neverlib 0.2.6__py3-none-any.whl → 0.2.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (82) hide show
  1. neverlib/.claude/settings.local.json +9 -0
  2. neverlib/Docs/audio_aug/test_volume.ipynb +416 -0
  3. neverlib/Docs/audio_aug_test/test_volume.ipynb +289 -0
  4. neverlib/Docs/filter/biquad.ipynb +129 -0
  5. neverlib/Docs/filter/filter_family.ipynb +450 -0
  6. neverlib/Docs/filter/highpass.ipynb +139 -0
  7. neverlib/Docs/filter/scipy_filter_family.ipynb +110 -0
  8. neverlib/Docs/vad/VAD_Energy.ipynb +167 -0
  9. neverlib/Docs/vad/VAD_Silero.ipynb +325 -0
  10. neverlib/Docs/vad/VAD_WebRTC.ipynb +189 -0
  11. neverlib/Docs/vad/VAD_funasr.ipynb +192 -0
  12. neverlib/Docs/vad/VAD_rvADfast.ipynb +162 -0
  13. neverlib/Docs/vad/VAD_statistics.ipynb +532 -0
  14. neverlib/Docs/vad/VAD_tenVAD.ipynb +292 -0
  15. neverlib/Docs/vad/VAD_vadlib.ipynb +168 -0
  16. neverlib/Docs/vad/VAD_whisper.ipynb +404 -0
  17. neverlib/QA/gen_init.py +218 -0
  18. neverlib/QA/get_fun.py +19 -0
  19. neverlib/__init__.py +40 -4
  20. neverlib/audio_aug/HarmonicDistortion.py +19 -13
  21. neverlib/audio_aug/__init__.py +82 -12
  22. neverlib/audio_aug/audio_aug.py +19 -14
  23. neverlib/audio_aug/clip_aug.py +15 -18
  24. neverlib/audio_aug/coder_aug.py +44 -24
  25. neverlib/audio_aug/coder_aug2.py +54 -37
  26. neverlib/audio_aug/loss_packet_aug.py +7 -7
  27. neverlib/audio_aug/quant_aug.py +19 -17
  28. neverlib/data/000_short_enhance.wav +0 -0
  29. neverlib/data/3956_speech.wav +0 -0
  30. neverlib/data/3956_sweep.wav +0 -0
  31. neverlib/data/vad_example.wav +0 -0
  32. neverlib/data/white.wav +0 -0
  33. neverlib/data/white_EQ.wav +0 -0
  34. neverlib/data/white_matched.wav +0 -0
  35. neverlib/data_analyze/__init__.py +69 -20
  36. neverlib/data_analyze/dataset_analyzer.py +109 -114
  37. neverlib/data_analyze/quality_metrics.py +87 -89
  38. neverlib/data_analyze/rms_distrubution.py +23 -42
  39. neverlib/data_analyze/spectral_analysis.py +43 -46
  40. neverlib/data_analyze/statistics.py +76 -76
  41. neverlib/data_analyze/temporal_features.py +15 -6
  42. neverlib/data_analyze/visualization.py +208 -144
  43. neverlib/filter/__init__.py +40 -20
  44. neverlib/filter/auto_eq/__init__.py +50 -31
  45. neverlib/filter/auto_eq/de_eq.py +0 -2
  46. neverlib/filter/common.py +24 -5
  47. neverlib/metrics/DNSMOS/bak_ovr.onnx +0 -0
  48. neverlib/metrics/DNSMOS/model_v8.onnx +0 -0
  49. neverlib/metrics/DNSMOS/sig.onnx +0 -0
  50. neverlib/metrics/DNSMOS/sig_bak_ovr.onnx +0 -0
  51. neverlib/metrics/__init__.py +59 -0
  52. neverlib/metrics/dnsmos.py +4 -15
  53. neverlib/metrics/pDNSMOS/sig_bak_ovr.onnx +0 -0
  54. neverlib/metrics/pesq_c/PESQ +0 -0
  55. neverlib/metrics/pesq_c/dsp.c +553 -0
  56. neverlib/metrics/pesq_c/dsp.h +138 -0
  57. neverlib/metrics/pesq_c/pesq.h +294 -0
  58. neverlib/metrics/pesq_c/pesqdsp.c +1047 -0
  59. neverlib/metrics/pesq_c/pesqio.c +392 -0
  60. neverlib/metrics/pesq_c/pesqmain.c +610 -0
  61. neverlib/metrics/pesq_c/pesqmod.c +1417 -0
  62. neverlib/metrics/pesq_c/pesqpar.h +297 -0
  63. neverlib/metrics/snr.py +5 -1
  64. neverlib/metrics/spec.py +31 -21
  65. neverlib/metrics/test_pesq.py +0 -4
  66. neverlib/tests/__init__.py +33 -1
  67. neverlib/tests/test_imports.py +19 -0
  68. neverlib/utils/__init__.py +71 -15
  69. neverlib/utils/audio_split.py +6 -1
  70. neverlib/utils/checkGPU.py +17 -9
  71. neverlib/utils/lazy_expose.py +29 -0
  72. neverlib/utils/utils.py +55 -12
  73. neverlib/vad/PreProcess.py +66 -66
  74. neverlib/vad/__init__.py +71 -25
  75. neverlib/vad/class_get_speech.py +1 -1
  76. neverlib/vad/class_vad.py +3 -3
  77. neverlib/vad/img.png +0 -0
  78. {neverlib-0.2.6.dist-info → neverlib-0.2.8.dist-info}/METADATA +1 -1
  79. {neverlib-0.2.6.dist-info → neverlib-0.2.8.dist-info}/RECORD +82 -39
  80. {neverlib-0.2.6.dist-info → neverlib-0.2.8.dist-info}/WHEEL +0 -0
  81. {neverlib-0.2.6.dist-info → neverlib-0.2.8.dist-info}/licenses/LICENSE +0 -0
  82. {neverlib-0.2.6.dist-info → neverlib-0.2.8.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,139 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "metadata": {
7
+ "collapsed": true,
8
+ "ExecuteTime": {
9
+ "end_time": "2023-10-05T09:16:39.672903600Z",
10
+ "start_time": "2023-10-05T09:16:38.723649400Z"
11
+ }
12
+ },
13
+ "outputs": [],
14
+ "source": [
15
+ "# -*- coding:utf-8 -*-\n",
16
+ "# Author:凌逆战 | Never\n",
17
+ "# Date: 2023/6/29\n",
18
+ "\"\"\"\n",
19
+ "调用scipy.signal设计滤波器, 并画出频率响应曲线\n",
20
+ "\"\"\"\n",
21
+ "from scipy import signal\n",
22
+ "import numpy as np\n",
23
+ "import matplotlib.pyplot as plt\n",
24
+ "#打印小数点后13位\n",
25
+ "np.set_printoptions(precision=13)"
26
+ ]
27
+ },
28
+ {
29
+ "cell_type": "code",
30
+ "execution_count": 3,
31
+ "outputs": [
32
+ {
33
+ "name": "stdout",
34
+ "output_type": "stream",
35
+ "text": [
36
+ "b [ 0.9862119246271 -1.9724238492542 0.9862119246271]\n",
37
+ "a [ 1. -1.9722337291953 0.9726139693131]\n",
38
+ "<class 'numpy.ndarray'>\n",
39
+ "sos [[ 0.9862119246271 -1.9724238492542 0.9862119246271 1.\n",
40
+ " -1.9722337291953 0.9726139693131]]\n"
41
+ ]
42
+ },
43
+ {
44
+ "name": "stderr",
45
+ "output_type": "stream",
46
+ "text": [
47
+ "C:\\Users\\never\\AppData\\Local\\Temp\\ipykernel_23584\\455527313.py:23: RuntimeWarning: divide by zero encountered in log10\n",
48
+ " plt.plot(0.5 * fs * w / np.pi, 20*np.log10(h)) # 0.5*fs*w/np.pi 为频率\n",
49
+ "C:\\Users\\never\\AppData\\Local\\Temp\\ipykernel_23584\\455527313.py:23: RuntimeWarning: invalid value encountered in multiply\n",
50
+ " plt.plot(0.5 * fs * w / np.pi, 20*np.log10(h)) # 0.5*fs*w/np.pi 为频率\n",
51
+ "C:\\Users\\never\\AppData\\Roaming\\Python\\Python310\\site-packages\\matplotlib\\cbook\\__init__.py:1335: ComplexWarning: Casting complex values to real discards the imaginary part\n",
52
+ " return np.asarray(x, float)\n"
53
+ ]
54
+ },
55
+ {
56
+ "data": {
57
+ "text/plain": "<Figure size 640x480 with 1 Axes>",
58
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlIAAAHLCAYAAAADXnZlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABoCklEQVR4nO3deXgT5doG8DtJ03Tf6MZSWtoCZS8Ui+xlkR1EEEQUKCIoAh4W+YCjQgE5igfRIyKICqiAuCsiImVREJDVslMBKWsXSulCS9M0me+PktjQtM3aSdL7d129IDPP+84zkyF9mHnzjkQQBAFEREREZDKp2AkQEREROSoWUkRERERmYiFFREREZCYWUkRERERmYiFFREREZCYWUkRERERmYiFFREREZCYWUkRERERmYiFFREREZCYWUkRk0Pr16yGRSHD06FGz+9i+fTtiY2Ph5uYGiUSC3NxcJCYmIiIiQi9OIpEgKSnJsoStwFC+RERVYSFFDkn7S778T3BwMHr06IGff/7Z7H63bdtm8Bd6UVERkpKS8Ouvv5qftJ16//33sX79eqv3e/v2bYwcORLu7u5YuXIlPvvsM3h6ehrV9sCBA0hKSqrRQsaSfImo9nIROwEiSyxatAiNGjWCIAjIzMzE+vXrMWDAAPz4448YNGiQyf1t27YNK1eurFBMFRUVYeHChQCAhIQEK2RuP95//30EBgYiMTHRqv0eOXIEBQUFWLx4MXr37q1b/uGHH0Kj0VTZ9sCBA1i4cCESExPh5+dn1bwqU1m+RERVYSFFDq1///5o37697vWECRMQEhKCzz//3KxCqqYVFhaKdtWjqKgIHh4eNus/KysLACoUQnK53GbbrE5V+1xZvqb2Q8bTaDQoKSmBm5ub2KkQmY239sip+Pn5wd3dHS4u//wf4ddff4VEIqlwWy4tLQ0SiUR3WysxMRErV64EAL1bhmlpaQgKCgIALFy4ULe8/FWr8+fP4/HHH0dAQADc3NzQvn17bNmyRW972tuRv/32G1544QUEBwejQYMGOHnyJCQSiV78sWPHIJFI0K5dO70++vfvjw4dOugte//999GiRQsoFArUq1cPU6ZMqXBLLCEhAS1btsSxY8fQrVs3eHh44N///jciIiJw5swZ/Pbbb7r9evCKm1KpxMyZMxEUFARPT0889thjuHXrVpXvQ0JCAsaNGwcAeOihhyCRSHRXvAyNkSovKSkJs2fPBgA0atRI733Q2rBhA+Li4uDu7o6AgACMGjUK165dM2qfTc23qn6USiUWLFiA6OhoKBQKhIWF4f/+7/+gVCorHMMZM2YgKCgI3t7eGDJkCK5fv17hPKrs2CQlJUEikVRYbspxOHv2LHr06AEPDw/Ur18fb775ZoX+iouLkZSUhCZNmsDNzQ1169bFsGHDcOnSJQiCgIiICDz66KMG2/n6+uK5554zeHy1JBIJpk6dio0bN+rO2e3btwMAbty4gWeeeQYhISFQKBRo0aIF1q5dW6GPFStWoEWLFvDw8IC/vz/at2+PTZs2VThW58+fx8iRI+Hj44M6dergX//6F4qLi/X6Ki0txeLFixEVFQWFQoGIiAj8+9//rvD+RUREYNCgQfj9998RHx8PNzc3REZG4tNPP9WLU6lUWLhwIRo3bgw3NzfUqVMHXbp0QXJysl6cMZ8X5Dh4RYocWl5eHrKzsyEIArKysrBixQrcvXsXTz/9tMl9Pffcc7h58yaSk5Px2Wef6ZYHBQVh1apVmDx5Mh577DEMGzYMANC6dWsAwJkzZ9C5c2fUr18fc+fOhaenJ7788ksMHToU33zzDR577DG97bzwwgsICgrC/PnzUVhYiJYtW8LPzw979+7FkCFDAAD79u2DVCrFiRMnkJ+fDx8fH2g0Ghw4cACTJk3S9ZWUlISFCxeid+/emDx5MlJTU7Fq1SocOXIE+/fv17v6c/v2bfTv3x+jRo3C008/jZCQECQkJGDatGnw8vLCyy+/DAAICQnRy3fatGnw9/fHggULkJaWhnfeeQdTp07FF198UemxfPnll9G0aVOsWbNGd/s1KirKqPdh2LBh+Ouvv/D555/j7bffRmBgoO59AIAlS5bg1VdfxciRI/Hss8/i1q1bWLFiBbp164Y///xT74qSoX02J19D/Wg0GgwZMgS///47Jk2ahGbNmuHUqVN4++238ddff+H777/XtX/22WexYcMGjB49Gp06dcLu3bsxcOBAo45HZUw5Dnfu3EG/fv0wbNgwjBw5El9//TXmzJmDVq1aoX///gAAtVqNQYMGYdeuXRg1ahT+9a9/oaCgAMnJyTh9+jSioqLw9NNP480330ROTg4CAgJ0/f/444/Iz8836t/d7t278eWXX2Lq1KkIDAxEREQEMjMz8fDDD+sKraCgIPz888+YMGEC8vPzMX36dABlt4VffPFFPP7447rC6OTJkzh06BBGjx6tt52RI0ciIiICr7/+Ov744w+8++67uHPnjl7x8+yzz+KTTz7B448/jlmzZuHQoUN4/fXXce7cOXz33Xd6/V28eBGPP/44JkyYgHHjxmHt2rVITExEXFwcWrRoAaDs3+Prr7+OZ599FvHx8cjPz8fRo0dx/PhxPPLIIwBM/7wgByAQOaB169YJACr8KBQKYf369Xqxe/bsEQAIe/bs0Vt++fJlAYCwbt063bIpU6YIhv5Z3Lp1SwAgLFiwoMK6Xr16Ca1atRKKi4t1yzQajdCpUyehcePGFXLu0qWLUFpaqtfHwIEDhfj4eN3rYcOGCcOGDRNkMpnw888/C4IgCMePHxcACD/88IMgCIKQlZUluLq6Cn369BHUarWu7XvvvScAENauXatb1r17dwGAsHr16gr5t2jRQujevXuF5dp8e/fuLWg0Gt3yGTNmCDKZTMjNza3QxlD7I0eO6C0fN26cEB4errfswWP73//+VwAgXL58WS8uLS1NkMlkwpIlS/SWnzp1SnBxcdFbXtU+m5JvZf189tlnglQqFfbt26e3fPXq1QIAYf/+/YIgCEJKSooAQHjhhRf04kaPHl1hvw0dG0EQhAULFuidl+Ych08//VS3TKlUCqGhocLw4cN1y9auXSsAEJYvX15h+9r3PzU1VQAgrFq1Sm/9kCFDhIiICL3zxBAAglQqFc6cOaO3fMKECULdunWF7OxsveWjRo0SfH19haKiIkEQBOHRRx8VWrRoUeU2tMdqyJAhestfeOEFAYBw4sQJQRD+eV+effZZvbiXXnpJACDs3r1btyw8PFwAIOzdu1e3LCsrS1AoFMKsWbN0y9q0aSMMHDiwyvyM/bwgx8Fbe+TQVq5cieTkZCQnJ2PDhg3o0aMHnn32WXz77bc1sv2cnBzs3r0bI0eOREFBAbKzs5GdnY3bt2+jb9++uHDhAm7cuKHXZuLEiZDJZHrLunbtiuPHj6OwsBAA8Pvvv2PAgAGIjY3Fvn37AJRdpZJIJOjSpQsAYOfOnSgpKcH06dMhlUr1+vfx8cFPP/2ktw2FQoHx48ebvI+TJk3Su63UtWtXqNVqXLlyxeS+LPXtt99Co9Fg5MiRumOdnZ2N0NBQNG7cGHv27NGLN3efH2Son6+++grNmjVDTEyMXi49e/YEAF0u27ZtAwC8+OKLeu21V1nMYepx8PLy0rta5Orqivj4ePz999+6Zd988w0CAwMxbdq0CtvTvv9NmjRBhw4dsHHjRt26nJwc/Pzzz3jqqacM3n58UPfu3dG8eXPda0EQ8M0332Dw4MEQBEFvf/r27Yu8vDwcP34cQNmt++vXr+PIkSPVbmfKlCl6r7X7pX0/tH/OnDlTL27WrFkAUOHfT/PmzdG1a1fd66CgIDRt2lTvGPr5+eHMmTO4cOGCwZzM+bwg+8dbe+TQ4uPj9QabP/nkk2jbti2mTp2KQYMGwdXV1abbv3jxIgRBwKuvvopXX33VYExWVhbq16+ve92oUaMKMV27dkVpaSkOHjyIsLAwZGVloWvXrjhz5oxeIdW8eXPdLRVtIdO0aVO9vlxdXREZGVmh0Klfv75Zx6Nhw4Z6r/39/QGU3S6qaRcuXIAgCGjcuLHB9Q8OZDd3nx9kqJ8LFy7g3LlzuluOD9IOXr9y5QqkUmmFW5sPvm+mMPU4NGjQoEKR4+/vj5MnT+peX7p0CU2bNtUbX2jI2LFjMXXqVFy5cgXh4eH46quvoFKpMGbMGKNyf/D8v3XrFnJzc7FmzRqsWbPGYBvtsZwzZw527tyJ+Ph4REdHo0+fPhg9ejQ6d+5coc2DxyYqKgpSqVQ31k77vkRHR+vFhYaGws/Pr8K/nwf/HQBlx7D8v4NFixbh0UcfRZMmTdCyZUv069cPY8aM0Q0DMOfzguwfCylyKlKpFD169MD//vc/XLhwAS1atKj0f8lqtdri7Wm/xv/SSy+hb9++BmMe/KB2d3evENO+fXu4ublh7969aNiwIYKDg9GkSRN07doV77//PpRKJfbt22fR+AlD2zXGg1fPtARBMDsXc2k0GkgkEvz8888G8/Ly8tJ7be4+P8hQPxqNBq1atcLy5csNtgkLCzN5O8aeq6YeB2u+h6NGjcKMGTOwceNG/Pvf/8aGDRvQvn17owvDB4+l9t/Q008/rRvw/yBtIdKsWTOkpqZi69at2L59O7755hu8//77mD9/vm56kspUdmyNuYoGGHcMu3XrhkuXLuGHH37Ajh078NFHH+Htt9/G6tWr8eyzz5r1eUH2j4UUOZ3S0lIAwN27dwH8cwXlwW+yGbo1ZeqHbWRkJICyKwCWzD2kvdWyb98+NGzYUHcLoWvXrlAqldi4cSMyMzPRrVs3XZvw8HAAQGpqqi4PACgpKcHly5eNzsfYXyQ1qbKcoqKiIAgCGjVqhCZNmtRwVhVzOXHiBHr16lXlMQwPD4dGo9Fd8dFKTU2tEOvv729wEtIHz1VbHIeoqCgcOnQIKpWqyikqAgICMHDgQGzcuBFPPfUU9u/fj3feecfs7Wq/yahWq406Zz09PfHEE0/giSeeQElJCYYNG4YlS5Zg3rx5etMoXLhwQe/q18WLF6HRaHTfitS+LxcuXECzZs10cZmZmcjNzdX9+zJVQEAAxo8fj/Hjx+Pu3bvo1q0bkpKS8Oyzz1rt84LsC8dIkVNRqVTYsWMHXF1ddR+O4eHhkMlk2Lt3r17s+++/X6G9dk6nB3+ZaecMenB5cHAwEhIS8MEHHyA9Pb1Cf9VNE1Be165dcejQIezZs0dXSAUGBqJZs2ZYunSpLkard+/ecHV1xbvvvqv3v+KPP/4YeXl5Rn8rzNPT0+4ehVLZ+zBs2DDIZDIsXLiwwtUUQRBw+/btmkoRI0eOxI0bN/Dhhx9WWHfv3j3deDftt+LeffddvRhDxUdUVBTy8vL0brmlp6dX+AaZLY7D8OHDkZ2djffee6/Cuge3MWbMGJw9exazZ8+GTCbDqFGjTN6elkwmw/Dhw/HNN9/g9OnTFdaX/zf04H65urqiefPmEAQBKpVKb512KhOtFStWAPjn/RgwYACAiu+D9gqjOd+qfDA/Ly8vREdH66ZTsObnBdkPXpEih/bzzz/j/PnzAMrGFmzatAkXLlzA3Llz4ePjAwDw9fXFiBEjsGLFCkgkEkRFRWHr1q26cRflxcXFASgbGNy3b1/dLwl3d3c0b94cX3zxBZo0aYKAgAC0bNkSLVu2xMqVK9GlSxe0atUKEydORGRkJDIzM3Hw4EFcv34dJ06cMGpfunbtiiVLluDatWt6BVO3bt3wwQcfICIiAg0aNNAtDwoKwrx587Bw4UL069cPQ4YMQWpqKt5//3089NBDRk8BERcXh1WrVuG1115DdHQ0goODdQOmxaJ9H15++WWMGjUKcrkcgwcPRlRUFF577TXMmzcPaWlpGDp0KLy9vXH58mV89913mDRpEl566aUayXHMmDH48ssv8fzzz2PPnj3o3Lkz1Go1zp8/jy+//BK//PIL2rdvj9jYWDz55JN4//33kZeXh06dOmHXrl24ePFihT5HjRqFOXPm4LHHHsOLL76IoqIirFq1Ck2aNNENuAZgk+MwduxYfPrpp5g5cyYOHz6Mrl27orCwEDt37sQLL7ygN3/UwIEDUadOHXz11Vfo378/goODzT+QAN544w3s2bMHHTp0wMSJE9G8eXPk5OTg+PHj2LlzJ3JycgAAffr0QWhoKDp37oyQkBCcO3cO7733HgYOHAhvb2+9Pi9fvowhQ4agX79+OHjwoG76iTZt2gAA2rRpg3HjxmHNmjXIzc1F9+7dcfjwYXzyyScYOnQoevToYfJ+NG/eHAkJCYiLi0NAQACOHj2Kr7/+GlOnTtXFWOvzguxITX9NkMgaDE1/4ObmJsTGxgqrVq2q8DXsW7duCcOHDxc8PDwEf39/4bnnnhNOnz5dYfqD0tJSYdq0aUJQUJAgkUj0vnJ+4MABIS4uTnB1da3wtfVLly4JY8eOFUJDQwW5XC7Ur19fGDRokPD1119XyPnBr9dr5efnCzKZTPD29tabHmHDhg0CAGHMmDEG27333ntCTEyMIJfLhZCQEGHy5MnCnTt39GK6d+9e6dfGMzIyhIEDBwre3t4CAN1UCJXlW9l0Eg+yZPoDQRCExYsXC/Xr1xekUmmFqRC++eYboUuXLoKnp6fg6ekpxMTECFOmTBFSU1ON2mdT8q2qn5KSEmHp0qVCixYtBIVCIfj7+wtxcXHCwoULhby8PF3cvXv3hBdffFGoU6eO4OnpKQwePFi4du2awf3esWOH0LJlS8HV1VVo2rSpsGHDhgrTH1jjOBh6H4qKioSXX35ZaNSokSCXy4XQ0FDh8ccfFy5dulShvXY6gU2bNhk8NoYAEKZMmWJwXWZmpjBlyhQhLCxMt+1evXoJa9as0cV88MEHQrdu3YQ6deoICoVCiIqKEmbPnq13rLXH6uzZs8Ljjz8ueHt7C/7+/sLUqVOFe/fu6W1TpVIJCxcu1O1vWFiYMG/ePL2pCQShbPoDQ9MadO/eXW/qkNdee02Ij48X/Pz8BHd3dyEmJkZYsmSJUFJSotfOmM8LchwSQRBhxCgREUEikWDBggUGH5Rt72bMmIGPP/4YGRkZdvW4HO0ktbdu3dJN5kpkSxwjRUREJikuLsaGDRswfPhwuyqiiMTAMVJERGSUrKws7Ny5E19//TVu376Nf/3rX2KnRCQ6FlJERGSUs2fP4qmnnkJwcDDeffddxMbGip0Skeg4RoqIiIjITBwjRURERGQmFlJEREREZuIYKSvQaDS4efMmvL297fJxG0RERFSRIAgoKChAvXr1IJWad22JhZQV3Lx506wHlBIREZH4rl27pvfkCFOwkLIC7aMJrl27pnssiT3RPn+uT58+VT6M1N63aVGfhYVAvXpl/Vy5Armfn022aUy8pTFivJ+2wnPT/PamtDE2tro4S9c7Cp6X5rd3tM/M/Px8hIWFVXjEkClYSFmB9naej4+P3RZSHh4e8PHxqdEPBWtv06I+ZbJ/+vHxgdzI98nUbRoTb2mMGO+nrfDcNL+9KW2Mja0uztL1joLnpfntHfUz05JhORxsTkRERGQmFlJEREREZmIhRURERGQmFlJEREREZmIhRURERGQmFlJEREREZmIhRURERGQmFlJEREREZmIhRURERGQmFlJEREREZnLKQmrlypWIiIiAm5sbOnTogMOHD1cZ/9VXXyEmJgZubm5o1aoVtm3bVkOZEhERkSNzukLqiy++wMyZM7FgwQIcP34cbdq0Qd++fZGVlWUw/sCBA3jyyScxYcIE/Pnnnxg6dCiGDh2K06dP13DmRERE5Gic7qHFy5cvx8SJEzF+/HgAwOrVq/HTTz9h7dq1mDt3boX4//3vf+jXrx9mz54NAFi8eDGSk5Px3nvvYfXq1Qa3oVQqoVQqda/z8/MBlD0YUaVSWXuXLKbNqSZzs8U2LepTpYJc91cVYGQfpm7TmHhLY8R4Pw0RBAElagElpRqUlKpRohagLFWjpFQDZanmnz/VGihVZX+WqgWoBQEaTdmfKpUaZ9MlSN/3NwSJFGqNAI0glPsTD7wWoBaga6/RCBAACAIgQIAg3M8N9xfq1uleQq3RID1dih0FKYBECtxvWz5Wu3/l22mXafsXyrXTaATcuiXFN7eOQiI1/f+ngkaD7GzT2hvdRgA0Qlns17eOQiqpPLa6OEvX66clVLleDLrzRxCQnS3FV1lHLXqYrWnbtv42Le3TnPamtjEmXhvTqkMBwup4G4wx9zPTGp+jEkEQ7O9sNlNJSQk8PDzw9ddfY+jQobrl48aNQ25uLn744YcKbRo2bIiZM2di+vTpumULFizA999/jxMnThjcTlJSEhYuXFhh+aZNm+Dh4WHxfpD1yYqLMWjUKADA1s2boXZzEzkj8QkCcE8NFKqAwlLgrkqCu6Vlr++WSnCvFChWA0o1oFRLUKwu91oDqDQ18wuGiAgAXo4tRbC7dfssKirC6NGjkZeXBx8fH7P6cKorUtnZ2VCr1QgJCdFbHhISgvPnzxtsk5GRYTA+IyOj0u3MmzcPM2fO1L3Oz89HWFgY+vTpY/YbYUsqlQrJycl45JFHIJfLq29gp9u0qM/CQt1fe/bsCbmfn022aUy8pTHG5lSq1iAjX4nrd+7h2p17uHanCNfv3MP1O/dwI7cYOYUlKNVY7/9RcpkEChcZXF3u/ymTQuEihavLP3+6SCWQSiWQSSSQSSWQQMCtrEzUqxsKF5ms3DpAej/mnz8B2f310nJ/Su/XcxJA73+0Esn9H0j+eQ1Ao9EgNTUVMU2bQuYig0QXL7nfxz/9QSIpt75iX9pYtVqDs2fPoGWLFpDJZCYfO7VajTNnzqCFCe1NaaPRqHHm9Bm0aFl1rFpddZyl6x/0z9G1HxJJ2X6cPn0aLVu2NOv9NIcttmlpn+a0N7WNMfHamEf79oC/l+FKytzPTO0dJUs4VSFVUxQKBRQKRYXlcrm8xgoVc4iRny22aVaf5eLNaW9qG2PiLY3RrhMEAdfv3MPxq3dw/ModXLx1F9dy7uFm7j2jCiUPVxkCPF3/+fFwhb+nK/zc5fBUuMBL4VL2p5sLvBQyeCpc4OnqAje5DAq5FK6ysh+p1PRfiiqVCtu2bcOAAbE1WuRvKziPAV0jrVrkb8s+jQEPNTSrT5VKhW23TGtvShuVSgXPrNMY0L7q2OriLF3vKFQqFdwzT2FAXFiNnpfW3qalfZrT3tQ2xsRrY/y93K3ymfngMks5VSEVGBgImUyGzMxMveWZmZkIDQ012CY0NNSkeCKxKUs1SCsA1u5PQ8r1fBy7cgdZBUqDsXKZBA38PdDA3x0NAzwQFuCBhgFlr4O8FfD3cIWbvGb+x01E5IycqpBydXVFXFwcdu3apRsjpdFosGvXLkydOtVgm44dO2LXrl16Y6SSk5PRsWPHGsiYqHq37ypx9ErZ1aZjV+7g5I08lJS6AKf/0sW4SCVoUd8XcQ390ayut65oCvFxg8yMK0VERGQcpyqkAGDmzJkYN24c2rdvj/j4eLzzzjsoLCzUfYtv7NixqF+/Pl5//XUAwL/+9S90794db731FgYOHIjNmzfj6NGjWLNmjZi7QbWcIAi4kCfBlM9TsPNcFh68Q+fpIuDh6GC0j6iDuHB/tG7gyytLREQicLpC6oknnsCtW7cwf/58ZGRkIDY2Ftu3b9cNKL969Sqk5b4q3KlTJ2zatAmvvPIK/v3vf6Nx48b4/vvv0bJlS7F2gWqxQmUpvv3zBj7ZfxkXb8kAlM1/1iTEC3HhAYgL90eb+l4488dvGDiwrUOPQyEicgZOV0gBwNSpUyu9lffrr79WWDZixAiMGDHCxlkRVe7vW3fx6cEr+ObYdRQoSwEArlIBI9o3RGLnRmgc8s/cKSqVCmd5t46IyC44ZSFF5AjUGgF7z2Xik4NXsPevW7rlkYGeeKpDGDyzTmP44Ga86kREZMdYSBHVsNwiFXbflOC/7/yO63fuASibu6ZXTDDGdoxAl+hAqNWl2LaNjykiIrJ3LKSIasitAiXe2pGK7/68AWWpDMA9+LrLMeqhMDz9cDjCAv6ZFV+tFi9PIiIyHgspohpwLj0fE9Yfwc28YgBAfQ8BU/q0wGPtGsLdld+2IyJyVCykiGxs59lMvLj5TxSVqBEZ6InXHm2OrDMHMTCuAeScsoCIyKGxkCKyEUEQ8NG+y/jPz+cgCECnqDpY9VQcPOTAtrNiZ0dERNbAQorIBkpKNXjlh1P44ug1AMDoDg2xcEgLyGVSqFQqkbMjIiJrYSFFZGWFKmD8J8dwOO0OpBLglYHNMb5zBCQSTv5ERORsWEgRWdGlW4VYflqG7OI78FK4YMWTbdEjJljstIiIyEZYSBFZye8XsjF54zEUFEtQ388NaxPj0TTUu/qGRETksFhIEVnBhj+uYMGWM1BrBDTyFvD5cx0Q6u8ldlpERGRjLKSILFCq1mDJtnNYtz8NAPBom7ro6nYNdbwU4iZGREQ1Qip2AkSOqqBYhWc/Paoromb3bYr/Dm8JOf9VERHVGrwiRWSGazlFmPDJEfyVeRducimWj4zFgFZ1ObUBEVEtw0KKyERH03Iw6bNjyCksQbC3Ah+Na4/WDfzETouIiETAQorIBN8ev46535xCiVqDFvV88NG49qjr6y52WkREJBIWUkRG2njoCl7+7jQAoG+LELz9RCw8XPlPiIioNuNvASIjZBUo8Z+fzgEAJnWLxNx+MZBKOVM5EVFtx+8XERnhv7/8hcISNdqE+bGIIiIiHV6RIqrG3/nA92fSIZEAi4a0YBFFREQ6vCJFVAW1RsDXl2UAgCfah6FNmJ+4CRERkV1hIUVUhc1Hr+NGkQQ+bi6Y3bep2OkQEZGdYSFFVImcwhK8vfMCAGB6r2g+9oWIiCpgIUVUiWU7UpF3rxT1PAQ8+VADsdMhIiI7xEKKyIBT1/Pw+eGrAIDHG6nhIuM/FSIiqoi/HYgeoNEImL/lNAQBGNw6FFE+YmdERET2ioUU0QO+/fMG/ryaC09XGeb0bSJ2OkREZMdYSBGVk1+swhs/l81gPq1XY4T4uImcERER2TMWUkTlvJN8Adl3SxAZ6IlnOjcSOx0iIrJzLKSI7vsrswCfHEwDACQNaQFXF/7zICKiqjnNb4q0tDRMmDABjRo1gru7O6KiorBgwQKUlJRU2S4hIQESiUTv5/nnn6+hrMleCIKABT+cgVojoE/zEHRrEiR2SkRE5ACc5ll758+fh0ajwQcffIDo6GicPn0aEydORGFhIZYtW1Zl24kTJ2LRokW61x4eHrZOl+zMtlMZOPj3bShcpHh1UHOx0yEiIgfhNIVUv3790K9fP93ryMhIpKamYtWqVdUWUh4eHggNDbV1imSnikpK8dpPZwEAkxOiEBbAQpqIiIzjNIWUIXl5eQgICKg2buPGjdiwYQNCQ0MxePBgvPrqq1VelVIqlVAqlbrX+fn5AACVSgWVSmV54lamzakmc7PFNi3qU6WCvHw/5fpYsfMC0vOK0cDPDRM6NdTr39RtGhNvaYwY76et8Nw0v70pbYyNrS7O0vWOguel+e0d7TPTGsdbIgiCYHEvdujixYuIi4vDsmXLMHHixErj1qxZg/DwcNSrVw8nT57EnDlzEB8fj2+//bbSNklJSVi4cGGF5Zs2beJtQTslKy7GoFGjAABbN2+G2q1sWoNb94DXT8igFiSY0FSN1gFO+c+BiIgMKCoqwujRo5GXlwcfH/NmX7b7Qmru3LlYunRplTHnzp1DTEyM7vWNGzfQvXt3JCQk4KOPPjJpe7t370avXr1w8eJFREVFGYwxdEUqLCwM2dnZZr8RtqRSqZCcnIxHHnkEcrm8+gZ2uk2L+iwshNzfHwBQlJUFuZ8fAGDiZ8fx61/Z6BpdBx+PbQeJRGLRNo2JtzRGjPfTVnhumt/elDbGxlYXZ+l6R8Hz0vz2jvaZmZ+fj8DAQIsKKbu/tTdr1iwkJiZWGRMZGan7+82bN9GjRw906tQJa9asMXl7HTp0AIAqCymFQgGFQlFhuVwut+sPDzHys8U2zeqzXLy2/a5zmfj1r2zIZRIkPdoSrq6uVtumMfGWxtj7+WaKWn1uWtjelDbGxlYXZ+l6R8Hz0vz2jvKZaY1jbfeFVFBQEIKCjPsq+o0bN9CjRw/ExcVh3bp1kEpNn90hJSUFAFC3bl2T25LjKFapsWhr2QDzZ7o0QlSQl8gZERGRI3KaeaRu3LiBhIQENGzYEMuWLcOtW7eQkZGBjIwMvZiYmBgcPnwYAHDp0iUsXrwYx44dQ1paGrZs2YKxY8eiW7duaN26tVi7QjXgo31/48rtIoT4KDCtZ2Ox0yEiIgdl91ekjJWcnIyLFy/i4sWLaNCggd467TAwlUqF1NRUFBUVAQBcXV2xc+dOvPPOOygsLERYWBiGDx+OV155pcbzp5qTnnsP7+25CAD494Bm8FI4zT8DIiKqYU7zGyQxMbHasVQREREoP7Y+LCwMv/32m40zI3vz1s6LKFZpEB8RgCFt6omdDhEROTCnubVHZKwdZ7MglZQ9T+/Bb+kRERGZgoUU1UpjHg5H83r2N1UFERE5FhZSVOv4ecgx85GmYqdBREROgIUU1QpZBcW6v/+rZxR8PRx/jhsiIhIfCymqFd7ecUH398diOcCciIisg4UUOb1jV3LwfcoN3WuplAPMiYjIOlhIkVNTawTM/+GM2GkQEZGTYiFFTm3zkas4czMf3m5OM2UaERHZERZS5LTuFJbgv7+kAgBe7BktcjZEROSMWEiR01q2IxW5RSrEhHpjVHxDsdMhIiInxEKKnNLZm/nYdPgqgLIZzF1kPNWJiMj6+NuFnNLnh69CEID+LUPxcGQdsdMhIiInxUKKnE6pWoNtp9IBAE88FCZyNkRE5MxYSJHT+ePvHNwuLIG/hxydowPFToeIiJwYCylyOj+euAkA6NeyLuQcG0VERDbE3zLkVEpKNdh+JgMAMLhNXZGzISIiZ8dCipzK/ovZyLunQpC3Ah0acZA5ERHZFgspcira23oDWoZCxmfqERGRjbGQIqdRrFJjx9lMAMDgNvVEzoaIiGoDFlLkNH5NvYW7ylLU9XVDu4b+YqdDRES1AAspchpbT5bd1hvUui6kvK1HREQ1gIUUOYWiklLsOpcFABjUmrf1iIioZrCQIqew61wW7qnUaBjggdYNfMVOh4iIagkWUuQUyt/Wk0h4W4+IiGoGCylyeAXFKuxJvQWAt/WIiKhmsZAih5d8NhMlpRpEBXmiWV1vsdMhIqJahIUUObytJ9MBlF2N4m09IiKqSSykyKHlFpVg719lt/X4bD0iIqppLKTIof1yJgOlGgExod6IDuZtPSIiqlkspMih/Xii7LYeHwlDRERiYCFFDiv7rhIHLmUDKJv2gIiIqKY5VSEVEREBiUSi9/PGG29U2aa4uBhTpkxBnTp14OXlheHDhyMzM7OGMiZL/Hw6AxoBaN3AF+F1PMVOh4iIaiGnKqQAYNGiRUhPT9f9TJs2rcr4GTNm4Mcff8RXX32F3377DTdv3sSwYcNqKFuyxI8n/pmEk4iISAwuYidgbd7e3ggNDTUqNi8vDx9//DE2bdqEnj17AgDWrVuHZs2a4Y8//sDDDz9ssJ1SqYRSqdS9zs/PBwCoVCqoVCoL98D6tDnVZG622Gb5PjPyi3EkLQcA0LdZUPXbUakgL9+PkXmZuh/GxFsaI8b7aSvOeG7WVHtT2hgbW12cpesdBc9L89s72memNY63RBAEweJe7ERERASKi4uhUqnQsGFDjB49GjNmzICLi+F6cffu3ejVqxfu3LkDPz8/3fLw8HBMnz4dM2bMMNguKSkJCxcurLB806ZN8PDwsMq+UNV+TZfguzQZGnkLmN5SXW28rLgYg0aNAgBs3bwZajc3W6dIRER2rqioCKNHj0ZeXh58fHzM6sOprki9+OKLaNeuHQICAnDgwAHMmzcP6enpWL58ucH4jIwMuLq66hVRABASEoKMjIxKtzNv3jzMnDlT9zo/Px9hYWHo06eP2W+ELalUKiQnJ+ORRx6BXC6vvoGdbrN8n+vWHQeQh6e7NcOAhxtW37iwUPfXnj17Qv7Ae27MNo3ZD2PiLY0R4/20FWc8N83p05z2prQxNra6OEvXOwqel+a3d7TPTO0dJUvYfSE1d+5cLF26tMqYc+fOISYmRq+4ad26NVxdXfHcc8/h9ddfh0KhsFpOCoXCYH9yudyuPzzEyM8W28y8W4qUa3mQSIDBbeob13+5GHNyMrWNMfGWxtj7+WYKZzk3Le3T1uemsbHVxVm63lHwvDS/vaN8ZlrjWNt9ITVr1iwkJiZWGRMZGWlweYcOHVBaWoq0tDQ0bdq0wvrQ0FCUlJQgNzdX76pUZmam0eOsqOZtO112tbBDowAE+/AWHRERicfuC6mgoCAEBQWZ1TYlJQVSqRTBwcEG18fFxUEul2PXrl0YPnw4ACA1NRVXr15Fx44dzc6ZbEtbSHESTiIiEpvdF1LGOnjwIA4dOoQePXrA29sbBw8exIwZM/D000/D398fAHDjxg306tULn376KeLj4+Hr64sJEyZg5syZCAgIgI+PD6ZNm4aOHTtW+o09ElfWPeDMzQLIpBL0b8lpD4iISFxOU0gpFAps3rwZSUlJUCqVaNSoEWbMmKE3bkqlUiE1NRVFRUW6ZW+//TakUimGDx8OpVKJvn374v333xdjF8gIf96WAAA6RdVBgKeryNkQEVFt5zSFVLt27fDHH39UGRMREYEHZ3twc3PDypUrsXLlSlumR1byZ3bZHLK8rUdERPbA6WY2J+d1IfMu0u9JIJdJ0Lc5vwxARETiYyFFDuOn+4PMu0YHwtfD8b9aTUREjo+FFDkEQRCw7VRZITWgFa9GERGRfWAhRQ7hzM18XL5dBLlEQK8Y86bDICIisjYWUuQQtp5MBwA09xfgpXCa70gQEZGDYyFFdk8QBGw9eRMA0DbQaZ6xTUREToCFFNm9lGu5uH7nHjxcZWjhx0KKiIjsBwspsnva23o9mwbBVSZyMkREROWwkCK7ptEI+Ol+ITWQ39YjIiI7w0KK7NrRK3eQkV8MbzcXdG0cKHY6REREelhIkV378UTZIPM+zUOhcOHpSkRE9oW/mchulao1+Pl02W29wW3qipwNERFRRSykyG4dupyD7Lsl8PeQo3M0b+sREZH9YSFFdkt7W69fy1DIZTxViYjI/vC3E9mlklINtp8pe7be4Nb1RM6GiIjIMBZSZJf2X8xGbpEKgV4KdIisI3Y6REREBrGQIrv04/1HwgxsFQqZVCJyNkRERIaxkCK7U6xSI/lMJgBgUBve1iMiIvvFQorszm9/3UKBshShPm6Ia+gvdjpERESVYiFFdkf7bL1BretCytt6RERkx1hIkV0pKinFzrO8rUdERI6BhRTZld3ns3BPpUZYgDvaNPAVOx0iIqIqsZAiu7L1hPa2Xj1IJLytR0RE9o2FFNmNgmIVdqdmASgbH0VERGTvWEiR3dh5LhMlpRpEBnmieV0fsdMhIiKqFgspshs/8rYeERE5GBZSZBfyilTYd+EWAGAwb+sREZGDYCFFduGXMxlQqQXEhHqjcYi32OkQEREZxcWYoICAAJM6lUgkOH78OMLDw81Kimof7bP1OMiciIgciVGFVG5uLt555x34+lY/r48gCHjhhRegVqstTo5qh+y7Shy4dBtA2fgoIiIiR2FUIQUAo0aNQnBwsFGx06ZNMzshc/3666/o0aOHwXWHDx/GQw89ZHBdQkICfvvtN71lzz33HFavXm31HMmwn09nQK0R0Kq+LyICPcVOh4iIyGhGFVIajcakTgsKCsxKxhKdOnVCenq63rJXX30Vu3btQvv27atsO3HiRCxatEj32sPDwyY5kmFbT5Td1hvchrf1iIjIsRh9Rcreubq6IjQ0VPdapVLhhx9+wLRp06r9Kr2Hh4deW6o5mfnFOJyWAwAYyNt6RETkYEwupG7fvo06deoAAK5du4YPP/wQ9+7dw5AhQ9C1a1erJ2iuLVu24Pbt2xg/fny1sRs3bsSGDRsQGhqKwYMH49VXX63yqpRSqYRSqdS9zs/PB1BWvKlUKsuTtzJtTjWZm7Hb3JJyHYIAtA3zRbCnS5XxFu2HSgV5+X6M7MPUbRoTb2mMGO+nrdjzuVmTfZrT3pQ2xsZWF2fpekfB89L89o72mWmN4y0RBEEwJvDUqVMYPHgwrl27hsaNG2Pz5s3o168fCgsLIZVKUVhYiK+//hpDhw61OClrGDBgAABg27ZtVcatWbMG4eHhqFevHk6ePIk5c+YgPj4e3377baVtkpKSsHDhwgrLN23axNuCJnr7lAxpdyUYFqFG97pGnYpmkRUXY9CoUQCArZs3Q+3mZrNtERGRYygqKsLo0aORl5cHHx/znqhhdCHVv39/uLi4YO7cufjss8+wdetW9O3bFx9++CGAsgHmx44dwx9//GFWIpWZO3culi5dWmXMuXPnEBMTo3t9/fp1hIeH48svv8Tw4cNN2t7u3bvRq1cvXLx4EVFRUQZjDF2RCgsLQ3Z2ttlvhC2pVCokJyfjkUcegVwur75BDW3zRu49JLy1DxIJsO+lbgjxqbq4sWg/Cgsh9/cHABRlZUHu52dUM1O3aUy8pTFivJ+2Yq/nZk33aU57U9oYG1tdnKXrHQXPS/PbO9pnZn5+PgIDAy0qpIy+tXfkyBHs3r0brVu3Rps2bbBmzRq88MILkErL5vScNm0aHn74YbOSqMqsWbOQmJhYZUxkZKTe63Xr1qFOnToYMmSIydvr0KEDAFRZSCkUCigUigrL5XK5XX94iJFfVdv85exVAECHRgFoUMf4STjN2o9y8ea0N7WNMfGWxtj7+WYKezs3xerT1uemsbHVxVm63lHwvDS/vaN8ZlrjWBtdSOXk5OgGZHt5ecHT0xP+9/+HDwD+/v42+bZeUFAQgoKCjI4XBAHr1q3D2LFjzTpAKSkpAIC6dfkNMlvbevKfZ+sRERE5IpMeEfPgt9/s8cGyu3fvxuXLl/Hss89WWHfjxg3ExMTg8OHDAIBLly5h8eLFOHbsGNLS0rBlyxaMHTsW3bp1Q+vWrWs69VolLbsQp27kQSaVoH9LfmOSiIgck0nf2ktMTNTd0iouLsbzzz8PT8+yCRTLjxkS08cff4xOnTrpjZnSUqlUSE1NRVFREYCyKRN27tyJd955B4WFhQgLC8Pw4cPxyiuv1HTatc7W+4+E6RRVB3W8Kt4mJSIicgRGF1Ljxo3Te/30009XiBk7dqzlGVlo06ZNla6LiIhA+bH1YWFhFWY1p5qhva03mLf1iIjIgRldSK1bt86WeVAtciGzAOczCiCXSdC3BW/rERGR4zJpjBSRNfx4/2pUt8ZB8PVw/G/2EBFR7WXUFalhw4YZ3WFVE1kSCYKge7beID5bj4iIHJxRV6R8fX11Pz4+Pti1axeOHj2qW3/s2DHs2rULvr6+NkuUnMPZ9Hz8nV0IhYsUvZuFiJ0OERGRRYy6IlV+fNScOXMwcuRIrF69GjKZDACgVqvxwgsv2OWs3mRftIPMezQNhrcbb+sREZFjM3mM1Nq1a/HSSy/piigAkMlkmDlzJtauXWvV5Mi5CIKAH+/f1hvcht/WIyIix2dyIVVaWorz589XWH7+/HloNBqrJEXO6cT1PFy/cw8erjL0jAkWOx0iIiKLmTQhJwCMHz8eEyZMwKVLlxAfHw8AOHToEN544w2MHz/e6gmS89BejerVLATurrJqoomIiOyfyYXUsmXLEBoairfeegvp6WXjXerWrYvZs2dj1qxZVk+QnINGI+An3SSc/LYeERE5B5MLKalUiv/7v//D//3f/yE/Px8AOMicqnXs6h1k5BfDW+GC7k2Nfwg1ERGRPTO5kCqPBRQZS3tbr0+LUChceFuPiIicg1GDzdu1a4c7d+4Y3WmXLl1w48YNs5Mi51Kq1mDbqbLbepyEk4iInIlRV6RSUlJw4sQJBAQEGNVpSkoKlEqlRYmR8zh0OQfZd0vg5yFHl+hAsdMhIiKyGqNv7fXq1QuCIBgVK5FIzE6InI92Es7+LUMhl/HxjkRE5DyMKqQuX75scscNGjQwuQ05H0EQ8FtqFgCgb4tQkbMhIiKyLqMKqfDwcFvnQU4q7XYRbuYVw1UmRYdGdcROh4iIyKp4n4Vs6sDfOQCAduF+nISTiIicDgspsqkDl24DAAeZExGRU2IhRTajEcq+sQcAnVhIERGRE2IhRTZzvRDIu1cKb4ULWtf3FTsdIiIiqzOrkMrNzcVHH32EefPmISen7IrD8ePHOQkn6fkrr2wajA6RdeDCaQ+IiMgJmfyImJMnT6J3797w9fVFWloaJk6ciICAAHz77be4evUqPv30U1vkSQ5IW0h1jua39YiIyDmZfJlg5syZSExMxIULF+Dm5qZbPmDAAOzdu9eqyZHjUqrU+Du/rJDiQHMiInJWJhdSR44cwXPPPVdhef369ZGRkWGVpMjx/XktDypBgmBvBaKDvcROh4iIyCZMLqQUCgXy8/MrLP/rr78QFBRklaTI8WmnPXi4UQAfGURERE7L5EJqyJAhWLRoEVQqFYCy5+pdvXoVc+bMwfDhw62eIDkm7UScnaKMe9A1ERGRIzK5kHrrrbdw9+5dBAcH4969e+jevTuio6Ph7e2NJUuW2CJHcjB591Q4dSMPANApigPNiYjIeZn8rT1fX18kJyfj999/x8mTJ3H37l20a9cOvXv3tkV+5IAO/X0bGgEIdhNQ19et+gZEREQOyuRCSqtLly7o0qWLNXMhJ6EdH9XYVxA5EyIiItsyqpB69913je7wxRdfNDsZcg6/X8wGADRlIUVERE7OqELq7bff1nt969YtFBUVwc/PD0DZTOceHh4IDg5mIVXLZeYX42LWXUgkQLQPCykiInJuRg02v3z5su5nyZIliI2Nxblz55CTk4OcnBycO3cO7dq1w+LFi22W6JIlS9CpUyd4eHjoCrgHXb16FQMHDtQVdbNnz0ZpaWmV/ebk5OCpp56Cj48P/Pz8MGHCBNy9e9cGe1A77L9/NapFXR94ykVOhoiIyMZM/tbeq6++ihUrVqBp06a6ZU2bNsXbb7+NV155xarJlVdSUoIRI0Zg8uTJBter1WoMHDgQJSUlOHDgAD755BOsX78e8+fPr7Lfp556CmfOnEFycjK2bt2KvXv3YtKkSbbYhVph/8Wy8VGc9oCIiGoDkwebp6enG7zKo1arkZmZaZWkDFm4cCEAYP369QbX79ixA2fPnsXOnTsREhKC2NhYLF68GHPmzEFSUhJcXV0rtDl37hy2b9+OI0eOoH379gCAFStWYMCAAVi2bBnq1atncFtKpRJKpVL3WjtBqUql0s2vZU+0Odk6N0EQ8PvFWwCA+Ia+KPzbutu0aD9UKsh1f1UBRvZh6jaNibc0pqbez5ogxr7YYpuW9mlOe1PaGBtbXZyl6x0Fz0vz2zvaZ6Y1jrdEEASTBrIMHjwYN27cwEcffYR27doBAI4dO4ZJkyahfv362LJli8VJVWX9+vWYPn06cnNz9ZbPnz8fW7ZsQUpKim7Z5cuXERkZiePHj6Nt27YV+lq7di1mzZqFO3fu6JaVlpbCzc0NX331FR577DGDOSQlJekKu/I2bdoEDw8P83bMCWTeA/6T4gIXiYDXH1LDVSZ2Rv+QFRdj0KhRAICtmzdD7cZpGYiIaruioiKMHj0aeXl58PHxMasPk69IrV27FuPGjUP79u0hl5f9H7+0tBR9+/bFRx99ZFYS1pCRkYGQkBC9ZdrXlT0DMCMjA8HBwXrLXFxcEBAQUOVzA+fNm4eZM2fqXufn5yMsLAx9+vQx+42wJZVKheTkZDzyyCO698wWNh66CqScR/uIAAzsF2v1bVq0H4WFur/27NkT8krG2Vm6TWPiLY2pqfezJoixL7bYpqV9mtPelDbGxlYXZ+l6R8Hz0vz2jvaZaeiRd6YyuZAKCgrCtm3b8Ndff+H8+fMAgJiYGDRp0sTkjc+dOxdLly6tMubcuXOIiYkxuW9bUigUUCgUFZbL5XK7/vCwdX4HL5dd2evaJFi3HVts06w+y8Wb097UNsbEWxpj7+ebKcTYF7s5Ny1sb0obY2Ori7N0vaPgeWl+e0f5zLTGsTZ7Qs4mTZqYVTyVN2vWLCQmJlYZExkZaVRfoaGhOHz4sN4y7Zit0NDQSttkZWXpLSstLUVOTk6lbcgwtUbAwUvageZ8LAwREdUOJhdSzzzzTJXr165da3RfQUFBCAoKMjUFgzp27IglS5YgKytLd7suOTkZPj4+aN68eaVtcnNzcezYMcTFxQEAdu/eDY1Ggw4dOlglr9ri9I085BeXwlvhglb1fSFo1GKnREREZHMmF1LlB2YDZfceT58+jdzcXPTs2dNqiT3o6tWryMnJwdWrV6FWq3WDyqOjo+Hl5YU+ffqgefPmGDNmDN58801kZGTglVdewZQpU3S34Q4fPoyxY8di165dqF+/Ppo1a4Z+/fph4sSJWL16NVQqFaZOnYpRo0ZV+o09Mmz/pbL5ox6OqgMXmRQqFlJERFQLmFxIfffddxWWaTQaTJ48GVFRUVZJypD58+fjk08+0b3Wfgtvz549SEhIgEwmw9atWzF58mR07NgRnp6eGDduHBYtWqRrU1RUhNTUVL2vO27cuBFTp05Fr169IJVKMXz4cJMeiUNltBNxduZtPSIiqkXMHiNVnlQqxcyZM5GQkID/+7//s0aXFaxfv77SOaS0wsPDsW3btkrXJyQk4MHZHgICArBp0yZrpFhrFavUOJpWdqWyS+NAkbMhIiKqOSbPbF6ZS5cuVfs4FnJOx6/cgbJUg2BvBaKCvMROh4iIqMaYfEWq/PxJQNls1unp6fjpp58wbtw4qyVGjuP3+7f1ukQHQiKRiJwNERFRzTG5kPrzzz/1XkulUgQFBeGtt96q9ht95Jz2a6c9iOZtPSIiql1MLqT27NljizzIQeXdU+HU9VwAQOdoDjQnIqLaxeQxUj179qzwnDugbJp1W05/QPbpj79vQyMAkUGeqOvrLnY6RERENcrkQurXX39FSUlJheXFxcXYt2+fVZIix/HPtAe8rUdERLWP0bf2Tp48qfv72bNn9R7qq1arsX37dtSvX9+62ZHd0xVSHB9FRES1kNGFVGxsLCQSCSQSicFbeO7u7lixYoVVkyP7lpFXjEu3CiGVAB0jOT6KiIhqH6MLqcuXL0MQBERGRuLw4cN6z8hzdXVFcHAwZDKZTZIk+6S9GtWqvi98PRz/Se9ERESmMrqQCg8PB1D2OBgi4J/n63HaAyIiqq2MKqS2bNmC/v37Qy6XY8uWLVXGDhkyxCqJkX0TBIEDzYmIqNYzqpAaOnQoMjIyEBwcjKFDh1YaJ5FIoFarrZUb2bFLtwqRma+Eq4sU7SP8xU6HiIhIFEYVUuVv5/HWHgH/jI9qH+4PNznHxhERUe1ktYcWU+3CaQ+IiIiMvCL17rvvGt3hiy++aHYy5BjUGgEH/y57vh4LKSIiqs2MKqTefvttozqTSCQspGqBUzfyUFBcCm83F7Sq7yt2OkRERKIxqpC6fPmyrfMgB6K9rdcxsg5kUonI2RAREYnHojFSgiBAEARr5UIOguOjiIiIyphVSH388cdo2bIl3Nzc4ObmhpYtW+Kjjz6ydm5kh4pVahy9cgcACykiIiKjZzbXmj9/PpYvX45p06ahY8eOAICDBw9ixowZuHr1KhYtWmT1JMl+HE27g5JSDUJ8FIgK8hQ7HSIiIlGZXEitWrUKH374IZ588kndsiFDhqB169aYNm0aCyknp30sTOfoQEgkHB9FRES1m8m39lQqFdq3b19heVxcHEpLS62SFNmvA3wsDBERkY7JhdSYMWOwatWqCsvXrFmDp556yipJkX3KK1Lh5I08ABwfRUREBJhxaw8oG2y+Y8cOPPzwwwCAQ4cO4erVqxg7dixmzpypi1u+fLl1siS7cPDv2xAEICrIE6G+bmKnQ0REJDqTC6nTp0+jXbt2AIBLly4BAAIDAxEYGIjTp0/r4jh+xvlw2gMiIiJ9JhdSe/bssUUe5ADKDzQnIiIiPrSYjJSedw9/3yqEVAI8HFlH7HSIiIjsgslXpIqLi7FixQrs2bMHWVlZ0Gg0euuPHz9uteTIfuy/WPaQ4lYN/ODrLhc5GyIiIvtgciE1YcIE7NixA48//jji4+M5FqqW+GfaA16NIiIi0jK5kNq6dSu2bduGzp072yIfskOCIOD3+4VUF46PIiIi0jF5jFT9+vXh7e1ti1yqtGTJEnTq1AkeHh7w8/OrsP7EiRN48sknERYWBnd3dzRr1gz/+9//qu03IiICEolE7+eNN96wwR44rku37iKrQAmFixTtwv3FToeIiMhumHxF6q233sKcOXOwevVqhIeH2yIng0pKSjBixAh07NgRH3/8cYX1x44dQ3BwMDZs2ICwsDAcOHAAkyZNgkwmw9SpU6vse9GiRZg4caLutRiFoj37/ULZ1aj2Ef5wk8tEzoaIiMh+mFxItW/fHsXFxYiMjISHhwfkcv2Bxzk5OVZLrryFCxcCANavX29w/TPPPKP3OjIyEgcPHsS3335bbSHl7e2N0NBQq+TpjPZfKhtozmkPiIiI9JlcSD355JO4ceMG/vOf/yAkJMSuB5vn5eUhICCg2rg33ngDixcvRsOGDTF69GjMmDEDLi6VHxqlUgmlUql7nZ+fD6DsOYQqlcryxK1Mm5M5uZWqNTh4v5DqEO5ndB+WbNMmfapUkOv+qgJstB/GxFsaY4tjKxYx9sXuzk0z25vSxtjY6uIsXe8oeF6a397RPjOtcbwlgiAIpjTw8PDAwYMH0aZNG4s3bo7169dj+vTpyM3NrTLuwIED6N69O3766Sf06dOn0rjly5ejXbt2CAgIwIEDBzBv3jyMHz++ysfbJCUl6a6Qlbdp0yZ4eHgYvS+OIK0AePu0C9xlAv7zkBpS+62bqyQrLsagUaMAAFs3b4bajY+4ISKq7YqKijB69Gjk5eXBx8fHrD5MviIVExODe/fumbWxB82dOxdLly6tMubcuXOIiYkxqd/Tp0/j0UcfxYIFC6osogDoPRuwdevWcHV1xXPPPYfXX38dCoXCYJt58+bptcvPz0dYWBj69Olj9hthSyqVCsnJyXjkkUcq3Iqtzqrf/gZOX0SXJiEYNDC2RrZpkz4LC3V/7dmzJ+QGvrBgjW0aE29pjC2OrVjE2Be7OzfNbG9KG2Njq4uzdL2j4HlpfntH+8zU3lGyhMmF1BtvvIFZs2ZhyZIlaNWqVYWkTCkkZs2ahcTExCpjIiMjTcrv7Nmz6NWrFyZNmoRXXnnFpLYA0KFDB5SWliItLQ1NmzY1GKNQKAwWWXK53K4/PMzJ7+DfdwAA3ZoEmbVvtjgmZvVZLt6c9qa2MSbe0hh7P99MIca+2M25aWF7U9oYG1tdnKXrHQXPS/PbO8pnpjWOtcmFVL9+/QAAvXr10lsuCAIkEgnUarXRfQUFBSEoKMjUFCp15swZ9OzZE+PGjcOSJUvM6iMlJQVSqRTBwcFWy8tR3StR49iVskKqEweaExERVeAwDy2+evUqcnJycPXqVajVaqSkpAAAoqOj4eXlhdOnT6Nnz57o27cvZs6ciYyMDACATCbTFWuHDx/G2LFjsWvXLtSvXx8HDx7EoUOH0KNHD3h7e+PgwYOYMWMGnn76afj7c76ko1dyUKLWINTHDZGBnmKnQ0REZHdMLqS6d+9e6brTp09blExV5s+fj08++UT3um3btgDKCruEhAR8/fXXuHXrFjZs2IANGzbo4sLDw5GWlgagbFBZamqqbpS+QqHA5s2bkZSUBKVSiUaNGmHGjBl6459qM+3z9TpHB9r1tzOJiIjEYnIh9aCCggJ8/vnn+Oijj3Ds2DGTbu2ZYv369ZXOIQWUfZMuKSmpyj4SEhJQ/kuK7dq1wx9//GGlDJ3Pfu3z9aL5fD0iIiJDTH5EjNbevXsxbtw41K1bF8uWLUPPnj1ZlDiR3KISnL6ZB4ATcRIREVXGpCtSGRkZWL9+PT7++GPk5+dj5MiRUCqV+P7779G8eXNb5Ugi+OPv2xAEIDrYCyE+nHOJiIjIEKOvSA0ePBhNmzbFyZMn8c477+DmzZtYsWKFLXMjEf1+/7ZeF16NIiIiqpTRV6R+/vlnvPjii5g8eTIaN25sy5zIDhy4P9C8UxTHRxEREVXG6CtSv//+OwoKChAXF4cOHTrgvffeQ3Z2ti1zI5HczL2Hv7MLIZUAHSJZSBEREVXG6ELq4Ycfxocffoj09HQ899xz2Lx5M+rVqweNRoPk5GQUFBTYMk+qQdpv67Vu4Adfd8efnZiIiMhWTP7WnqenJ5555hn8/vvvOHXqFGbNmoU33ngDwcHBGDJkiC1ypBrGaQ+IiIiMY/b0BwDQtGlTvPnmm7h+/To+//xza+VEIhIEAfsv/TMRJxEREVXOokJKSyaTYejQodiyZYs1uiMRXcy6i1sFSihcpGjXkI/JISIiqopVCilyHtppD+IbBcBNLhM5GyIiIvvGQor07NdNe8DbekRERNVhIUU6pWoNDv2tHR/FgeZERETVYSFFOidv5KFAWQpfdzla1PMVOx0iIiK7x0KKdPZfKBsf1TGyDmRSicjZEBER2T8WUqSz/9L9+aMac3wUERGRMVhIEQDgXokax6/kAgA68/l6RERERmEhRQCAI2k5KFFrUM/XDY0CPcVOh4iIyCGwkCIA/9zW6xQdCImE46OIiIiMwUKKAPD5ekREROZgIUW4U1iCMzfzAQCdOREnERGR0VhIEQ7+fRuCADQO9kKwj5vY6RARETkMFlJU7rYer0YRERGZgoUU4cAl7WNhWEgRERGZgoVULXcj9x4uZxdCJpWgQ2SA2OkQERE5FBZStZz2tl7rBr7wcZOLnA0REZFjYSFVy+nGR/HbekRERCZjIVWLCYKA/Rc5PoqIiMhcLKRqsb8y7yL7rhJucinahfuJnQ4REZHDYSFVi2lv6z0UEQCFi0zkbIiIiBwPC6la7MAlzh9FRERkCRZStVSpWoM//s4BAHRhIUVERGQWhymklixZgk6dOsHDwwN+fn4GYyQSSYWfzZs3V9lvTk4OnnrqKfj4+MDPzw8TJkzA3bt3bbAH9uXE9TzcVZbCz0OO5nV9xE6HiIjIITlMIVVSUoIRI0Zg8uTJVcatW7cO6enpup+hQ4dWGf/UU0/hzJkzSE5OxtatW7F3715MmjTJipnbJ+34qI6RdSCVSkTOhoiIyDG5iJ2AsRYuXAgAWL9+fZVxfn5+CA0NNarPc+fOYfv27Thy5Ajat28PAFixYgUGDBiAZcuWoV69egbbKZVKKJVK3ev8/HwAgEqlgkqlMmrbNUmbU/ncfr9wCwDwcCN/m+RsaJui9qlSQa77qwowsg9Tt2lMvKUxtji2YhFjX+zu3DSzvSltjI2tLs7S9Y6C56X57R3tM9Max1siCIJgcS81aP369Zg+fTpyc3MrrJNIJKhXrx6USiUiIyPx/PPPY/z48ZBIDF9xWbt2LWbNmoU7d+7olpWWlsLNzQ1fffUVHnvsMYPtkpKSdIVdeZs2bYKHh4d5O1aDlGpg3hEZ1IIEL8eWIthd7IxsT1ZcjEGjRgEAtm7eDLWbm8gZERGR2IqKijB69Gjk5eXBx8e8YS4Oc0XKGIsWLULPnj3h4eGBHTt24IUXXsDdu3fx4osvGozPyMhAcHCw3jIXFxcEBAQgIyOj0u3MmzcPM2fO1L3Oz89HWFgY+vTpY/YbYUsqlQrJycl45JFHIJfLse9CNtSHj6OerxvGDetaaaFpzW2K3mdhoe6vPXv2hLyScXaWbtOYeEtjbHFsxSLGvtjduWlme1PaGBtbXZyl6x0Fz0vz2zvaZ6b2jpIlRC2k5s6di6VLl1YZc+7cOcTExBjV36uvvqr7e9u2bVFYWIj//ve/lRZS5lIoFFAoFBWWy+Vyu/7w0OZ3KC0XQNm0B66urjWyTdH7LBdvTntT2xgTb2mMvZ9vphBjX+zm3LSwvSltjI2tLs7S9Y6C56X57R3lM9Max1rUQmrWrFlITEysMiYyMtLs/jt06IDFixdDqVQaLHxCQ0ORlZWlt6y0tBQ5OTlGj7NyRL/fH2jepTGnPSAiIrKEqIVUUFAQgoKCbNZ/SkoK/P39DRZRANCxY0fk5ubi2LFjiIuLAwDs3r0bGo0GHTp0sFleYsopLMHZ9LJLmR2j6oicDRERkWNzmDFSV69eRU5ODq5evQq1Wo2UlBQAQHR0NLy8vPDjjz8iMzMTDz/8MNzc3JCcnIz//Oc/eOmll3R9HD58GGPHjsWuXbtQv359NGvWDP369cPEiROxevVqqFQqTJ06FaNGjar0G3uO7uCl2xAEoEmIF4K9OeCaiIjIEg5TSM2fPx+ffPKJ7nXbtm0BAHv27EFCQgLkcjlWrlyJGTNmQBAEREdHY/ny5Zg4caKuTVFREVJTU/W+7rhx40ZMnToVvXr1glQqxfDhw/Huu+/W3I7VsP18LAwREZHVOEwhtX79+irnkOrXrx/69etXZR8JCQl4cLaHgIAAbNq0yRopOgTtRJydo1hIERERWcphZjYny93IvYcrt4sgk0rQITJA7HSIiIgcHgupWuTApbKHFLdp4AtvN8f/ajIREZHYWEjVIgcu3QYAdOH4KCIiIqtgIVVLCAJw8O+yK1KdWEgRERFZBQupWiK9CLhdWAI3uRRtG/qJnQ4REZFTYCFVS/yVX/Y8vfhGdaBwkYmcDRERkXNgIVVLpOaWFVKdOZs5ERGR1bCQqgVUag0u3b8ixYk4iYiIrIeFVC1w6kY+lBoJ/D3kaF7XR+x0iIiInAYLqVpg//1pDx5uFACpVCJyNkRERM6DhVQtoJ32oGMUZzMnIiKyJhZSTq6opBQp13IBAJ0iOdCciIjImlhIObnDl3OgUgsIUAhoGOAudjpEREROhYWUk9t/MRsA0NhHgETC8VFERETWxELKye2/WDbQvKmfIHImREREzoeFlBPLKSzB2fR8AGVXpIiIiMi6WEg5sQOXym7rNQ3xgo+ryMkQERE5IRZSTkx7W69jJKc9ICIisgUWUk5MO9C8I5+vR0REZBMspJzUtZwiXM0pgkwqQXyEv9jpEBEROSUWUk5KezUqNswPXgoXkbMhIiJyTiyknJT2+XqdowNFzoSIiMh5sZByQhqNgAP3r0h15vgoIiIim2Eh5YRSMwtwu7AE7nIZ2jbk+CgiIiJbYSHlhLTjo+IbBcDVhW8xERGRrfC3rBPSFlKdo3lbj4iIyJZYSDkZlVqDQ5dzAHCgORERka2xkHIyKddyUVSiRoCnK5qF+oidDhERkVNjIeVkys9mLpVKRM6GiIjIubGQcjIH7j9fr3MUb+sRERHZmsMUUkuWLEGnTp3g4eEBPz+/CuvXr18PiURi8CcrK6vSfiMiIirEv/HGGzbcE9spVJbi+NU7AIAuHB9FRERkcw7z7JCSkhKMGDECHTt2xMcff1xh/RNPPIF+/frpLUtMTERxcTGCg4Or7HvRokWYOHGi7rW3t7d1kq5hh9NyUKoR0MDfHQ3reIidDhERkdNzmEJq4cKFAMquPBni7u4Od3d33etbt25h9+7dBouuB3l7eyM0NNQqeYpp/wXtbOa8GkVERFQTHKaQMtWnn34KDw8PPP7449XGvvHGG1i8eDEaNmyI0aNHY8aMGXBxqfzQKJVKKJVK3ev8/HwAgEqlgkqlsjx5M/1+f6D5w4389PLQ/r0mc7PFNi3qU6WCvHw/RvZh6jaNibc0Roz301Z4bprf3pQ2xsZWF2fpekfB89L89o72mWmN4y0RBEGwuJcatH79ekyfPh25ublVxjVv3hwJCQl4//33q4xbvnw52rVrh4CAABw4cADz5s3D+PHjsXz58krbJCUl6a6Qlbdp0yZ4eIhzS61ABbxytKz4e619Kbzl1TSoZWTFxRg0ahQAYOvmzVC7uYmcERERia2oqAijR49GXl4efHzMmzJI1EJq7ty5WLp0aZUx586dQ0xMjO61MYXUwYMH0alTJxw9ehRxcXEm5bR27Vo899xzuHv3LhQKhcEYQ1ekwsLCkJ2dbfYbYamfTmVg+pcnERPihR+ndtJbp1KpkJycjEceeQRyec1UWLbYpkV9FhZC7l/23MGirCzIDXxhwRrbNCbe0hgx3k9b4blpfntT2hgbW12cpesdBc9L89s72mdmfn4+AgMDLSqkRL21N2vWLCQmJlYZExkZaXK/H330EWJjY00uogCgQ4cOKC0tRVpaGpo2bWowRqFQGCyy5HK5aB8eh9LKvq3XuXFQpTmIkZ8ttmlWn+XizWlvahtj4i2NEfN8s7ZafW5a2N6UNsbGVhdn6XpHwfPS/PaO8plpjWMtaiEVFBSEoKAgq/Z59+5dfPnll3j99dfNap+SkgKpVFrtN/3sjXZ8FKc9ICIiqjkOM9j86tWryMnJwdWrV6FWq5GSkgIAiI6OhpeXly7uiy++QGlpKZ5++ukKfRw+fBhjx47Frl27UL9+fRw8eBCHDh1Cjx494O3tjYMHD2LGjBl4+umn4X//NpAjuHq7CNdy7sFFKkF8owCx0yEiIqo1HKaQmj9/Pj755BPd67Zt2wIA9uzZg4SEBN3yjz/+GMOGDTM4aWdRURFSU1N1o/QVCgU2b96MpKQkKJVKNGrUCDNmzMDMmTNtui/Wtv9S2dWo2DA/eCoc5i0lIiJyeA7zW3f9+vWVziFV3oEDBypdl5CQgPJj69u1a4c//vjDGumJSvt8vc68rUdERFSjHOYRMWSYRiPgwKX7z9djIUVERFSjWEg5uPMZBcgpLIGHqwyxYX5ip0NERFSrsJBycAfuj4+KbxQAVxe+nURERDWJv3kdnHbaAz5fj4iIqOaxkHJgJaUaHL6cA4Djo4iIiMTAQsqBpVzLRVGJGgGerogJ9RY7HSIiolqHhZQD00570CmqDqRSicjZEBER1T4spBwY548iIiISFwspB1WoLEXKtVwAfL4eERGRWFhIOajDl3NQqhEQFuCOsAAPsdMhIiKqlVhIOShOe0BERCQ+FlIOiuOjiIiIxMdCygFl31XifEYBgLJv7BEREZE4WEg5IO1DipvV9UEdL4XI2RAREdVeLKQc0P4L2vFRvBpFREQkJhZSDmj//QcVd27M8VFERERiYiHlYK7eLsL1O/fgIpUgPiJA7HSIiIhqNRZSDkY77UHbhn7wVLiInA0REVHtxkLKwehu63HaAyIiItGxkHIgGo2AA5w/ioiIyG6wkHIg5zLycadIBU9XGWLD/MROh4iIqNZjIeVAtLOZxzcKgFzGt46IiEhs/G3sQPZfLJuIk7f1iIiI7AMLKQdRUqrB4cs5AFhIERER2QsWUg7iz6t3cE+lRh1PVzQN8RY7HSIiIgILKYex//7z9TpFB0IqlYicDREREQEspByGdqA5n69HRERkP1hIOYCCYhVSruUC4PgoIiIie8JCygEcvpwDtUZAwwAPhAV4iJ0OERER3cdCygFw2gMiIiL7xELKARzQPV+P46OIiIjsiUMUUmlpaZgwYQIaNWoEd3d3REVFYcGCBSgpKdGLO3nyJLp27Qo3NzeEhYXhzTffrLbvq1evYuDAgfDw8EBwcDBmz56N0tJSW+2KyW4VKHE+owAA0DGShRQREZE9cRE7AWOcP38eGo0GH3zwAaKjo3H69GlMnDgRhYWFWLZsGQAgPz8fffr0Qe/evbF69WqcOnUKzzzzDPz8/DBp0iSD/arVagwcOBChoaE4cOAA0tPTMXbsWMjlcvznP/+pyV2slPZqVPO6PqjjpRA5GyIiIirPIQqpfv36oV+/frrXkZGRSE1NxapVq3SF1MaNG1FSUoK1a9fC1dUVLVq0QEpKCpYvX15pIbVjxw6cPXsWO3fuREhICGJjY7F48WLMmTMHSUlJcHV1NdhOqVRCqVTqXufn5wMAVCoVVCqVtXYbALDvr1sAgI6R/mb3rW1n7dxqepsW9alSQV6+HyP7MHWbxsRbGiPG+2krPDfNb29KG2Njq4uzdL2j4HlpfntH+8y0xvGWCIIgWNyLCF555RVs374dR48eBQCMHTsW+fn5+P7773Uxe/bsQc+ePZGTkwN/f/8KfcyfPx9btmxBSkqKbtnly5cRGRmJ48ePo23btga3nZSUhIULF1ZYvmnTJnh4WO9bdYIALDwuw50SCZ6PUaOZv0O+VXZBVlyMQaNGAQC2bt4MtZubyBkREZHYioqKMHr0aOTl5cHHx8esPhziitSDLl68iBUrVuiuRgFARkYGGjVqpBcXEhKiW2eokMrIyNDFGGpTmXnz5mHmzJm61/n5+QgLC0OfPn3MfiMMuXK7CHf++B1ymQSTRzwCD1fz3i6VSoXk5GQ88sgjkMvl1TewAlts06I+Cwt1f+3Zsyfkfn422aYx8ZbGiPF+2grPTfPbm9LG2Njq4ixd7yh4Xprf3tE+M7V3lCwhaiE1d+5cLF26tMqYc+fOISYmRvf6xo0b6NevH0aMGIGJEyfaOkWDFAoFFIqK45XkcrlV/9EdupILAGjb0B++nu4W92ft/MTapll9los3p72pbYyJtzRGjPfTVmr1uWlhe1PaGBtbXZyl6x0Fz0vz2zvKZ6Y1jrWohdSsWbOQmJhYZUxkZKTu7zdv3kSPHj3QqVMnrFmzRi8uNDQUmZmZesu0r0NDQw32HRoaisOHD5vUpiYd0M4fFcX5o4iIiOyRqIVUUFAQgoKCjIq9ceMGevTogbi4OKxbtw5Sqf7MDR07dsTLL78MlUqlqzCTk5PRtGlTg7f1tG2WLFmCrKwsBAcH69r4+PigefPmFuyZ5TQagfNHERER2TmHmEfqxo0bSEhIQMOGDbFs2TLcunULGRkZeuOYRo8eDVdXV0yYMAFnzpzBF198gf/97396Y5m+++47vduEffr0QfPmzTFmzBicOHECv/zyC1555RVMmTLF4K27mrY28SHM7tsUbcL8xE6FiIiIDHCIwebJycm4ePEiLl68iAYNGuit037p0NfXFzt27MCUKVMQFxeHwMBAzJ8/X2/qg7y8PKSmpupey2QybN26FZMnT0bHjh3h6emJcePGYdGiRTWzY1WQSiVo29AfbRsavppGRERE4nOIQioxMbHasVQA0Lp1a+zbt8+kfsLDw7Ft2zYLMyQiIqLayCFu7RERERHZIxZSRERERGZiIUVERERkJhZSRERERGZiIUVERERkJhZSRERERGZiIUVERERkJhZSRERERGZiIUVERERkJhZSRERERGZiIUVERERkJhZSRERERGZyiIcW2ztBEAAA+fn5ImdimEqlQlFREfLz8yGXyx12mxb1WVj4Tz/5+ZBLjfs/hKnbNCbe0hgx3k9b4blpfntT2hgbW12cpesdBc9L89s72mem9ve29ve4OVhIWUFBQQEAICwsTORMyCjh4WJnQEREdqSgoAC+vr5mtZUIlpRhBADQaDS4efMmvL29IZFIxE7HoIceeghHjhxx+G1a2qc57U1tY0y8JTH5+fkICwvDtWvX4OPjY3Re9ornpvntTWljbGx1cVWtd6Zzk+el+e0d6TNTEAQUFBSgXr16kBp5p+JBvCJlBVKpFA0aNBA7jSrJZLIa/2CzxTYt7dOc9qa2MSbeGjE+Pj4O/8sK4LlpSXtT2hgbW12cMf04w7nJ89L89o72mWnulSgtDjavJaZMmeIU27S0T3Pam9rGmHhrxTgDnpvmtzeljbGx1cXxvHSsbdr7eWlsvD1/ZvLWHpGDyc/Ph6+vL/Ly8hz+f/3kXHhukj2y9XnJK1JEDkahUGDBggVQKBRip0Kkh+cm2SNbn5e8IkVERERkJl6RIiIiIjITCykiIiIiM7GQIiIiIjITCykiIiIiM7GQIiIiIjITCykiJ3Lt2jUkJCSgefPmaN26Nb766iuxUyJCbm4u2rdvj9jYWLRs2RIffvih2CkR6SkqKkJ4eDheeuklk9ty+gMiJ5Keno7MzEzExsYiIyMDcXFx+Ouvv+Dp6Sl2alSLqdVqKJVKeHh4oLCwEC1btsTRo0dRp04dsVMjAgC8/PLLuHjxIsLCwrBs2TKT2vKKFJETqVu3LmJjYwEAoaGhCAwMRE5OjrhJUa0nk8ng4eEBAFAqlRAEAfw/PNmLCxcu4Pz58+jfv79Z7VlIEdmRvXv3YvDgwahXrx4kEgm+//77CjErV65EREQE3Nzc0KFDBxw+fNhgX8eOHYNarUZYWJiNsyZnZ43zMjc3F23atEGDBg0we/ZsBAYG1lD25MyscW6+9NJLeP31183OgYUUkR0pLCxEmzZtsHLlSoPrv/jiC8ycORMLFizA8ePH0aZNG/Tt2xdZWVl6cTk5ORg7dizWrFlTE2mTk7PGeenn54cTJ07g8uXL2LRpEzIzM2sqfXJilp6bP/zwA5o0aYImTZqYn4RARHYJgPDdd9/pLYuPjxemTJmie61Wq4V69eoJr7/+um5ZcXGx0LVrV+HTTz+tqVSpFjH3vCxv8uTJwldffWXLNKkWMufcnDt3rtCgQQMhPDxcqFOnjuDj4yMsXLjQpO3yihSRgygpKcGxY8fQu3dv3TKpVIrevXvj4MGDAABBEJCYmIiePXtizJgxYqVKtYgx52VmZiYKCgoAAHl5edi7dy+aNm0qSr5Uexhzbr7++uu4du0a0tLSsGzZMkycOBHz5883aTsspIgcRHZ2NtRqNUJCQvSWh4SEICMjAwCwf/9+fPHFF/j+++8RGxuL2NhYnDp1Sox0qZYw5ry8cuUKunbtijZt2qBr166YNm0aWrVqJUa6VIsYc25ag4vVeiIi0XXp0gUajUbsNIj0xMfHIyUlRew0iKqUmJhoVjtekSJyEIGBgZDJZBUG6WZmZiI0NFSkrKi243lJ9qqmzk0WUkQOwtXVFXFxcdi1a5dumUajwa5du9CxY0cRM6PajOcl2auaOjd5a4/Ijty9excXL17Uvb58+TJSUlIQEBCAhg0bYubMmRg3bhzat2+P+Ph4vPPOOygsLMT48eNFzJqcHc9Lsld2cW5a+nVDIrKePXv2CAAq/IwbN04Xs2LFCqFhw4aCq6urEB8fL/zxxx/iJUy1As9Lslf2cG7yWXtEREREZuIYKSIiIiIzsZAiIiIiMhMLKSIiIiIzsZAiIiIiMhMLKSIiIiIzsZAiIiIiMhMLKSIiIiIzsZAiIiIiMhMLKSIiIiIzsZAiIhJZYmIiJBIJJBIJvv/+e6v2/euvv+r6Hjp0qFX7JiIWUkRkA+ULg/I/5R8uSvr69euH9PR09O/fX7esssIqMTHR6KKoU6dOSE9Px8iRI62UKRGV5yJ2AkTknPr164d169bpLQsKCqoQV1JSAldX15pKy24pFAqEhoZavV9XV1eEhobC3d0dSqXS6v0T1Xa8IkVENqEtDMr/yGQyJCQkYOrUqZg+fToCAwPRt29fAMDp06fRv39/eHl5ISQkBGPGjEF2drauv8LCQowdOxZeXl6oW7cu3nrrLSQkJGD69Om6GENXcPz8/LB+/Xrd62vXrmHkyJHw8/NDQEAAHn30UaSlpenWa6/2LFu2DHXr1kWdOnUwZcoUqFQqXYxSqcScOXMQFhYGhUKB6OhofPzxxxAEAdHR0Vi2bJleDikpKTa7IpeWlmbw6l9CQoLVt0VEFbGQIqIa98knn8DV1RX79+/H6tWrkZubi549e6Jt27Y4evQotm/fjszMTL3bUbNnz8Zvv/2GH374ATt27MCvv/6K48ePm7RdlUqFvn37wtvbG/v27cP+/fvh5eWFfv36oaSkRBe3Z88eXLp0CXv27MEnn3yC9evX6xVjY8eOxeeff453330X586dwwcffAAvLy9IJBI888wzFa7ErVu3Dt26dUN0dLR5B6wKYWFhSE9P1/38+eefqFOnDrp162b1bRGRAQIRkZWNGzdOkMlkgqenp+7n8ccfFwRBELp37y60bdtWL37x4sVCnz599JZdu3ZNACCkpqYKBQUFgqurq/Dll1/q1t++fVtwd3cX/vWvf+mWARC+++47vX58fX2FdevWCYIgCJ999pnQtGlTQaPR6NYrlUrB3d1d+OWXX3S5h4eHC6WlpbqYESNGCE888YQgCIKQmpoqABCSk5MN7vuNGzcEmUwmHDp0SBAEQSgpKRECAwOF9evXV3m8Hn300QrLAQhubm56x9HT01NwcXExGH/v3j2hQ4cOwqBBgwS1Wm3UNojIMhwjRUQ20aNHD6xatUr32tPTU/f3uLg4vdgTJ05gz5498PLyqtDPpUuXcO/ePZSUlKBDhw665QEBAWjatKlJOZ04cQIXL16Et7e33vLi4mJcunRJ97pFixaQyWS613Xr1sWpU6cAlN2mk8lk6N69u8Ft1KtXDwMHDsTatWsRHx+PH3/8EUqlEiNGjDApV623334bvXv31ls2Z84cqNXqCrHPPPMMCgoKkJycDKmUNxyIagILKSKyCU9Pz0pvZZUvqgDg7t27GDx4MJYuXVohtm7dukaPLZJIJBAEQW9Z+bFNd+/eRVxcHDZu3FihbfmB8HK5vEK/Go0GAODu7l5tHs8++yzGjBmDt99+G+vWrcMTTzwBDw8Po/bhQaGhoRWOo7e3N3Jzc/WWvfbaa/jll19w+PDhCoUiEdkOCykiEl27du3wzTffICIiAi4uFT+WoqKiIJfLcejQITRs2BAAcOfOHfz11196V4aCgoKQnp6ue33hwgUUFRXpbeeLL75AcHAwfHx8zMq1VatW0Gg0+O233ypcKdIaMGAAPD09sWrVKmzfvh179+41a1vG+uabb7Bo0SL8/PPPiIqKsum2iEgfr/0SkeimTJmCnJwcPPnkkzhy5AguXbqEX375BePHj4darYaXlxcmTJiA2bNnY/fu3Th9+jQSExMr3L7q2bMn3nvvPfz55584evQonn/+eb2rS0899RQCAwPx6KOPYt++fbh8+TJ+/fVXvPjii7h+/bpRuUZERGDcuHF45pln8P333+v6+PLLL3UxMpkMiYmJmDdvHho3boyOHTta50AZcPr0aYwdOxZz5sxBixYtkJGRgYyMDOTk5Nhsm0T0DxZSRCS6evXqYf/+/VCr1ejTpw9atWqF6dOnw8/PT1cs/fe//0XXrl0xePBg9O7dG126dKkw1uqtt95CWFgYunbtitGjR+Oll17Su6Xm4eGBvXv3omHDhhg2bBiaNWuGCRMmoLi42KQrVKtWrcLjjz+OF154ATExMZg4cSIKCwv1YiZMmICSkhKMHz/egiNTvaNHj6KoqAivvfYa6tatq/sZNmyYTbdLRGUkwoMDCoiIHERCQgJiY2PxzjvviJ1KBfv27UOvXr1w7do1hISEVBmbmJiI3Nxcqz8epqa3QVQb8YoUEZEVKZVKXL9+HUlJSRgxYkS1RZTW1q1b4eXlha1bt1o1n3379sHLy8vgAHsishwHmxMRWdHnn3+OCRMmIDY2Fp9++qlRbd5880288sorAMq+pWhN7du3R0pKCgAYnF6CiCzDW3tEREREZuKtPSIiIiIzsZAiIiIiMhMLKSIiIiIzsZAiIiIiMhMLKSIiIiIzsZAiIiIiMhMLKSIiIiIzsZAiIiIiMtP/A25nwKcj5270AAAAAElFTkSuQmCC"
59
+ },
60
+ "metadata": {},
61
+ "output_type": "display_data"
62
+ }
63
+ ],
64
+ "source": [
65
+ "fs = 16000\n",
66
+ "fc = 50 # 截止频率\n",
67
+ "\n",
68
+ "# butter\n",
69
+ "b, a = signal.butter(2, fc, btype='highpass', analog=False, output='ba', fs=fs)\n",
70
+ "print(\"b\", b)\n",
71
+ "print(\"a\", a)\n",
72
+ "# b [ 0.98075006 -1.96150012 0.98075006]\n",
73
+ "# a [ 1. -1.96112953 0.96187072]\n",
74
+ "# ba to sos\n",
75
+ "sos = signal.butter(2, fc, btype='highpass', analog=False, output='sos', fs=fs)\n",
76
+ "print(\"sos\", sos)\n",
77
+ "# cheby1\n",
78
+ "# b,a = signal.cheby1(N=6, rp=30, Wn=fc/fs, btype='highpass', analog=False, output='ba')\n",
79
+ "# cheby2\n",
80
+ "# b,a = signal.cheby2(N=6, rs=70, Wn=fc/fs, btype='highpass', analog=False, output='ba')\n",
81
+ "\n",
82
+ "# 滤波\n",
83
+ "# y = signal.filtfilt(b, a, x, axis=-1, padtype='odd', padlen=None, method='pad', irlen=None)\n",
84
+ "\n",
85
+ "w, h = signal.freqz(b, a) # 根据系数计算滤波器的频率响应, w是角频率, h是频率响应\n",
86
+ "plt.plot(0.5 * fs * w / np.pi, 20*np.log10(h)) # 0.5*fs*w/np.pi 为频率\n",
87
+ "plt.title('Butterworth filter frequency response')\n",
88
+ "plt.xlabel('Frequency [Hz]')\n",
89
+ "plt.ylabel('Amplitude [dB]')\n",
90
+ "plt.grid(which='both', axis='both') # 显示网格\n",
91
+ "# 画红色的垂直线, 标记截止频率\n",
92
+ "plt.axvline(fc, color='red')\n",
93
+ "plt.xscale('log') # x轴对数化\n",
94
+ "plt.show()"
95
+ ],
96
+ "metadata": {
97
+ "collapsed": false,
98
+ "ExecuteTime": {
99
+ "end_time": "2023-10-05T09:17:50.265293300Z",
100
+ "start_time": "2023-10-05T09:17:49.965615200Z"
101
+ }
102
+ }
103
+ },
104
+ {
105
+ "cell_type": "code",
106
+ "execution_count": 2,
107
+ "outputs": [],
108
+ "source": [],
109
+ "metadata": {
110
+ "collapsed": false,
111
+ "ExecuteTime": {
112
+ "end_time": "2023-10-05T09:16:40.164640900Z",
113
+ "start_time": "2023-10-05T09:16:40.142994300Z"
114
+ }
115
+ }
116
+ }
117
+ ],
118
+ "metadata": {
119
+ "kernelspec": {
120
+ "display_name": "Python 3",
121
+ "language": "python",
122
+ "name": "python3"
123
+ },
124
+ "language_info": {
125
+ "codemirror_mode": {
126
+ "name": "ipython",
127
+ "version": 2
128
+ },
129
+ "file_extension": ".py",
130
+ "mimetype": "text/x-python",
131
+ "name": "python",
132
+ "nbconvert_exporter": "python",
133
+ "pygments_lexer": "ipython2",
134
+ "version": "2.7.6"
135
+ }
136
+ },
137
+ "nbformat": 4,
138
+ "nbformat_minor": 0
139
+ }
@@ -0,0 +1,110 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "metadata": {
7
+ "collapsed": true,
8
+ "ExecuteTime": {
9
+ "end_time": "2023-09-14T09:30:40.782091400Z",
10
+ "start_time": "2023-09-14T09:30:39.307390700Z"
11
+ }
12
+ },
13
+ "outputs": [],
14
+ "source": [
15
+ "# -*- coding:utf-8 -*-\n",
16
+ "# Author:凌逆战 | Never\n",
17
+ "# Date: 2023/8/12\n",
18
+ "\"\"\"\n",
19
+ "画出scipy.signal.butter函数的滤波器响应曲线\n",
20
+ "\"\"\"\n",
21
+ "import numpy as np\n",
22
+ "from scipy.signal import butter, freqz\n",
23
+ "import matplotlib.pyplot as plt"
24
+ ]
25
+ },
26
+ {
27
+ "cell_type": "code",
28
+ "execution_count": 2,
29
+ "outputs": [
30
+ {
31
+ "data": {
32
+ "text/plain": "<Figure size 2000x500 with 4 Axes>",
33
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAB8MAAAHqCAYAAACQkO9jAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADdmElEQVR4nOzdd5xU1d3H8e9s7yxtl957NyiKCiIKKKgxmhhLFEksUbHho48kEcT6GGOLUbFi1JhYo4liQUWxYEFBkQ7Se1/Yvjv3+eNwZ3fZNrs7M3fu3M/79drXuTs7M/vbw+X+7tzfPef4LMuyBAAAAAAAAAAAAABADIlzOgAAAAAAAAAAAAAAAEKNYjgAAAAAAAAAAAAAIOZQDAcAAAAAAAAAAAAAxByK4QAAAAAAAAAAAACAmEMxHAAAAAAAAAAAAAAQcyiGAwAAAAAAAAAAAABiDsVwAAAAAAAAAAAAAEDMoRgOAAAAAAAAAAAAAIg5FMMBAAAAAAAAAAAAADGHYjiAqLVq1SqNHTtWzZo1k8/n0xtvvKFnn31WPp9P69atCzxv1KhRGjVqlGNxAgDQpUsXXXzxxY1+7WmnnRbagKJAWVmZbrrpJnXs2FFxcXE688wzJUk+n0+33npr4Hk15XYAANzu1ltvlc/nczqMJnn33Xc1ZMgQpaSkyOfzad++fbr44ovVpUuXKs87PLcDAOB2bs7j9957r7p166b4+HgNGTJEUvVrFh9//LF8Pp8+/vhjR2IEIo1iOBAh9oXeBQsWOB2Ka0ycOFGLFy/WnXfeqeeff15HHnlkUK/bsmWLbr31Vi1atCi8AQIAYlJ9OXvUqFEaMGBAhKNyn2eeeUb33nuvfvnLX+rvf/+7rr/++qBf++ijj+rZZ58NX3AAgJhh5+3KXzk5OTrxxBP1zjvvOB2ea+3evVvnnHOOUlNT9cgjj+j5559Xenp6UK/94osvdOutt2rfvn3hDRIA4HqxlMej4Zr0+++/r5tuuknHHXecZs2apbvuuivo17744ot68MEHwxcc4KAEpwMAgJoUFhZq/vz5+uMf/6jJkycHHr/wwgt17rnnKjk5udbXbtmyRTNmzFCXLl0Cd78BABBOK1asUFwc95lW9tFHH6l9+/Z64IEHqjxeWFiohIS6P4Y8+uijatWqVaNH2wMAvOe2225T165dZVmWtm/frmeffVbjx4/Xf//735icgSXcvvnmGx04cEC33367Tj755MDjTz75pPx+f52v/eKLLzRjxgxdfPHFys7ODnOkAIBYEAt5PBquSX/00UeKi4vT008/raSkpMDjwVyzePHFF/Xjjz/quuuuC3OUQORRDAcQlXbu3ClJ1T44x8fHKz4+3oGIpPz8/KDvhAcAeEtdN2l51Y4dO2q8AJ6SkhL5YGSmbff7/VUuCAAAYsepp55aZTax3/3ud8rNzdU///lP11xEjyY7duyQVP0zeWJiogPRGAUFBUpLS3Ps9wMAwoc8Hho7duxQampqtc+9Tl2z8Pv9Kikpcew6AGBj+AoQZRYuXKhTTz1VWVlZysjI0EknnaQvv/wy8PN9+/YpPj5ef/3rXwOP7dq1S3FxcWrZsqUsywo8fsUVV6hNmzaB7+1pXb/99lsde+yxSk1NVdeuXTVz5swqMZSUlGjatGkaOnSomjVrpvT0dI0YMUJz586tFu+//vUvDR06VJmZmcrKytLAgQP10EMPBX5eWlqqGTNmqGfPnkpJSVHLli11/PHHa86cObX2wa233qrOnTtLkm688Ub5fL7AmmT1rSv68ccf66ijjpIkTZo0KTC9TuWpVr/66iudcsopatasmdLS0nTCCSfo888/rxaDz+fT0qVLdf7556t58+Y6/vjja40ZAOBtNa0Z/sMPP+iEE05QamqqOnTooDvuuEOzZs2qNY999tlnGjZsmFJSUtStWzc999xzVX5u58B58+bp8ssvV8uWLZWVlaWLLrpIe/furfLcN998UxMmTFC7du2UnJys7t276/bbb1d5eXmV561atUpnn3222rRpo5SUFHXo0EHnnnuu9u/fH3jOnDlzdPzxxys7O1sZGRnq3bu3/vCHP9TaF+vWrZPP59PcuXO1ZMmSQC621yKrb13RLl26aMmSJfrkk08Crx01alTg5/v27dN1112njh07Kjk5WT169NA999xTZZSaHcNf/vIXPfjgg+revbuSk5O1dOnSWn8vACC2ZGdnKzU1tdpsJH/5y1907LHHqmXLlkpNTdXQoUP16quvVnu9z+fT5MmT9cYbb2jAgAFKTk5W//799e6771Z77meffaajjjpKKSkp6t69ux5//PEaY7Lf8x//+Id69+6tlJQUDR06VPPmzavyvPXr1+vKK69U7969lZqaqpYtW+pXv/pVtfOHYD5vb9u2TZMmTVKHDh2UnJystm3b6uc//3mtn6klc+1g4sSJkqSjjjpKPp8vcJ5T05rhld1666268cYbJUldu3YN5PLKv++FF17Q0KFDlZqaqhYtWujcc8/Vxo0bq8VgX78YOXKk0tLS6jz/AADElmjM43V9Ng7mmvQrr7wSyH+tWrXSb37zG23evLnK77j44ouVkZGhn376SePGjVN6erratWun2267rcp1/5r4fD7NmjVL+fn51X5/TdcsKhs1apTefvttrV+/PvDayvm+uLhY06dPV48ePZScnKyOHTvqpptuUnFxcbUY7HOd/v37Kzk5ucY+ByKNkeFAFFmyZIlGjBihrKws3XTTTUpMTNTjjz+uUaNG6ZNPPtHRRx+t7OxsDRgwQPPmzdM111wjySRsn8+nPXv2aOnSperfv78k6dNPP9WIESOq/I69e/dq/PjxOuecc3Teeefp5Zdf1hVXXKGkpCT99re/lSTl5eXpqaee0nnnnadLL71UBw4c0NNPP61x48bp66+/DkzzMmfOHJ133nk66aSTdM8990iSli1bps8//1zXXnutJPNB+O6779Yll1yiYcOGKS8vTwsWLNB3332nMWPG1NgPZ511lrKzs3X99dfrvPPO0/jx45WRkRFUH/bt21e33Xabpk2bpssuuyzw9x977LGSzFQxp556qoYOHarp06crLi5Os2bN0ujRo/Xpp59q2LBhVd7vV7/6lXr27Km77rqr3hMOAEBs2b9/v3bt2lXt8dLS0npfu3nzZp144ony+XyaOnWq0tPT9dRTT9V6N/bq1av1y1/+Ur/73e80ceJEPfPMM7r44os1dOjQQF63TZ48WdnZ2br11lu1YsUKPfbYY1q/fr0+/vhj+Xw+SaZwnpGRoSlTpigjI0MfffSRpk2bpry8PN17772SzM1v48aNU3Fxsa6++mq1adNGmzdv1ltvvaV9+/apWbNmWrJkiU477TQNGjRIt912m5KTk7V69epqN5FV1rp1az3//PO68847dfDgQd19992STI4OxoMPPqirr75aGRkZ+uMf/yhJys3NlWRGhJ1wwgnavHmzLr/8cnXq1ElffPGFpk6dqq1bt1Zb32zWrFkqKirSZZddpuTkZLVo0SKoGAAA7mPnbcuytGPHDj388MM6ePCgfvOb31R53kMPPaQzzjhDF1xwgUpKSvSvf/1Lv/rVr/TWW29pwoQJVZ772Wef6fXXX9eVV16pzMxM/fWvf9XZZ5+tDRs2qGXLlpKkxYsXa+zYsWrdurVuvfVWlZWVafr06YHcdbhPPvlEL730kq655holJyfr0Ucf1SmnnKKvv/5aAwYMkGSmKP/iiy907rnnqkOHDlq3bp0ee+wxjRo1SkuXLg2Mjg7m8/bZZ5+tJUuW6Oqrr1aXLl20Y8cOzZkzRxs2bKi1qP3HP/5RvXv31hNPPBGYtrZ79+5B/TucddZZWrlypf75z3/qgQceUKtWrSSZ8wNJuvPOO3XLLbfonHPO0SWXXKKdO3fq4Ycf1siRI7Vw4cIqI9F3796tU089Veeee65+85vf1NqnAAD3i/Y8Xt9n4/quST/77LOaNGmSjjrqKN19993avn27HnroIX3++efV8l95eblOOeUUHXPMMfrzn/+sd999V9OnT1dZWZluu+22Wvvw+eef1xNPPKGvv/5aTz31VJXfX58//vGP2r9/vzZt2hRY6sy+Hu/3+3XGGWfos88+02WXXaa+fftq8eLFeuCBB7Ry5Uq98cYbVd7ro48+0ssvv6zJkyerVatWdd5EB0SMBSAiZs2aZUmyvvnmm1qfc+aZZ1pJSUnWmjVrAo9t2bLFyszMtEaOHBl47KqrrrJyc3MD30+ZMsUaOXKklZOTYz322GOWZVnW7t27LZ/PZz300EOB551wwgmWJOu+++4LPFZcXGwNGTLEysnJsUpKSizLsqyysjKruLi4Smx79+61cnNzrd/+9reBx6699lorKyvLKisrq/VvGjx4sDVhwoRaf16btWvXWpKse++9t8rjdj+uXbu2yt91wgknBL7/5ptvLEnWrFmzqrzW7/dbPXv2tMaNG2f5/f7A4wUFBVbXrl2tMWPGBB6bPn26Jck677zzGhw7AMDd7FxT11f//v2rvKZz587WxIkTA99fffXVls/nsxYuXBh4bPfu3VaLFi2q5bHOnTtbkqx58+YFHtuxY4eVnJxs3XDDDdXiGjp0aCBnW5Zl/fnPf7YkWW+++WbgsYKCgmp/1+WXX26lpaVZRUVFlmVZ1sKFCy1J1iuvvFJrXzzwwAOWJGvnzp21d1gtTjjhhGr9ZFmWJcmaPn16tb+rcp/079+/Sm633X777VZ6erq1cuXKKo/ffPPNVnx8vLVhwwbLsirOI7KysqwdO3Y0OHYAgHvUlreTk5OtZ599ttrzD8+RJSUl1oABA6zRo0dXeVySlZSUZK1evTrw2Pfff29Jsh5++OHAY2eeeaaVkpJirV+/PvDY0qVLrfj4eOvwy252bAsWLAg8tn79eislJcX6xS9+UWuMlmVZ8+fPtyRZzz33XOCx+j5v7927t8bP1cGo7RrGxIkTrc6dO1d57PDcfu+991bL7ZZlWevWrbPi4+OtO++8s8rjixcvthISEqo8bl+/mDlzZoNjBwC4h1vyeDCfjWu7Jl1SUmLl5ORYAwYMsAoLCwOPv/XWW5Yka9q0aYHHJk6caEmyrr766sBjfr/fmjBhgpWUlFTvZ/OJEyda6enp1R4//JrF3LlzLUnW3LlzA49NmDChWo63LMt6/vnnrbi4OOvTTz+t8vjMmTMtSdbnn38eeEySFRcXZy1ZsqTOOIFIY5p0IEqUl5fr/fff15lnnqlu3boFHm/btq3OP/98ffbZZ8rLy5MkjRgxQtu3b9eKFSskmRHgI0eO1IgRI/Tpp59KMne+WZZVbWR4QkKCLr/88sD3SUlJuvzyy7Vjxw59++23ksy63Pa6In6/X3v27FFZWZmOPPJIfffdd4HXZmdnKz8/v84pz7Ozs7VkyRKtWrWqKd0TEosWLdKqVat0/vnna/fu3dq1a5d27dql/Px8nXTSSZo3b16VKVYl6fe//71D0QIAnPbII49ozpw51b4GDRpU72vfffddDR8+PDCbiiS1aNFCF1xwQY3P79evX5Wc3bp1a/Xu3Vs//fRTtededtllVdbrvOKKK5SQkKDZs2cHHktNTQ1sHzhwQLt27dKIESNUUFCg5cuXS5KaNWsmSXrvvfdUUFBQY1z23elvvvlmtRzphFdeeUUjRoxQ8+bNA3l8165dOvnkk1VeXl5tmtmzzz47MBINABDbKuftF154QSeeeKIuueQSvf7661WeVzlH7t27V/v379eIESOqfNa1nXzyyVVGRA8aNEhZWVmB/FxeXq733ntPZ555pjp16hR4Xt++fTVu3Lga4xw+fLiGDh0a+L5Tp076+c9/rvfeey+wnEnlGEtLS7V792716NFD2dnZ1T6T1/V5214z9OOPP662pIoTXn/9dfn9fp1zzjlV8nibNm3Us2fPakuzJScna9KkSQ5FCwCIpGjP4035bLxgwQLt2LFDV155ZZW1sydMmKA+ffro7bffrvaayZMnB7btqcdLSkr0wQcfNOh3h8Irr7yivn37qk+fPlXy9+jRoyWpWv4+4YQT1K9fv4jHCdSFYjgQJXbu3KmCggL17t272s/69u0rv98fWEPLvlj+6aefKj8/XwsXLtSIESM0cuTIQDH8008/VVZWlgYPHlzlvdq1a6f09PQqj/Xq1UuSqqzh9fe//12DBg0KrDvWunVrvf3221XWEL3yyivVq1cvnXrqqerQoYN++9vfVlsD5LbbbtO+ffvUq1cvDRw4UDfeeKN++OGHRvZS09gXCCZOnKjWrVtX+XrqqadUXFxc5e+TzBpnAABvGjZsmE4++eRqX82bN6/3tevXr1ePHj2qPV7TY5KqfPC2NW/evMYL1z179qzyfUZGhtq2bVsljy9ZskS/+MUv1KxZM2VlZal169aB6eXsXNe1a1dNmTJFTz31lFq1aqVx48bpkUceqZILf/3rX+u4447TJZdcotzcXJ177rl6+eWXHSuMr1q1Su+++261PH7yySdLknbs2FHl+eRxAPCOynn7ggsu0Ntvv61+/foFLh7b3nrrLR1zzDFKSUlRixYt1Lp1az322GPVPgtK9efnnTt3qrCwsFpullTjZ3upeh6XzGfygoIC7dy5U5JUWFioadOmqWPHjkpOTlarVq3UunVr7du3r0qc9X3eTk5O1j333KN33nlHubm5GjlypP785z9r27ZttXVjWK1atUqWZalnz57VcvmyZcuq5fH27dsHbtQHAMS2aM/jTflsvH79+hrfU5L69OkT+LktLi6uymA5qebr95GyatUqLVmypFrutmPiczjcgDXDARdq166dunbtqnnz5qlLly6yLEvDhw9X69atde2112r9+vX69NNPdeyxxyouruH3vLzwwgu6+OKLdeaZZ+rGG29UTk6O4uPjdffdd2vNmjWB5+Xk5GjRokV677339M477+idd97RrFmzdNFFF+nvf/+7JGnkyJFas2aN3nzzTb3//vt66qmn9MADD2jmzJm65JJLQtYnwbBPTu69994qI/UqO3xt8sp3GwIAEC7x8fE1Pm5ZVoPfa9++fTrhhBOUlZWl2267Td27d1dKSoq+++47/e///m+VD+v33XefLr744kCevuaaa3T33Xfryy+/VIcOHZSamqp58+Zp7ty5evvtt/Xuu+/qpZde0ujRo/X+++/XGne4+P1+jRkzRjfddFONP7c/jNvI4wDgXXFxcTrxxBP10EMPadWqVerfv78+/fRTnXHGGRo5cqQeffRRtW3bVomJiZo1a5ZefPHFau8RyvzcEFdffbVmzZql6667TsOHD1ezZs3k8/l07rnnVsnjwXzevu6663T66afrjTfe0HvvvadbbrlFd999tz766CMdccQRYf07Duf3++Xz+fTOO+/U2Ld8HgcA2KItj0fbZ+NI8vv9GjhwoO6///4af96xY8cq35O/EY0ohgNRonXr1kpLSwtMfV7Z8uXLFRcXVyWxjBgxQvPmzVPXrl01ZMgQZWZmavDgwWrWrJneffddfffdd5oxY0a199qyZYvy8/OrjA5fuXKlJKlLly6SpFdffVXdunXT66+/Lp/PF3je9OnTq71fUlKSTj/9dJ1++uny+/268sor9fjjj+uWW24JjH5r0aKFJk2apEmTJungwYMaOXKkbr311rAVwyvHXJk9LU5WVlZgBBkAAOHQuXNnrV69utrjNT3WUKtWrdKJJ54Y+P7gwYPaunWrxo8fL0n6+OOPtXv3br3++usaOXJk4Hlr166t8f0GDhyogQMH6k9/+pO++OILHXfccZo5c6buuOMOSeYixEknnaSTTjpJ999/v+666y798Y9/1Ny5c8OWT+vK5QcPHiSPAwCCUlZWJsnkSkl67bXXlJKSovfee0/JycmB582aNatR79+6dWulpqbWOE15TZ/tJdX43JUrVyotLS2wtMerr76qiRMn6r777gs8p6ioSPv27av22mA+b3fv3l033HCDbrjhBq1atUpDhgzRfffdpxdeeKGhf3JQ6srjlmWpa9eu1W5gAwDgcNGWx+v7bFxb/uvcuXPgPe2pxSv/HvvnNr/fr59++qlKrjz8+n041JW/v//+e5100km1PgeIdkyTDkSJ+Ph4jR07Vm+++WaV6U62b9+uF198Uccff7yysrICj48YMULr1q3TSy+9FJg2PS4uTscee6zuv/9+lZaWVlsvXDInEY8//njg+5KSEj3++ONq3bp1YN0y+062ynfJffXVV5o/f36V99q9e3eV7+Pi4gLrqBYXF9f4nIyMDPXo0SPw83CwC/2HXygYOnSounfvrr/85S+Bk6jK7CnpAABoqnHjxmn+/PlatGhR4LE9e/boH//4R5Pf+4knnlBpaWng+8cee0xlZWU69dRTJdWcx0tKSvToo49WeZ+8vLzAxQXbwIEDFRcXF8jTe/bsqfb77dlVwp3La7rgf84552j+/Pl67733qv1s37591f4eAIB3lZaW6v3331dSUpL69u0ryeRIn88XWJtbMtONvvHGG436HfHx8Ro3bpzeeOMNbdiwIfD4smXLasxVkjR//vwq65pu3LhRb775psaOHRvI4fHx8dVGrT388MNV4pbq/7xdUFCgoqKiKs/p3r27MjMzHflMftZZZyk+Pl4zZsyo9vdZllXt7wEAeFe05fFgPhvXlv+OPPJI5eTkaObMmVXy7zvvvKNly5ZpwoQJ1d77b3/7W2Dbsiz97W9/U2Jiok466aSG/ZENkJ6eXuN08+ecc442b96sJ598strPCgsLlZ+fH7aYgFBhZDgQYc8880y1dbUl6dprr9Udd9yhOXPm6Pjjj9eVV16phIQEPf744youLtaf//znKs+3C90rVqzQXXfdFXh85MiReuedd5ScnKyjjjqq2u9p166d7rnnHq1bt069evXSSy+9pEWLFumJJ55QYmKiJOm0007T66+/rl/84heaMGGC1q5dq5kzZ6pfv35VisiXXHKJ9uzZo9GjR6tDhw5av369Hn74YQ0ZMiRwktKvXz+NGjVKQ4cOVYsWLbRgwQK9+uqrmjx5ctM7sxbdu3dXdna2Zs6cqczMTKWnp+voo49W165d9dRTT+nUU09V//79NWnSJLVv316bN2/W3LlzlZWVpf/+979hiwsA4B033XSTXnjhBY0ZM0ZXX3210tPT9dRTT6lTp07as2dPk+6mLikp0UknnaRzzjlHK1as0KOPPqrjjz9eZ5xxhiTp2GOPVfPmzTVx4kRdc8018vl8ev7556tddP7oo480efJk/epXv1KvXr1UVlam559/XvHx8Tr77LMlmbVI582bpwkTJqhz587asWOHHn30UXXo0EHHH3984zuoHkOHDtVjjz2mO+64Qz169FBOTo5Gjx6tG2+8Uf/5z3902mmn6eKLL9bQoUOVn5+vxYsX69VXX9W6devUqlWrsMUFAIhe77zzjpYvXy7JrF354osvatWqVbr55psDN5ZPmDBB999/v0455RSdf/752rFjhx555BH16NGjylrbDTFjxgy9++67GjFihK688kqVlZXp4YcfVv/+/Wt8zwEDBmjcuHG65pprlJycHLhZrfLMbqeddpqef/55NWvWTP369dP8+fP1wQcfqGXLllXeq77P2ytXrgycM/Tr108JCQn697//re3bt+vcc89t1N8bDPtG+z/+8Y8699xzlZiYqNNPP13du3fXHXfcoalTp2rdunU688wzlZmZqbVr1+rf//63LrvsMv3P//xP2OICAESvaM/jwXw2ruua9D333KNJkybphBNO0Hnnnaft27froYceUpcuXXT99ddXiSklJUXvvvuuJk6cqKOPPlrvvPOO3n77bf3hD38IzCITDkOHDtVLL72kKVOm6KijjlJGRoZOP/10XXjhhXr55Zf1+9//XnPnztVxxx2n8vJyLV++XC+//LLee+89HXnkkWGLCwgJC0BEzJo1y5JU69fGjRsty7Ks7777zho3bpyVkZFhpaWlWSeeeKL1xRdf1PieOTk5liRr+/btgcc+++wzS5I1YsSIas8/4YQTrP79+1sLFiywhg8fbqWkpFidO3e2/va3v1V5nt/vt+666y6rc+fOVnJysnXEEUdYb731ljVx4kSrc+fOgee9+uqr1tixY62cnBwrKSnJ6tSpk3X55ZdbW7duDTznjjvusIYNG2ZlZ2dbqampVp8+faw777zTKikpqbO/1q5da0my7r333hr7ce3atVX+rhNOOKHK8958802rX79+VkJCgiXJmjVrVuBnCxcutM466yyrZcuWVnJystW5c2frnHPOsT788MPAc6ZPn25Jsnbu3FlnnACA2GPnmm+++abGn9v5tLLOnTtbEydOrPLYwoULrREjRljJyclWhw4drLvvvtv661//akmytm3bVuW1EyZMqPH3VM5vdlyffPKJddlll1nNmze3MjIyrAsuuMDavXt3ldd+/vnn1jHHHGOlpqZa7dq1s2666SbrvffesyRZc+fOtSzLsn766Sfrt7/9rdW9e3crJSXFatGihXXiiSdaH3zwQeB9PvzwQ+vnP/+51a5dOyspKclq166ddd5551krV66stx9r6ifLsixJ1vTp06v9XZVz+7Zt26wJEyZYmZmZlqQq/XDgwAFr6tSpVo8ePaykpCSrVatW1rHHHmv95S9/CZxf1HYeAQCIPTV91k5JSbGGDBliPfbYY5bf76/y/Kefftrq2bOnlZycbPXp08eaNWtW4PNfZZKsq666qtrvqynnf/LJJ9bQoUOtpKQkq1u3btbMmTPrfM8XXnghEMMRRxwRyM22vXv3WpMmTbJatWplZWRkWOPGjbOWL19e7XfX93l7165d1lVXXWX16dPHSk9Pt5o1a2YdffTR1ssvvxx0vx5+PnT4dQH776qc2y3Lsm6//Xarffv2VlxcXLU8/9prr1nHH3+8lZ6ebqWnp1t9+vSxrrrqKmvFihWB59R2HgEAiC1uyePBfjau65r0Sy+9ZB1xxBFWcnKy1aJFC+uCCy6wNm3aVOX1EydOtNLT0601a9ZYY8eOtdLS0qzc3Fxr+vTpVnl5eb39ab++vr977ty5Va4PWJZlHTx40Dr//POt7OxsS1KVfF9SUmLdc889Vv/+/a3k5GSrefPm1tChQ60ZM2ZY+/fvDzyvtn4HnOazrMOGiACIWaNGjdKuXbv0448/Oh0KAACedN111+nxxx/XwYMHA1OhBuvZZ5/VpEmT9M0333DXNQAALuTz+XTVVVdVmfoUAADAdvHFF+vVV1+tcYlPAI3HmuEAAABAGBQWFlb5fvfu3Xr++ed1/PHHN7gQDgAAAAAAAKDhWDMcAAAACIPhw4dr1KhR6tu3r7Zv366nn35aeXl5uuWWW5wODQAAAAAAAPAEiuEAAABAGIwfP16vvvqqnnjiCfl8Pv3sZz/T008/rZEjRzodGgAAAAAAAOAJrBkOAAAAAAAAAAAAAIg5rBkOAAAAAAAAAAAAAIg5FMMBAAAAAAAAAAAAADHHc2uG+/1+bdmyRZmZmfL5fE6HAwBAjSzL0oEDB9SuXTvFxXHvmkQOBwBEP/J3deRvAIAbkMOrIn8DANwg2PztuWL4li1b1LFjR6fDAAAgKBs3blSHDh2cDiMqkMMBAG5B/q5A/gYAuAk53CB/AwDcpL787blieGZmpiTTMVlZWU1+v9LSUr3//vsaO3asEhMTm/x+buTpPsjPl9q1kySVrl+vxOxsZ+NxiKf3gUPoA/pACm0f5OXlqWPHjoG8hdDmcPZX+oAczj4g0QcSfSCRv8ON/B1C5C5J7AfsB+wDEn0ghb4PyOFVkb9DiOO2JPYD9gPD8/uB6AOn8rfniuH2tC5ZWVkhK4anpaUpKyvLkzuu5PE+iI8PbJZmZSkxBPuUG3l6HziEPqAPpPD0AdORVQhlDmd/pQ/I4ewDEn0g0QcS+TvcyN8hRO6SxH7AfsA+INEHUvj6gBxukL9DiOO2JPYD9gPD8/uB6AOn8jcLoAAAAAAAAAAAAAAAYg7FcAAAAAAAAAAAAABAzKEYDgAAAAAAAAAAAACIORTDAQAAAAAAAAAAAAAxJ8HpAABXS0xU+Z/+pFWrVql7YqLT0QAAgGCRwwEAbkPugsR+AABuw3EbEvsB4DBGhgNNkZQk/7RpWnHeeVJSktPRAACAYJHDAQBuQ+6CxH4AAG7DcRsS+wHgMIrhAAAAAAAAAAAAAICYQzEcaAq/X1qyRJkbNphtAADgDuRwAIDbkLsgsR8AgNtw3IbEfgA4jDXDgaYoLFTiEUdotKTSCy+UkpOdjggAAASDHA4AcBtyFyT2AwBwG47bkNgPAIcxMhwAAAAAAAAAAAAAEHMohgMAAAAAAAAAAAAAYo6jxfB58+bp9NNPV7t27eTz+fTGG2/U+5qPP/5YP/vZz5ScnKwePXro2WefDXucAACgAvkbAAB3IocDAOA+5G8AAJrG0WJ4fn6+Bg8erEceeSSo569du1YTJkzQiSeeqEWLFum6667TJZdcovfeey/MkQIAABv5GwAAdyKHAwDgPuRvAACaJsHJX37qqafq1FNPDfr5M2fOVNeuXXXfffdJkvr27avPPvtMDzzwgMaNGxeuMAEAQCXkbwAA3IkcDgCA+5C/AQBoGkeL4Q01f/58nXzyyVUeGzdunK677jpH4tm0SfrsM58WLmyrwkKfEhPN4z5fzW2s/qy83KcVK5orJ8enjAwpJaX6V0JC1fcAAHhHtOVvAI1TViYVF5vW/iovD27bsmr/kur+eTDPbfzf5NN337VVSYlPCUF8MmrK72qoSP0uuw8KC4Prg1hUVubTkiU5Gj/e6UiiDzncG8rLpe3bpbw86eBB81VcLPn9FV+WVXX7cDV93j/8sVA9p7zcpwULcmVZFcetUL13UlLVaxmpqabNzjbbAOAG0Za/Fy2SvviirYqKfIFrxJWvL9f0fW3b4XheQoI5zjdvLjVrpsA1fgDBKS2VCgqqXi8oLa3a2ttFRT4tXtxSaWk+xccHfy2gvusEbmJ/BrePiXVx499Xn7IyU1Pt10/q2TNyv9dVlzu2bdum3NzcKo/l5uYqLy9PhYWFSq3hk0lxcbGKi4sD3+fl5UmSSktLVVpa2qR4Pv/cp/POS5A0rEnv434JkkbW+Yy4OEsZGVLLllKLFpZatJBatJBycy117ix17mypc2dL3btLGRmRiTpkrr1W69avV3vJHNE9yP6/1NT/U25GH9AHUmj7IJb6sTH5WwpvDmd/pQ8keSaHl5dLO3dKW7dK27b5tHOntH+/T3v2WPrhhwF67TWf8vL8ysuT8vPNh9PCQvNBtrDQfBUVmQ8ssYdzefpAkhLUuvVgTZ1K/j5ctH0GJ3cpJLlr82bptdfi9PnnPi1a5NPGjW47xidIOibivzUz01JurtSmjaVevaT+/S0NGWJp2DBLyckRDsYj5zC14VhAH0ih74NY6stoy9/PPCPNnOme882WLS317GmpTx/p+OP9GjPGUtu2TXxTjx+3JY5bklyxH+zfL61bJ61b59PGjT7t2iXt3i3t2uXT7t3S3r0+5eeb4ndBgbmGUFrakPPIBEnHhyl6t/D6Z3Dz93frVqwuXSL3GdxVxfDGuPvuuzVjxoxqj7///vtKS0tr0nuvXt1S/fv3kVR5pErV//iV79xo6s9quguktt8b/p9Vf47f71NpaZxKSuJVUhKnsrL4Kj/LyzN3mq9dW/vB0eez1LZtvrp126fu3fdr4MCd6tZtv+IcXd2+HieeKEla+sknDgfivDlz5jgdguPoA/pACk0fFBQUhCASdwtnDrexv3q8D2Ioh5eUxGnDhixt3pyhrVvTA187d6Zp//5k+f01nX/FS+repN8bH+9XfLyluDjzFR/vP9RaVR6vGIFR83ZdPzMjNoJ7Lmrn88XgLeUhlJ1drDlzFjT5fcjf5O+wa0Lu2r49Vc8/309ffNG+Wl6Ii/MrLa1MKSllSkkpV2JiuXw+BY7hprUCx+TKarp2cLiar2c0/HXBvCbY19UUU1lZnEpK4lRaGl+pjZff79OBAz4dOCCtXu3TZ59VvCY5uUwDB+7SqFEbdfTR25SY6A8qxiaJoXOYpvD0seAQ+iB0feD1HB7O/F1a2k39+plq8uHXuSsfn80oz+rfV71OXvV1Df2+4n0rHisri1NBQYIKC82Q8N27fdq926cvv5SefTZOcXGWjjxym371q5Xq2XNf4zqB43aAp49bUbYfbNuWpiVLWmrt2mZau7aZ1q/P0sGDSU16z7g4vxISzHWAhISK6wUJCRXXCiqfV9qCvR7gxWsBsfpZfvPmVZo9e0eT3yfY/O2qYnibNm20ffv2Ko9t375dWVlZtY4qmzp1qqZMmRL4Pi8vTx07dtTYsWOVlZXVpHjGj5euv75Uc+bM0ZgxY5To0TlUSksr94FdAPfL7/eruNiMJCoslA4ckPbs8WnPHgXuItq6VVq/3he422j3bp+2bMnQli0Z+uyzDpLM3Xhjxlg67zxzJ160Td9Y9e9nH6AP6AP6IDR9YN+FHQsak7+l8OZw9lf6QHJvH1iWtGaN9PHHPn35ZZwWLvRp6VIzbWxtfD5LOTlSmzZmZp5mzaSsrHLt3btOgwZ1VsuW8crKsgJL3tjTwqakWIHvU1Ol5GQzbWBCgmq5WTGa72Cszq37QCjRB3YffE7+rkG0fQZnf218H7z5pk833BCvgwdNrjjuOL/Gjzejmrt1s9SunRQf75OUeOgrekV2P7BkWWXKyzNTye/Y4dOmTdKyZT4tWeLTV1/5tH17ghYsaKMFC9ooJ8fSzTf7deml/rCOFvf6/wWv//0SfSCFvg9iKYdHW/4eM8Yd+2tZWan27zdLo65c6dP33/v04Yc+ffttnL7+uq2++aaNrrzSr3vu8SupgfVC/s/SB5LzfVBeLn3yiU+vvurTBx/Ead26mq8htG5tZvHt2NFcP2jZUmrVytRpmjc3M/umpVlKS5PS081XWppZbqZqcdp36EsyN+M73wfRwOt94FT+jrKyYt2GDx+u2bNnV3lszpw5Gj58eK2vSU5OVnINn0ASExNDuqOF+v3cqKY+SE6WGnK+tHOntHCh9N130vz50ty55m68f/3Lp3/9K045OdKll0rXXCPl5IT4D2gMv19at06p27crMT6efYD/B/SB6AMpNH0QS33YmPwtRSaHs796uA9clsNLSqQ5c6TXXpM++EDauLH6c1q1kvr3l3r0MF89e0pdukht20o5OZXXojIfRktLyzV79lKNH9+l0g2N3uTZ/weV0Afk75pE62dwz+6vjcxdr70mnXOOuZnquOOkRx6RBg92181LNYnkftCqVUWercyypMWLpVdekWbNkjZv9mnKlHg98US8XnhBGjo0DMG47BwmnDx7LKiEPghdH8RSP5K/Gycx0dwA3KaNdOSR0vnnm8eXLZPuukt64QWfHnkkXsuWxeu//zXFv6Bw3K4i2veDsHFwP9i+Xfrb36SnnpK2bat4PCFBOvpo6aijpCFDpMGDzbWEjIzKRezw8Ox+UInX+yDS+dvRYvjBgwe1evXqwPdr167VokWL1KJFC3Xq1ElTp07V5s2b9dxzz0mSfv/73+tvf/ubbrrpJv32t7/VRx99pJdffllvv/22U38CQqx1a2nsWPMlmaUzvvxSevVV6Z//lHbskO68U7rvPumKK6Rp06TsbAcDLixUYq9eGiup9JxzFPmFwgAg8sjfiAkuyeFffy3NnCm9/rpZu8uWlCQNHy6NHGkutP/sZ1KHDoffhQ0AVZHDXa4RuevHH6ULLjBF20mTpMcfNxf7ERo+nzRokPmaNs0UxKdNk5Yvl445xuTw3/0uxL/UJecwAEKH/O2svn2l55+Xfv1r6bzzpI8+MoXy11+vbbasw3DchuTIfrBnjzRjhjn/Ky42j7VoIf3qV9IZZ5jrCRkZYQ8DiAqO3gq8YMECHXHEETriiCMkSVOmTNERRxyhadOmSZK2bt2qDRs2BJ7ftWtXvf3225ozZ44GDx6s++67T0899ZTGjRvnSPwIv8REacQI6aGHpM2bTVH8qKPM1OsPPCD16iU9+2zNa30BAMKD/A2EV3m5uQnwqKPMXdqzZplCeNu20uTJ0nvvSXv3Sh9/LN12m/Tzn0sdO1IIB1A/cri3lJVJF11kLn6eeqr05JMUwsMpMVG67DJpyRLprLNM/19yifR//+d0ZADcjvwdHU47TZo929Qw33xTevhhpyMCamZZ0jPPmNni/vpXcy549NFmJputW83NeuPHUwiHtzg6MnzUqFGy6qhiPvvsszW+ZuHChWGMCtEqMVE6+2zzofL996XrrzfT1EyaJL31lvTEE+bOJgBAeJG/gfCwLDO6YNo0aelS81hSkhmBcOmlZmrboEYeAEAtyOHe8vzzZhmy5s3NBdF4b6+IETEtW5ob+W+5xcxsN3WquVZx2WVORwbArcjf0WPECDNA68orpZtvln7xC6lTJ6ejAirs3WuuH7z2mvl+wACzz550EjfQw9u4nAbX8fmkceOk7783d1gnJpqD+89+VnHhGAAAwE1WrpTGjJF++UtzPpOdbUZ9b9okPfecuehCIRwAEKzSUpNHJOkPfzDrnyJyfD7pjjukP/3JfH/FFdInnzgbEwAgNH7/ezO9dFGRmYIaiBbr1knHHmtqJYmJ0j33mBsjTz6ZQjjAJTW4VmKi9L//K33xhdStm7R+vRkxxQdMAADgFn6/dN990sCB0ocfSikpZiTZ2rWmbd3a6QgBAG709tvmgmjr1mb0Gpxx223ShReafH/++dKuXU5HBABoKp/PFBkls3zn+vWOhgNIMjPoHnOMtHy51KGDNH++dNNNUoKjc0MD0YNiOFzvyCOlr74ydz3t22fWQps3z+moAAAA6rZzp1l37n/+RyopMTPf/PijuXCene10dAAAN3vySdNOmiSlpTkbi5f5fNKjj0q9e0tbtkhTpjgdEQAgFI45xoy29fvN+suAk9auNfvj9u3mRvsvv5SGDnU6KiC6UAxHTGjVyoymOvVUqbBQmjBB+vprp6MCAACo2bJl0rBh0jvvmNHgjz9utrt3dzoyAIDbbd9ucookXXKJs7FAysgwS574fGYdd27eB4DYcNVVpn3qKbM8CeCE/fvNjfVbtkj9+klz50rt2zsdFRB9KIYjZqSkmPUwRo+WDh6UzjjDrLMZVgkJKv/977X21FOZcwQAADdxMId/+qlZ2mXdOlP8/vpr6bLLWMMLAFCPIHPX229LlmVGBPXsGcH4UKthw0yul6RrrzX/Po3GdQgAiAqnnSbl5JglMObOreOJHLchhWU/8PuliROlVaukTp2kOXOkli1D8tZAzKEYjpiSmiq9+aY0aJC5G/7MM81I8bBJTpb/r3/VD5dfLiUnh/EXAQCAkHIoh8+bJ51yirR3r5lab/58M40ZAAD1CjJ3/ec/pj3jjAjFhaDceacZJb5oUcW/UaNwHQIAokJCgnTWWWb7lVfqeCLHbUhh2Q8eesjUQpKSpFdfldq1C8nbAjGJYjhiTkaG9MYb5i6ob7+VbrzR6YgAAABM4XvCBKmgwExj9tFHUuvWTkcFAIglxcXS+++bbYrh0aVlS+maa8z2rbc2cXQ4ACAq/PKXpn3jDTNKF4iU1aulP/7RbD/4oHTUUY6GA0Q9iuGISV27Si++aLYfeUR6990w/SLLknbuVNL+/XySBQDATSKcw1evNtPoHTwonXSS9O9/mxltAAAIWhC5a8ECMzta69bS4MERjg/1uuGGitHhH33UyDfhOgQARI2RI81xfdcu6YcfankSx21IId0PLMssv1JYaJaM/f3vQxQjEMMohiNmjR1bcdf1pEnSvn1h+CUFBUps316nTpxohnkBAAB3iGAO37dPOv10ac8ec7f2m29SCAcANEIQuevTT007YoTk80UwNgSlRQuztqdkbtxvFK5DAEDUSEyUTjjBbH/wQS1P4rgNKaT7wWuvmXXqU1OlJ5/knA8IBsVwxLT/+z+pd29p2zZp2jSnowEAAF7j90sXXCAtXy516GAK4enpTkcFAIhVlYvhiE5XXmnaN9+UNmxwNhYAQNOddJJpP/zQ2TjgDaWl0tSpZvvGG6Vu3ZyNB3ALiuGIaampFXdbP/KItHChs/EAAABv+etfpdmzpZQU6T//kdq2dToiAECs8vulzz832xTDo1e/ftKJJ5p/r1mznI4GANBUJ55o2i++YN1whN+TT5pl2HJypP/5H6ejAdyDYjhi3kknSb/+tTkZufZalmYBAACRsXCh9L//a7bvv1864ghn4wEAxLa1a6X9+6XkZGnQIKejQV0uvti0L77INQoAcLsBA8yArLw8aeVKp6NBLCstNTPhSmYW3MxMZ+MB3IRiODzhL38xFwQ+/VR67z2nowEAALGutNSsCVpSIp15pvT73zsdEQAg1i1aZNoBA8wapohev/iFKZysXCl9953T0QAAmiIhQRo61Gx//bWzsSC2vfyytHGjGRX+u985HQ3gLhTD4QkdOkiTJ5vtP/yBKWsAAEB4PfCAtHix1LKlmcbM53M6IgBArPv+e9MOHuxsHKhfZqZ0xhlm+x//cDYWAEDTHXWUaSmGI1wsS/rzn832tdeapdgABI9iODzj5puljAwzZenrrzsdDQAAiFVr10q33mq277tPatXK0XAAAB5hjwwfMsTJKBCsc8817b//zVTpAOB2w4aZlmI4wmXePOmHH6T0dOmKK5yOBnAfiuHwjFatpOuuM9t//nOIPmwmJMh/4YXacOKJZk4cAADgDmHM4VOmSIWF0qhR0kUXhfStAQBeVk/uYmS4u4wda0Z1rVsnLVnSgBdyHQIAoo59I9qSJTXMSMpxG1KT94OnnjLtBRdIzZuHODbAAyiGw1OuucZ82PzmG3M3VZMlJ6v86ae18NprzaLkAADAHcKUwz//XHrjDSkuTnrkEaZHBwCEUB25Ky9P2rDBbA8a5EBsaLC0NGn0aLP93/824IVchwCAqNOjh5SUJBUUmJucquC4DalJ+8G+fdKrr5pt1goHGodiODyldWvp4ovN9r33OhoKAACIMZYl3XST2f7tb6V+/ZyNBwDgHatWmTYnR8rOdjQUNMDpp5v2rbecjQMA0DQJCVLv3mZ76VJnY0HsefFFqahIGjiwYn16AA1DMRyeM2WKGaX19tvS8uVNfDPLkvLzFV9UxCJfAAC4SRhy+H/+I33xhZSaKs2YEZK3BACgQh25yy6G9+rlQFxotNNOM+38+dLu3UG+iOsQABCVBgwwbbWlLzhuQ2rSfvD886b97W+ZfQ5oLBapgOf07Gk+cP73v9KTT0r33deENysoUGLz5jpNUunevWY+HAAAEP1CnMMtS7r9drN93XVSu3ZNjhAAgKrqyF12MbxnT2dCQ+N06GBmklm6VPrkE+mss4J4EdchACAq9e9v2mrFcI7bkBq9H2zcKH35pSmC//rX4Q0RiGWMDIcnXX65af/+dzPFCAAAQFPMmSN9+61Z/3PKFKejAQB4zcqVpqUY7j72uuEffeRsHACAprGL4UyTjlCy1wo//nipbVtnYwHcjGI4POmUU8wd2Lt3S//+t9PRAAAAt7vrLtNedpnUqpWzsQAAvIeR4e514ommnTvX2TgAAE1j5+DVq5kNHaHzyium/dWvnI0DcDuK4fCk+HjpkkvM9uOPOxsLAABwt/nzzdSmiYnSDTc4HQ0AwItYM9y9TjjBTH26dKm0fbvT0QAAGqtbN9Pu3y/t3etsLIgNmzeb6w0+n3T22U5HA7gbxXB41m9/axLJJ59I69Y5HQ0AAHCrv/7VtL/5jZl5BgCASNqzx3xJUo8ezsaChmvZUho0yGwzOhwA3Cs1VWrXzmyvWeNsLIgN77xj2qOPrti3ADQOxXB4VseO0qhRZvtf/3I0FAAA4FLbtkmvvWa2r77a2VgAAN60fr1pc3KktDRnY0Hj2NcmPv/c0TAAAE1kjw6nGI5QsIvhp57qbBxALKAYDk87/3zT/vOfzsYBAADc6amnpNJSafhw6YgjnI4GAOBFGzeatlMnZ+NA4w0fbtovv3Q2DgBA03TvblqK4Wiq0lLpgw/M9imnOBsLEAsohsPTzj7brO/5ww/Sjz824g3i4+U/6yxtPvZYsxA5AABwhxDk8LIy6fHHzfaVV4YwNgAAalJL7tqwwbQUw93rmGNMu2iRVFhYz5O5DgEAUavGYjjHbUgN3g++/FLKy5NatZKOPDIC8QExjmI4PK1584ppRho1OjwlReX/+pcW3HSTlJIS0tgAAEAYhSCHz54tbdpkPpz+6lchjg8AgMPVkrvskeEdOzoUF5qsUyepTRtzo91339XzZK5DAEDUqrEYznEbUoP3A3uK9LFjpTiqeECT8d8InnfeeaZ95RXJspyNBQAAuMdzz5n2oouk5GRnYwEAeBcjw93P52OqdACIBZ07m9a+UQ1oLKZIB0KLYjg8b8IEKSlJWrVKWr7c6WgAAIAb7N0r/fe/Zvuii5yNBQDgbRTDY4M9VTrFcABwrw4dTLt5s+T3OxsL3OvAgYqZYkaNcjQUIGYkOB0A4LTMTGn0aOndd6U33pD69m3Ai/PzlZiRoZ9LKt27V8rODk+QAAAgtJqYw19+WSopkQYNkgYPDkuEAABUVUvuYpr02BB0MZzrEAAQtdq1M7N9lJRIO3dKubniuA2jAfvB/PlSebnUtSvnd0CoMDIckPTzn5v2zTedjQMAALjD88+b9sILnY0DAOBtZWVm9JnEyHC3+9nPTAFl0yZTQAEAuE9iotSmjdnetMnZWOBen3xi2pEjnY0DiCUUwwFJZ5xh2q++krZudTYWAAAQ3X76Sfr8cykuTjr/fKejAQB42datZhrWxMRDo8/gWhkZUs+eZnvRIkdDAQA0gT2Sl3XD0Vjz5pmWYjgQOhTDAZkpbIYNM9v2+p8AAAA1efVV044ebc4hAABwij3qrH17c5MW3G3IENNSDAcA97LXDWdkOBqjsFD6+muzTTEcCB0+KgGH2FOlv/WWs3EAAIDo9tprpj37bGfjAABg2zbTtm3rbBwIDbsYvnCho2EAAJrALoYzMhyN8c03Zs35tm2l7t2djgaIHRTDgUNOOcW0c+eahAMAAHC4jRvNXdo+n3TmmU5HAwDwOrsYbq9PCnc74gjTMjIcANzLniadkeFojK++Mu2xx5rrDgBCg2I4cMiQIVLr1tLBg9KXXzodDQAAiEb//rdpjzuOwgMAwHl2MZz1wmODPTJ8xQqpoMDRUAAAjcTIcDSFPUW6vaQrgNCgGA4cEhcnjRljtt97L8gXxcfLf+qp2jZ0qBQfH7bYAABAiDUyhzNFOgDAMTXkru3bzY+4QSs2tGljbmzw+6XFi2t5EtchACCqtWtn2q1bDz3AcRtS0PvBN9+Y9qijIhQX4BEUw4FKxo0zbdDF8JQUlb/5pr665RYpJSVscQEAgBBrRA7fsUP69FOzfdZZYYwNAICa1JC7mCY99tS7bjjXIQAgqtk52b5hjeM2JAW1H+zcKa1fb6ZHHzo0wvEBMY5iOFCJPTL8u+9M8gEAALC9845kWWY9z06dnI4GAACK4bFo0CDTLlnibBwAgMaxly45cIAlL9Aw9qjwPn2krCxnYwFiDcVwoJK2bc0HT8uSPvjA6WgAAEA0eecd044f72wcAADYWDM89vTrZ9qlS52NAwDQOFlZFQN/A6PDgSDY64UzRToQeglOBwBEm7FjpR9+kD76SDrvvHqenJ+vhJwcTSgvl7Vtm5SdHYkQAQBAUzUwh5eVSe+/b7ZPPTX84QEAUM1huctqls3I8BhUbzGc6xAAENV8PnOT2vr1phjeNYfjNhRU/ma9cCB8GBkOHOaEE0z78cfBPd9XUKCE4uKwxQMAAMKjITn866+lvXvN59Wjjw5vXAAA1KZy7srLk+w0xsjw2NG3r2m3bZP27Kn5OVyHAIDoZt+kZt+0xnEbUv37wYIFpqUYDoQexXDgMMcfb+7gW71a2rLF6WgAAEA0sKdIHztWSmBuJQBAFLAvsDdrJqWmOhsLQiczU+rUyWwzVToAuJN9kxrTpCNY27dLO3ZIcXHSwIFORwPEHorhwGGys6UhQ8z2J584GQkAAIgWdjGcKdIBANGC9cJjF+uGA4C7HT4yHKjPDz+YtmdPKS3N2ViAWEQxHKiBPVU6xXAAALBjh/Ttt2b7lFOcjQUAABvrhccuiuEA4G6MDEdD2cXwQYOcjQOIVRTDgRpQDAcAALYPPzTtkCEUHAAA0WPnTtO2bu1sHAi9/v1NSzEcANyJkeFoqO+/Ny3FcCA8KIYDNRgxwrTLl3MHHwAAXjd3rmlHj3Y2DgAAKtu927StWjkbB0LPHhm+ZImzcQAAGoeR4WgoRoYD4UUxHKhBy5bSwIFme968Op4YFyf/yJHa1b+/FMd/JwAAXKMBOdwuhp94YgTiAgCgNoflrl27zMMUw2NP376m3bJF2r//sB9yHQIAol6VkeEctyHVuR+UllbMBkMxHAgPjr5ALeyp0j/7rI4npaaq/IMP9Pmdd0qpqRGJCwAAhECQOXzTJmn1avNZ1Z45BgAARxyWu+yR4S1bOhsWQq9Zs4pRhatWHfZDrkMAQNSzb1TbvVsct2HUsR+sWGEK4pmZUufODsUHxDiK4UAthg837fz5zsYBAACcY48KHzrUXJgGACBaMDI8tvXsadpqxXAAQNSzc/P+/abICdSl8hTpPp+zsQCximI4UAu7GL5woVRY6GwsAADAGUyRDgCIVowMj20UwwHAvbKzK4qae/Y4GgpcgPXCgfBLcDoAIFp16WKmJdu+XfruO+m442p4Un6+Erp00SklJdL69eZMBwAARL8gczjFcABA1Dgsd+3alS2JYnisqrUYznUIAIh68fFSixbmxrXdG/KVM4DjtufVkb+XLTNt//7OhAZ4ASPDgVr4fMFNle7btUvJeXmRCQoAAIRMfTl83TrzlZAgHX98xMICAKBWlXOXPTKcadJjU10jw7kOAQDRz75Zbc8ejtswatsPli83bZ8+EQ4I8BCK4UAdWDccAADvmjfPtEceKWVkOBsLAACVFRVJ+flmm5HhsalXL9OuXOlsHACAxrFvVrNvXgNqUlIirVljtimGA+FDMRyowzHHmHb+fMmynI0FAABE1hdfmHbECGfjAADgcPb6o/HxUrNmzsaC8OjRw7R791JIAQA3qjwyHKjNmjVSebm5Ab9dO6ejAWIXxXCgDkceaaZG3bpV2rjR6WgAAEAk2cXwY491Ng4AAA5nF0dbtjRLfCH2pKVJ7dub7ZqmSgcARDdGhiMYladI55wOCB+K4UAd0tKkwYPNNlOlAwDgHfv3Sz/+aLbtZVMAAIgWe/eaq6WsFx7b6lo3HAAQ3RgZjmCwXjgQGRTDgXqwbjgAAN7z1VdmiZTu3aXcXKejAQCgql27TMt64bGNYjgAuJd9w5qds4GaUAwHIoNiOFCPo4827Tff1PDDuDj5hw7V3h49pDj+OwEA4Br15HB7inRGhQMAokal3LVnX7wkRobHuhqL4VyHAABXsG9Y27WH4zZUa/6mGA5ERoLTAQDRbuhQ0y5aJJWXS/HxlX6Ymqry+fM1b/ZsjU9NdSI8AADQGPXkcNYLBwBEnUq5a8cik7sYGR7b7GL4ypWVHuQ6BAC4gn3D2tZ9HLehGvO3ZVEMByKFW5GAevTqJWVkSAUFFckJAADErvJy6csvzTbFcABANNq927SMDI9t3bqZdu1aZ+MAADRcYGQ406SjFtu2SXl5ZqB4jx5ORwPENorhQD3i46UjjjDbCxY4GwsAAAi/JUukAwfMzXADBjgdDQAA1e3e7ZPEyPBY17WraffulfbvdzYWAEDD2Des2TewAYezB9517y4lJzsbCxDrHC+GP/LII+rSpYtSUlJ09NFH6+uvv67z+Q8++KB69+6t1NRUdezYUddff72KiooiFC286sgjTfvtt4f9oKBACT17asyll5qh4wDgIeRwuFodOfzzz017zDGHLY8CADGA/O1ilXJX4W6Tu5o3dzgmhFVmZkUxJTA6nOsQgCeRv93HvmGtaG+B4ntw3Pa8GvL3qlXmR/ayKADCx9Fi+EsvvaQpU6Zo+vTp+u677zR48GCNGzdOO3bsqPH5L774om6++WZNnz5dy5Yt09NPP62XXnpJf/jDHyIcObzGXje8WjHcsuRbv15pO3eaRT4AwCPI4XC9OnK4fV3pmGMciAsAwoj87XKVctf+fSZ3ZWc7GxLCzx4dHiiGcx0C8BzytzvZN6z5ZCluA8dtz6shf69ZY37UvbuDcQEe4Wgx/P7779ell16qSZMmqV+/fpo5c6bS0tL0zDPP1Pj8L774Qscdd5zOP/98denSRWPHjtV5551X751wQFPZxfCFC6WyMmdjAYBoQA5HLLOXRTnqKGfjAIBQI3/Hjv37zTTpFMNjX7ViOADPIX+7U2KiWXoLqA3FcCByEpz6xSUlJfr22281derUwGNxcXE6+eSTNX/+/Bpfc+yxx+qFF17Q119/rWHDhumnn37S7NmzdeGFF9b6e4qLi1VcXBz4Pi8vT5JUWlqq0tLSJv8d9nuE4r3cygt90LWrlJGRoIMHfVq8uLRi/dDSUiUGNkulGO6DunhhH6gPfUAfSKHtg2jux1jI4eyv9EFtOTw/X1q6NEGST4MHl8Z0avf8PiD6QKIPJPI3+dtFKuWufYdGhmdmxnauqonX9oNOneIkxWvNmnKVlvq5DiHv7QM1oQ9C3wfR2pfkb3fLzk7QnoMV33v1uC15ez+QVGP+Xr3aXHvo3LlMpaXemDXA8/uB6AOn8rdjxfBdu3apvLxcubm5VR7Pzc3V8uXLa3zN+eefr127dun444+XZVkqKyvT73//+zqneLn77rs1Y8aMao+///77SktLa9ofUcmcOXNC9l5uFet90LnzcVqypJWefXaxRo/eKEmKLyrSaYd+/tFHH6k8JcW5AKNArO8DwaAP6AMpNH1QEMXrSMVSDmd/9W4f1JbDly1rIb9/hJo3L9KiRe9p0SLHQowYr+4DldEH9IFE/q4J+Tu6VM5de/b4JUkLF36srVujd78LJ6/sB/n5nSUN0ddf79Ts2V9xHaISr+wDdaEPQtcH0ZrDyd/uFh8/SpVLMF4/bkve3A+k6tcgypJTtHLleEmJ2rTpE82efbCul8ccr+4HlXm9DyKdvx0rhjfGxx9/rLvuukuPPvqojj76aK1evVrXXnutbr/9dt1yyy01vmbq1KmaMmVK4Pu8vDx17NhRY8eOVVZWVpNjKi0t1Zw5czRmzBglJibW/4IY5JU++PjjOC1ZIpWVDdb48QPNg/n5gZ+PHj1aiR6do84r+0Bd6AP6QAptH9h3YceKaMvh7K/0QW05fM0as4rQsccmafz48U5EFjGe3wdEH0j0gUT+rgv5O8pUyl3FJeZyzplnjlKLFk4F5Ayv7QeJiT499piUn59rzk24DuG5faAm9EHo+yCWcjj5O3r85S/x2rm+MPC9V4/bkrf3A0nV8ve+0mwVFibK57M0ceJIeeUeCc/vB6IPnMrfjhXDW7Vqpfj4eG3fvr3K49u3b1ebNm1qfM0tt9yiCy+8UJdccokkaeDAgcrPz9dll12mP/7xj4qLq74EenJyspKTk6s9npiYGNIdLdTv50ax3gf2uqELF8YrMTHefFPp7431vz8Y9AF9INEHUmj6IJr7MJZyOPurh/uglhy+cKF5bNiwOCUmVt8vY5Fn94FK6AP6QCJ/14T8HWVq+JtbtUpUfLwDsUQBr+wHPXuadv16nxISEuXjOkSA1/9+iT6QQtcH0dqP5G93O/yGNS/2weE82weH5e/1q833HTr4lJnpvf7w7H5Qidf7INL527ErfElJSRo6dKg+/PDDwGN+v18ffvihhg8fXuNrCgoKqiXr+EOf+izLG2sqwDlDh5p20SKpvPzQgz6frL59ldexo+TzORUaAEQUORwxoZYcvmCBaY880qG4ACBMyN8x4FDu2tO2syz5lJUlzxbCvaRTJ3OqUlAg7dghrkMAHkP+drfsbMmSTztz+nHc9rrD8veaNebh7t2dDQvwCkenSZ8yZYomTpyoI488UsOGDdODDz6o/Px8TZo0SZJ00UUXqX379rr77rslSaeffrruv/9+HXHEEYEpXm655RadfvrpgYQOhEuPHlJamvkAunq11Lu3pLQ0lX3/vebOnq3xIVyDHgCiHTkcrldDDs/Lk1asMD+mGA4gFpG/Xe5Q7nr6wS9UeFOaWmc7HRAiITlZ6tBB2rhRWrtWyj2G6xCA15C/3at5c6lQabp34g867ri3OG572WHXICiGA5HlaDH817/+tXbu3Klp06Zp27ZtGjJkiN59913l5uZKkjZs2FDlLrY//elP8vl8+tOf/qTNmzerdevWOv3003XnnXc69SfAQ+LjpYEDpa++kr7//lAxHAA8ihyOWLRwoWRZZgRWTo7T0QBA6JG/Y0N+vpkK0KNLjnpS164VxfBjjnE6GgCRRv52r+bNTbt/v7NxIPpQDAciy9FiuCRNnjxZkydPrvFnH3/8cZXvExISNH36dE2fPj0CkQHVDR5cUQw/5xynowEAZ5HDEWuYIh2AF5C/3c8uhtsX2BH7unaV5s0zxXAA3kT+dif7xrW9e5keHVVRDAciy/FiOOAmgweb9vvvDz1QUKCEI4/UiQcPSqNGSc2aORUaAABoiBpyOMVwAEBUO5S7rt9WrEe0WNnZTLXqFV27mnbtWnEdAgBcpHlzKVUFunf2UWr+5QGO2152WP5es8bsBxTDgcigGA40gF0MX7To0AOWJd+yZcqSVGpZDkUFAAAarIYcbhfDhw51LiwAAGp1KHe1k+STxTTpHlKlGM51CABwjexsk7M75y+V8jlue1ql/L0nz9L27eZhiuFAZMTV/xQAtkGDTLt5s7R7t7OxAACA0Dl4sGKasiOOcDYWAACCwTTp3tG5s2k3bHA2DgBAw5CrURM7nzdvLm5uBCKEYjjQAJmZUrduZjswVToAAHC9xYsly5LatpVat3Y6GgAA6sfFU+/o1Mm0GzaY8xUAgDuQq1GTDRvMGvJdujgbB+AlFMOBBqq2bjgAAHA9ewkUO88DABDtuMDuHe3bSz6fVFws7dzpdDQAgGAxMhw12bjRFMPtmV8AhB/FcKCBKIYDABB77LxOMRwA4BYUw70jKcnMXiNJmzY5GwsAIHjkatTEzuWMDAcih2I40EAUwwEAiD12Xh8yxNEwAAAIGqPNvMWeKn3jRmfjAAAELz1dSoh3OgpEG3uadEaGA5FDMRxoILsYvnSpVFrmk9W5swpatzZzlgEAAHfwVeRwv+XT4sXmYUaGAwCi1qHctTG+kyz5GG3mMYFi+CauQwCAW/h8UrNsn9aps/Ja5HLc9rJK1yA2ME06EHEUw4EG6tJFysqSSkqk5RvSVLZqleY8+aSUluZ0aAAAIFhpFTl8zdY05edLKSlSz55OBwYAQC0O5a6BGStUqDSK4R5jF8N/2sZ1CABwk5QWaeqqdfrbDa9w3PayStcgVm1Ol0QxHIgkiuFAA/l80qBBZpup0gEAcL8ffjB3ZQ8YICUkOBwMAAB1sCwpPz9REtOkew3TpAOAO9n52s7f8LaSkjht387IcCDSKIYDjWBPoWpPqQoAANzLLoYzRToAINoVFUllZWbxUUaGe0vHjqbdsMHZOAAADdOsmWkphkOSdu5MlWTWk2/RwuFgAA9h7AvQCAMGmHbl94WKHz5CI/fvl048UUrkpAYAAFcoLFT8CJPDn+1+sqR0DRnidFAAANShsFDJI0boa/k0yveJMjKYatVL7JHhO9ZzHQIA3KR1RqG+1ki1frFQuu0LjttedegaxM+35usGfafOnVNZQh6IIIrhQCP072/a5Uv9itv4rZpLKvX7HY0JAAA0gN+vuG9NDl9aaEliZDgAIMr5/Ur+4VsdJal5Mz8XUD0mUAzf7lfcdq5DAIBbZGX4dZQWSDs5bnvaoWsQ7SXFyc8U6UCEMU060Ah2MXwDa3UBAOB6mzabasKgQQ4HAgBAkDIznY4AkdaypZSa6nQUAICGsqdJByqjGA5EFsVwoBFatJDatnU6CgAAECpdunCRAgDgHhTDvcfnqxgdDgBwD3I2akIxHIgsiuFAI9nrhgMAAPdjVDgAwE0yMiynQ4ADKIYDgPtQDEdNKIYDkUUxHGgkiuEAAMQO8joAwE24sO5NFMMBwH2YgQw1oRgORBbFcKCR7HXDAQCA+5HXAQBukpHhdARwAsVwAHAfbmBDTSiGA5GV4HQAgFvZI8h2x7VSRkYJd5YAAOAyVqtW2r3LbFMMBwC4QX5aKxUUcGHdq+xi+L7EVkpN5ToEALhBVpa0U60UF2cpy+lg4Kjy5q20Z6+UmGCpbVunowG8hfNmoJH69ZMKlK5W/p165ZF/SunpTocEAACClZ6uDQu2qLV2qiguTb17Ox0QAAD1SE/XrVduU452KqVlmtPRwAEdO5rrEMO779C7zz3HdQgAcIGM3HTlaKf6t17PcdvL0tP16etblaOdatExXXFU5oCI4r8c0EiZmRXTmWzYwG35AAC4zdKlPklS9+5SSorDwQAAEISDB03LNOneZI8M37hRsixnYwEABCfr0HDwggIm6fW6TZtM26EDSRyINIrhQBPYU6Vv2MAkNwAAuI1dDO/Xjw+iAAB3yMszuSuLj6Ce1LGjafPzfTp4MNHZYAAAQakohidyI5PHbd5szuPat3c4EMCDKIYDTTC4V6HmapSufOVyqbDQ6XAAAECwCgs14S8naa5GaVDPAqejAQCgfoWFuvm90ZqrUcpOJnd5UUqK1KGluQ4x6tY/cB0CAFygWZI5bn9QPlpFezlue1Zhoc562JzHdc7hPA6INObmAJpgQD+/RukTaY9U6vc7HQ4AAAiW368+2z5RH0lbe5c7HQ0AAPXz+zVw9yeSpK3pfP70qvZt/Rq1+xNpDdchAMAN0lMPXT+WtGmfX1m5DgcEZ/j96rl5nnpK+rEd+RuINEaGA03Qr1/FNtPcAADgHpXzdt++JHEAgLtkZjodAZzC1KoA4C5xlSoweXnOxYHo0a4d1yCASKMYDjRBr14V2zt3OhcHAABomC1bKrZ79HAuDgAAGoNiuHdRDAcA9zp40Od0CIgC5HIg8iiGA02QmlqxvWwZJzMAALjFsmUV28nJzsUBAEBjZGQwosir2rVzOgIAQGMxMty7ysoqthkZDkQexXAgRJYupRgOAIBbLF3qdAQAADQeI8O9i9FkAOBeFMO9a8eOiu3WrZ2LA/AqiuFAiKxc6XQEAAAgWJVHhgMA4Abl5RXbFMO9i5HhAOBeBw44HQGcsnlzxXZ8vHNxAF6V4HQAgNuVJqWppERauZKR4QAAuMWyZVK+0pSY4BcZHADgBgcPSglKk0Qx3MvatTPnMJKU5HAsAIDgFMWnqbxcysvj06dXbd4s9VOafD4p0elgAA9iZDjQFOnp+m7ePmUoX4tWZTgdDQAACIJlSd+tSFeG8vX4/W9L6elOhwQAQL3yyk3uyk44oOQW5C6vat/L7AcZyle+2A8AIOqlp+uqiQeUoXztKea47VXrd5n8PWb4Sq5BAA6gGA40Ue/ept2506fdu52NBQAA1G/jRjM9XUKCpbZtDzodDgAAQbGnVk1NLXU2EDgqK0vKzLQkVZ1yFQAQvZo1M8dt1gz3Ljtnt2pV6GwggEdRDAeaKD1dat26QBLrjwIA4AZ2vu7RQ0pMtJwNBgCAINkX0NPSypwNBI6z1w3fvJnpdgHADezlTSiGe9emTaZt2bLI2UAAj6IYDjRFUZHif/5zvVZ8hpJVRDEcAAAXWLFCSlaRnt87QUfffrtUxIdRAED0y99dpLc0QS/mnUXu8rKiIv191wS9pQnaupb9AACiXlGRJr58ut7SBBXuLXY6GjhkxwZzHnfjx7/nPA5wQILTAQCuVl6uuHfe0QhJ8SqnGA4AgAusXGny9pHb35G2S6Xl5U6HBABAvQ7sK9eZmi0Vkrs8rbxcR+9+R5L0f5v8DgcDAKhXebm6LX9H3SQ9lUf+9qqtm8o1QbOltZzHAU5gZDgQQhTDAQCIfitXOh0BAAANd/Cg0xEg2mzd6nQEAICGYJp0b/L7pS1bnI4C8DaK4UAIUQwHACD6UQwHALgRF9BxONYMBwB3OXCA47YX7dollZQ6HQXgbRTDgRBav17Kz3c6CgAAUJvCQmnDBqejAACg4RgZjsNt2UJRBQDchBvbvGnTJqcjAEAxHAiRVi0tSdKKFQ4HAgAAarV6tWRZUnYzpyMBAKBhuICOw23b5nQEAICG4MY2b9q82ekIAFAMB0KkVy9TDGeqdAAAopc9RXqPHs7GAQBAQ3EBHYfbvsOnkhKnowAABOvAAXNzNryFkeGA8yiGAyFCMRwAgOhnF8N79nQ2DgAAGurAAacjQDTassXpCAAAwSor96m42OkoEGkUwwHnUQwHmiI9XaUlJXrzjTfUbWC6JIrhAABEM7sY3rlfRQ5XerqjMQEAEIxdhenyydJVVy4kd3nZoesQbXIPqkDpTL0KANEuPV1FhSXyyVKB0rm5zYM2b5YKlK47bi/jGgTgEIrhQIj06cPIcAAAop1dDO/d29k4AABoKHvN8LS0UmcDQVRo2bJQEqPNAMAN4uOl5OQyScz04kVbt5q2bVvmyAecQjEcCBG7GL5qlVTKtQkAAKLSihWm7dXL2TgAAGgouxieklLmbCCICi1bFkmiGA4AbpGaSjHcq+wlTdq2dTYOwMsohgNNUVSk+HPP1ZF//rM6ti5SerpUViatWeN0YAAA4HC7d5svSerRoSKHq6jI2cAAAAhC8f4ivaxf6fw3/kDu8rJD1yH+b82lSlYR06QDQLQ7dNx+rug8JauIYrgHbd0qJatIwx/4NdcgAIckOB0A4Grl5Yp7/XW1l1TqL1efPtK335qp0vv0cTo4AABQ2apVpm3fXspILZfsHF5e7mhcAAAEo+BAuX6lV6UfyV2edug6xLGS4lXOyHAAiHaHjtunyxy3KYZ7S3GxuSk/TeVq/sHrai7O4wAnMDIcCKG+fU3LuuEAAEQfe71wpkgHALgRF89RE4rhAOAu5HNv2bbNtEmJzsYBeB3FcCCE+vUzLcVwAACij10M793b2TgAAGiosjKpoNDpKBCNmCYdANyFYri3bN1q2jZtnI0D8DqK4UAIMTIcAIDoxchwAIBbHTzodASIVlu2SMy2CgDuQTHcWyiGA9GBYjgQQnYxfPlyye93NhYAAFDVihWmpRgOAHCbvDynI0A0ivNZKiuTduxwOhIAQLAohnvLli2mbdvW2TgAr6MYDoRQ9+5SYqKUn8+6XQAARBO/X1q1ymxTDAcAuA0XzlETe5QZU6UDgHuQ072FkeFAdKAYDoRQQoLUs6fZZqp0AACix+bNUmGhydVduzodDQAADcPIcNSkbVtLEjfjA4CbUAz3FntkOMVwwFkUw4GmSEtT6d69eutf/5LS0iSxbjgAANHIXi+8e3dTEK8phwMAEK0OHJAKlKZjBhwgd3ldpXOYlh3NfsDIcACIYoeO25df8JUKlEYx3GPskeGtO3MNAnASxXCgKXw+KT1d5SkpZltSnz7mRxTDAQCIHnYxPDBFeg05HACAaGVGhvuUmJ1G7vK6Sucw7TuYhxgZDgBR7NBxOz4rSZKPYrjH2MXwtu24BgE4iWI4EGL2yPDly52NAwAAVFixwrSsFw4AcCP7wnlmprNxILq0b29aRoYDQPRLSSmTxDTpXmNPk962rbNxAF6X4HQAgKsVFyv+0kt1xKZN0kknSYmJTJMOAEAUqjYyvIYcDgBAtMrLk5JUrJuWXaZuD20kd3lZpXOYvPNPlpTOyHAAiGaHjtu/WbRbj+h1HTiQ7HREiJDSUmnnTrPdrmWx4n/HNQjAKRTDgaYoK1Pc88+rk6TSMnN3X+/e5kc7d0q7d0stWzoXHgAAMOxiuJ2na8rhAABEq7w8KUFlGrXuOWkducvTKp3DdJhi9gNGhgNAFDt03P6ZTC6nGO4d27ebNiFBatmMaxCAk5gmHQix9HSpUyezzVTpAAA4r6REWrvWbDNNOgDAjZhSFTVp29aSZNYMtyyHgwEABIWc7h32FOlt2khxVOIAR/FfEAgDpkoHACB6/PST5PdLGRnmQygAAG6Tl+d0BIhG7dqZtqBA2r/f2VgAAMGhGO4dW7ea1s7XAJxDMRwIA4rhAABEjxUrTNurl+TzORsLAACNwYVz1CQ1VWrRwmyzbjgAuMPBg8zm4RX2yPC2bZ2NAwDFcCAs+vQxLdOkAwDgPHu9cKZIBwC4FSPDUZsOHUzLuuEA4A6WJeXnOx0FIsEeGU4xHHAexXAgDBgZDgBA9LCL4b17OxsHAACNxchw1KZ9e9MyMhwAop9PZkj4wYMOB4KIYJp0IHo4Xgx/5JFH1KVLF6WkpOjoo4/W119/Xefz9+3bp6uuukpt27ZVcnKyevXqpdmzZ0coWiA4djF83TqpsNDRUAAgbMjhcAtGhgNABfK3OzEyHLWxi+GMDAdiG/k7NmRkmJab3LyBadKB6JHg5C9/6aWXNGXKFM2cOVNHH320HnzwQY0bN04rVqxQTk5OteeXlJRozJgxysnJ0auvvqr27dtr/fr1ys7OjnzwgCSlpal082Z98MEHOjktLfBwq1Zm3a49e8wF+MGDHYwRAMKAHA43qbEYXksOB4BYRv52rwMHpAKl6Ys3tmj//jnkLi877BzGniadkeFA7CJ/u1yl43b8zWnSQYrhXlFlZDjXIABHOVoMv//++3XppZdq0qRJkqSZM2fq7bff1jPPPKObb7652vOfeeYZ7dmzR1988YUSExMlSV26dIlkyEBVPp/UurVKmjUz25Ue7ttX+vxzM1U6xXAAsYYcDrfIy5O2bTPbPXtW+kEtORwAYhn5273MyHCfUjq20k6RuzztsHMYRoYDsY/87XKVjtsZmT5pK8Vwr6iyZjjXIABHOTZNeklJib799ludfPLJFcHExenkk0/W/Pnza3zNf/7zHw0fPlxXXXWVcnNzNWDAAN11110qLy+PVNhA0Fg3HECsIofDTexR4bm5UrNmzsYCAE4if7ubfdE8M9PZOBB9GBkOxDbyd2zJzDRrhlMMj31lZdL27WabadIB5zk2MnzXrl0qLy9Xbm5ulcdzc3O1fPnyGl/z008/6aOPPtIFF1yg2bNna/Xq1bryyitVWlqq6dOn1/ia4uJiFRcXB77PO7TQVmlpqUpLS5v8d9jvEYr3citP90FxsXTDDRq0caNKR46sWPhFUs+ecZLitWSJX6WlsX2y6el94BD6gD6QQtsH0dyPsZDD2V+90wdLl/okJahXr8PycR053Cu8sg/UhT6gDyTyN/k7+pWVSYWFiUpSsdrecY0Sdno3d0ne3Q8CDjuHycnJkJSozZstlZaWOR1dRHh+HxB9IIW+D6K1L8nfMaDScTs7dYykNO3dW6bSUsvpyCLKa/vBli2SZSUqPt5SdnaZSg9yDULy3n5QE6/3gVP529Fp0hvK7/crJydHTzzxhOLj4zV06FBt3rxZ9957b62J/O6779aMGTOqPf7+++8rLYRrM8yZMydk7+VWXuyD+KIinfbEE+oq6a3331d5SkrgZwcO5EgargULDmj27I+dCjGivLgPHI4+oA+k0PRBQUFBCCKJHtGaw9lfY78PZs/uLamPUlI2aPbs7wOP15XDvSbW94Fg0Af0gUT+rgn5OzocPJgoabwSVKaM555Qhshdkvf2A9vh5zD7yzIljdfu3T79+9/vKjnZ73SIEePVfaAy+iB0fRBLOZz8HV0qH7dLh26V1F3z5/+orKz1TofmCK/sB6tXZ0s6Qc2aFem9997nGsRhvLIf1MXrfRDp/O1YMbxVq1aKj4/XdnuuiEO2b9+uNm3a1Piatm3bKjExUfHx8YHH+vbtq23btqmkpERJSUnVXjN16lRNmTIl8H1eXp46duyosWPHKisrq8l/R2lpqebMmaMxY8YE1mDxGk/3QX5+YHP06NFKzM4OfN+3r3THHdK2bVkaN268Ku22McfT+8Ah9AF9IIW2D+y7sKNRLORw9lfv9ME//2n2udGjO2r8+PYVP6gjh3uFV/aButAH9IFE/iZ/R7/1h66VpyRb0qFBe17NXZJ394OAw85hEppl69JLLRUW+jRo0Cnq3t3B2CLE8/uA6AMp9H0QrTmc/B0DKh23u3RppXnfSl26DNT48f0dDCryvLYfvPWWWRe8S5dkjR8/nmsQh3htP6iJ1/vAqfztWDE8KSlJQ4cO1YcffqgzzzxTkrlr7cMPP9TkyZNrfM1xxx2nF198UX6/X3FxZrnzlStXqm3btjUmcUlKTk5WcnJytccTExNDuqOF+v3cyJN9UOnvPfzv795dSkmRiop82rQpUT16OBFgZHlyHzgMfUAfSKHpg2juw1jK4eyvsd8Hq1aZtm/feCUmVrozrY4c7jVe//sl+kCiDyTyd03I39GhsNC0mZm+QDHca31QE8/2weHnMEmJ6tDBnPNs356oPn0cjC3CPLsPVEIfhK4PorUfyd8xoNLfnJVlCqQFBYd9PvUQr+wHO3eatn37OCUmxnEN4jD0AX0Q6fwd1+Tf1ARTpkzRk08+qb///e9atmyZrrjiCuXn52vSpEmSpIsuukhTp04NPP+KK67Qnj17dO2112rlypV6++23ddddd+mqq65y6k8AahUfL/XubbZrWcIHAFyLHA43sCxp5Uqz3auXs7EAQDQgf7vTgQOmzcx0Ng5Er/aHJr/ZvNnZOACEB/k7dtjLRNu5HbFryxbTtm3rbBwADEfXDP/1r3+tnTt3atq0adq2bZuGDBmid999V7m5uZKkDRs2BO5ek6SOHTvqvffe0/XXX69Bgwapffv2uvbaa/W///u/Tv0JQJ369pW+/15atkw67TSnowGA0CGHww22bZMOHpTi4uSJKUMBoD7kb3eyZ/6jGI7adOhgWorhQGwif8cOiuHesXWraSmGA9HB0WK4JE2ePLnWKV0+/vjjao8NHz5cX375ZZijAkLDnp5s2TJn4wCAcCCHI9rZo8K7dpVqmQ0QADyH/O0+jAxHfeyR4Zs2ORsHgPAhf8cGiuHeYRfD27VzNg4AhqPTpAOxrm9f0zJNOgAAkccU6QCAWMDIcNSHkeEA4A6ZmZYkiuFewDTpQHRxfGQ44GqpqSpduVJz587Viamp1X5sF8OXLTPrlvp8EY4PAAAPW7HCtDUWw+vJ4QAARAv7gnlyNrkLqvEchpHhABDFKh23U9LMcZtieOyrNk061yAARzEyHGiKuDipSxcV5uaa7cP07Gke3rdP2r498uEBAOBldY4MryeHAwAQLQIjw5uRu6Aaz2EYGQ4AUazScTuzmTluUwyPbeXl0rZtZjswTTrXIABH8b8OCKOUFLNOqcS64QAARJpdDO/d29k4AABoCtYMR33skeFbt5oL8ACA6GTncorhsW3nTsnvN7PE5uQ4HQ0AiWI40DQlJYq7+Wb1e/ZZqaSkxqewbjgAAJFXViatWWO2axwZHkQOBwAgGtgjw7PTyF1QjecwublSfLwphDMrHQBEmUrH7czkYkkUw2OdPUV6To6UYC9UzDUIwFGsGQ40RWmp4u+/Xz0llZaW1viUvn2lt95iZDgAAJG0bp0piKemVoyWqiKIHA4AQDSwL5g3SytV/G3kLs+r4RwmPt6sSbppk/kKTMkKAHBepeP2ymnmuE0xPLZVWy9c4hoE4DBGhgNh1qePaSmGAwAQOfYU6T17shwXAMDd7JHhWVnOxoHoxrrhABD9MjJMW1DAshaxrMZiOABHcWkQCDOmSQcAIPJWrDBtjVOkAwDgIvboMfsCOlATeyacTZucjQMAULvKufzgQefiQHht22ZaiuFA9KAYDoSZPTJ80yamwAEAIFLskeG9ezsbBwAATcXIcATDLoYzMhwAoldKilnaQuI6cSyzR4a3aeNsHAAqUAwHwqx5cyk312wzOhwAgMiwi+GMDAcAuB0jwxEMe5p0RoYDQPTy+aTMTLNNMTx2MU06EH0ohgMRwFTpAABEFsVwAECssEeG2xfPgZowMhwA3IFieOxjmnQg+lAMByLALoYvW+ZsHAAAeEF+fsWoKIrhAAC3Y5p0BIOR4QDgDhTDYx/TpAPRJ8HpAABXS01V6cKF+vTTTzUiNbXWp9nrhlMMBwAg/FatMm3LllKLFrU8KcgcDgCAk0pKpOJis53RmtwF1XoOU3lkuGWZqXgBAFHgsOM2xfDYZlm1TJPONQjAUYwMB5oiLk7q318HOnUy27VgZDgAAJFjT5Heu3cdTwoyhwMA4KTKF8ozm5G7oFrPYexieGGhtHevQ7EBAKo77LhNMTy25eVJRUVmu8rIcK5BAI7ifx0QAXYxfM0aqbTU2VgAAIh1rBcOAIgV9oXy1FQpgbn9UIeUFDMrjsS64QAQzSiGxzZ7VHhWlpSW5mwsACpQDAeaoqREcbfdpt7//KeZv64W7dtLGRlSWZm0enUE4wMAwIOCKoYHmcMBAHBSlfXCyV2Q6twPWDccAKLQYcftrCzzMMXw2FTjFOkS53GAwyiGA01RWqr4O+5Qn5deqnPIt8/HuuEAAERKUMXwIHM4AABOsi+UZ2aK3AWjjv2g8rrhAIAocdhxm5HhsW3bNtNWK4ZzHgc4imI4ECH2VOnLlzsbBwAAscyypBUrzDbTpAMA3M4eGW5fOAfqwshwAIh+FMNjmz0yvMp64QAc16gVp/Lz8/V///d/+vDDD7Vjxw75/f4qP//pp59CEhwQS+xiOCPDATiF/A0v2LVL2rfPzMrSo4fT0QBA05G/vc2+UN6smbNxwB0YGQ5ED/I3amMXw+0b3hBbap0mHYCjGlUMv+SSS/TJJ5/owgsvVNu2beXz+UIdFxBzmCYdgNPI3/ACe4r0Tp2k1FRnYwGAUCB/exsjw9EQjAwHogf5G7VhzfDYVus06QAc1ahi+DvvvKO3335bxx13XKjjAWJW5WnSLcuMWAOASCJ/wwuCWi8cAFyE/O1tdjHcvnAO1IWR4UD0IH+jNkyTHtuYJh2ITo1aM7x58+Zq0aJFqGMBYlr37lJCgpSfz13aAJxB/oYXUAwHEGvI395mXyinGI5gMDIciB7kb9SGYnhsY5p0IDo1qhh+++23a9q0aSooKAh1PEDMSkysWLuUqdIBOIH8DS9YscK0FMMBxAryt7cxTToawh4ZvnevVFjobCyA15G/URv7BjfWDI9NTJMORKdGTZN+3333ac2aNcrNzVWXLl2UmJhY5effffddSIIDol5Kisq++EKff/65jk1JqffpffuaadKXL5fGjo1AfABQCfkbXmCPDO/du54nNjCHA4BTyN/eVmWadHIXpDr3g2bNpPR0MyPd5s0VN+QDiDzyNwIOO24zMjx2FRdLe/aY7WrTpHMeBziqUcXwM888M8RhAC4VHy/ryCO1b8cOKT6+3qf37Sv9+9+MDAfgDPI3Yl15ubR6tdmud2R4A3M4ADiF/O1tVYrh5C5Ide4HPp8ZHb5ypZkqnWI44BzyNwIOO25TDI9d9qjwxESp2ioJnMcBjmpUMXz69OmhjgPwhD59TEsxHIATyN+IdRs3mjuxk5KkTp2cjgYAQoP87W32hXKmSUewOnQwxfDNm52OBPA28jdqU3madMsyNzIhNtjF8DZt+HcFok2j1gwHcEhJieLuu089/v1vqaSk3qf37WtaiuEAAISePUV6jx5B3GjdwBwOAIATqowMJ3dBqnc/sNcN37QpwnEBAGp22HHbvsGtvFwqKnI2NITW1q2mrXG9cM7jAEcFPTK8RYsWWrlypVq1aqXmzZvLV8etLXvshRGAWFdaqvipU9VfUumDD9b7dHtk+I4dZv2QatOlAECIkb/hJStWmLbeKdKlBudwAIgk8jdsVYrh5C5I9e4HdjGckeFA5JG/UaPDjtsZWRU/OnBASk11LDKEmD0yvMZiOOdxgKOCLoY/8MADyjx029KD/GcFGiUjw0xZtmmTtHy5dOyxTkcEINaRv+El9sjw3r2djQMAmor8DRvTpKOhOnQwLSPDgcgjfyMYcXFSerqUn29uesvJcToihIo9MrxNG2fjAFBd0MXwiRMn1rgNoGH69jUfSpctoxgOIPzI3/ASuxge1MhwAIhi5G/YqowMB4LAyHDAOeRvBCsryxTD7ZveEBvqnCYdgKOCLobXpqioSCWHrXGQxac0oFZ9+0pz5piR4QDgFPI3YhHFcACxjvztLZZFMRwNx8hwIPqQv3G4zExTOKUYHlvqnCYdgKPiGvOi/Px8TZ48WTk5OUpPT1fz5s2rfAGonb1u+LJlzsYBwHvI34hlRUXS+vVmm2I4gFhC/vau4mKprMxsM006gmWPDN+2rWL/ARB55G/Uxc7r9k1viA1Mkw5Er0YVw2+66SZ99NFHeuyxx5ScnKynnnpKM2bMULt27fTcc8+FOkYgpvTta1qK4QAijfyNWLZ6tRlB16yZ1Lq109EAQOiQv72r8gXyjAzn4oC75ORICQmS318xQg1A5JG/URd7YgBGhscWpkkHolejpkn/73//q+eee06jRo3SpEmTNGLECPXo0UOdO3fWP/7xD11wwQWhjhOIGXYxfO1aM4otJcXZeAB4B/kbscyeIr13b8nnczYWAAgl8rd32cXwzEwprlFDGeBF8fHmIvzGjWbdcHvadACRRf5GXeyR4RTDY4ffL23fbrYphgPRp1Efp/bs2aNu3bpJMuub7NmzR5J0/PHHa968eaGLDoh2KSkqmzNHn91+e9BV7ZwcqXlzM3rNvnAPAJFA/kYsa/B64Y3I4QDgBPK3d9kXyANTpJO7IAW1H7BuOOA88jcCajhuUwyPPbt3VyxPkpNTwxM4jwMc1ahieLdu3bR27VpJUp8+ffTyyy9LMne8ZWdnhyw4IOrFx8s64QTtHjjQ3H4dBJ+PdcMBOIP8jVjW4GJ4I3I4ADiB/O1d9shweypVchckBbUf2OuGb94cwbgAVEH+RkANx207t7NmeOywp0hv1UpKSqrhCZzHAY5qVDF80qRJ+v777yVJN998sx555BGlpKTo+uuv14033hjSAIFYxLrhAJxA/kYsa3AxHABcgvztXdWK4UCQGBkOOI/8jbowMjz2bNtmWqZIB6JTo9YMv/766wPbJ598spYvX65vv/1WPXr00KBBg0IWHBD1SksV99hj6rpkiTRmjJSYGNTL7GL48uVhjA0ADkP+RixbscK0QRfDG5nDASDSyN/eZV8gDxTDyV2QgtoPGBkOOI/8jYAajtsUw2OPPTK8TZtansB5HOCoBhXDCwsL9eGHH+q0006TJE2dOlXFxcWBn3/55Ze67bbblMKaB/CKkhLFX3utBkkqveceKS0tqJfZxfAlS8IXGgDYyN+IdXv2SLt2me2gi+GNzOEAECnkb9gjwwNrhpO7IAW1H9gjwzdujGxoAMjfqEENx22mSY89djG81pHhnMcBjmpQMfzvf/+73n777UAy/9vf/qb+/fsrNTVVkrR8+XK1bdu2yp1vAKobMMC0K1ZIpaXcCAYgvMjfiHX2FOkdOkjp6c7GAgChQv4G06SjsTp2NC3FcCDyyN8IBiPDYw/TpAPRrUFrhv/jH//QZZddVuWxF198UXPnztXcuXN177336uWXXw5pgEAs6tRJysgwhfBVq5yOBkCsI38j1jV4inQAcAHyN6pNkw4EqXNn027aJJWXOxsL4DXkbwSDYnjsqXeadACOalAxfPXq1Ro4cGDg+5SUFMXFVbzFsGHDtHTp0tBFB8Qon69idPiPPzobC4DYR/5GrLOL4b17OxsHAIQS+RvVpkkHgtS2rRQfL5WVVVycBxAZ5G8Ew87tTJMeO+qdJh2AoxpUDN+3b1+VNU527typLl26BL73+/1Vfg6gdnYxfPFiZ+MAEPvI34h19jTpFMMBxBLyN5gmHY0VH1+xbviGDc7GAngN+RvBsHM7I8NjB9OkA9GtQcXwDh066Mc6hrH+8MMP6mCfbQOoEyPDAUQK+RuxjmnSAcQi8jcohqMp7KnSKYYDkUX+RjCYJj32ME06EN0aVAwfP368pk2bpqKiomo/Kyws1IwZMzRhwoSQBQfEMorhACKF/I1YVl4urVplthkZDiCWkL9hXyBnmnQ0RqdOpl2/3tk4AK8hfyMYTJMeWw4eNF8SI8OBaJXQkCf/4Q9/0Msvv6zevXtr8uTJ6nVo+M2KFSv0t7/9TWVlZfrDH/4QlkCBqJScrLI33tCCBQs0NDm5QS+1lw9as0YqKJDS0sIQHwCI/I3YtmGDVFwsJSdXjIAKShNyOABEAvkb1UaGk7sgBb0f2MVwRoYDkUX+RjU1HLft3F5SYr6SkhyMD01mT5GeliZlZNTyJM7jAEc1qBiem5urL774QldccYVuvvlmWZYlSfL5fBozZoweffRR5ebmhiVQIColJMgaP17bD203RE6O1Lq1tHOntGyZNHRoWCIEAPI3Ypq9XniPHmZ9zKA1IYcDQCSQv1GtGE7ughT0fmDfJMjIcCCyyN+opobjduVZXw4ckFq2dCQyhIg9RXrbtpLPV8uTOI8DHNXg/3Vdu3bVu+++qz179mj16tWSpB49eqhFixYhDw6IdQMGSHPnSosXUwwHEF7kb8Qq1gsHEMvI397GNOloCkaGA84hf6M+CQlSSopUVEQxPBbYI8OZIh2IXo2+BaVFixYaNmxYKGMB3Ke0VL7nnlPH77+XxoyREhMb9HK7GM664QAihfyNWGMXwxu8XngTczgARBL525uqjQwnd0EKej+wR4ZTDAecQ/6GpFqP21lZphjOuuHuZ48Mb9OmjidxHgc4Ks7pAABXKylRwiWX6GcPP2wWeGmgAQNMSzEcAIDGaXQxvIk5HACAcLKsipHhgWI4uQtS0PtBx46m3b/ffAEAHFLLcdue+cXO93CvytOk14rzOMBRFMMBBw0caFqK4QAANI69ZjjTpAMAYkl+vimIS0yTjsbJyJDsGZkZHQ4A0YdieOxgmnQg+lEMBxzUv79pN2+W9u51NhYAANwmP1/auNFsN3hkOAAAUcyeMjU+XkpNdTYWuBdTpQNA9LKL4UyT7n5BTZMOwFEUwwEHZWVJnTqZbUaHAwDQMKtWmbZlS/MFAECsqLxeuM/nbCxwL/t6w/r1zsYBAKjOXgaFkeHut2WLadu1czYOALWjGA44jHXDAQBonEavFw4AQJSzL4wzRTqawi6GMzIcAKIP06THDorhQPSjGA44jGI4AACNw3rhAIBYVXlkONBY9jTpjAwHgOjDNOmxobhY2r3bbLdv72wsAGpHMRxw2MCBpqUYDgBAwzAyHAAQqyiGIxQYGQ4A0Ytp0mODvV54crLUvLmzsQCoXYLTAQCulpysshdf1MKFCzUkOblRb1F5ZLhlsR4cAADBalIxPAQ5HACAcLGL4VWmSSd3QWrQfkAxHACiQC3HbaZJjw2Vp0iv87o+53GAoyiGA02RkCDrl7/UlrQ0DUlo3H+nPn2kuDhpzx5zJxlriwAAUD/LqiiGN2qa9BDkcAAAwmX/ftNmZ1d6kNwFqUH7gT1N+pYtUmmplJgYgfgAAFXVctxmmvTYsHmzaeu9ps95HOAopkkHHJaSIvXsabZ/+MHZWAAAcIvt280d9HFxUo8eTkcDAEBo2cXwZs2cjQPulpMjJSVJfn/FxXoAQHRgmvTYUHlkOIDoRTEcaIqyMvlefVXtPv9cKitr9NsMGWLa778PTVgAAMQ6e1R4ly5mba4GC1EOBwAgHPbtM22VYji5C1KD9oO4OKljR7PNVOkA4JBajttMkx4bgi6Gcx4HOIpiONAUxcVKOP98HXXvvVJxcaPfZvBg01IMBwAgOE1aL1wKWQ4HACAcahwZTu6C1OD9wJ4qff36MMcFAKhZLcdtiuGxwS6Gt29fzxM5jwMcRTEciAL2yPBFi5yMAgAA92jSeuEAAES5GtcMBxqhUyfTUgwHgOhiT5POmuHuxjTpgDtQDAeigF0MX7FCKix0NBQAAFyhySPDAQCIYqwZjlDp2tW0a9c6GwcAoCpGhscGiuGAO0RFMfyRRx5Rly5dlJKSoqOPPlpff/11UK/717/+JZ/PpzPPPDO8AQJh1qaN1Lq15PdLP/7odDQAEBzyN5y0bJlp+/Z1Ng4AcBvytzvUuGY40AgUw4HYQP6OPRTDY8PmzaalGA5EN8eL4S+99JKmTJmi6dOn67vvvtPgwYM1btw47dixo87XrVu3Tv/zP/+jESNGRChSIHx8PqZKB+Au5G84qbCw4oIuxXAACB752z0YGY5QsYvhP/3kbBwAGo/8HZvsYnhBgVRW5mwsaJwDBypuZqAYDkQ3x4vh999/vy699FJNmjRJ/fr108yZM5WWlqZnnnmm1teUl5frggsu0IwZM9StW7cIRguED8VwAG5C/oaTVqyQLEtq0ULKyXE6GgBwD/K3e7BmOELF/m+7caNUWupsLAAah/wdm+w1wyXp4EHn4kDjbd1q2szMipsbAESnBCd/eUlJib799ltNnTo18FhcXJxOPvlkzZ8/v9bX3XbbbcrJydHvfvc7ffrpp3X+juLiYhUXFwe+z8vLkySVlpaqNASfAuz3CMV7uZWn+6C0VImBzdImfbLs398nKUGLFvlVWloekvAixdP7wCH0AX0ghbYPorkfI5G/pfDmcPZXd/fB4sUmZ/bp41dZWSNzZghzuFu5eR8IFfqAPpDI3+Tv6LRvX4Ikn9LSSitSFLlLkrf2gxo1cD9o2VJKTk5QcbFPP/1UqlioiXl+HxB9IIW+D6K1L8nfMaCW43ZcnJSYmKDSUp/27ClVerpzIUZCLO4HGzaYaxNt21oqLa1neD/ncZJicz9oKK/3gVP529Fi+K5du1ReXq7c3Nwqj+fm5mr58uU1vuazzz7T008/rUVBDp+9++67NWPGjGqPv//++0pLS2twzLWZM2dOyN7LrbzYB76yMnW4+mpJ0qZ582QlNP6/VF5epqTR+u47v956a7biHJ+3oeG8uA8cjj6gD6TQ9EFBQUEIIgmPSORvKTI5nP3VnX3w1lt9JPVWevoGzZ79faPeI5Q53O3cuA+EGn1AH0jk75qQv51RWhqn4uLTJUlfffW+liwxF1fJXVXF+n5Qm8bsB61bj9amTZl66aVvNHjwznCHGDFe3Qcqow9C1wfRmsPJ3+5X13E7JeUUlZYm6623PlXnzt5YPDyW9oNPPmkv6UglJ+/S7Nlf1PlczuOqiqX9oLG83geRzt+u+h934MABXXjhhXryySfVqlWroF4zdepUTZkyJfB9Xl6eOnbsqLFjxyqr8lwkjVRaWqo5c+ZozJgxSkxMrP8FMcjrfVB66qkh+fvLyqQbb7RUVJSgPn3Gq0ePEAYZZl7fByT6QKIPpND2gX0XdixoTP6WwpvD2V/d3QfPPRcvSRozpqPGj2/f6PcJVQ53KzfvA6FCH9AHEvm7NuRv59hLwPp8ln75y7FVbpT2eu6SvLMf1KWh+8GAAfHatEnKyRmm8eOtCEQYXuwD9IEU+j6IlRxO/o5OtR23W7dO0IED0uDBI3Xsse4/PtclFveD5cvNSdqAAS01fvz4ep/PeVxs7gcN5fU+cCp/O1oMb9WqleLj47V9+/Yqj2/fvl1t2rSp9vw1a9Zo3bp1Ov300wOP+f1+SVJCQoJWrFih7t27V3lNcnKykpOTq71XYmJiSHe0UL+fG3m9D5r69ycmSgMGSN9+Ky1dmqi+fUMYXIR4fR+Q6AOJPpBC0wfR3IeRyN9SZHI4+6s7+8AeADFgQLwSE+Ob/H5u7INQ8vrfL9EHEn0gkb8PR/52Tn6+aTMzfUpOrvnvjPU+CAZ9EHwf2FOjb9iQoFjqMvYB+kAKXR9Eaz+Sv2PL4X3QrJlp8/Nj6/hcl1jaD7ZtM22HDnFKTAx+mtdY6oPGog/og0jnb0cnYk5KStLQoUP14YcfBh7z+/368MMPNXz48GrP79OnjxYvXqxFixYFvs444wydeOKJWrRokTp27BjJ8AGprEy+2bOVu2CBGdrdREOGmLYBsxgBQMSRv+GksjJp1Sqz3a9f094olDkcAKId+ds99u83rX2BPIDcBalR+4FdDP/ppzDGBSAsyN8xoI7jtp3r7dwPd9myxbTtg5mwjvM4wFGOT5M+ZcoUTZw4UUceeaSGDRumBx98UPn5+Zo0aZIk6aKLLlL79u119913KyUlRQMGDKjy+uzsbEmq9jgQEcXFSjjzTB0jqfSGG6TU1Ca9HcVwAG5B/oZT1qyRSkultDSpSddxQpzDAcANyN/uUGsxnNwFqVH7Qdeupl27NryhAQgP8rfL1XHcPvRPQzHcpexieLt2QTyZ8zjAUY4Xw3/9619r586dmjZtmrZt26YhQ4bo3XffVW5uriRpw4YNiotzdAA7EDGDB5uWYjiAaEf+hlOWLTNtnz4SuxgANAz52x3sC+L2BXKgqexiOCPDAXcif8cuRoa7W4OK4QAc5XgxXJImT56syZMn1/izjz/+uM7XPvvss6EPCHDIoEGm3bRJ2r1batnS2XgAoC7kbzjBLob37etsHADgVuTv6Ldvn2mrjQwHGsmeJn3XLungQSkjw9l4ADQc+Ts22bnezv1wD8uiGA64CbeMAVGkWbOKD6mMDgcAoDqK4QCAWFfrNOlAIzVrJjVvbraZKh0Aogcjw91r3z6pqMhst23raCgAgkAxHIgyRxxh2u++czYOAACi0dKlpu3Xz9k4AAAIF6ZJRzjYN94zVToARA+K4e5ljwpv2VJKSXE2FgD1oxgORJkjjzTtggXOxgEAQLTx+6Xly802I8MBALGKadIRDva64YwMB4DoYd/4RjHcfTZvNi1TpAPuQDEciDJ2Mfzbb52NAwCAaLNpk5SfLyUkSN27Ox0NAADhwTTpCAe7GM7IcACIHowMdy/WCwfcJcHpAABXS0pS+UMPacmSJeqblBSSt/zZz0y7Zo20d2/Ful4AAHidvV54z55SYmIT3ywMORwAgFCotRhO7oLU6P3AniadkeEAEGF1HLftXG/PCgP3aPDIcM7jAEcxMhxoisRE+a+4QmvHjw/BVXmjRYuKD6mMDgcAoIJdDA/JFOlhyOEAAIRCrWuGk7sgNXo/YJp0AHBIHcdtRoa716ZNpu3QIcgXcB4HOIpiOBCFmCodAIDqli41bb9+zsYBAEA4sWY4wsG+6f6nnyS/39lYAAAGxXD3sovhHTs6GweA4FAMB5qivFy+Tz5Ry8WLpfLykL3t0KGmXbAgZG8JAIDrhXRkeJhyOAAATVXrNOnkLkiN3g+6dJHi46XCwop1TgEAEVDHcdueBebAAW5UcpuNG00b9MhwzuMAR7FmONAURUVKGDNGx0sqnTxZSkkJydvaI8MphgMAYFiW9OOPZnvAgBC8YZhyOAAATVXrNOnkLkiN3g8SE81U6atXS6tWNeDiPQCgaeo4bts3vlmWKYgzK4x7NHhkOOdxgKMYGQ5EoZ/9zLTr1km7dzsaCgAAUWHLFjNtbHy81Lu309EAABAelsU06Qifnj1Nu2qVs3EAAIyUFCkpyWzb+R/Rr6Cg4po9N5cB7kAxHIhC2dlSjx5mm3XDAQCQFi82ba9eUnKys7EAABAu+fkVM2dSDEeoUQwHgOjDuuHus3mzadPTOV8D3IJiOBClmCodAIAKIZ0iHQCAKLV3r2kTE80FViCUKIYDQPShGO4+9nrhHTtKPp+zsQAIDsVwIErZxXBGhgMAUFEMHzjQ2TgAAAinPXtM26IFF1cRehTDASD6ZGeblmK4e9jrhTNFOuAeFMOBKDV0qGkZGQ4AQMU06YwMBwDEMntkePPmzsaB2GQXw9eskfx+Z2MBABiMDHefyiPDAbgDxXAgSv3sZ6bdsEHascPZWAAAcFJ5ubR0qdmmGA4AiGWVR4YDodapk5mCv7i44kI+AMBZdjF83z5Hw0ADMDIccJ8EpwMAXC0xUeV3363ly5erV2JiSN86K0vq00davlz6+mvptNNC+vYAALjGTz9JRUVSaqrUrVuI3jSMORwAgMaqc2Q4uQtSk/aDhARzLrVihZkqvXPnMMUIAKhQz3GbkeHu06iR4ZzHAY5iZDjQFElJ8t9wg1b/4hdSUlLI3/6YY0z75Zchf2sAAFzDniK9Xz8pPj5EbxrmHA4AQGPUOTKc3AWpyfuBPVX66tUhjgsAULN6jtsUw92nUSPDOY8DHEUxHIhiw4eblmI4AMDLfvzRtEyRDgCIdawZjnDr0cO0q1Y5GwcAwMjONi3FcPdgzXDAfSiGA01RXi7fggXKXrXKLGgaYvbI8K++CsvbAwDgCnYxfODAEL5pmHM4AACNUefIcHIXpCbvB/bIcIrhABAh9Ry3WTPcXQoKKs7XGjQynPM4wFGsGQ40RVGREo49VidIKr3kEiklJaRv37+/lJEhHTwoLV0a4iIAAAAuYU+THtKR4WHO4QAANEadI8PJXZCavB9QDAeACKvnuM006e5iT5Genl7xbxcUzuMARzEyHIhi8fHSsGFmm6nSAQBeVFRUcbGWadIBALGOadIRbnYx/KefGJgGANGAYri72MXwjh0ln8/ZWAAEj2I4EOXsqdIphgMAvGjFCnOhtnlzqV07p6MBACC86pwmHQiBjh2l5GSppERav97paAAAFMPdxS6GN2iKdACOoxgORDm7GD5/vrNxAADghMpTpHPXNQAg1jEyHOEWH18xOnz5cmdjAQBI2dmmZc1wd9i40bQdOzobB4CGoRgORLmjjzbtsmWcFAEAvCcs64UDABClGBmOSOjb17TLljkbBwCg4gY4+4Y4RDdGhgPuRDEciHI5OVL37mb766+djQUAgEj7/nvTDh7sbBwAAIRbeXnFFKmMDEc4UQwHgOhh3wBXWCgVFTkbC+rHyHDAnSiGAy7AVOkAAK9atMi0Q4Y4GQUAAOG3f79kWWabYjjCiWI4AESPrKyKJcEYHR79NmwwLcVwwF0SnA4AcLXERJX/6U9atWqVuicmhu3XHHOM9I9/SF9+GbZfAQBA1Nm2Tdq+XYqLkwYODPGbRyiHAwAQLPsCeHq6lJRUwxPIXZBCsh/062fapUvNDRh2EQYAEAb1HLfj4sxNcHv2mK+2bR2IEUGxLGn9erPduXMDX8x5HOAoRoYDTZGUJP+0aVpx3nm1XK0IjeHDTTt/vpk6DwAAL7BHhffqJaWlhfjNI5TDAQAIVr3rhZO7IIVkP+jVyxRf9u0zNx4CAMIoiOO2nfsZGR7d9u2T8vLMdoOL4ZzHAY6iGA64wODBUkaGmTbvxx+djgYAgMiwi+FHHOFoGAAARIR9AZwp0hFuKSlS165mm6nSAcB5du63b4xDdLJHhbduHYYb9gGEFcVwoCn8fmnJEmVu2GC2wyQhQTr2WLP96adh+zUAAESVsK4XHqEcDgBAsOodGU7ughSy/YB1wwEgQoI4btu5n2J4dGv0FOkS53GAwyiGA01RWKjEI47Q6GuukQoLw/qrRo407bx5Yf01AABEjbAWwyOYwwEACEa9I8PJXZBCth9QDAeACAniuM006e6wbp1pu3RpxIs5jwMcRTEccIkRI0z76aeSZTkbCwAA4ZafL61cabYHD3Y2FgAAIqHekeFACFEMB4DowTTp7tCkkeEAHEUxHHCJYcOkpCRp2zZp9WqnowEAILwWLzY3f7VtK+XmOh0NAADhZ18AZ81wRIJdDF+61Nk4AABMk+4WFMMB96IYDrhESoopiEusGw4AiH1hnSIdAIAotGuXaVu3djYOeINdDN+6Vdq/39lYAMDrmCbdHexp0imGA+5DMRxwEdYNBwB4BcVwAIDX7Nxp2latnI0D3tCsmdSundlmqnQAcBYjw93BHhneqDXDATiKYjjgIhTDAQBeQTEcAOA19shwiuGIlH79TLtkibNxAIDXsWZ49Dt4UNq922wzMhxwH4rhgIsMHy7FxUlr10qbNjkdDQAA4VFeLv3wg9mmGA4A8AqmSUekDRxo2sWLnY0DALyOadKjnz0qvFkz8wXAXRKcDgBwtcRElU+Zop9++kldEhPD/uuysqQjjpC+/dasG37eeWH/lQAARNyKFVJhoZSeLnXvHqZfEuEcDgBAfeodGU7ughTS/WDQINPaNyECAMIgiOM206RHvyZPkc55HOAoRoYDTZGUJP///Z+WXnyxlJQUkV9pT5X+8ccR+XUAAETcggWm/dnPpPj4MP0SB3I4AAC1KS6WDhww27UWw8ldkEK6H1QuhltW00MDANQgiOO2PU363r2S3x+50BA8uxje6CnSOY8DHEUxHHCZ0aNN++GHzsYBAEC42MXwI490Ng4AACLFHhUeH8/Um4icfv3MUmy7d0tbt/5/e3ceH1V1/3/8PVlJCCGsISCrCMq+qBgri7KjFtdStCqKtC5Y/amo2LrbgnW3Kq6o/Ra3VtG2AooIiIILiCiKCMguYd8Tss35/XGchIEACZmZMzP39Xw85nFvJjd3PnO43PedOfee67oaAPCuQGe4MdKuXW5rQcWq3RkOwCk6w4Hq8PulVauUtnFjxE7b69XLfkGyYoW0alVEXhIAgIj68ks7DWtnuIMMBwDgUPYfIj3hUN/UkF2QQrod1KghtW1r5xkqHQDCpBL77Ro1pPR0O89Q6dEp8D38UQ+TznEc4BSd4UB1FBQouU0bDfjDH+zNTSMgM1Pq0cPOc3U4ACDeFBdLX39t5086KYwv5CDDAQA4lCPeL1wiu2CFeDvgvuEAEGaV3G8Hrg6nMzw6VfvKcI7jAKfoDAdiUN++dkpnOAAg3nz/vbRvnx0i9thjXVcDAEBkbN5sp4ftDAfCgM5wAIgOdeva6fbtbutAxVautNOjvjIcgFN0hgMxaP/OcGPc1gIAQCgFhkjv3v0ww8QCABBnKnVlOBAGdIYDQHQIdIZzZXj02bNH2rjRznPSPhCb+IoRiEGnnGLvI7Npk7R4setqAAAInfnz7TSs9wsHACDK0BkOVzp2tNMffpCKitzWAgBexjDp0eunn+y0bl0pK8tpKQCOEp3hQAxKTZV69rTzDJUOAIgngc7wsN4vHACAKBPoDG/QwG0d8J5mzaTMTKm4WFq61HU1AOBd9erZ6datbuvAwVassFOuCgdiF53hQIzq189OP/zQbR0AAIRKYWH5EJ1cGQ4A8BLuGQ5XfL7yodIXLXJbCwB4WeAYIHCCHKIHneFA7KMzHIhRgfuGz55tz+AGACDWffONzbR69aTmzV1XAwBA5DBMOlzq0sVOFy50WgYAeFpgdJjACXKIHnSGA7EvyXUBQExLSlLpVVdpzerVOiYpsv+dOne2X5Rs2SLNmyf16hXRlwcAIOT2v1+4zxfmF3OY4QAAHKhSneFkF6SwbAfdu9tp4FgMABBCldxv0xkevQKd4a1aVWMlHMcBTnFlOFAdqanyP/GEvvnDH+yNvCMoIUEaNMjOT5kS0ZcGACAsvvjCTiMyRLrDDAcA4ECV6gwnuyCFZTsIdIYvXCj5/SFZJQAgoJL7bTrDo1dIrgznOA5wis5wIIYNGWKndIYDAOLBvHl2esopbusAACCS/P7yL74DX4QDkXTCCVJamrR7t7RsmetqAMCbAifE0RkeXUpKpNWr7TzDpAOxi85woDqMkTZvVsrOnXY+wgYMsFeIf/uttHZtxF8eAICQ2bpVWrrUzkekM9xxhgMAELB9u1RcbOezsw+zINkFKSzbQVJS+X3DGSodAEKskvvtwAlxW7YQ89FkzRqptNRezN24cTVWxHEc4BSd4UB15OcruUkTDb7sMik/P+IvX69eeYfB1KkRf3kAAELms8/stE2bIwwRGyqOMxwAgICNG+20Tp0jjJpJdkEK23YQGCp9wYKQrRIAIFV6vx3oDC8slPbsiVBtOKL97xeeUJ3eNI7jAKfoDAdiHEOlAwDiQWCI9Nxct3UAABBpeXl2etirwoEwO/FEO+XKcABwo2ZNe8sKiaHSo0lI7hcOwDk6w4EYF+gMnzHDnjkIAEAsCnSGn3qq2zoAAIi0wJXhjRq5rQPeFrgyfOFCex97AEDkcd/w6ENnOBAf6AwHYlyXLlJOjh0+55NPXFcDAEDVlZZKX3xh57kyHADgNYErw+kMh0vHH2+vSNyzR/rxR9fVAIA3BYZKpzM8etAZDsQHOsOBGOfzSYMH2/n33nNbCwAAR2PxYvvFa61aUrt2rqsBACCyGCYd0SApSera1c4zVDoAuBHoDN+yxW0dKLd8uZ22auW2DgDVQ2c4EAfOOstO33lHMsZpKQAAVNncuXbao4eUmOi2FgAAIo1h0hEtAvcN//JLt3UAgFdxZXh08fulZcvsfNu2bmsBUD10hgNxYMAAO5zZypXSN9+4rgYAgKrhfuEAAC/jynBEi1NOsdPAsRkAILK4Z3h0WbNG2rdPSk6WWrRwXQ2A6khyXQAQ05KS5L/kEq1bt045Se7+O9WsKQ0caK8Mf/ttqXNnZ6UAAFBlgS9cI3q/8CjJcAAAKn1lONkFKazbQeDExIULpfx8KT09pKsHAG+qwn6bK8Ojy48/2mnr1vZ2ItXCcRzgFFeGA9WRmqrSF1/Uwuuvl1JTnZZy7rl2Onmy0zIAAKiSDRvsPbh8PjtMesREUYYDALwtcGX4ETvDyS5IYd0OmjWTcnKkkhLuGw4AIVOF/Tb3DI8uS5faaUiGSOc4DnCKznAgTpx1lr3P6rffSitWuK4GAIDK+fhjO+3cWapTx20tAABEWmlp+dVfDJMO13y+8qvDGSodACKPK8OjS0g7wwE4FRWd4U899ZRatGihGjVqqEePHvriiy8Ouezzzz+vnj17qk6dOqpTp4769et32OWBsDJG2rtXifv22XmH6taV+vSx81wdDiASyG+EQqAzvFevCL9wFGU4AEQS+R1dtm61HeI+X/kX4IdEdkEK+3YQuG3N3LkhXzWAaiC/Y1gV9tvcMzy6hLQznOM4wCnnneFvvPGGbrzxRt1111366quv1LlzZw0cOFCbNm2qcPlZs2Zp+PDhmjlzpubNm6emTZtqwIABWr9+fYQrByTl5yu5Th2d9dvf2htqORYYKv3tt93WASD+kd8Ildmz7bR37wi/cJRlOABEAvkdfQJDpNerJyUnH2FhsgtS2LeD/a8M57t6IDqQ3zGuCvvthg3tdOPGCNSFIwp0hrdpE4KVcRwHOOW8M/yRRx7RqFGjdPnll6tdu3Z65plnlJ6erokTJ1a4/KRJk3TNNdeoS5cuOv744/XCCy/I7/drxowZEa4ciD7nnGOn8+ZJP//stBQAcY78Rihs2SJ9952dj/iV4QDgQeR39Al82c0Q6YgW3bpJKSn2qkRuwQZEB/LbO3Jy7HTvXmnPHre1eN3evdLatXaeYdKB2Oe0M7yoqEgLFixQv379yp5LSEhQv379NK+SNyfKz89XcXGx6tatG64ygZjRpEn5Wdxvvum2FgDxi/xGqASGSG/fvnw4OABAeJDf0SlwkV7jxm7rAAJSU6Xu3e089w0H3CO/vaVWLalmTTu/YYPbWrxu2TI7rVuX7yuAeJDk8sW3bNmi0tJSZR9wCnR2drZ++OGHSq3j1ltvVePGjYMOCPZXWFiowsLCsp937dolSSouLlZxcfFRVl4usI5QrCtWeboNiouVXDZbLEVBG/zmNwmaOzdRkyb5de21pRF5TU9vA7+gDWgDKbRtEM3tGIn8lsKb4Wyv0dEGM2cmSEpUz56lKi72R/bFozDDIy0atgHXaAPaQCK/yW+31qyxWdi4sV/FxUf4/EZ2SYrP7aBKIrAdnHJKgubNS9Ts2X799reR+V6hKjy/DYg2kELfBtHaluR3HKjifrtRoyStWOHTunUlatEifu5XEWvbwXff+SQlqU2bShyjVQbHcZJibzsIB6+3gav8dtoZXl3jx4/X66+/rlmzZqlGjRoVLjNu3Djdc889Bz3/wQcfKD09PWS1TJ8+PWTrilVebIPEfft01i/zH330kUoPsR1GUlZWqhISBmj+/AS9+OJHysnZG7HX9uI2cCDagDaQQtMG+XF8/6DK5LcUmQxne3XbBv/7Xx9JtZWR8ZWmTIns/T2iMcNd4f8BbSDRBhL5fSTkd3jMm9dJUksVFCzTlCmH79Qgu4LF03ZQFZHYDtLSsiWdoqlT8zVlSvQOq+zVbWB/tEHo2iBeM5z8dq+q++2UlNMk1dOUKQu1a1f83QczVraD995rI+kEpaev05QpC6u9Po7jgsXKdhBOXm+DSOe3087w+vXrKzExURsDN8n6xcaNG9WoUaPD/u1DDz2k8ePH68MPP1SnTp0OudzYsWN14403lv28a9cuNW3aVAMGDFBmZmb13oDsWQfTp09X//79lZycfOQ/iEOeboO95R3NZ5xxhpKzstzVsp9Jk6Tp06W8vNM1cmT4r7Tz9DbwC9qANpBC2waBs7CjUSTyWwpvhrO9um+D7dul1avtoegf/9hFjRp1iWwBUZrhkeR6G4gGtAFtIJHf5Ldbzz+fKEnq3bu1hgxpdfiFyS5J8bkdVEkEtoNTT5XGjzf6+ecMde48RE2ahPwlqsXz24BoAyn0bRCtGU5+x4Eq7rf/8Y9ELVki5eR005AhXcJbWwTF2nbw2mv2GO2MM5poyJCc6q+Q4zhJsbcdhIPX28BVfjvtDE9JSVH37t01Y8YMnXPOOZIkv9+vGTNmaPTo0Yf8u7/97W/6y1/+ovfff18nnnjiYV8jNTVVqampBz2fnJwc0g0t1OuLRZ5sg/3ebzS9/4susp3hb7yRqLvuSpTPF5nXjaY2cIU2oA2k0LRBNLdhJPJbikyGs726a4O5cyVjpDZtpKZNHfwbRGmGu+D19y/RBhJtIJHfh0J+h9fPv1zw1bx5opKTEw+/MNkVxLNtEIHtoEEDqWtXacEC6dNPk3XxxSF/iZDw7DawH9ogdG0Qre1IfseBKu63Aycgbd5ciWODGBQr28GSJXbaqVOI/h04jgtCG9AGkc7vhGq/UjXdeOONev755/XKK69oyZIluvrqq7V3715dfvnlkqRLL71UY8eOLVv+gQce0B133KGJEyeqRYsWysvLU15envbs2ePqLcDLEhPlP+88rT/1VCkxeg5Ozj1XSk2VfvhBWrTIdTUA4hH5jeoKjIZ0mNvWhVeUZjgAhBP5HX3Wr7fTSl15S3ZBith2cPrpdjpzZtheAkAlkd8xror77ZxfLkLesCHMdeGQSkrs9+qS1KFDiFbKcRzglPN7hg8bNkybN2/WnXfeqby8PHXp0kXTpk1Tdna2JGnNmjVKSCjvs58wYYKKiop0wQUXBK3nrrvu0t133x3J0gGpRg2Vvv665k+ZoiFRdJ+P2rWlM8+U3n5bevVVqUsX1xUBiDfkN6or0Bk+YICjAqI0wwEgnMjv6FJYKG3aZOePOaYSf0B2QYrYdnD66dJDD0mzZoXtJQBUEvkd46q43w6Mfp+XF+a6cEjLl0tFRVLNmlLz5iFaKcdxgFPOO8MlafTo0Ycc1mXWAUfdq1atCn9BQBy4+GLbGf7Pf0p//auUFBX/2wHEE/IbR2vVKmnZMnsydJ8+rqsBAG8hv6NH4Iqv1FSpXj23tQAHOu00e6y2YoW0dq3UtKnrigBvI7+9gyvD3Vu82E7btZMSnI+tDCAU+K8MxKmzzrL3+dqwQZo61XU1AACUC1wV3qOHHc0EAAAvWrfOTps0kXw+t7UAB8rMlLp3t/MMlQ4AkUNnuHvffWenIRsiHYBzdIYD1bF3r5JTUjT0nHOkvXtdVxMkJUW65BI7P3Gi21oAANif8yHSpajOcACAN+zfGV4pZBekiG4HgfuGz5gR1pcBgPhWxf12YJj0LVuk4uLwloaKBa4MD2lnOMdxgFN0hgNx7Ior7PR//5M2bnRbCwAAklRaWv6Fav/+bmsBAMCl9evttFL3CwccCJy4+P77kt/vthYA8Ir69e1tKoyRNm1yXY03haUzHIBTdIYDcax9ezsEbUmJ9I9/uK4GAABp4UJp2zY79ObJJ7uuBgAAdwJXhtMZjmj1q19JNWvak+sXLXJdDQB4Q2Ki1LChnc/Lc1uLFxUWSsuW2fn27d3WAiB06AwH4tzIkXY6caI9oxAAAJfef99OTz9dSkpyWwsAAC6tWWOndIYjWqWmSn372vmpU93WAgBe0rixnQZGkUHkLF1qR7TLyir/dwAQ++gMB+LcsGFSerr0ww/SJ5+4rgYA4HXvvWengwe7rQMAANdWrbLTli2dlgEcVuCYjc5wAIicpk3tdO1at3V40f5DpPt8bmsBEDp0hgNxLjNTuugiO//3v7utBQDgbZs2SZ99ZufPOsttLQAAuLZypZ3SGY5oNmiQnc6bJ+3Y4bQUAPAMOsPdCdwWpGNHt3UACC06wwEPuO46O3377fL70gEAEGlTp9pbdnTtKjVp4roaAADc2blT2r7dzjdv7rYW4HBatJCOP94OGfvhh66rAQBvCHSGB26pgsj56is77drVbR0AQovOcKA6EhPlHzxYed27S4mJrqs5pE6dpF697IfXZ591XQ0AwKv++187Pftst3VIipkMBwDEp9Wr7bRePalWrUr+EdkFycl2EBgqPXC7GwBAFRzFfrtZMzvlyvDIMkZauNDOd+sW4pVzHAc4RWc4UB01aqj03Xf1+R13SDVquK7msAJXhz/3nFRY6LYWAID3FBVJ779v56NiiPQYynAAQPw5qiHSyS5ITraDwLHbf/8rlZRE5CUBIH4cxX6bYdLdWLdO2rpVSkqy9wwPKY7jAKfoDAc84pxzpGOOsfdrffNN19UAALxm9mxpzx6pUSOpe3fX1QAA4NaqVXbaooXLKoDK6dVLqlvXdhB88onragAg/gU6w9evtyN9IjICQ6S3by+lprqtBUBo0RkOeERSknT11Xb+0UftsC8AAETK//5np2eeKSVwBAoA8LijujIccCQpSRo61M6//bbbWgDAC3Jy7EjaJSVSXp7rarwjMEQ69wsH4g9fRQLVsXevkrKydOawYdLeva6rOaI//EFKT7fBPn2662oAAF5hjDR5sp2PivuFSzGX4QCA+HJUV4aTXZCcbQfnnmunkydzcj0AVMlR7LeTkqTGje08Q6VHTlg7wzmOA5yiMxyoJl9+vpJi5Cbc9epJv/+9nR83zm0tAADv+OIL+wE+I0MaMMB1NeViKcMBAPEl0Ble1SvDyS5IbraD/v2lmjXt/VTnz4/oSwNAzDua/Tb3DY+8wDDp3bqFZ/0cxwHu0BkOeMxNN0nJydKsWdJnn7muBgDgBf/6l52edZaUlua2FgAAXDNG+uknO889wxEratSQhgyx82+95bYWAPCCZs3sdM0at3V4xZYt9oQvn0/q3Nl1NQBCjc5wwGOOOUb63e/s/PjxbmsBAMQ/Y6R//9vOX3ih21oAAIgGGzdKu3dLCQlSq1auqwEq7/zz7fSNNxgqHQDCjSvDI+vLL+30uOOkWrXc1gIg9OgMBzzollvsWW7vvistXuy6GgBAPJs/X1q92g6rOXiw62oAAHBv6VI7bdFCSk11WgpQJWefbW97s2qVNHeu62oAIL41b26ngVurILwCI6jm5rqtA0B40BkOeNDxx5ef0X3nnW5rAQDEN4ZIBwAg2I8/2mnbtm7rAKoqPb38u4R//tNtLQAQ7wKjx6xY4bYOrwh0hvfo4bYOAOFBZzjgUffcY68OnzzZXrUHAECoGVPeGX7BBW5rAQAgWgSuDG/Txm0dwNEI3HbtjTekoiK3tQBAPDv2WDv96SduTRFufr/0+ed2/pRT3NYCIDzoDAeqIyFB/l69tKV9e3vDtxjSrl35h9g//9ltLQCA+PTJJ3ZIt1q1pCFDXFdzgBjOcABAbAtcGV7lznCyC5Lz7eD006WcHGn7dmnq1Ii/PADEnqPcb7doYRfPz5fy8sJXHuyJijt32tHsOnYM04twHAc4xf86oDrS0lT64Yf69C9/icmxX+++W0pKkt5/X5ozx3U1AIB4849/2OmFF9phNaNKjGc4ACB2HXVnONkFyfl2kJgoDR9u5wPHegCAwzjK/XZKitS0qZ1nqPTwCgyRftJJ9rvysOA4DnCKznDAw1q1kkaOtPO33caQOwCA0CkokN58085feqnbWgAAiBbFxeVfaHPPcMSqESPs9D//4WpFAAin1q3tlM7w8Ap0hjNEOhC/6AwHPO6OO+zVenPn2nt+AQAQCv/5j7Rrl9S8udSzp+tqAACIDqtWSSUl9oKgJk1cVwMcnY4dpdxcuy1PnOi6GgCIX4H7hi9f7raOeEdnOBD/6AwHqmPvXiU1bqxBl14q7d3rupqj0qSJNHasnR8zxt6HBgCA6goMm3nJJVF6O6w4yHAAQOz5/ns7bdPmKPKR7IIUNdvBVVfZ6XPPSaWlzsoAgOhXjf12oDOcK8PDZ9s26dtv7XxubhhfKEryG/CqaPxqEogpvi1blLprl+syquWmm+yVe+vWSQ8+6LoaAECs+/ln6f337fwll7it5XDiIcMBALEl8GVrx45H9/dkF6To2A4uvFCqU0davVr64AOnpQBA1Dva/Tad4eE3Z469dejxx0uNGoX3taIhvwGvojMcgNLSyjvBH3hAWrPGbT0AgNj24ov2CqFf/cpe+QYAAKzqdoYD0SItTbrsMjv/9NNuawGAeMUw6eE3e7ad9u7ttg4A4UVnOABJ0gUXSL16SQUF0ujR9ow4AACqqqTEDpcpSVdf7bYWAACiDZ3hiCeBodLfe09autRtLQAQj447zk63bZM2b3ZbS7yaNctO+/RxWQWAcKMzHIAkyeeTJkyQkpOl//5X+ve/XVcEAIhF771nb7tRv7490QoAAFiFhdKPP9r5Tp3c1gKEQtu20q9/bU+mf+QR19UAQPypWVNq2dLOf/+921ri0fbt0tdf23muDAfiG53hAMq0ayfdfrudv+46e0AAAEBVTJhgp1dcIaWmuq0FAIBosmSJvY1InTpS48auqwFC4+ab7fSVV6SNG93WAgDxqF07O6UzPPQ++cSe0NWmjZST47oaAOFEZziAIGPHSiecYD/EBj7UAgBQGcuXS++/b0cb+cMfXFcDAEB0+eYbO+3Y0WYlEA9OO03q0cOOfPDkk66rAYD4Q2d4+MycaacMkQ7EPzrDgepISJC/e3dtb91aSoiP/06pqdILL9gvZyZOlN5913VFAIBY8eijdjp4sNSqldtajigOMxwAEN0Cw3Ae9RDpZBekqNsOfD5pzBg7/+ST0o4dTssBgOhTzf02neHhM22anfbtG4EXi7L8BryG/3VAdaSlqXTePH380ENSWprrakLm1FOlm26y81deKW3Y4LYeAED027JFeuklOx8TI4vEaYYDAKLXl1/a6YknHuUKyC5IUbkdnHOO7azZsaP85EgAwC+qud9u395O6QwPrdWr7S1sEhKk/v0j8IJRmN+Al9AZDqBC998vdeliOzdGjJD8ftcVAQCi2VNPSQUFUvfuDDEGAMCBSkqkr76y8yed5LYWINQSE6V777Xzjz4qbd3qth4AiCfHH2+neXnStm1ua4kngavCc3OlOnXc1gIg/OgMB1Ch1FRp0iSpRg3pgw84uxsAcGj5+eX3iBwzhvugAgBwoCVLbF5mZEht27quBgi9c8+VunaVdu+WHnzQdTUAED9q1ZKaNbPz333ntpZ4EugMHzTIbR0AIoPOcKA68vOVdNxx6j9qlP1mI860ayc9/LCdv/VWadYsp+UAAKLUxIl2JJEWLaTzz3ddTSXFeYYDAKLLF1/Y6Ykn2qtojwrZBSlqt4OEBOm+++z8E09I69a5rQcAokYI9tudO9vpwoUhrMvDioqkDz+084MHR+hFozS/Aa+gMxyoDmPkW71a6Zs3S8a4riYsrr5auvhiqbRUGjaMD7QAgGAFBdJf/2rnb7lFSkpyW0+leSDDAQDRI3C/8GoNkU52QYrq7WDIEOm00+zx4S23uK4GAKJECPbb3bvb6YIFIazLw+bMkfbskRo2tKOaREQU5zfgBXSGAzgsn0967jl7BuKmTdIFF0j79rmuCgAQLSZMkDZskJo3l0aOdF0NAADRad48O+V+4YhnPp+9Ktznk157TfrkE9cVAUB8oDM8tN56y05//Ws7sgmA+Md/dQBHlJ4uvf22VKeO9Pnn0ogRkt/vuioAgGt790rjx9v5O+6QUlLc1gMAQDTatk369ls737On21qAcOvaVbrySjv/xz/aUeYAANXTrZudLlnCCNvVVVpqv+eW7EVfALyBznAAldKqlfTvf0vJydIbb0i33ea6IgCAa48/Lm3ebDPi0ktdVwMAQHSaM8eOhtmmjdSoketqgPD7y1+k2rXtvW0ff9x1NQAQ+xo3tscQfr+0aJHramLb3LnSxo1SVpZ0+umuqwEQKXSGA6i0M86QXnzRzj/4oPTkk27rAQC4s2FD+b3C773XniwFAAAONnu2nfbp47QMIGIaNLDfGUjSn/4kLVvmth4AiAcMlR4a+w+Rzuh2gHfQGQ6gSi65RLr/fjv/xz9KL7/stBwAgCO3326HSe/RQxo+3HU1AABEr0BneO/ebusAIunKK6W+faV9++w8t1oDgOo56SQ7nTfPbR2xrLTUjnwqMUQ64DV0hgPV4fPJnHCCdjVtKvl8rquJmNtvl667zg71d8UV0qRJ3nnvAAB7JnrgZKjHHpMSYvGI0qMZDgCIrG3bpK+/tvO9elVzZWQXpJjZDnw+6YUXpJo1pY8/lh55xHVFAOBIiPbbp51mpx9/bL+TRdXNmCGtXy/VqSMNGBDhF4+R/AbiVSx+dQlEj/R0lSxapJl//7uUnu66mojx+ex9v666yh58jRyZqNmzm7guCwAQAaWl0jXX2PmLL5ZOOcVtPUfNoxkOAIis99+3V8S2aycdc0w1V0Z2QYqp7aBFi/JO8LFjpc8+c1oOALgRov32KadISUnSunXS6tUhrM9DAif1X3SRlJoa4RePofwG4hGd4QCOis8nPfVUYLgznx57rLuefppdCgDEuyeekL74QsrMlB54wHU1AABEtylT7PTMM93WAbgyapQ0bJhUUmKn27a5rggAYlPNmuX3DZ8zx20tsWjHDmnyZDs/YoTLSgC4QM8VgKOWkCA9+6x01VWlMsanG25I1J13MlQPAMSrn36S/vxnO//QQ1ITBgUBAOCQSkulqVPtPJ3h8CqfT3ruOal1a2nNGmn4cNsxDgCoup497ZTO8Kp74w1p3z6pffvykwoAeAed4UB15OcrqXNnnX7ddVJ+vutqnEhIkB5/3K/hw5dIku67T7r8cntwAQCIH6WldjSQ/HypTx87H9PIcABAmH3+ubR1q1S7tnTqqSFYIdkFKSa3g8xM6V//sqPCfvCB9Mc/chI9AA8J4X67Vy87nTGD/WhVGCM9+aSdv+IKR7fsjsH8BuIJneFAdRgj35Ilyly71tNHID6fNGzYj3rqqVIlJEivvGI7Sn7+2XVlAIBQeeABaeZMOzTb8887+vAYSmQ4ACDM3nzTTocMkZKTQ7BCsgtSzG4HXbpIr75qjyEnTJAef9x1RQAQISHcb/fpY48pfvpJWrYsNOV5wcyZ0uLF9qSsK65wVESM5jcQL+gMBxAyo0b5NW2aVKeOvQrixBOlTz5xXRUAoLrmzZPuvNPOP/mkHeYSAAAcWmmpHY5TssNCA5CGDpX+9jc7///+nzRxott6ACDW1Kol9e5t56dMcVtLLHniCTu97DIpK8tpKQAcoTMcQEj17y99+aW9/8qGDfYA7Z57uCcYAMSqzZul3/7Wfqk/fLj98AgAAA5v9mwpL8+eKDxwoOtqgOhx003SDTfY+SuvtFeLAwAqb8gQO33vPbd1xIqlS6X//MfOX3ed21oAuENnOICQO/ZYexXhpZdKfr909912GJ+VK11XBgCoiqIi6bzzpDVr7NXgzzwTB8OjAwAQAf/4h52ef76UkuK2FiCa+HzSI49IV19tR4m99FLppZdcVwUAsSPQGT57trRzp9taYsH999u8Ofts6YQTXFcDwBU6wwGERa1a9t7hkyZJmZnSp59KHTrYD71cJQ4A0c8Y6Zpr7O0uMjPtmdSZma6rAgAg+m3dWj5E+siRbmsBopHPZ2+9M3KkHX3oiiukceO4hSoAVEabNlK7dlJxsTR5sutqotvSpeUjkNx9t9NSADhGZziAsLroIunrr+1w6fn5dki0Hj2kBQtcVwYAOJw775RefFFKSLBf6HMGNQAAlfPyy9K+fVKXLvazD4CDJSRIzz8v3Xqr/fn22+3V4kVFbusCgGjn89nvWyV7ERIO7e677ailv/611K2b62oAuERnOFAdPp9M8+bKb9CAcWMPo2VLaeZM26lSp4701VfSSSfZ+86uW+e6OgDAgR580A4lJtmrdgYNcltPWJDhAIAwKC6WnnrKzl9zTYgjhuyCFFfbgc8njR8vPfqonX/2WXsi/fr1risDgBAKw357+HA7/egjacOGkKwy7nzyifT667bJ77nHdTWKq/wGYhGd4UB1pKerZNkyTX/+eSk93XU1Uc3ns0OfLVki/e53dvizf/xDOu446U9/krZvd10hAECSHn5YuuUWOz9+vL1CJy6R4QCAMJg0SVq5UmrQoPyqrZAhuyDF5XZwww3S//4nZWVJn31mr9577z3XVQFAiIRhv92qlZSba696fumlkKwyrpSWStddZ+dHjbKj9TgXh/kNxBI6wwFEVHa29H//J33xhdSrlx0+8K9/lZo3l8aOlTZtcl0hAHiTMXY/fPPN9uc//al82EoAAHBkJSXlI6uMGSPVrOm2HiCWDBkizZ8vdepkvxc46yzpyiulXbtcVwYA0Slw4vrTT9uRaVDu8cftbTtr1y4/NgPgbXSGA3DipJOkWbOkyZPth93du+0ViC1aSKNH2yvIAQCRUVAgjRhh98OS9MADfGAEAKCqJkyQVqyQ6teP45FVgDA69lh7ZfiNN9rR5V58UWrXzg5za4zr6gAguvzmN/aio/Xrpbfecl1N9Pj+e+n22+383/5mR+sBADrDgeooKFBibq563Xyz7UlAlfh80jnn2DP1/vMf6eSTbTM+9ZT9wNu3r/T22/YKCwBAeKxdK/XsaW9dkZAgPf98+TDpcY0MBwCE0KZN0h132Pn775cyMsLwImQXpLjfDtLS7G17Zs2ywwCvX2/vjdu7t71yHABiTpj226mp5Sff3X+/HRrc6woK7O05CwulwYPtEOlRI87zG4h2dIYD1eH3K2HBAtVZvtzepAVHxeeTzj7bngH+4YfS0KG2Q+ajj6Tzz5eaNJGuv94Orc7Z4AAQOp9+2lgnn5ykBQukevWk6dPtcJSeQIYDAELEGOmqq6SdO6Xu3cOYpWQXJM9sB716SYsXS/fdZzvI58yxI8ydfba0YIHPdXkAUHlh3G9ff71Up4703XfSP/8Z0lXHHGNs5/fChfb7jRdesN85Rw2P5DcQregMBxA1fD57Nfg770g//WTvXduggb3K4oknpB49pLZtpT//Wfr8c44bAOBobd4sXXJJoh588CRt3epT9+7SggXSGWe4rgwAgNjz3HP29k/JyXY+MdF1RUB8SEuzn/9/+EG65BJ70vz//ifl5ibprrty9d//+rgSEoCnZWXZ708lOzT4jh0uq3HrvvukSZPscdi//y01buy6IgDRhM5wAFGpeXPpr3+1Q6K9954dFi0tTVq2TPrLX6RTTrEHNaNG2c7z7dtdVwwA0a+oSHr0Uem446Q33khQQoJft99eqrlz7X4XAABUzcyZ0nXX2flx46Ru3dzWA8SjZs3sLX2WLAl0ihstWtRQ55+fpGOPtd8drFrlukoAcGP0aPsZ/+efpZtvdl2NGw8/LN11l51//HGpTx+n5QCIQnSGA4hqycnSkCHSq69KGzfaIX8uvFCqVcv+/MIL0rnn2uFvune3B33vveftMyEB4EBFRdKLL0rt2kk33miHce3a1eiBB+bo7rv9SklxXSEAALHn88/tZ5HiYvsZ5f/9P9cVAfGtTZtAp3iJzjlnmerUMVq9WvrTn6SWLaXTTpOeekpau9Z1pQAQOWlp9vO+ZKdeGi7d77dXxgdOArjvPunaa93WBCA60RkOIGbUqiVdfLH05pvSli3SBx/Ysx/btrX3hfnqK3sm4Fln2fvltGljl3/sMenTT6W9e12/AwCIrE2bpAcflFq3tvcvXbFCatjQnkg0d26Jjjtuh+sSAQCISVOm2Fs87dwp9expO+gS+IYFiIiWLaURI77XypUlmjjR3urH57Of+0ePtleSd+ok3XabNGuWVFDgumIACK+ePe0w6ZL97D97ttt6ImHLFum886Tx4+3P995rb60BABVJcl0AAByNlBSpf3/7kOxQQLNn22EKZ82yw6kHHq++apfx+eyH5vbtgx+tW9uOdgCIB3v32pOFJk2S3n1XKimxzzdqJI0ZI/3+91JGhr2KDQAAVE1BgXT33dLf/mZ/7t9fevttqUYNp2UBnpSeLl1+uX38/LP0xhvSv/5lR2349lv7eOABO+Jc9+7Sr35lH1272lsE+Xyu3wEAhM5990nffWe/Bxg82O4PzzzTdVWhZ4z01lv2NjV5eXYf/+KL9jYaAHAoUXHe8lNPPaUWLVqoRo0a6tGjh7744ovDLv+vf/1Lxx9/vGrUqKGOHTtqypQpEaoUOJipX1+FmZmuy/C8xo3tfcWfe0768Ud7duC0afZA8Ne/tp1Axkg//ST997/2rMFLLrH39MvMtFdK9uhh1/GnP9mrJqdPtweR27fbvwUQjPyODn6/3VdNmCANHSrVr2/Pjn7rLdsRfvLJ0vPPSytX2iHSMzJcVxw9yHAAXkR+H53iYjvs6AknlHeEX3ON/WwRyWwluyCxHVSkcWN7q4K5c+3oSK++Kv3ud1JOjv3/+9lndiS5886zJ8nXqSP16mWvJH/mGWnGDHvf8dJS1+8EqBj5Hdsisd9OSJBee83ebrKgwI6cedttUn5+WF82Yvx+aepUe0uMCy+0HeEnnGD377HSEU5+A+44vzL8jTfe0I033qhnnnlGPXr00GOPPaaBAwdq6dKlatiw4UHLz507V8OHD9e4ceN01lln6dVXX9U555yjr776Sh06dHDwDuBpNWuq5OefNW3KFA2pWdN1NdhPvXrSwIH2EbB5s+0w2v/x/fe243zzZvs41GeJ1FT74bpxY/thOifHvkbduvZRu7ZPP/6YpbZtpexsqXZthklEfCO/3SgpsSf8BK50WbTIfuG3bVvwci1b2nuYXnaZHSISFSDDAXgQ+V01xkgLFkiTJ0svv2yvPJWkY46R/v536ZxzIlwQ2QWJ7aAS6tWzJ7oPH27/H69aZYdQ/+QT22ny/ff2Fgdz5tjH/pKTpVat7OOYY8q/B9j/+4B69exodUCkkN8xLoL77bQ0e9xy/fX2RJ8HHrAn891yi+0wrlMnrC8fcsZI33wjvfOOHf1u2TL7fHq6dNNN9n7haWlOS6w88htwynln+COPPKJRo0bp8ssvlyQ988wzeu+99zRx4kTddtttBy3/+OOPa9CgQRozZowk6b777tP06dP15JNP6plnnolo7QBiS4MGUp8+9rG/nTvtFZMrV9orxwOPtWulDRtsJ1NhYfkyFUuS1Fu33GJ/SkiwQ69nZNjpoeYzMuxBW40a9pGaWj5/qJ9TUqSkpIofCQkM9YbIIL9Dwxhp3z571vb27XZ/s3Vr+XTjRmn16vLH+vUVX62Sni7l5kq9e9urwzt2ZF8AADgY+X2wQBZv2WKzdtUqafly6csv7WPz5vJlGzWyQ3LecIPNXgDRL3C7tJYt7ZXiklRUJP3wgz2xdNEiO79ihf0eoKhIWrrUPg4nI6P85PjAo04dO/JczZr2kZFRPr//z4HP9SkpwfMpKbYznuN4HIj8RlWkpNiR4wYOtCNmrFplO8dvucXeW/yMM+xJ8+3a2ZN8UlNdV2xH8Ni2zdb600+20/vLL+1tL/Y/FqtdW7riCunmm23tAFBZTjvDi4qKtGDBAo0dO7bsuYSEBPXr10/z5s2r8G/mzZunG2+8Mei5gQMH6p133qlw+cLCQhUWFpb9vGvXLklScXGxikNws8zAOkKxrljl9Tbw+vuXYr8N0tPL7x9ekX37bKd4Xp5PP/9sp3l59iBt2zZfWafVzz/vU35+mvLzffL7bSf7zp2RfS+SlJRkDtlZvn+HeeCx/8+B+eDnTKWWkxK0ffupeuyxBCUm+g9Z3+E+2B/pQ//R/m241nsgYxKUk9NK/fuHLl+iUSTyWwpfhu/aJf3udwnavLmHnn46QT6fX8YoDA9f0M/FxfbEmoKC8kdhYdW/6apZ06h9e6OOHaUOHYxOOsmoa1ej5OTyZQL3CT+cWN93h4LX28Dr71+iDSTaQAptG0RzO8Z6fku2I3r+fJvfkl9+v81Yv19B84d+zlf2fH5++fF6cfGh87hmTaOBA43OPdevc881ZVeDuvqn5v8sbSDRBtV9/z6fHVr3hBOk3/62/PnSUmndOumnn3xauVL6+WefNmwon27Y4NPGjXZfsmePtGePtGZNKN5RsORkE9Q5npAgJSYGTxMSElVQcIZq1UpUYqLZ73dmv2Xsc+Wf2YM/3x7uuSP9/mj+JtSMsZ/pOnUq1jHHVH990fr/KR7y2+v7LMlNG5x5ptS3r/Tyywl67rkELV7s04cfSh9+GLxc7dpG9esHLsQxZRfjJCba3x/4/3r/aWB+/2Ovih6lpVJpaYJ27Oile+5JkDFGRUX2+5nt26W9ew+9o6hRw6h/f6OhQ/067zxTdnuaWNyc+L9AG0i0Qajff2XX47QzfMuWLSotLVV2dnbQ89nZ2frhhx8q/Ju8vLwKl8/Ly6tw+XHjxumee+456PkPPvhA6SE8lXv69OkhW1es8mIbJBQWKvfee/UrSTMKC+WPhlPpHPLCNpCWVn5W+aEUFSVoz54UFRQk/fJIVEFBkvbtSwqa2vlEFRUlqrg4QcXFdlpUtP98+bSkJEGFhQny+xNUUnLoMdhLSnyV6girvKp8cm0QyheOSaefXjsk/xfyo/imTpHIbyl8Gb5rV7KmTRsiqdFRryMcUlNLVKtWkTIyilWrVpFq1SpSZmaRGjQoUIMG+WrYMF8NGhSoTp19Qbdh2LJFqs4m54V9d0XI8HJe3Qb2RxvQBlJo2oD8Du9n8GnT+mj16vDkd0KCXw0aFKhhQ5u5rVrt1HHH7VDLljuVnGxP9Dzwy+NII7uCeXW/xXZQLpzbQKNG9nGg0lIpPz9Ze/akaM+eZO3Zk6zdu1O0Z0+Kdu9OVkFBkgoL7Wf9ffuSVFiYWDYf+Lm42H6mLylJUHFxgowJ/sxdXOxTcbG0d+/hKvRJqnWI572kkaZP/0DZ2QXVXlO0Zng85HcA+203++1mzaT77pPWr8/QwoUNtXRpHa1Zk6mff66pkpJE7dzp2+9innDvQw4/Tnu9egXKzt6r7Ox8tWy5U23abFerVjuVkmKPxT7+OMzlhZHr7SDaeHV/sD+vt0Go3n9l89v5MOnhNnbs2KAz4Xbt2qWmTZtqwIAByszMrPb6i4uLNX36dPXv31/J+1+S5SGeboO9e5U8bJgkqe/ppys5K8ttPY54ehv4ReTawEgqlVQqv99e/VnZR2mp/VAduDLmwCtnKppWZZmSklItWvStOnToqMTA6aMVvQNTiXd5hGWq+/vKOJrXKCkp1fbta0KyHQTOwvaycGV4YaH09NOFWrLke7Vv305JSYlBoyUc6iEdeZnDPZKSArdFMEpLK79FQmDebjLJvzzCP/aq5/fdZDjbgGgDiTaQQtsG5Hd4P4MXFPg1d+5CtW/fTsnJiUGjFR1q/lDP1awpZWYa1a5thzWuVUtKSEiRlCIpS1IUjr1Jdkliv8V2EE/bgF+SX6Wl9jNKUVHFj/1HtygttT8XFpboiy/mq1u3E+XzJZVdebn/VZj7X5UpBX+GDcxX9NyRfn+kv9lfRX8TKiUlpfr+++81dOhpqlu3+tuB1zM8nPkdP/9nj1KU7reN8WvHDr82brQjX+7bp7JHYWH5vscuGzw98LkDj7kqehhTqm++Wahu3booJSVJSUlSVpY9FsvKssdjyclJkmr/8siJXGNEQpRuB5Hm+f2BaINQv//K5rfTzvD69esrMTFRGzduDHp+48aNalTR6ZeSGjVqVKXlU1NTlVrBWTbJyckh3dBCvb5Y5Mk22O/9evL9H4A2iHwbRNNJhMXFRllZ6zVkSOdfDl69p7jYaMqUrSHZDqL5/1Ik8lsKX4YnJ0tXXlmsKVPWaMiQDp7dXgM8u+8mw8t4/f1LtIFEG0ihaYNobsNYz29JOv/8YqWleTi/ya4gnm0DtoMy8fL+k5PtSbJVUVxstHfvVvXtm+jN/aECn7/XqG7dDiHZDqJ1W4qH/A7HumJKFO+3Gza0j0goLjZKSdmoIUM8ut+K4u3ABdqANgjV+6/sOg49zm4EpKSkqHv37poxY0bZc36/XzNmzFBubm6Ff5Obmxu0vGQvpz/U8gAAILTIbwAAYg/5DQBA7CG/AQCoPuen4Nx444267LLLdOKJJ+rkk0/WY489pr179+ryyy+XJF166aVq0qSJxo0bJ0m6/vrr1bt3bz388MM688wz9frrr2v+/Pl67rnnXL4NAAA8hfwGACD2kN8AAMQe8hsAgOpx3hk+bNgwbd68WXfeeafy8vLUpUsXTZs2TdnZ2ZKkNWvWKCGh/AL2U089Va+++qr+/Oc/6/bbb9dxxx2nd955Rx06dHD1FgAA8BzyGwCA2EN+AwAQe8hvAACqx3lnuCSNHj1ao0ePrvB3s2bNOui5Cy+8UBdeeGGYqwIAAIdDfgMAEHvIbwAAYg/5DQDA0YuKznAglpn0dJWWlrouAwAAVBEZDgCINWQXJLYDAIg17LchsR0ALiUceREAh1Szpkp27NB7b7wh1azpuhoAAFBZZDgAINaQXZDYDgAg1rDfhsR2ADhGZzgAAAAAAAAAAAAAIO7QGQ4AAAAAAAAAAAAAiDvcMxyojn37lHjeeeqxaZN0xhlScrLrigAAQGWQ4QCAWEN2QWI7AIBYw34bEtsB4Bid4UB1lJYqYepUNZJUXFrquhoAAFBZZDgAINaQXZDYDgAg1rDfhsR2ADjGMOkAAAAAAAAAAAAAgLhDZzgAAAAAAAAAAAAAIO7QGQ4AAAAAAAAAAAAAiDt0hgMAAAAAAAAAAAAA4g6d4QAAAAAAAAAAAACAuJPkuoBIM8ZIknbt2hWS9RUXFys/P1+7du1ScnJySNYZazzdBnv3ls0W79ql5ARvnl/i6W3gF7QBbSCFtg0CORXILYQ2w9leaQMynG1Aog0k2kAiv8ON/A4hsksS2wHbAduARBtIoW8DMjwY+R1C7LclsR2wHVie3w5EG7jKb891hu/evVuS1LRpU8eVIO40b+66AgBxaPfu3apdu7brMqICGY6wIcMBhBj5XY78DhOyCxLbARAGZLhFfocJ+21IbAdAGBwpv33GY6e7+f1+/fzzz6pVq5Z8Pl+117dr1y41bdpUa9euVWZmZggqjD1ebwOvv3+JNpBoA4k2kELbBsYY7d69W40bN1aCR88WPVAoM5ztlTaQaAOvv3+JNpBoA4n8DjfyO7RoA9pAog28/v4l2kAKfRuQ4cHI79CiDWgDiTaQaAOJNnCV3567MjwhIUHHHHNMyNebmZnpyQ13f15vA6+/f4k2kGgDiTaQQtcGnI0eLBwZzvZKG0i0gdffv0QbSLSBRH6HC/kdHrQBbSDRBl5//xJtIIW2DcjwcuR3eNAGtIFEG0i0gUQbRDq/Oc0NAAAAAAAAAAAAABB36AwHAAAAAAAAAAAAAMQdOsOrKTU1VXfddZdSU1Ndl+KM19vA6+9fog0k2kCiDSTaIJbwb0UbSLSB19+/RBtItIFEG8QS/q1oA4k2kGgDr79/iTaQaINYwr8VbSDRBhJtINEGEm3g6v37jDEmoq8IAAAAAAAAAAAAAECYcWU4AAAAAAAAAAAAACDu0BkOAAAAAAAAAAAAAIg7dIYDAAAAAAAAAAAAAOIOneHV8NRTT6lFixaqUaOGevTooS+++MJ1SSFx9913y+fzBT2OP/74st/v27dP1157rerVq6eMjAydf/752rhxY9A61qxZozPPPFPp6elq2LChxowZo5KSkki/lUr7+OOPdfbZZ6tx48by+Xx65513gn5vjNGdd96pnJwcpaWlqV+/flq2bFnQMtu2bdPFF1+szMxMZWVlaeTIkdqzZ0/QMt9884169uypGjVqqGnTpvrb3/4W7rdWaUdqgxEjRhy0XQwaNChomVhug3Hjxumkk05SrVq11LBhQ51zzjlaunRp0DKh2vZnzZqlbt26KTU1Va1bt9bLL78c7rdXKZVpgz59+hy0HVx11VVBy8RyG0yYMEGdOnVSZmamMjMzlZubq6lTp5b9Pt63Aa+I1/yWyHAvZrjX81siwyUynPz2jnjNcPLbe/ktkeHkN/ktkeFeQX6T3/uL5eySyG/ym/yWYjS/DY7K66+/blJSUszEiRPNd999Z0aNGmWysrLMxo0bXZdWbXfddZdp37692bBhQ9lj8+bNZb+/6qqrTNOmTc2MGTPM/PnzzSmnnGJOPfXUst+XlJSYDh06mH79+pmFCxeaKVOmmPr165uxY8e6eDuVMmXKFPOnP/3JvP3220aSmTx5ctDvx48fb2rXrm3eeecds2jRIvPrX//atGzZ0hQUFJQtM2jQINO5c2fz2WefmTlz5pjWrVub4cOHl/1+586dJjs721x88cVm8eLF5rXXXjNpaWnm2WefjdTbPKwjtcFll11mBg0aFLRdbNu2LWiZWG6DgQMHmpdeesksXrzYfP3112bIkCGmWbNmZs+ePWXLhGLb/+mnn0x6erq58cYbzffff2/+/ve/m8TERDNt2rSIvt+KVKYNevfubUaNGhW0HezcubPs97HeBv/5z3/Me++9Z3788UezdOlSc/vtt5vk5GSzePFiY0z8bwNeEM/5bQwZ7sUM93p+G0OGG0OGk9/eEM8ZTn57L7+NIcPJb/LbGDLcC8hv8pv8Jr/jbd9NfsdmftMZfpROPvlkc+2115b9XFpaaho3bmzGjRvnsKrQuOuuu0znzp0r/N2OHTtMcnKy+de//lX23JIlS4wkM2/ePGOMDYSEhASTl5dXtsyECRNMZmamKSwsDGvtoXBgiPn9ftOoUSPz4IMPlj23Y8cOk5qaal577TVjjDHff/+9kWS+/PLLsmWmTp1qfD6fWb9+vTHGmKefftrUqVMnqA1uvfVW07Zt2zC/o6o7VJAPHTr0kH8Tb22wadMmI8nMnj3bGBO6bf+WW24x7du3D3qtYcOGmYEDB4b7LVXZgW1gjA3y66+//pB/E29tYIwxderUMS+88IInt4F4FM/5bQwZ7vUMJ78tMpwMN4b8jkfxnOHkt7fz2xgy3Bjy2xjyO4AMjy/kN/lNfgeLtzYgv8nvgGjPb4ZJPwpFRUVasGCB+vXrV/ZcQkKC+vXrp3nz5jmsLHSWLVumxo0bq1WrVrr44ou1Zs0aSdKCBQtUXFwc9N6PP/54NWvWrOy9z5s3Tx07dlR2dnbZMgMHDtSuXbv03XffRfaNhMDKlSuVl5cX9J5r166tHj16BL3nrKwsnXjiiWXL9OvXTwkJCfr888/LlunVq5dSUlLKlhk4cKCWLl2q7du3R+jdVM+sWbPUsGFDtW3bVldffbW2bt1a9rt4a4OdO3dKkurWrSspdNv+vHnzgtYRWCYa9x0HtkHApEmTVL9+fXXo0EFjx45Vfn5+2e/iqQ1KS0v1+uuva+/evcrNzfXkNhBvvJDfEhm+PzLc8lJ+S2S45O0MJ7/jkxcynPwuR36X81KGk9/ezm+JDI9H5Df5TX6T31L877vJ79jI76Sj+iuP27Jli0pLS4P+oSQpOztbP/zwg6OqQqdHjx56+eWX1bZtW23YsEH33HOPevbsqcWLFysvL08pKSnKysoK+pvs7Gzl5eVJkvLy8ipsm8DvYk2g5ore0/7vuWHDhkG/T0pKUt26dYOWadmy5UHrCPyuTp06Yak/VAYNGqTzzjtPLVu21IoVK3T77bdr8ODBmjdvnhITE+OqDfx+v2644Qb96le/UocOHSQpZNv+oZbZtWuXCgoKlJaWFo63VGUVtYEkXXTRRWrevLkaN26sb775RrfeequWLl2qt99+W1J8tMG3336r3Nxc7du3TxkZGZo8ebLatWunr7/+2lPbQDyK9/yWyPADkeHeym+JDJe8m+Hkd3yL9wwnv4OR35aXMpz89m5+S2R4PCO/ye/Az+Q3+R2v+27yO3bym85wHGTw4MFl8506dVKPHj3UvHlzvfnmm87/g8Gd3/72t2XzHTt2VKdOnXTsscdq1qxZ6tu3r8PKQu/aa6/V4sWL9cknn7guxZlDtcHvf//7svmOHTsqJydHffv21YoVK3TsscdGusywaNu2rb7++mvt3LlT//73v3XZZZdp9uzZrssCKoUMx4G8lN8SGS55N8PJb8Qy8hsV8VKGk9/ezW+JDEfsIr9REfLbW8jv2Mlvhkk/CvXr11diYqI2btwY9PzGjRvVqFEjR1WFT1ZWltq0aaPly5erUaNGKioq0o4dO4KW2f+9N2rUqMK2Cfwu1gRqPty/d6NGjbRp06ag35eUlGjbtm1x2y6tWrVS/fr1tXz5cknx0wajR4/W//73P82cOVPHHHNM2fOh2vYPtUxmZmbUHCgfqg0q0qNHD0kK2g5ivQ1SUlLUunVrde/eXePGjVPnzp31+OOPe2obiFdey2+JDCfDDxav+S2R4ZK3M5z8jm9ey3Dym/yuSLxmOPnt7fyWyPB4Rn6T34GfyW/yOx733eR3bOU3neFHISUlRd27d9eMGTPKnvP7/ZoxY4Zyc3MdVhYee/bs0YoVK5STk6Pu3bsrOTk56L0vXbpUa9asKXvvubm5+vbbb4N26tOnT1dmZqbatWsX8fqrq2XLlmrUqFHQe961a5c+//zzoPe8Y8cOLViwoGyZjz76SH6/v2xHl5ubq48//ljFxcVly0yfPl1t27aNmqFNqmLdunXaunWrcnJyJMV+GxhjNHr0aE2ePFkfffTRQUPRhGrbz83NDVpHYJlo2HccqQ0q8vXXX0tS0HYQy21QEb/fr8LCQk9sA/HOa/ktkeFk+MHiLb8lMlwiwytCfscXr2U4+U1+VyTeMpz8Jr8PhQyPH+Q3+U1+k99S/O27ye+KRX1+GxyV119/3aSmppqXX37ZfP/99+b3v/+9ycrKMnl5ea5Lq7abbrrJzJo1y6xcudJ8+umnpl+/fqZ+/fpm06ZNxhhjrrrqKtOsWTPz0Ucfmfnz55vc3FyTm5tb9vclJSWmQ4cOZsCAAebrr78206ZNMw0aNDBjx4519ZaOaPfu3WbhwoVm4cKFRpJ55JFHzMKFC83q1auNMcaMHz/eZGVlmXfffdd88803ZujQoaZly5amoKCgbB2DBg0yXbt2NZ9//rn55JNPzHHHHWeGDx9e9vsdO3aY7Oxsc8kll5jFixeb119/3aSnp5tnn3024u+3Iodrg927d5ubb77ZzJs3z6xcudJ8+OGHplu3bua4444z+/btK1tHLLfB1VdfbWrXrm1mzZplNmzYUPbIz88vWyYU2/5PP/1k0tPTzZgxY8ySJUvMU089ZRITE820adMi+n4rcqQ2WL58ubn33nvN/PnzzcqVK827775rWrVqZXr16lW2jlhvg9tuu83Mnj3brFy50nzzzTfmtttuMz6fz3zwwQfGmPjfBrwgnvPbGDLcixnu9fw2hgw3hgwnv70hnjOc/PZefhtDhpPf5LcxZLgXkN/kN/lNfsfbvpv8js38pjO8Gv7+97+bZs2amZSUFHPyySebzz77zHVJITFs2DCTk5NjUlJSTJMmTcywYcPM8uXLy35fUFBgrrnmGlOnTh2Tnp5uzj33XLNhw4agdaxatcoMHjzYpKWlmfr165ubbrrJFBcXR/qtVNrMmTONpIMel112mTHGGL/fb+644w6TnZ1tUlNTTd++fc3SpUuD1rF161YzfPhwk5GRYTIzM83ll19udu/eHbTMokWLzGmnnWZSU1NNkyZNzPjx4yP1Fo/ocG2Qn59vBgwYYBo0aGCSk5NN8+bNzahRow46cI3lNqjovUsyL730Utkyodr2Z86cabp06WJSUlJMq1atgl7DpSO1wZo1a0yvXr1M3bp1TWpqqmndurUZM2aM2blzZ9B6YrkNrrjiCtO8eXOTkpJiGjRoYPr27VsW4sbE/zbgFfGa38aQ4V7McK/ntzFkuDFkOPntHfGa4eS39/LbGDKc/Ca/jSHDvYL8Jr/3F8vZZQz5TX6T38bEZn77jDHmyNePAwAAAAAAAAAAAAAQO7hnOAAAAAAAAAAAAAAg7tAZDgAAAAAAAAAAAACIO3SGAwAAAAAAAAAAAADiDp3hAAAAAAAAAAAAAIC4Q2c4AAAAAAAAAAAAACDu0BkOAAAAAAAAAAAAAIg7dIYDAAAAAAAAAAAAAOIOneEAAAAAAAAAAAAAgLhDZziAmFJUVKTWrVtr7ty5IV3vtGnT1KVLF/n9/pCuFwAAkN8AAMQi8hsAgNhEhgPB6AwHHBoxYoR8Pt9Bj+XLl7suLWo988wzatmypU499dSy53w+n955552Dlh0xYoTOOeecSq130KBBSk5O1qRJk0JUKQAgXpHfVUd+AwBcI7+rjvwGAEQDMrzqyHAgGJ3hgGODBg3Shg0bgh4tW7Y8aLmioiIH1UUXY4yefPJJjRw5MizrHzFihJ544omwrBsAEF/I78ojvwEA0YL8rjzyGwAQTcjwyiPDgYPRGQ44lpqaqkaNGgU9EhMT1adPH40ePVo33HCD6tevr4EDB0qSFi9erMGDBysjI0PZ2dm65JJLtGXLlrL17d27V5deeqkyMjKUk5Ojhx9+WH369NENN9xQtkxFZ4FlZWXp5ZdfLvt57dq1+s1vfqOsrCzVrVtXQ4cO1apVq8p+Hzhj7KGHHlJOTo7q1auna6+9VsXFxWXLFBYW6tZbb1XTpk2Vmpqq1q1b68UXX5QxRq1bt9ZDDz0UVMPXX3992LP6FixYoBUrVujMM8+sYitLq1atqvAMwj59+pQtc/bZZ2v+/PlasWJFldcPAPAW8rsc+Q0AiBXkdznyGwAQS8jwcmQ4UHV0hgNR7JVXXlFKSoo+/fRTPfPMM9qxY4fOOOMMde3aVfPnz9e0adO0ceNG/eY3vyn7mzFjxmj27Nl699139cEHH2jWrFn66quvqvS6xcXFGjhwoGrVqqU5c+bo008/VUZGhgYNGhR0dt3MmTO1YsUKzZw5U6+88opefvnloIOBSy+9VK+99pqeeOIJLVmyRM8++6wyMjLk8/l0xRVX6KWXXgp63Zdeekm9evVS69atK6xrzpw5atOmjWrVqlWl9yNJTZs2DTpzcOHChapXr5569epVtkyzZs2UnZ2tOXPmVHn9AAAEkN/ByG8AQCwgv4OR3wCAWEGGByPDgQoYAM5cdtllJjEx0dSsWbPsccEFFxhjjOndu7fp2rVr0PL33XefGTBgQNBza9euNZLM0qVLze7du01KSop58803y36/detWk5aWZq6//vqy5ySZyZMnB62ndu3a5qWXXjLGGPN///d/pm3btsbv95f9vrCw0KSlpZn333+/rPbmzZubkpKSsmUuvPBCM2zYMGOMMUuXLjWSzPTp0yt87+vXrzeJiYnm888/N8YYU1RUZOrXr29efvnlQ7bX9ddfb84444yDnpdkatSoEdSONWvWNElJSWbo0KEHLV9QUGB69OhhzjrrLFNaWhr0u65du5q77777kDUAAEB+k98AgNhDfpPfAIDYRIaT4UB1JUW++x3A/k4//XRNmDCh7OeaNWuWzXfv3j1o2UWLFmnmzJnKyMg4aD0rVqxQQUGBioqK1KNHj7Ln69atq7Zt21appkWLFmn58uUHnT22b9++oOFP2rdvr8TExLKfc3Jy9O2330qyw7UkJiaqd+/eFb5G48aNdeaZZ2rixIk6+eST9d///leFhYW68MILD1lXQUGBatSoUeHvHn30UfXr1y/ouVtvvVWlpaUHLXvFFVdo9+7dmj59uhISggfISEtLU35+/iFrAABAIr/JbwBALCK/yW8AQGwiw8lwoDroDAccq1mz5iGHNNk/1CVpz549Ovvss/XAAw8ctGxOTs4h7xNyIJ/PJ2NM0HP736dkz5496t69uyZNmnTQ3zZo0KBsPjk5+aD1+v1+STYQj+TKK6/UJZdcokcffVQvvfSShg0bpvT09EMuX79+/bIDhQM1atTooHasVauWduzYEfTc/fffr/fff19ffPFFhUPFbNu2Leg9AgBQEfKb/AYAxB7ym/wGAMQmMpwMB6qDznAghnTr1k1vvfWWWrRooaSkg//7HnvssUpOTtbnn3+uZs2aSZK2b9+uH3/8MejssgYNGmjDhg1lPy9btizoTK5u3brpjTfeUMOGDZWZmXlUtXbs2FF+v1+zZ88+6GyzgCFDhqhmzZqaMGGCpk2bpo8//viw6+zatasmTJggY4x8Pl+Va3rrrbd07733aurUqTr22GMP+n3grL2uXbtWed0AABwK+U1+AwBiD/lNfgMAYhMZToYDB0o48iIAosW1116rbdu2afjw4fryyy+1YsUKvf/++7r88stVWlqqjIwMjRw5UmPGjNFHH32kxYsXa8SIEQcNY3LGGWfoySef1MKFCzV//nxdddVVQWeoXXzxxapfv76GDh2qOXPmaOXKlZo1a5b++Mc/at26dZWqtUWLFrrssst0xRVX6J133ilbx5tvvlm2TGJiokaMGKGxY8fquOOOU25u7mHXefrpp2vPnj367rvvqtBq1uLFi3XppZfq1ltvVfv27ZWXl6e8vDxt27atbJnPPvtMqampR6wDAICqIL/JbwBA7CG/yW8AQGwiw8lw4EB0hgMxpHHjxvr0009VWlqqAQMGqGPHjrrhhhuUlZVVFtYPPvigevbsqbPPPlv9+vXTaaeddtB9Ux5++GE1bdpUPXv21EUXXaSbb745aGiV9PR0ffzxx2rWrJnOO+88nXDCCRo5cqT27dtXpbPcJkyYoAsuuEDXXHONjj/+eI0aNUp79+4NWmbkyJEqKirS5ZdffsT11atXT+eee26FQ88cyfz585Wfn6/7779fOTk5ZY/zzjuvbJnXXntNF1988WGHmQEAoKrIb/IbABB7yG/yGwAQm8hwMhw4kM8ceNMDAHGnT58+6tKlix577DHXpRxkzpw56tu3r9auXavs7OwjLv/NN9+of//+WrFihTIyMkJWx5YtW9S2bVvNnz9fLVu2DNl6AQA4WuT3kZHfAIBoQ34fGfkNAIhGZPiRkeGIVVwZDsCJwsJCrVu3TnfffbcuvPDCSoW4JHXq1EkPPPCAVq5cGdJ6Vq1apaeffpoQBwDgMMhvAABiD/kNAEBsIsOB0EhyXQAAb3rttdc0cuRIdenSRf/4xz+q9LcjRowIeT0nnniiTjzxxJCvFwCAeEJ+AwAQe8hvAABiExkOhAbDpAMAAAAAAAAAAAAA4g7DpAMAAAAAAAAAAAAA4g6d4QAAAAAAAAAAAACAuENnOAAAAAAAAAAAAAAg7tAZDgAAAAAAAAAAAACIO3SGAwAAAAAAAAAAAADiDp3hAAAAAAAAAAAAAIC4Q2c4AAAAAAAAAAAAACDu0BkOAAAAAAAAAAAAAIg7dIYDAAAAAAAAAAAAAOLO/weKPBmdTi//JwAAAABJRU5ErkJggg=="
34
+ },
35
+ "metadata": {},
36
+ "output_type": "display_data"
37
+ }
38
+ ],
39
+ "source": [
40
+ "def plot_filter_response(b, a, title, subplot, cutoff=None, lowcut=None, highcut=None):\n",
41
+ " w, h = freqz(b, a, worN=8000)\n",
42
+ " subplot.plot(0.5*fs*w/np.pi, np.abs(h), 'b')\n",
43
+ " if cutoff:\n",
44
+ " subplot.axvline(cutoff, color='r', ls='--')\n",
45
+ " if lowcut:\n",
46
+ " subplot.axvline(lowcut, color='r', ls='--')\n",
47
+ " if highcut:\n",
48
+ " subplot.axvline(highcut, color='r', ls='--')\n",
49
+ " subplot.set_title(title)\n",
50
+ " subplot.set_xlabel('Frequency (Hz)')\n",
51
+ " subplot.set_ylabel('Gain')\n",
52
+ " subplot.grid(True)\n",
53
+ "\n",
54
+ "fs = 6000.0 # Sample rate (Hz)\n",
55
+ "cutoff = 1000.0 # Desired cutoff frequency (Hz)\n",
56
+ "\n",
57
+ "fig, axs = plt.subplots(1, 4, figsize=(20, 5))\n",
58
+ "\n",
59
+ "# Lowpass filter\n",
60
+ "b, a = butter(5, cutoff / (0.5 * fs), btype='low')\n",
61
+ "plot_filter_response(b, a, 'Lowpass filter', axs[0], cutoff=cutoff)\n",
62
+ "\n",
63
+ "# Highpass filter\n",
64
+ "b, a = butter(5, cutoff / (0.5 * fs), btype='high')\n",
65
+ "plot_filter_response(b, a, 'Highpass filter', axs[1], cutoff=cutoff)\n",
66
+ "\n",
67
+ "# Bandpass filter\n",
68
+ "lowcut = 500.0\n",
69
+ "highcut = 1500.0\n",
70
+ "b, a = butter(5, [lowcut / (0.5 * fs), highcut / (0.5 * fs)], btype='band')\n",
71
+ "plot_filter_response(b, a, 'Bandpass filter', axs[2], lowcut=lowcut, highcut=highcut)\n",
72
+ "\n",
73
+ "# Bandstop filter\n",
74
+ "b, a = butter(5, [lowcut / (0.5 * fs), highcut / (0.5 * fs)], btype='bandstop')\n",
75
+ "plot_filter_response(b, a, 'Bandstop filter', axs[3], lowcut=lowcut, highcut=highcut)\n",
76
+ "\n",
77
+ "plt.tight_layout()\n",
78
+ "plt.show()"
79
+ ],
80
+ "metadata": {
81
+ "collapsed": false,
82
+ "ExecuteTime": {
83
+ "end_time": "2023-09-14T09:30:42.503794500Z",
84
+ "start_time": "2023-09-14T09:30:40.797082Z"
85
+ }
86
+ }
87
+ }
88
+ ],
89
+ "metadata": {
90
+ "kernelspec": {
91
+ "display_name": "Python 3",
92
+ "language": "python",
93
+ "name": "python3"
94
+ },
95
+ "language_info": {
96
+ "codemirror_mode": {
97
+ "name": "ipython",
98
+ "version": 2
99
+ },
100
+ "file_extension": ".py",
101
+ "mimetype": "text/x-python",
102
+ "name": "python",
103
+ "nbconvert_exporter": "python",
104
+ "pygments_lexer": "ipython2",
105
+ "version": "2.7.6"
106
+ }
107
+ },
108
+ "nbformat": 4,
109
+ "nbformat_minor": 0
110
+ }