neverlib 0.2.6__py3-none-any.whl → 0.2.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- neverlib/.claude/settings.local.json +9 -0
- neverlib/Docs/audio_aug/test_volume.ipynb +416 -0
- neverlib/Docs/audio_aug_test/test_volume.ipynb +289 -0
- neverlib/Docs/filter/biquad.ipynb +129 -0
- neverlib/Docs/filter/filter_family.ipynb +450 -0
- neverlib/Docs/filter/highpass.ipynb +139 -0
- neverlib/Docs/filter/scipy_filter_family.ipynb +110 -0
- neverlib/Docs/vad/VAD_Energy.ipynb +167 -0
- neverlib/Docs/vad/VAD_Silero.ipynb +325 -0
- neverlib/Docs/vad/VAD_WebRTC.ipynb +189 -0
- neverlib/Docs/vad/VAD_funasr.ipynb +192 -0
- neverlib/Docs/vad/VAD_rvADfast.ipynb +162 -0
- neverlib/Docs/vad/VAD_statistics.ipynb +532 -0
- neverlib/Docs/vad/VAD_tenVAD.ipynb +292 -0
- neverlib/Docs/vad/VAD_vadlib.ipynb +168 -0
- neverlib/Docs/vad/VAD_whisper.ipynb +404 -0
- neverlib/QA/gen_init.py +117 -0
- neverlib/QA/get_fun.py +19 -0
- neverlib/__init__.py +21 -4
- neverlib/audio_aug/HarmonicDistortion.py +19 -13
- neverlib/audio_aug/__init__.py +30 -12
- neverlib/audio_aug/audio_aug.py +19 -14
- neverlib/audio_aug/clip_aug.py +15 -18
- neverlib/audio_aug/coder_aug.py +44 -24
- neverlib/audio_aug/coder_aug2.py +54 -37
- neverlib/audio_aug/loss_packet_aug.py +7 -7
- neverlib/audio_aug/quant_aug.py +19 -17
- neverlib/data/000_short_enhance.wav +0 -0
- neverlib/data/3956_speech.wav +0 -0
- neverlib/data/3956_sweep.wav +0 -0
- neverlib/data/vad_example.wav +0 -0
- neverlib/data/white.wav +0 -0
- neverlib/data/white_EQ.wav +0 -0
- neverlib/data/white_matched.wav +0 -0
- neverlib/data_analyze/__init__.py +25 -20
- neverlib/data_analyze/dataset_analyzer.py +109 -114
- neverlib/data_analyze/quality_metrics.py +87 -89
- neverlib/data_analyze/rms_distrubution.py +23 -42
- neverlib/data_analyze/spectral_analysis.py +43 -46
- neverlib/data_analyze/statistics.py +76 -76
- neverlib/data_analyze/temporal_features.py +15 -6
- neverlib/data_analyze/visualization.py +208 -144
- neverlib/filter/__init__.py +17 -20
- neverlib/filter/auto_eq/__init__.py +18 -35
- neverlib/filter/auto_eq/de_eq.py +0 -2
- neverlib/filter/common.py +24 -5
- neverlib/metrics/DNSMOS/bak_ovr.onnx +0 -0
- neverlib/metrics/DNSMOS/model_v8.onnx +0 -0
- neverlib/metrics/DNSMOS/sig.onnx +0 -0
- neverlib/metrics/DNSMOS/sig_bak_ovr.onnx +0 -0
- neverlib/metrics/__init__.py +23 -0
- neverlib/metrics/dnsmos.py +4 -15
- neverlib/metrics/pDNSMOS/sig_bak_ovr.onnx +0 -0
- neverlib/metrics/pesq_c/PESQ +0 -0
- neverlib/metrics/pesq_c/dsp.c +553 -0
- neverlib/metrics/pesq_c/dsp.h +138 -0
- neverlib/metrics/pesq_c/pesq.h +294 -0
- neverlib/metrics/pesq_c/pesqdsp.c +1047 -0
- neverlib/metrics/pesq_c/pesqio.c +392 -0
- neverlib/metrics/pesq_c/pesqmain.c +610 -0
- neverlib/metrics/pesq_c/pesqmod.c +1417 -0
- neverlib/metrics/pesq_c/pesqpar.h +297 -0
- neverlib/metrics/snr.py +5 -1
- neverlib/metrics/spec.py +31 -21
- neverlib/metrics/test_pesq.py +0 -4
- neverlib/tests/test_imports.py +17 -0
- neverlib/utils/__init__.py +26 -15
- neverlib/utils/audio_split.py +5 -1
- neverlib/utils/checkGPU.py +17 -9
- neverlib/utils/lazy_expose.py +29 -0
- neverlib/utils/utils.py +40 -12
- neverlib/vad/__init__.py +33 -25
- neverlib/vad/class_get_speech.py +1 -1
- neverlib/vad/class_vad.py +3 -3
- neverlib/vad/img.png +0 -0
- {neverlib-0.2.6.dist-info → neverlib-0.2.7.dist-info}/METADATA +1 -1
- {neverlib-0.2.6.dist-info → neverlib-0.2.7.dist-info}/RECORD +80 -37
- {neverlib-0.2.6.dist-info → neverlib-0.2.7.dist-info}/WHEEL +0 -0
- {neverlib-0.2.6.dist-info → neverlib-0.2.7.dist-info}/licenses/LICENSE +0 -0
- {neverlib-0.2.6.dist-info → neverlib-0.2.7.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,1047 @@
|
|
|
1
|
+
/*****************************************************************************
|
|
2
|
+
|
|
3
|
+
Perceptual Evaluation of Speech Quality (PESQ)
|
|
4
|
+
ITU-T Recommendation P.862.
|
|
5
|
+
Version 1.2 - 2 August 2002.
|
|
6
|
+
|
|
7
|
+
****************************************
|
|
8
|
+
PESQ Intellectual Property Rights Notice
|
|
9
|
+
****************************************
|
|
10
|
+
|
|
11
|
+
DEFINITIONS:
|
|
12
|
+
------------
|
|
13
|
+
For the purposes of this Intellectual Property Rights Notice
|
|
14
|
+
the terms �Perceptual Evaluation of Speech Quality Algorithm�
|
|
15
|
+
and �PESQ Algorithm� refer to the objective speech quality
|
|
16
|
+
measurement algorithm defined in ITU-T Recommendation P.862;
|
|
17
|
+
the term �PESQ Software� refers to the C-code component of P.862.
|
|
18
|
+
|
|
19
|
+
NOTICE:
|
|
20
|
+
-------
|
|
21
|
+
All copyright, trade marks, trade names, patents, know-how and
|
|
22
|
+
all or any other intellectual rights subsisting in or used in
|
|
23
|
+
connection with including all algorithms, documents and manuals
|
|
24
|
+
relating to the PESQ Algorithm and or PESQ Software are and remain
|
|
25
|
+
the sole property in law, ownership, regulations, treaties and
|
|
26
|
+
patent rights of the Owners identified below. The user may not
|
|
27
|
+
dispute or question the ownership of the PESQ Algorithm and
|
|
28
|
+
or PESQ Software.
|
|
29
|
+
|
|
30
|
+
OWNERS ARE:
|
|
31
|
+
-----------
|
|
32
|
+
|
|
33
|
+
1. British Telecommunications plc (BT), all rights assigned
|
|
34
|
+
to Psytechnics Limited
|
|
35
|
+
2. Royal KPN NV, all rights assigned to OPTICOM GmbH
|
|
36
|
+
|
|
37
|
+
RESTRICTIONS:
|
|
38
|
+
-------------
|
|
39
|
+
|
|
40
|
+
The user cannot:
|
|
41
|
+
|
|
42
|
+
1. alter, duplicate, modify, adapt, or translate in whole or in
|
|
43
|
+
part any aspect of the PESQ Algorithm and or PESQ Software
|
|
44
|
+
2. sell, hire, loan, distribute, dispose or put to any commercial
|
|
45
|
+
use other than those permitted below in whole or in part any
|
|
46
|
+
aspect of the PESQ Algorithm and or PESQ Software
|
|
47
|
+
|
|
48
|
+
PERMITTED USE:
|
|
49
|
+
--------------
|
|
50
|
+
|
|
51
|
+
The user may:
|
|
52
|
+
|
|
53
|
+
1. Use the PESQ Software to:
|
|
54
|
+
i) understand the PESQ Algorithm; or
|
|
55
|
+
ii) evaluate the ability of the PESQ Algorithm to perform
|
|
56
|
+
its intended function of predicting the speech quality
|
|
57
|
+
of a system; or
|
|
58
|
+
iii) evaluate the computational complexity of the PESQ Algorithm,
|
|
59
|
+
with the limitation that none of said evaluations or its
|
|
60
|
+
results shall be used for external commercial use.
|
|
61
|
+
|
|
62
|
+
2. Use the PESQ Software to test if an implementation of the PESQ
|
|
63
|
+
Algorithm conforms to ITU-T Recommendation P.862.
|
|
64
|
+
|
|
65
|
+
3. With the prior written permission of both Psytechnics Limited
|
|
66
|
+
and OPTICOM GmbH, use the PESQ Software in accordance with the
|
|
67
|
+
above Restrictions to perform work that meets all of the following
|
|
68
|
+
criteria:
|
|
69
|
+
i) the work must contribute directly to the maintenance of an
|
|
70
|
+
existing ITU recommendation or the development of a new ITU
|
|
71
|
+
recommendation under an approved ITU Study Item; and
|
|
72
|
+
ii) the work and its results must be fully described in a
|
|
73
|
+
written contribution to the ITU that is presented at a formal
|
|
74
|
+
ITU meeting within one year of the start of the work; and
|
|
75
|
+
iii) neither the work nor its results shall be put to any
|
|
76
|
+
commercial use other than making said contribution to the ITU.
|
|
77
|
+
Said permission will be provided on a case-by-case basis.
|
|
78
|
+
|
|
79
|
+
|
|
80
|
+
ANY OTHER USE OR APPLICATION OF THE PESQ SOFTWARE AND/OR THE PESQ
|
|
81
|
+
ALGORITHM WILL REQUIRE A PESQ LICENCE AGREEMENT, WHICH MAY BE OBTAINED
|
|
82
|
+
FROM EITHER OPTICOM GMBH OR PSYTECHNICS LIMITED.
|
|
83
|
+
|
|
84
|
+
EACH COMPANY OFFERS OEM LICENSE AGREEMENTS, WHICH COMBINE OEM
|
|
85
|
+
IMPLEMENTATIONS OF THE PESQ ALGORITHM TOGETHER WITH A PESQ PATENT LICENSE
|
|
86
|
+
AGREEMENT. PESQ PATENT-ONLY LICENSE AGREEMENTS MAY BE OBTAINED FROM OPTICOM.
|
|
87
|
+
|
|
88
|
+
|
|
89
|
+
***********************************************************************
|
|
90
|
+
* OPTICOM GmbH * Psytechnics Limited *
|
|
91
|
+
* Am Weichselgarten 7, * Fraser House, 23 Museum Street, *
|
|
92
|
+
* D- 91058 Erlangen, Germany * Ipswich IP1 1HN, England *
|
|
93
|
+
* Phone: +49 (0) 9131 691 160 * Phone: +44 (0) 1473 261 800 *
|
|
94
|
+
* Fax: +49 (0) 9131 691 325 * Fax: +44 (0) 1473 261 880 *
|
|
95
|
+
* E-mail: info@opticom.de, * E-mail: info@psytechnics.com, *
|
|
96
|
+
* www.opticom.de * www.psytechnics.com *
|
|
97
|
+
***********************************************************************
|
|
98
|
+
|
|
99
|
+
Further information is also available from www.pesq.org
|
|
100
|
+
|
|
101
|
+
*****************************************************************************/
|
|
102
|
+
|
|
103
|
+
#include <math.h>
|
|
104
|
+
#include <stdio.h>
|
|
105
|
+
#include "pesq.h"
|
|
106
|
+
#include "dsp.h"
|
|
107
|
+
|
|
108
|
+
void DC_block( float * data, long Nsamples )
|
|
109
|
+
{
|
|
110
|
+
float *p;
|
|
111
|
+
long count;
|
|
112
|
+
float facc = 0.0f;
|
|
113
|
+
|
|
114
|
+
long ofs = SEARCHBUFFER * Downsample;
|
|
115
|
+
|
|
116
|
+
p = data + ofs;
|
|
117
|
+
for( count = (Nsamples - 2 * ofs); count > 0L; count-- )
|
|
118
|
+
facc += *(p++);
|
|
119
|
+
facc /= Nsamples;
|
|
120
|
+
|
|
121
|
+
p = data + ofs;
|
|
122
|
+
for( count = (Nsamples - 2 * ofs); count > 0L; count-- )
|
|
123
|
+
*(p++) -= facc;
|
|
124
|
+
|
|
125
|
+
p = data + ofs;
|
|
126
|
+
for( count = 0L; count < Downsample; count++ )
|
|
127
|
+
*(p++) *= (0.5f + count) / Downsample;
|
|
128
|
+
|
|
129
|
+
p = data + Nsamples - ofs - 1L;
|
|
130
|
+
for( count = 0L; count < Downsample; count++ )
|
|
131
|
+
*(p--) *= (0.5f + count) / Downsample;
|
|
132
|
+
}
|
|
133
|
+
|
|
134
|
+
long InIIR_Nsos;
|
|
135
|
+
float *InIIR_Hsos;
|
|
136
|
+
|
|
137
|
+
void apply_filters( float * data, long Nsamples )
|
|
138
|
+
{
|
|
139
|
+
IIRFilt( InIIR_Hsos, InIIR_Nsos, NULL,
|
|
140
|
+
data, Nsamples + DATAPADDING_MSECS * (Fs / 1000), NULL );
|
|
141
|
+
}
|
|
142
|
+
|
|
143
|
+
float interpolate (float freq,
|
|
144
|
+
double filter_curve_db [][2],
|
|
145
|
+
int number_of_points) {
|
|
146
|
+
double result;
|
|
147
|
+
int i;
|
|
148
|
+
double freqLow, freqHigh;
|
|
149
|
+
double curveLow, curveHigh;
|
|
150
|
+
|
|
151
|
+
if (freq <= filter_curve_db [0][0]) {
|
|
152
|
+
freqLow = filter_curve_db [0][0];
|
|
153
|
+
curveLow = filter_curve_db [0][1];
|
|
154
|
+
freqHigh = filter_curve_db [1][0];
|
|
155
|
+
curveHigh = filter_curve_db [1][1];
|
|
156
|
+
|
|
157
|
+
result = ((freq - freqLow) * curveHigh + (freqHigh - freq) * curveLow)/ (freqHigh - freqLow);
|
|
158
|
+
|
|
159
|
+
return (float) result;
|
|
160
|
+
}
|
|
161
|
+
|
|
162
|
+
if (freq >= filter_curve_db [number_of_points-1][0]) {
|
|
163
|
+
freqLow = filter_curve_db [number_of_points-2][0];
|
|
164
|
+
curveLow = filter_curve_db [number_of_points-2][1];
|
|
165
|
+
freqHigh = filter_curve_db [number_of_points-1][0];
|
|
166
|
+
curveHigh = filter_curve_db [number_of_points-1][1];
|
|
167
|
+
|
|
168
|
+
result = ((freq - freqLow) * curveHigh + (freqHigh - freq) * curveLow)/ (freqHigh - freqLow);
|
|
169
|
+
|
|
170
|
+
return (float) result;
|
|
171
|
+
}
|
|
172
|
+
|
|
173
|
+
i = 1;
|
|
174
|
+
freqHigh = filter_curve_db [i][0];
|
|
175
|
+
while (freqHigh < freq) {
|
|
176
|
+
i++;
|
|
177
|
+
freqHigh = filter_curve_db [i][0];
|
|
178
|
+
}
|
|
179
|
+
curveHigh = filter_curve_db [i][1];
|
|
180
|
+
|
|
181
|
+
freqLow = filter_curve_db [i-1][0];
|
|
182
|
+
curveLow = filter_curve_db [i-1][1];
|
|
183
|
+
|
|
184
|
+
result = ((freq - freqLow) * curveHigh + (freqHigh - freq) * curveLow)/ (freqHigh - freqLow);
|
|
185
|
+
|
|
186
|
+
return (float) result;
|
|
187
|
+
}
|
|
188
|
+
|
|
189
|
+
|
|
190
|
+
void apply_filter ( float * data, long maxNsamples, int number_of_points, double filter_curve_db [][2] )
|
|
191
|
+
{
|
|
192
|
+
long n = maxNsamples - 2 * SEARCHBUFFER * Downsample + DATAPADDING_MSECS * (Fs / 1000);
|
|
193
|
+
long pow_of_2 = nextpow2 (n);
|
|
194
|
+
float *x = (float *) safe_malloc ((pow_of_2 + 2) * sizeof (float));
|
|
195
|
+
|
|
196
|
+
float factorDb, factor;
|
|
197
|
+
|
|
198
|
+
float overallGainFilter = interpolate ((float) 1000, filter_curve_db, number_of_points);
|
|
199
|
+
float freq_resolution;
|
|
200
|
+
int i;
|
|
201
|
+
|
|
202
|
+
for (i = 0; i < pow_of_2 + 2; i++) {
|
|
203
|
+
x [i] = 0;
|
|
204
|
+
}
|
|
205
|
+
|
|
206
|
+
for (i = 0; i < n; i++) {
|
|
207
|
+
x [i] = data [i + SEARCHBUFFER * Downsample];
|
|
208
|
+
}
|
|
209
|
+
|
|
210
|
+
RealFFT (x, pow_of_2);
|
|
211
|
+
|
|
212
|
+
freq_resolution = (float) Fs / (float) pow_of_2;
|
|
213
|
+
|
|
214
|
+
|
|
215
|
+
for (i = 0; i <= pow_of_2/2; i++) {
|
|
216
|
+
factorDb = interpolate (i * freq_resolution, filter_curve_db, number_of_points) - overallGainFilter;
|
|
217
|
+
factor = (float) pow ((float) 10, factorDb / (float) 20);
|
|
218
|
+
|
|
219
|
+
x [2 * i] *= factor;
|
|
220
|
+
x [2 * i + 1] *= factor;
|
|
221
|
+
}
|
|
222
|
+
|
|
223
|
+
RealIFFT (x, pow_of_2);
|
|
224
|
+
|
|
225
|
+
for (i = 0; i < n; i++) {
|
|
226
|
+
data [i + SEARCHBUFFER * Downsample] = x[i];
|
|
227
|
+
}
|
|
228
|
+
|
|
229
|
+
safe_free (x);
|
|
230
|
+
}
|
|
231
|
+
|
|
232
|
+
void apply_VAD( SIGNAL_INFO * pinfo, float * data, float * VAD, float * logVAD )
|
|
233
|
+
{
|
|
234
|
+
float g;
|
|
235
|
+
float LevelThresh;
|
|
236
|
+
float LevelNoise;
|
|
237
|
+
float StDNoise;
|
|
238
|
+
float LevelSig;
|
|
239
|
+
float LevelMin;
|
|
240
|
+
long count;
|
|
241
|
+
long iteration;
|
|
242
|
+
long length;
|
|
243
|
+
long start;
|
|
244
|
+
long finish;
|
|
245
|
+
long Nwindows = (*pinfo).Nsamples / Downsample;
|
|
246
|
+
|
|
247
|
+
for( count = 0L; count < Nwindows; count++ )
|
|
248
|
+
{
|
|
249
|
+
VAD[count] = 0.0f;
|
|
250
|
+
for( iteration = 0L; iteration < Downsample; iteration++ )
|
|
251
|
+
{
|
|
252
|
+
g = data[count * Downsample + iteration];
|
|
253
|
+
VAD[count] += (g * g);
|
|
254
|
+
}
|
|
255
|
+
VAD[count] /= Downsample;
|
|
256
|
+
}
|
|
257
|
+
|
|
258
|
+
LevelThresh = 0.0f;
|
|
259
|
+
for( count = 0L; count < Nwindows; count++ )
|
|
260
|
+
LevelThresh += VAD[count];
|
|
261
|
+
LevelThresh /= Nwindows;
|
|
262
|
+
|
|
263
|
+
LevelMin = 0.0f;
|
|
264
|
+
for( count = 0L; count < Nwindows; count++ )
|
|
265
|
+
if( VAD[count] > LevelMin )
|
|
266
|
+
LevelMin = VAD[count];
|
|
267
|
+
if( LevelMin > 0.0f )
|
|
268
|
+
LevelMin *= 1.0e-4f;
|
|
269
|
+
else
|
|
270
|
+
LevelMin = 1.0f;
|
|
271
|
+
|
|
272
|
+
for( count = 0L; count < Nwindows; count++ )
|
|
273
|
+
if( VAD[count] < LevelMin )
|
|
274
|
+
VAD[count] = LevelMin;
|
|
275
|
+
|
|
276
|
+
for( iteration = 0L; iteration < 12L; iteration++ )
|
|
277
|
+
{
|
|
278
|
+
LevelNoise = 0.0f;
|
|
279
|
+
StDNoise = 0.0f;
|
|
280
|
+
length = 0L;
|
|
281
|
+
for( count = 0L; count < Nwindows; count++ )
|
|
282
|
+
if( VAD[count] <= LevelThresh )
|
|
283
|
+
{
|
|
284
|
+
LevelNoise += VAD[count];
|
|
285
|
+
length++;
|
|
286
|
+
}
|
|
287
|
+
if( length > 0L )
|
|
288
|
+
{
|
|
289
|
+
LevelNoise /= length;
|
|
290
|
+
for( count = 0L; count < Nwindows; count++ )
|
|
291
|
+
if( VAD[count] <= LevelThresh )
|
|
292
|
+
{
|
|
293
|
+
g = VAD[count] - LevelNoise;
|
|
294
|
+
StDNoise += g * g;
|
|
295
|
+
}
|
|
296
|
+
StDNoise = (float)sqrt(StDNoise / length);
|
|
297
|
+
}
|
|
298
|
+
|
|
299
|
+
LevelThresh = 1.001f * (LevelNoise + 2.0f * StDNoise);
|
|
300
|
+
}
|
|
301
|
+
|
|
302
|
+
LevelNoise = 0.0f;
|
|
303
|
+
LevelSig = 0.0f;
|
|
304
|
+
length = 0L;
|
|
305
|
+
for( count = 0L; count < Nwindows; count++ )
|
|
306
|
+
{
|
|
307
|
+
if( VAD[count] > LevelThresh )
|
|
308
|
+
{
|
|
309
|
+
LevelSig += VAD[count];
|
|
310
|
+
length++;
|
|
311
|
+
}
|
|
312
|
+
else
|
|
313
|
+
LevelNoise += VAD[count];
|
|
314
|
+
}
|
|
315
|
+
if( length > 0L )
|
|
316
|
+
LevelSig /= length;
|
|
317
|
+
else
|
|
318
|
+
LevelThresh = -1.0f;
|
|
319
|
+
if( length < Nwindows )
|
|
320
|
+
LevelNoise /= (Nwindows - length);
|
|
321
|
+
else
|
|
322
|
+
LevelNoise = 1.0f;
|
|
323
|
+
|
|
324
|
+
for( count = 0L; count < Nwindows; count++ )
|
|
325
|
+
if( VAD[count] <= LevelThresh )
|
|
326
|
+
VAD[count] = -VAD[count];
|
|
327
|
+
|
|
328
|
+
VAD[0] = -LevelMin;
|
|
329
|
+
VAD[Nwindows-1] = -LevelMin;
|
|
330
|
+
|
|
331
|
+
start = 0L;
|
|
332
|
+
finish = 0L;
|
|
333
|
+
for( count = 1; count < Nwindows; count++ )
|
|
334
|
+
{
|
|
335
|
+
if( (VAD[count] > 0.0f) && (VAD[count-1] <= 0.0f) )
|
|
336
|
+
start = count;
|
|
337
|
+
if( (VAD[count] <= 0.0f) && (VAD[count-1] > 0.0f) )
|
|
338
|
+
{
|
|
339
|
+
finish = count;
|
|
340
|
+
if( (finish - start) <= MINSPEECHLGTH )
|
|
341
|
+
for( iteration = start; iteration < finish; iteration++ )
|
|
342
|
+
VAD[iteration] = -VAD[iteration];
|
|
343
|
+
}
|
|
344
|
+
}
|
|
345
|
+
|
|
346
|
+
if( LevelSig >= (LevelNoise * 1000.0f) )
|
|
347
|
+
{
|
|
348
|
+
for( count = 1; count < Nwindows; count++ )
|
|
349
|
+
{
|
|
350
|
+
if( (VAD[count] > 0.0f) && (VAD[count-1] <= 0.0f) )
|
|
351
|
+
start = count;
|
|
352
|
+
if( (VAD[count] <= 0.0f) && (VAD[count-1] > 0.0f) )
|
|
353
|
+
{
|
|
354
|
+
finish = count;
|
|
355
|
+
g = 0.0f;
|
|
356
|
+
for( iteration = start; iteration < finish; iteration++ )
|
|
357
|
+
g += VAD[iteration];
|
|
358
|
+
if( g < 3.0f * LevelThresh * (finish - start) )
|
|
359
|
+
for( iteration = start; iteration < finish; iteration++ )
|
|
360
|
+
VAD[iteration] = -VAD[iteration];
|
|
361
|
+
}
|
|
362
|
+
}
|
|
363
|
+
}
|
|
364
|
+
|
|
365
|
+
start = 0L;
|
|
366
|
+
finish = 0L;
|
|
367
|
+
for( count = 1; count < Nwindows; count++ )
|
|
368
|
+
{
|
|
369
|
+
if( (VAD[count] > 0.0f) && (VAD[count-1] <= 0.0f) )
|
|
370
|
+
{
|
|
371
|
+
start = count;
|
|
372
|
+
if( (finish > 0L) && ((start - finish) <= JOINSPEECHLGTH) )
|
|
373
|
+
for( iteration = finish; iteration < start; iteration++ )
|
|
374
|
+
VAD[iteration] = LevelMin;
|
|
375
|
+
}
|
|
376
|
+
if( (VAD[count] <= 0.0f) && (VAD[count-1] > 0.0f) )
|
|
377
|
+
finish = count;
|
|
378
|
+
}
|
|
379
|
+
|
|
380
|
+
start = 0L;
|
|
381
|
+
for( count = 1; count < Nwindows; count++ )
|
|
382
|
+
{
|
|
383
|
+
if( (VAD[count] > 0.0f) && (VAD[count-1] <= 0.0f) )
|
|
384
|
+
start = count;
|
|
385
|
+
}
|
|
386
|
+
if( start == 0L )
|
|
387
|
+
{
|
|
388
|
+
for( count = 0L; count < Nwindows; count++ )
|
|
389
|
+
VAD[count] = (float)fabs(VAD[count]);
|
|
390
|
+
VAD[0] = -LevelMin;
|
|
391
|
+
VAD[Nwindows-1] = -LevelMin;
|
|
392
|
+
}
|
|
393
|
+
|
|
394
|
+
count = 3;
|
|
395
|
+
while( count < (Nwindows-2) )
|
|
396
|
+
{
|
|
397
|
+
if( (VAD[count] > 0.0f) && (VAD[count-2] <= 0.0f) )
|
|
398
|
+
{
|
|
399
|
+
VAD[count-2] = VAD[count] * 0.1f;
|
|
400
|
+
VAD[count-1] = VAD[count] * 0.3f;
|
|
401
|
+
count++;
|
|
402
|
+
}
|
|
403
|
+
if( (VAD[count] <= 0.0f) && (VAD[count-1] > 0.0f) )
|
|
404
|
+
{
|
|
405
|
+
VAD[count] = VAD[count-1] * 0.3f;
|
|
406
|
+
VAD[count+1] = VAD[count-1] * 0.1f;
|
|
407
|
+
count += 3;
|
|
408
|
+
}
|
|
409
|
+
count++;
|
|
410
|
+
}
|
|
411
|
+
|
|
412
|
+
for( count = 0L; count < Nwindows; count++ )
|
|
413
|
+
if( VAD[count] < 0.0f ) VAD[count] = 0.0f;
|
|
414
|
+
|
|
415
|
+
if( LevelThresh <= 0.0f )
|
|
416
|
+
LevelThresh = LevelMin;
|
|
417
|
+
for( count = 0L; count < Nwindows; count++ )
|
|
418
|
+
{
|
|
419
|
+
if( VAD[count] <= LevelThresh )
|
|
420
|
+
logVAD[count] = 0.0f;
|
|
421
|
+
else
|
|
422
|
+
logVAD[count] = (float)log( VAD[count]/LevelThresh );
|
|
423
|
+
}
|
|
424
|
+
}
|
|
425
|
+
|
|
426
|
+
void crude_align(
|
|
427
|
+
SIGNAL_INFO * ref_info, SIGNAL_INFO * deg_info, ERROR_INFO * err_info,
|
|
428
|
+
long Utt_id, float * ftmp)
|
|
429
|
+
{
|
|
430
|
+
long nr;
|
|
431
|
+
long nd;
|
|
432
|
+
long startr;
|
|
433
|
+
long startd;
|
|
434
|
+
long count;
|
|
435
|
+
long I_max;
|
|
436
|
+
float max;
|
|
437
|
+
float * ref_VAD = (*ref_info).logVAD;
|
|
438
|
+
float * deg_VAD = (*deg_info).logVAD;
|
|
439
|
+
float * Y;
|
|
440
|
+
|
|
441
|
+
if( Utt_id == WHOLE_SIGNAL )
|
|
442
|
+
{
|
|
443
|
+
nr = (*ref_info).Nsamples / Downsample;
|
|
444
|
+
nd = (*deg_info).Nsamples / Downsample;
|
|
445
|
+
startr = 0L;
|
|
446
|
+
startd = 0L;
|
|
447
|
+
}
|
|
448
|
+
else if( Utt_id == MAXNUTTERANCES )
|
|
449
|
+
{
|
|
450
|
+
startr = (*err_info).UttSearch_Start[MAXNUTTERANCES-1];
|
|
451
|
+
startd = startr + (*err_info).Utt_DelayEst[MAXNUTTERANCES-1] / Downsample;
|
|
452
|
+
|
|
453
|
+
if ( startd < 0L )
|
|
454
|
+
{
|
|
455
|
+
startr = -(*err_info).Utt_DelayEst[MAXNUTTERANCES-1] / Downsample;
|
|
456
|
+
startd = 0L;
|
|
457
|
+
}
|
|
458
|
+
|
|
459
|
+
nr = (*err_info).UttSearch_End[MAXNUTTERANCES-1] - startr;
|
|
460
|
+
nd = nr;
|
|
461
|
+
|
|
462
|
+
if( startd + nd > (*deg_info).Nsamples / Downsample )
|
|
463
|
+
nd = (*deg_info).Nsamples / Downsample - startd;
|
|
464
|
+
}
|
|
465
|
+
else
|
|
466
|
+
{
|
|
467
|
+
startr = (*err_info).UttSearch_Start[Utt_id];
|
|
468
|
+
startd = startr + (*err_info).Crude_DelayEst / Downsample;
|
|
469
|
+
|
|
470
|
+
if ( startd < 0L )
|
|
471
|
+
{
|
|
472
|
+
startr = -(*err_info).Crude_DelayEst / Downsample;
|
|
473
|
+
startd = 0L;
|
|
474
|
+
}
|
|
475
|
+
|
|
476
|
+
nr = (*err_info).UttSearch_End[Utt_id] - startr;
|
|
477
|
+
nd = nr;
|
|
478
|
+
|
|
479
|
+
if( startd + nd > (*deg_info).Nsamples / Downsample )
|
|
480
|
+
nd = (*deg_info).Nsamples / Downsample - startd;
|
|
481
|
+
}
|
|
482
|
+
|
|
483
|
+
Y = ftmp;
|
|
484
|
+
|
|
485
|
+
if( (nr > 1L) && (nd > 1L) )
|
|
486
|
+
FFTNXCorr( ref_VAD + startr, nr, deg_VAD + startd, nd, Y );
|
|
487
|
+
|
|
488
|
+
max = 0.0f;
|
|
489
|
+
I_max = nr - 1;
|
|
490
|
+
if( (nr > 1L) && (nd > 1L) )
|
|
491
|
+
for( count = 0L; count < (nr+nd-1); count++ )
|
|
492
|
+
if( Y[count] > max )
|
|
493
|
+
{
|
|
494
|
+
max = Y[count];
|
|
495
|
+
I_max = count;
|
|
496
|
+
}
|
|
497
|
+
|
|
498
|
+
if( Utt_id == WHOLE_SIGNAL )
|
|
499
|
+
{
|
|
500
|
+
(*err_info).Crude_DelayEst = (I_max - nr + 1) * Downsample;
|
|
501
|
+
(*err_info).Crude_DelayConf = 0.0f;
|
|
502
|
+
}
|
|
503
|
+
else if( Utt_id == MAXNUTTERANCES )
|
|
504
|
+
{
|
|
505
|
+
(*err_info).Utt_Delay[MAXNUTTERANCES-1] =
|
|
506
|
+
(I_max - nr + 1) * Downsample + (*err_info).Utt_DelayEst[MAXNUTTERANCES-1];
|
|
507
|
+
}
|
|
508
|
+
else
|
|
509
|
+
{
|
|
510
|
+
(*err_info).Utt_DelayEst[Utt_id] =
|
|
511
|
+
(I_max - nr + 1) * Downsample + (*err_info).Crude_DelayEst;
|
|
512
|
+
}
|
|
513
|
+
|
|
514
|
+
FFTFree();
|
|
515
|
+
}
|
|
516
|
+
|
|
517
|
+
void time_align(
|
|
518
|
+
SIGNAL_INFO * ref_info, SIGNAL_INFO * deg_info, ERROR_INFO * err_info,
|
|
519
|
+
long Utt_id, float * ftmp )
|
|
520
|
+
{
|
|
521
|
+
long count;
|
|
522
|
+
long I_max;
|
|
523
|
+
float v_max;
|
|
524
|
+
long estdelay;
|
|
525
|
+
long startr;
|
|
526
|
+
long startd;
|
|
527
|
+
float * X1;
|
|
528
|
+
float * X2;
|
|
529
|
+
float * H;
|
|
530
|
+
float * Window;
|
|
531
|
+
float r1, i1;
|
|
532
|
+
long kernel;
|
|
533
|
+
float Hsum;
|
|
534
|
+
|
|
535
|
+
estdelay = (*err_info).Utt_DelayEst[Utt_id];
|
|
536
|
+
|
|
537
|
+
X1 = ftmp;
|
|
538
|
+
X2 = ftmp + Align_Nfft + 2;
|
|
539
|
+
H = (ftmp + 4 + 2 * Align_Nfft);
|
|
540
|
+
for( count = 0L; count < Align_Nfft; count++ )
|
|
541
|
+
H[count] = 0.0f;
|
|
542
|
+
Window = ftmp + 5 * Align_Nfft;
|
|
543
|
+
|
|
544
|
+
for( count = 0L; count < Align_Nfft; count++ )
|
|
545
|
+
Window[count] = (float)(0.5 * (1.0 - cos((TWOPI * count) / Align_Nfft)));
|
|
546
|
+
|
|
547
|
+
startr = (*err_info).UttSearch_Start[Utt_id] * Downsample;
|
|
548
|
+
startd = startr + estdelay;
|
|
549
|
+
|
|
550
|
+
if ( startd < 0L )
|
|
551
|
+
{
|
|
552
|
+
startr = -estdelay;
|
|
553
|
+
startd = 0L;
|
|
554
|
+
}
|
|
555
|
+
|
|
556
|
+
while( ((startd + Align_Nfft) <= (*deg_info).Nsamples) &&
|
|
557
|
+
((startr + Align_Nfft) <= ((*err_info).UttSearch_End[Utt_id] * Downsample)) )
|
|
558
|
+
{
|
|
559
|
+
for( count = 0L; count < Align_Nfft; count++ )
|
|
560
|
+
{
|
|
561
|
+
X1[count] = (*ref_info).data[count + startr] * Window[count];
|
|
562
|
+
X2[count] = (*deg_info).data[count + startd] * Window[count];
|
|
563
|
+
|
|
564
|
+
}
|
|
565
|
+
RealFFT( X1, Align_Nfft );
|
|
566
|
+
RealFFT( X2, Align_Nfft );
|
|
567
|
+
|
|
568
|
+
for( count = 0L; count <= Align_Nfft / 2; count++ )
|
|
569
|
+
{
|
|
570
|
+
r1 = X1[count * 2]; i1 = -X1[1 + (count * 2)];
|
|
571
|
+
X1[count * 2] = (r1 * X2[count * 2] - i1 * X2[1 + (count * 2)]);
|
|
572
|
+
X1[1 + (count * 2)] = (r1 * X2[1 + (count * 2)] + i1 * X2[count * 2]);
|
|
573
|
+
}
|
|
574
|
+
|
|
575
|
+
RealIFFT( X1, Align_Nfft );
|
|
576
|
+
|
|
577
|
+
v_max = 0.0f;
|
|
578
|
+
for( count = 0L; count < Align_Nfft; count++ )
|
|
579
|
+
{
|
|
580
|
+
r1 = (float) fabs(X1[count]);
|
|
581
|
+
X1[count] = r1;
|
|
582
|
+
if( r1 > v_max ) v_max = r1;
|
|
583
|
+
}
|
|
584
|
+
v_max *= 0.99f;
|
|
585
|
+
for( count = 0L; count < Align_Nfft; count++ )
|
|
586
|
+
if( X1[count] > v_max )
|
|
587
|
+
H[count] += (float) pow( v_max, 0.125 );
|
|
588
|
+
|
|
589
|
+
startr += (Align_Nfft / 4);
|
|
590
|
+
startd += (Align_Nfft / 4);
|
|
591
|
+
}
|
|
592
|
+
|
|
593
|
+
Hsum = 0.0f;
|
|
594
|
+
for( count = 0L; count < Align_Nfft; count++ )
|
|
595
|
+
{
|
|
596
|
+
Hsum += H[count];
|
|
597
|
+
X1[count] = H[count];
|
|
598
|
+
X2[count] = 0.0f;
|
|
599
|
+
}
|
|
600
|
+
|
|
601
|
+
X2[0] = 1.0f;
|
|
602
|
+
kernel = Align_Nfft / 64;
|
|
603
|
+
for( count = 1; count < kernel; count++ )
|
|
604
|
+
{
|
|
605
|
+
X2[count] = 1.0f - ((float)count) / ((float)kernel);
|
|
606
|
+
X2[(Align_Nfft - count)] = 1.0f - ((float)count) / ((float)kernel);
|
|
607
|
+
}
|
|
608
|
+
RealFFT( X1, Align_Nfft );
|
|
609
|
+
RealFFT( X2, Align_Nfft );
|
|
610
|
+
|
|
611
|
+
for( count = 0L; count <= Align_Nfft / 2; count++ )
|
|
612
|
+
{
|
|
613
|
+
r1 = X1[count * 2]; i1 = X1[1 + (count * 2)];
|
|
614
|
+
X1[count * 2] = (r1 * X2[count * 2] - i1 * X2[1 + (count * 2)]);
|
|
615
|
+
X1[1 + (count * 2)] = (r1 * X2[1 + (count * 2)] + i1 * X2[count * 2]);
|
|
616
|
+
}
|
|
617
|
+
RealIFFT( X1, Align_Nfft );
|
|
618
|
+
|
|
619
|
+
for( count = 0L; count < Align_Nfft; count++ )
|
|
620
|
+
{
|
|
621
|
+
if( Hsum > 0.0 )
|
|
622
|
+
H[count] = (float) fabs(X1[count]) / Hsum;
|
|
623
|
+
else
|
|
624
|
+
H[count] = 0.0f;
|
|
625
|
+
}
|
|
626
|
+
|
|
627
|
+
v_max = 0.0f;
|
|
628
|
+
I_max = 0L;
|
|
629
|
+
for( count = 0L; count < Align_Nfft; count++ )
|
|
630
|
+
if( H[count] > v_max )
|
|
631
|
+
{
|
|
632
|
+
v_max = H[count];
|
|
633
|
+
I_max = count;
|
|
634
|
+
}
|
|
635
|
+
if( I_max >= (Align_Nfft/2) )
|
|
636
|
+
I_max -= Align_Nfft;
|
|
637
|
+
|
|
638
|
+
(*err_info).Utt_Delay[Utt_id] = estdelay + I_max;
|
|
639
|
+
(*err_info).Utt_DelayConf[Utt_id] = v_max;
|
|
640
|
+
|
|
641
|
+
FFTFree();
|
|
642
|
+
}
|
|
643
|
+
|
|
644
|
+
void split_align( SIGNAL_INFO * ref_info, SIGNAL_INFO * deg_info,
|
|
645
|
+
ERROR_INFO * err_info, float * ftmp,
|
|
646
|
+
long Utt_Start, long Utt_SpeechStart, long Utt_SpeechEnd, long Utt_End,
|
|
647
|
+
long Utt_DelayEst, float Utt_DelayConf,
|
|
648
|
+
long * Best_ED1, long * Best_D1, float * Best_DC1,
|
|
649
|
+
long * Best_ED2, long * Best_D2, float * Best_DC2,
|
|
650
|
+
long * Best_BP )
|
|
651
|
+
{
|
|
652
|
+
long count, bp, k;
|
|
653
|
+
long Utt_Len = Utt_SpeechEnd - Utt_SpeechStart;
|
|
654
|
+
long Utt_Test = MAXNUTTERANCES - 1;
|
|
655
|
+
|
|
656
|
+
long N_BPs;
|
|
657
|
+
long Utt_BPs[41];
|
|
658
|
+
long Utt_ED1[41], Utt_ED2[41];
|
|
659
|
+
long Utt_D1[41], Utt_D2[41];
|
|
660
|
+
float Utt_DC1[41], Utt_DC2[41];
|
|
661
|
+
|
|
662
|
+
long Delta, Step, Pad;
|
|
663
|
+
|
|
664
|
+
long estdelay;
|
|
665
|
+
long I_max;
|
|
666
|
+
float v_max, n_max;
|
|
667
|
+
long startr;
|
|
668
|
+
long startd;
|
|
669
|
+
float * X1;
|
|
670
|
+
float * X2;
|
|
671
|
+
float * H;
|
|
672
|
+
float * Window;
|
|
673
|
+
float r1, i1;
|
|
674
|
+
long kernel;
|
|
675
|
+
float Hsum;
|
|
676
|
+
|
|
677
|
+
*Best_DC1 = 0.0f;
|
|
678
|
+
*Best_DC2 = 0.0f;
|
|
679
|
+
|
|
680
|
+
X1 = ftmp;
|
|
681
|
+
X2 = ftmp + 2 + Align_Nfft;
|
|
682
|
+
H = (ftmp + 4 + 2 * Align_Nfft);
|
|
683
|
+
Window = ftmp + 6 + 3 * Align_Nfft;
|
|
684
|
+
for( count = 0L; count < Align_Nfft; count++ )
|
|
685
|
+
Window[count] = (float)(0.5 * (1.0 - cos((TWOPI * count) / Align_Nfft)));
|
|
686
|
+
kernel = Align_Nfft / 64;
|
|
687
|
+
|
|
688
|
+
Delta = Align_Nfft / (4 * Downsample);
|
|
689
|
+
|
|
690
|
+
Step = (long) ((0.801 * Utt_Len + 40 * Delta - 1)/(40 * Delta));
|
|
691
|
+
Step *= Delta;
|
|
692
|
+
|
|
693
|
+
Pad = Utt_Len / 10;
|
|
694
|
+
if( Pad < 75 ) Pad = 75;
|
|
695
|
+
Utt_BPs[0] = Utt_SpeechStart + Pad;
|
|
696
|
+
N_BPs = 0;
|
|
697
|
+
do {
|
|
698
|
+
N_BPs++;
|
|
699
|
+
Utt_BPs[N_BPs] = Utt_BPs[N_BPs-1] + Step;
|
|
700
|
+
} while( (Utt_BPs[N_BPs] <= (Utt_SpeechEnd - Pad)) && (N_BPs < 40) );
|
|
701
|
+
|
|
702
|
+
if( N_BPs <= 0 ) return;
|
|
703
|
+
|
|
704
|
+
for( bp = 0; bp < N_BPs; bp++ )
|
|
705
|
+
{
|
|
706
|
+
(*err_info).Utt_DelayEst[Utt_Test] = Utt_DelayEst;
|
|
707
|
+
(*err_info).UttSearch_Start[Utt_Test] = Utt_Start;
|
|
708
|
+
(*err_info).UttSearch_End[Utt_Test] = Utt_BPs[bp];
|
|
709
|
+
|
|
710
|
+
crude_align( ref_info, deg_info, err_info, MAXNUTTERANCES, ftmp);
|
|
711
|
+
Utt_ED1[bp] = (*err_info).Utt_Delay[Utt_Test];
|
|
712
|
+
|
|
713
|
+
(*err_info).Utt_DelayEst[Utt_Test] = Utt_DelayEst;
|
|
714
|
+
(*err_info).UttSearch_Start[Utt_Test] = Utt_BPs[bp];
|
|
715
|
+
(*err_info).UttSearch_End[Utt_Test] = Utt_End;
|
|
716
|
+
|
|
717
|
+
crude_align( ref_info, deg_info, err_info, MAXNUTTERANCES, ftmp);
|
|
718
|
+
Utt_ED2[bp] = (*err_info).Utt_Delay[Utt_Test];
|
|
719
|
+
}
|
|
720
|
+
|
|
721
|
+
for( bp = 0; bp < N_BPs; bp++ )
|
|
722
|
+
Utt_DC1[bp] = -2.0f;
|
|
723
|
+
while( 1 )
|
|
724
|
+
{
|
|
725
|
+
bp = 0;
|
|
726
|
+
while( (bp < N_BPs) && (Utt_DC1[bp] > -2.0) )
|
|
727
|
+
bp++;
|
|
728
|
+
if( bp >= N_BPs )
|
|
729
|
+
break;
|
|
730
|
+
|
|
731
|
+
estdelay = Utt_ED1[bp];
|
|
732
|
+
|
|
733
|
+
for( count = 0L; count < Align_Nfft; count++ )
|
|
734
|
+
H[count] = 0.0f;
|
|
735
|
+
Hsum = 0.0f;
|
|
736
|
+
|
|
737
|
+
startr = Utt_Start * Downsample;
|
|
738
|
+
startd = startr + estdelay;
|
|
739
|
+
|
|
740
|
+
if ( startd < 0L )
|
|
741
|
+
{
|
|
742
|
+
startr = -estdelay;
|
|
743
|
+
startd = 0L;
|
|
744
|
+
}
|
|
745
|
+
|
|
746
|
+
while( ((startd + Align_Nfft) <= (*deg_info).Nsamples) &&
|
|
747
|
+
((startr + Align_Nfft) <= (Utt_BPs[bp] * Downsample)) )
|
|
748
|
+
{
|
|
749
|
+
for( count = 0L; count < Align_Nfft; count++ )
|
|
750
|
+
{
|
|
751
|
+
X1[count] = (*ref_info).data[count + startr] * Window[count];
|
|
752
|
+
X2[count] = (*deg_info).data[count + startd] * Window[count];
|
|
753
|
+
}
|
|
754
|
+
RealFFT( X1, Align_Nfft );
|
|
755
|
+
RealFFT( X2, Align_Nfft );
|
|
756
|
+
|
|
757
|
+
for( count = 0L; count <= Align_Nfft / 2; count++ )
|
|
758
|
+
{
|
|
759
|
+
r1 = X1[count * 2]; i1 = -X1[1 + (count * 2)];
|
|
760
|
+
X1[count * 2] = (r1 * X2[count * 2] - i1 * X2[1 + (count * 2)]);
|
|
761
|
+
X1[1 + (count * 2)] = (r1 * X2[1 + (count * 2)] + i1 * X2[count * 2]);
|
|
762
|
+
}
|
|
763
|
+
|
|
764
|
+
RealIFFT( X1, Align_Nfft );
|
|
765
|
+
|
|
766
|
+
v_max = 0.0f;
|
|
767
|
+
for( count = 0L; count < Align_Nfft; count++ )
|
|
768
|
+
{
|
|
769
|
+
r1 = (float) fabs(X1[count]);
|
|
770
|
+
X1[count] = r1;
|
|
771
|
+
if( r1 > v_max ) v_max = r1;
|
|
772
|
+
}
|
|
773
|
+
v_max *= 0.99f;
|
|
774
|
+
n_max = (float) pow( v_max, 0.125 ) / kernel;
|
|
775
|
+
|
|
776
|
+
for( count = 0L; count < Align_Nfft; count++ )
|
|
777
|
+
if( X1[count] > v_max )
|
|
778
|
+
{
|
|
779
|
+
Hsum += n_max * kernel;
|
|
780
|
+
for( k = 1-kernel; k < kernel; k++ )
|
|
781
|
+
H[(count + k + Align_Nfft) % Align_Nfft] +=
|
|
782
|
+
n_max * (kernel - (float) fabs(k));
|
|
783
|
+
}
|
|
784
|
+
|
|
785
|
+
startr += (Align_Nfft / 4);
|
|
786
|
+
startd += (Align_Nfft / 4);
|
|
787
|
+
}
|
|
788
|
+
|
|
789
|
+
v_max = 0.0f;
|
|
790
|
+
I_max = 0L;
|
|
791
|
+
for( count = 0L; count < Align_Nfft; count++ )
|
|
792
|
+
if( H[count] > v_max )
|
|
793
|
+
{
|
|
794
|
+
v_max = H[count];
|
|
795
|
+
I_max = count;
|
|
796
|
+
}
|
|
797
|
+
if( I_max >= (Align_Nfft/2) )
|
|
798
|
+
I_max -= Align_Nfft;
|
|
799
|
+
|
|
800
|
+
Utt_D1[bp] = estdelay + I_max;
|
|
801
|
+
if( Hsum > 0.0 )
|
|
802
|
+
Utt_DC1[bp] = v_max / Hsum;
|
|
803
|
+
else
|
|
804
|
+
Utt_DC1[bp] = 0.0f;
|
|
805
|
+
|
|
806
|
+
while( bp < (N_BPs - 1) )
|
|
807
|
+
{
|
|
808
|
+
bp++;
|
|
809
|
+
if( (Utt_ED1[bp] == estdelay) && (Utt_DC1[bp] <= -2.0) )
|
|
810
|
+
{
|
|
811
|
+
while( ((startd + Align_Nfft) <= (*deg_info).Nsamples) &&
|
|
812
|
+
((startr + Align_Nfft) <= (Utt_BPs[bp] * Downsample)) )
|
|
813
|
+
{
|
|
814
|
+
for( count = 0L; count < Align_Nfft; count++ )
|
|
815
|
+
{
|
|
816
|
+
X1[count] = (*ref_info).data[count + startr] * Window[count];
|
|
817
|
+
X2[count] = (*deg_info).data[count + startd] * Window[count];
|
|
818
|
+
}
|
|
819
|
+
RealFFT( X1, Align_Nfft );
|
|
820
|
+
RealFFT( X2, Align_Nfft );
|
|
821
|
+
|
|
822
|
+
for( count = 0L; count <= Align_Nfft/2; count++ )
|
|
823
|
+
{
|
|
824
|
+
r1 = X1[count * 2]; i1 = -X1[1 + (count * 2)];
|
|
825
|
+
X1[count * 2] = (r1 * X2[count * 2] - i1 * X2[1 + (count * 2)]);
|
|
826
|
+
X1[1 + (count * 2)] = (r1 * X2[1 + (count * 2)] + i1 * X2[count * 2]);
|
|
827
|
+
}
|
|
828
|
+
|
|
829
|
+
RealIFFT( X1, Align_Nfft );
|
|
830
|
+
|
|
831
|
+
v_max = 0.0f;
|
|
832
|
+
for( count = 0L; count < Align_Nfft; count++ )
|
|
833
|
+
{
|
|
834
|
+
r1 = (float) fabs(X1[count]);
|
|
835
|
+
X1[count] = r1;
|
|
836
|
+
if( r1 > v_max ) v_max = r1;
|
|
837
|
+
}
|
|
838
|
+
v_max *= 0.99f;
|
|
839
|
+
n_max = (float) pow( v_max, 0.125 ) / kernel;
|
|
840
|
+
|
|
841
|
+
for( count = 0L; count < Align_Nfft; count++ )
|
|
842
|
+
if( X1[count] > v_max )
|
|
843
|
+
{
|
|
844
|
+
Hsum += n_max * kernel;
|
|
845
|
+
for( k = 1-kernel; k < kernel; k++ )
|
|
846
|
+
H[(count + k + Align_Nfft) % Align_Nfft] +=
|
|
847
|
+
n_max * (kernel - (float) fabs(k));
|
|
848
|
+
}
|
|
849
|
+
|
|
850
|
+
startr += (Align_Nfft / 4);
|
|
851
|
+
startd += (Align_Nfft / 4);
|
|
852
|
+
}
|
|
853
|
+
|
|
854
|
+
v_max = 0.0f;
|
|
855
|
+
I_max = 0L;
|
|
856
|
+
for( count = 0L; count < Align_Nfft; count++ )
|
|
857
|
+
if( H[count] > v_max )
|
|
858
|
+
{
|
|
859
|
+
v_max = H[count];
|
|
860
|
+
I_max = count;
|
|
861
|
+
}
|
|
862
|
+
if( I_max >= (Align_Nfft/2) )
|
|
863
|
+
I_max -= Align_Nfft;
|
|
864
|
+
|
|
865
|
+
Utt_D1[bp] = estdelay + I_max;
|
|
866
|
+
if( Hsum > 0.0 )
|
|
867
|
+
Utt_DC1[bp] = v_max / Hsum;
|
|
868
|
+
else
|
|
869
|
+
Utt_DC1[bp] = 0.0f;
|
|
870
|
+
}
|
|
871
|
+
}
|
|
872
|
+
}
|
|
873
|
+
|
|
874
|
+
for( bp = 0; bp < N_BPs; bp++ )
|
|
875
|
+
{
|
|
876
|
+
if( Utt_DC1[bp] > Utt_DelayConf )
|
|
877
|
+
Utt_DC2[bp] = -2.0f;
|
|
878
|
+
else
|
|
879
|
+
Utt_DC2[bp] = 0.0f;
|
|
880
|
+
}
|
|
881
|
+
while( 1 )
|
|
882
|
+
{
|
|
883
|
+
bp = N_BPs - 1;
|
|
884
|
+
while( (bp >= 0) && (Utt_DC2[bp] > -2.0) )
|
|
885
|
+
bp--;
|
|
886
|
+
if( bp < 0 )
|
|
887
|
+
break;
|
|
888
|
+
|
|
889
|
+
estdelay = Utt_ED2[bp];
|
|
890
|
+
|
|
891
|
+
for( count = 0L; count < Align_Nfft; count++ )
|
|
892
|
+
H[count] = 0.0f;
|
|
893
|
+
Hsum = 0.0f;
|
|
894
|
+
|
|
895
|
+
startr = Utt_End * Downsample - Align_Nfft;
|
|
896
|
+
startd = startr + estdelay;
|
|
897
|
+
|
|
898
|
+
if ( (startd + Align_Nfft) > (*deg_info).Nsamples )
|
|
899
|
+
{
|
|
900
|
+
startd = (*deg_info).Nsamples - Align_Nfft;
|
|
901
|
+
startr = startd - estdelay;
|
|
902
|
+
}
|
|
903
|
+
|
|
904
|
+
while( (startd >= 0L) &&
|
|
905
|
+
(startr >= (Utt_BPs[bp] * Downsample)) )
|
|
906
|
+
{
|
|
907
|
+
for( count = 0L; count < Align_Nfft; count++ )
|
|
908
|
+
{
|
|
909
|
+
X1[count] = (*ref_info).data[count + startr] * Window[count];
|
|
910
|
+
X2[count] = (*deg_info).data[count + startd] * Window[count];
|
|
911
|
+
}
|
|
912
|
+
RealFFT( X1, Align_Nfft );
|
|
913
|
+
RealFFT( X2, Align_Nfft );
|
|
914
|
+
|
|
915
|
+
for( count = 0L; count <= Align_Nfft/2; count++ )
|
|
916
|
+
{
|
|
917
|
+
r1 = X1[count * 2]; i1 = -X1[1 + (count * 2)];
|
|
918
|
+
X1[count * 2] = (r1 * X2[count * 2] - i1 * X2[1 + (count * 2)]);
|
|
919
|
+
X1[1 + (count * 2)] = (r1 * X2[1 + (count * 2)] + i1 * X2[count * 2]);
|
|
920
|
+
}
|
|
921
|
+
|
|
922
|
+
RealIFFT( X1, Align_Nfft );
|
|
923
|
+
|
|
924
|
+
v_max = 0.0f;
|
|
925
|
+
for( count = 0L; count < Align_Nfft; count++ )
|
|
926
|
+
{
|
|
927
|
+
r1 = (float) fabs(X1[count]);
|
|
928
|
+
X1[count] = r1;
|
|
929
|
+
if( r1 > v_max ) v_max = r1;
|
|
930
|
+
}
|
|
931
|
+
v_max *= 0.99f;
|
|
932
|
+
n_max = (float) pow( v_max, 0.125 ) / kernel;
|
|
933
|
+
|
|
934
|
+
for( count = 0L; count < Align_Nfft; count++ )
|
|
935
|
+
if( X1[count] > v_max )
|
|
936
|
+
{
|
|
937
|
+
Hsum += n_max * kernel;
|
|
938
|
+
for( k = 1-kernel; k < kernel; k++ )
|
|
939
|
+
H[(count + k + Align_Nfft) % Align_Nfft] +=
|
|
940
|
+
n_max * (kernel - (float) fabs(k));
|
|
941
|
+
}
|
|
942
|
+
|
|
943
|
+
startr -= (Align_Nfft / 4);
|
|
944
|
+
startd -= (Align_Nfft / 4);
|
|
945
|
+
}
|
|
946
|
+
|
|
947
|
+
v_max = 0.0f;
|
|
948
|
+
I_max = 0L;
|
|
949
|
+
for( count = 0L; count < Align_Nfft; count++ )
|
|
950
|
+
if( H[count] > v_max )
|
|
951
|
+
{
|
|
952
|
+
v_max = H[count];
|
|
953
|
+
I_max = count;
|
|
954
|
+
}
|
|
955
|
+
if( I_max >= (Align_Nfft/2) )
|
|
956
|
+
I_max -= Align_Nfft;
|
|
957
|
+
|
|
958
|
+
Utt_D2[bp] = estdelay + I_max;
|
|
959
|
+
if( Hsum > 0.0 )
|
|
960
|
+
Utt_DC2[bp] = v_max / Hsum;
|
|
961
|
+
else
|
|
962
|
+
Utt_DC2[bp] = 0.0f;
|
|
963
|
+
|
|
964
|
+
while( bp > 0 )
|
|
965
|
+
{
|
|
966
|
+
bp--;
|
|
967
|
+
if( (Utt_ED2[bp] == estdelay) && (Utt_DC2[bp] <= -2.0) )
|
|
968
|
+
{
|
|
969
|
+
while( (startd >= 0L) &&
|
|
970
|
+
(startr >= (Utt_BPs[bp] * Downsample)) )
|
|
971
|
+
{
|
|
972
|
+
for( count = 0L; count < Align_Nfft; count++ )
|
|
973
|
+
{
|
|
974
|
+
X1[count] = (*ref_info).data[count + startr] * Window[count];
|
|
975
|
+
X2[count] = (*deg_info).data[count + startd] * Window[count];
|
|
976
|
+
}
|
|
977
|
+
RealFFT( X1, Align_Nfft );
|
|
978
|
+
RealFFT( X2, Align_Nfft );
|
|
979
|
+
|
|
980
|
+
for( count = 0L; count <= Align_Nfft / 2; count++ )
|
|
981
|
+
{
|
|
982
|
+
r1 = X1[count * 2]; i1 = -X1[1 + (count * 2)];
|
|
983
|
+
X1[count * 2] = (r1 * X2[count * 2] - i1 * X2[1 + (count * 2)]);
|
|
984
|
+
X1[1 + (count * 2)] = (r1 * X2[1 + (count * 2)] + i1 * X2[count * 2]);
|
|
985
|
+
}
|
|
986
|
+
|
|
987
|
+
RealIFFT( X1, Align_Nfft );
|
|
988
|
+
|
|
989
|
+
v_max = 0.0f;
|
|
990
|
+
for( count = 0L; count < Align_Nfft; count++ )
|
|
991
|
+
{
|
|
992
|
+
r1 = (float) fabs(X1[count]);
|
|
993
|
+
X1[count] = r1;
|
|
994
|
+
if( r1 > v_max ) v_max = r1;
|
|
995
|
+
}
|
|
996
|
+
v_max *= 0.99f;
|
|
997
|
+
n_max = (float) pow( v_max, 0.125 ) / kernel;
|
|
998
|
+
|
|
999
|
+
for( count = 0L; count < Align_Nfft; count++ )
|
|
1000
|
+
if( X1[count] > v_max )
|
|
1001
|
+
{
|
|
1002
|
+
Hsum += n_max * kernel;
|
|
1003
|
+
for( k = 1-kernel; k < kernel; k++ )
|
|
1004
|
+
H[(count + k + Align_Nfft) % Align_Nfft] +=
|
|
1005
|
+
n_max * (kernel - (float) fabs(k));
|
|
1006
|
+
}
|
|
1007
|
+
|
|
1008
|
+
startr -= (Align_Nfft / 4);
|
|
1009
|
+
startd -= (Align_Nfft / 4);
|
|
1010
|
+
}
|
|
1011
|
+
|
|
1012
|
+
v_max = 0.0f;
|
|
1013
|
+
I_max = 0L;
|
|
1014
|
+
for( count = 0L; count < Align_Nfft; count++ )
|
|
1015
|
+
if( H[count] > v_max )
|
|
1016
|
+
{
|
|
1017
|
+
v_max = H[count];
|
|
1018
|
+
I_max = count;
|
|
1019
|
+
}
|
|
1020
|
+
if( I_max >= (Align_Nfft/2) )
|
|
1021
|
+
I_max -= Align_Nfft;
|
|
1022
|
+
|
|
1023
|
+
Utt_D2[bp] = estdelay + I_max;
|
|
1024
|
+
if( Hsum > 0.0 )
|
|
1025
|
+
Utt_DC2[bp] = v_max / Hsum;
|
|
1026
|
+
else
|
|
1027
|
+
Utt_DC2[bp] = 0.0f;
|
|
1028
|
+
}
|
|
1029
|
+
}
|
|
1030
|
+
}
|
|
1031
|
+
|
|
1032
|
+
for( bp = 0; bp < N_BPs; bp++ )
|
|
1033
|
+
{
|
|
1034
|
+
if( (abs(Utt_D2[bp] - Utt_D1[bp]) >= Downsample) &&
|
|
1035
|
+
((Utt_DC1[bp] + Utt_DC2[bp]) > ((*Best_DC1) + (*Best_DC2))) &&
|
|
1036
|
+
(Utt_DC1[bp] > Utt_DelayConf) && (Utt_DC2[bp] > Utt_DelayConf) )
|
|
1037
|
+
{
|
|
1038
|
+
*Best_ED1 = Utt_ED1[bp]; *Best_D1 = Utt_D1[bp]; *Best_DC1 = Utt_DC1[bp];
|
|
1039
|
+
*Best_ED2 = Utt_ED2[bp]; *Best_D2 = Utt_D2[bp]; *Best_DC2 = Utt_DC2[bp];
|
|
1040
|
+
*Best_BP = Utt_BPs[bp];
|
|
1041
|
+
}
|
|
1042
|
+
}
|
|
1043
|
+
|
|
1044
|
+
FFTFree();
|
|
1045
|
+
}
|
|
1046
|
+
|
|
1047
|
+
/* END OF FILE */
|