿
5
- '''
6
- import os
7
- import numpy as np
8
- import librosa
9
- import soundfile as sf
10
- import pandas
11
- import matplotlib.pyplot as plt
12
-
13
- np.set_printoptions(precision=8)
14
- np.set_printoptions(suppress=True) # 打印不使用科学计数法
15
-
16
-
17
- def compute_frequency_eq(reference_audio, target_audio, sample_rate, fft_size, window_size, plot_results=False):
18
- freq_bins = np.fft.rfftfreq(fft_size, d=1.0 / sample_rate) # [0, 31.25, 62.5,.....]
19
-
20
- stft_reference = librosa.stft(reference_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
21
- stft_target = librosa.stft(target_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
22
- magnitude_reference, magnitude_target = np.abs(stft_reference), np.abs(stft_target) # (F,T)
23
- # 求时间平均, 频响曲线 Frequency_Response_curve
24
- reference_response = np.mean(magnitude_reference, axis=1)
25
- target_response = np.mean(magnitude_target, axis=1)
26
-
27
- reference_response_db = 20 * np.log10(reference_response) # 取对数幅度谱, 以便更好地可视化
28
- target_response_db = 20 * np.log10(target_response) # 取对数幅度谱, 以便更好地可视化
29
-
30
- eq_curve = target_response_db - reference_response_db # 补偿曲线 (28208, 1)
31
- # print("补偿EQ曲线: ", len(eq_curve), np.array2string(np.power(10, eq_curve / 20), separator=', '))
32
-
33
- if plot_results:
34
- plt.figure(figsize=(10, 5))
35
- plt.plot(freq_bins, target_response_db, label="Target Response")
36
- plt.plot(freq_bins, eq_curve, label="EQ Curve")
37
- compensated_response = reference_response_db + eq_curve # 补偿后的曲线
38
- plt.plot(freq_bins, compensated_response, label="Compensated Response")
39
- plt.xlabel('Frequency (Hz)')
40
- plt.ylabel('Amplitude (dB)')
41
- plt.title('Frequency Response Compensation')
42
- plt.grid(True)
43
- plt.legend()
44
- plt.xscale('log')
45
- plt.grid(True, ls="--", alpha=0.4)
46
- plt.tight_layout()
47
- # plt.show()
48
- plt.savefig(f"./frequency_eq_fft{window_size}.png")
49
-
50
- # 拿到EQ之后我们对音频进行EQ补偿
51
- reference_phase = np.angle(stft_reference) # (F,T)
52
- for freq_idx in range(magnitude_reference.shape[0]):
53
- magnitude_reference[freq_idx, :] *= np.power(10, eq_curve[freq_idx] / 20)
54
- compensated_spectrum = magnitude_reference * np.exp(1.0j * reference_phase)
55
- compensated_audio = librosa.istft(compensated_spectrum, hop_length=window_size // 2, win_length=window_size, n_fft=fft_size, window="hann")
56
-
57
- return eq_curve, compensated_audio
58
-
59
-
60
- if __name__ == "__main__":
61
- SAMPLE_RATE = 16000
62
- WINDOW_SIZE = FFT_SIZE = 512
63
- reference_audio_path = "../data/white.wav"
64
- target_audio_path = "../data/white_EQ.wav"
65
-
66
- # 读取音频文件
67
- reference_audio, _ = sf.read(reference_audio_path, dtype='float32')
68
- target_audio, _ = sf.read(target_audio_path, dtype='float32')
69
-
70
- eq_curve, compensated_audio = compute_frequency_eq(
71
- reference_audio, target_audio,
72
- SAMPLE_RATE, FFT_SIZE, WINDOW_SIZE,
73
- plot_results=False
74
- )
75
- sf.write("../data/frequency_eq.wav", compensated_audio, SAMPLE_RATE)
@@ -1,75 +0,0 @@
1
- '''
2
- Author: 凌逆战 | Never
3
- Date: 2025-08-04 21:49:05
4
- Description: 自动EQ补偿
5
- '''
6
- import os
7
- import numpy as np
8
- import librosa
9
- import soundfile as sf
10
- import pandas
11
- import matplotlib.pyplot as plt
12
-
13
- np.set_printoptions(precision=8)
14
- np.set_printoptions(suppress=True) # 打印不使用科学计数法
15
-
16
-
17
- def compute_frequency_eq(reference_audio, target_audio, sample_rate, fft_size, window_size, plot_results=False):
18
- freq_bins = np.fft.rfftfreq(fft_size, d=1.0 / sample_rate) # [0, 31.25, 62.5,.....]
19
-
20
- stft_reference = librosa.stft(reference_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
21
- stft_target = librosa.stft(target_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
22
- magnitude_reference, magnitude_target = np.abs(stft_reference), np.abs(stft_target) # (F,T)
23
- # 求时间平均, 频响曲线 Frequency_Response_curve
24
- reference_response = np.mean(magnitude_reference, axis=1)
25
- target_response = np.mean(magnitude_target, axis=1)
26
-
27
- reference_response_db = 20 * np.log10(reference_response) # 取对数幅度谱, 以便更好地可视化
28
- target_response_db = 20 * np.log10(target_response) # 取对数幅度谱, 以便更好地可视化
29
-
30
- eq_curve = target_response_db - reference_response_db # 补偿曲线 (28208, 1)
31
- # print("补偿EQ曲线: ", len(eq_curve), np.array2string(np.power(10, eq_curve / 20), separator=', '))
32
-
33
- if plot_results:
34
- plt.figure(figsize=(10, 5))
35
- # plt.plot(freq_bins, target_response_db, label="Target Response")
36
- plt.plot(freq_bins, eq_curve, label="EQ Curve")
37
- # compensated_response = reference_response_db + eq_curve # 补偿后的曲线
38
- # plt.plot(freq_bins, compensated_response, label="Compensated Response")
39
- plt.xlabel('Frequency (Hz)')
40
- plt.ylabel('Amplitude (dB)')
41
- plt.title('Frequency Response Compensation')
42
- plt.grid(True)
43
- plt.legend()
44
- plt.xscale('log')
45
- plt.grid(True, ls="--", alpha=0.4)
46
- plt.tight_layout()
47
- # plt.show()
48
- plt.savefig(f"./frequency_eq_fft{window_size}.png")
49
-
50
- # 拿到EQ之后我们对音频进行EQ补偿
51
- reference_phase = np.angle(stft_reference) # (F,T)
52
- for freq_idx in range(magnitude_reference.shape[0]):
53
- magnitude_reference[freq_idx, :] *= np.power(10, eq_curve[freq_idx] / 20)
54
- compensated_spectrum = magnitude_reference * np.exp(1.0j * reference_phase)
55
- compensated_audio = librosa.istft(compensated_spectrum, hop_length=window_size // 2, win_length=window_size, n_fft=fft_size, window="hann")
56
-
57
- return eq_curve, compensated_audio
58
-
59
-
60
- if __name__ == "__main__":
61
- SAMPLE_RATE = 16000
62
- WINDOW_SIZE = FFT_SIZE = 512
63
- reference_audio_path = "../data/white.wav"
64
- target_audio_path = "../data/white_EQ.wav"
65
-
66
- # 读取音频文件
67
- reference_audio, _ = sf.read(reference_audio_path, dtype='float32')
68
- target_audio, _ = sf.read(target_audio_path, dtype='float32')
69
-
70
- eq_curve, compensated_audio = compute_frequency_eq(
71
- reference_audio, target_audio,
72
- SAMPLE_RATE, FFT_SIZE, WINDOW_SIZE,
73
- plot_results=False
74
- )
75
- sf.write("../data/frequency_eq.wav", compensated_audio, SAMPLE_RATE)