neurostats-API 0.0.9__py3-none-any.whl → 0.0.11__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- neurostats_API/__init__.py +1 -1
- neurostats_API/fetchers/__init__.py +1 -0
- neurostats_API/fetchers/balance_sheet.py +19 -9
- neurostats_API/fetchers/cash_flow.py +8 -6
- neurostats_API/fetchers/finance_overview.py +95 -32
- neurostats_API/fetchers/institution.py +214 -0
- neurostats_API/fetchers/month_revenue.py +23 -7
- neurostats_API/fetchers/profit_lose.py +21 -9
- neurostats_API/tools/balance_sheet.yaml +15 -7
- neurostats_API/tools/finance_overview_dict.yaml +76 -34
- neurostats_API/tools/profit_lose.yaml +50 -22
- neurostats_API/tools/seasonal_data_field_dict.txt +16 -1
- neurostats_API/utils/data_process.py +13 -2
- {neurostats_API-0.0.9.dist-info → neurostats_API-0.0.11.dist-info}/METADATA +11 -4
- neurostats_API-0.0.11.dist-info/RECORD +27 -0
- neurostats_API-0.0.9.dist-info/RECORD +0 -26
- {neurostats_API-0.0.9.dist-info → neurostats_API-0.0.11.dist-info}/WHEEL +0 -0
- {neurostats_API-0.0.9.dist-info → neurostats_API-0.0.11.dist-info}/top_level.txt +0 -0
neurostats_API/__init__.py
CHANGED
@@ -1 +1 @@
|
|
1
|
-
__version__='0.0.
|
1
|
+
__version__='0.0.11'
|
@@ -2,6 +2,7 @@ from .base import StatsDateTime, StatsFetcher
|
|
2
2
|
from .balance_sheet import BalanceSheetFetcher
|
3
3
|
from .cash_flow import CashFlowFetcher
|
4
4
|
from .finance_overview import FinanceOverviewFetcher
|
5
|
+
from .institution import InstitutionFetcher
|
5
6
|
from .month_revenue import MonthRevenueFetcher
|
6
7
|
from .profit_lose import ProfitLoseFetcher
|
7
8
|
from .value_invest import ValueFetcher
|
@@ -116,10 +116,13 @@ class BalanceSheetFetcher(StatsFetcher):
|
|
116
116
|
try: # table_dict[項目][(2020Q1, '%')]
|
117
117
|
if (item_name == 'percentage'):
|
118
118
|
if (isinstance(item, (float, int))):
|
119
|
-
item =
|
120
|
-
|
119
|
+
item = StatsProcessor.cal_non_percentage(item, to_str=True, postfix="%")
|
120
|
+
elif ("YoY" in item_name):
|
121
121
|
if (isinstance(item, (float, int))):
|
122
|
-
item =
|
122
|
+
item = StatsProcessor.cal_percentage(item)
|
123
|
+
else:
|
124
|
+
if (isinstance(item, (float, int))):
|
125
|
+
item = StatsProcessor.cal_non_percentage(item, postfix="千元")
|
123
126
|
table_dict[index_name][(time_index, item_name)] = item
|
124
127
|
|
125
128
|
except KeyError:
|
@@ -132,10 +135,17 @@ class BalanceSheetFetcher(StatsFetcher):
|
|
132
135
|
total_table.columns = pd.MultiIndex.from_tuples(total_table.columns)
|
133
136
|
|
134
137
|
for name, setting in self.table_settings.items():
|
135
|
-
|
136
|
-
|
137
|
-
|
138
|
-
|
139
|
-
|
140
|
-
|
138
|
+
if ('target_index' in setting.keys()):
|
139
|
+
target_indexes = [target_index.strip() for target_index in setting['target_index']]
|
140
|
+
else:
|
141
|
+
target_indexes = [None]
|
142
|
+
for target_index in target_indexes:
|
143
|
+
try:
|
144
|
+
return_dict[name] = StatsProcessor.slice_multi_col_table(
|
145
|
+
total_table=total_table,
|
146
|
+
mode=setting['mode'],
|
147
|
+
target_index=target_index)
|
148
|
+
break
|
149
|
+
except Exception as e:
|
150
|
+
continue
|
141
151
|
return return_dict
|
@@ -132,14 +132,15 @@ class CashFlowFetcher(StatsFetcher):
|
|
132
132
|
table_dict[time_index][index_name]['value'] = value[
|
133
133
|
'value']
|
134
134
|
if (value['value']):
|
135
|
-
|
136
|
-
'percentage'] = np.round(
|
135
|
+
ratio = np.round(
|
137
136
|
(value['value'] / cash_flow[
|
138
137
|
main_cash_flow_name]['value']) * 100, 2)
|
138
|
+
table_dict[time_index][index_name][
|
139
|
+
'percentage'] = f"{ratio}%"
|
139
140
|
else:
|
140
141
|
table_dict[time_index][index_name][
|
141
142
|
'percentage'] = None
|
142
|
-
except:
|
143
|
+
except: # 新增index再做一次
|
143
144
|
if (time_index not in table_dict.keys()):
|
144
145
|
table_dict[time_index] = dict()
|
145
146
|
table_dict[time_index][index_name] = dict()
|
@@ -147,14 +148,15 @@ class CashFlowFetcher(StatsFetcher):
|
|
147
148
|
table_dict[time_index][index_name]['value'] = value[
|
148
149
|
'value']
|
149
150
|
if (value['value']):
|
150
|
-
|
151
|
-
'percentage'] = np.round(
|
151
|
+
ratio = np.round(
|
152
152
|
(value['value'] / cash_flow[
|
153
153
|
main_cash_flow_name]['value']) * 100, 2)
|
154
|
+
table_dict[time_index][index_name][
|
155
|
+
'percentage'] = f"{ratio}%"
|
154
156
|
else:
|
155
157
|
table_dict[time_index][index_name][
|
156
158
|
'percentage'] = None
|
157
|
-
|
159
|
+
table_dict[time_index][index_name]['value'] = StatsProcessor.cal_non_percentage(value['value'], postfix="千元")
|
158
160
|
try:
|
159
161
|
partial_cash_flow[time_index][index_name] = table_dict[
|
160
162
|
time_index][index_name]
|
@@ -31,15 +31,19 @@ class FinanceOverviewFetcher(StatsFetcher):
|
|
31
31
|
|
32
32
|
for key, target_sets in self.target_fields.items():
|
33
33
|
try:
|
34
|
-
|
35
|
-
|
36
|
-
small_target] # balance_sheet/profit_lose/cash_flow
|
34
|
+
small_targets = target_sets['field']
|
35
|
+
|
37
36
|
value_index = target_sets['value'] # "金額" or "%"
|
38
37
|
|
39
|
-
|
40
|
-
|
41
|
-
|
42
|
-
|
38
|
+
for small_target in small_targets:
|
39
|
+
big_target = self.inverse_dict[
|
40
|
+
small_target] # balance_sheet/profit_lose/cash_flow
|
41
|
+
if (small_target == "利息費用_bank"):
|
42
|
+
small_target = small_target[:small_target.find("_bank")]
|
43
|
+
target_query.update({
|
44
|
+
f"{key}":
|
45
|
+
f"$$target_season_data.{big_target}.{small_target}.{value_index}"
|
46
|
+
})
|
43
47
|
except Exception:
|
44
48
|
continue
|
45
49
|
|
@@ -98,8 +102,16 @@ class FinanceOverviewFetcher(StatsFetcher):
|
|
98
102
|
finance_dict = fetched_data['seasonal_data'][0]
|
99
103
|
FinanceOverviewProcessor.process_rate(finance_dict)
|
100
104
|
FinanceOverviewProcessor.process_all(finance_dict)
|
105
|
+
self.fill_nan_index(finance_dict)
|
106
|
+
FinanceOverviewProcessor.process_thousand_dollar(finance_dict)
|
101
107
|
fetched_data['seasonal_data'] = finance_dict
|
108
|
+
|
102
109
|
return fetched_data
|
110
|
+
|
111
|
+
def fill_nan_index(self, finance_dict):
|
112
|
+
for key in self.target_fields.keys():
|
113
|
+
if (key not in finance_dict.keys()):
|
114
|
+
finance_dict[key] = None
|
103
115
|
|
104
116
|
|
105
117
|
class FinanceOverviewProcessor(StatsProcessor):
|
@@ -116,6 +128,35 @@ class FinanceOverviewProcessor(StatsProcessor):
|
|
116
128
|
else:
|
117
129
|
finance_dict[key] = StatsProcessor.cal_non_percentage(
|
118
130
|
finance_dict[key])
|
131
|
+
|
132
|
+
|
133
|
+
@classmethod
|
134
|
+
def process_thousand_dollar(cls, finance_dict):
|
135
|
+
process_index = [
|
136
|
+
"revenue",
|
137
|
+
"gross_profit",
|
138
|
+
"operating_income",
|
139
|
+
"net_income",
|
140
|
+
"operating_cash_flow",
|
141
|
+
"invest_cash_flow",
|
142
|
+
"financing_cash_flow",
|
143
|
+
"fcf",
|
144
|
+
|
145
|
+
'current_assets',
|
146
|
+
'current_liabilities',
|
147
|
+
'non_current_assets',
|
148
|
+
'non_current_liabilities',
|
149
|
+
'total_assets',
|
150
|
+
"total_liabilities",
|
151
|
+
"equity"
|
152
|
+
]
|
153
|
+
|
154
|
+
for index in process_index:
|
155
|
+
try:
|
156
|
+
finance_dict[index] = StatsProcessor.cal_non_percentage(finance_dict[index], postfix="千元")
|
157
|
+
except Exception as e:
|
158
|
+
finance_dict[index] = None
|
159
|
+
|
119
160
|
|
120
161
|
@classmethod
|
121
162
|
def process_all(cls, finance_dict):
|
@@ -135,12 +176,13 @@ class FinanceOverviewProcessor(StatsProcessor):
|
|
135
176
|
cls.cal_quick_ratio, cls.cal_debt_to_equity_ratio,
|
136
177
|
cls.cal_net_debt_to_equity_ratio, cls.cal_interest_coverage_ratio,
|
137
178
|
cls.cal_debt_to_operating_cash_flow,
|
138
|
-
cls.cal_debt_to_free_cash_flow, cls.cal_cash_flow_ratio
|
179
|
+
cls.cal_debt_to_free_cash_flow, cls.cal_cash_flow_ratio,
|
139
180
|
]
|
140
181
|
|
141
182
|
for method in methods:
|
142
183
|
method(finance_dict)
|
143
184
|
|
185
|
+
|
144
186
|
@classmethod
|
145
187
|
def cal_EBIT(cls, finance_dict):
|
146
188
|
"""
|
@@ -224,7 +266,14 @@ class FinanceOverviewProcessor(StatsProcessor):
|
|
224
266
|
計算每股毛利
|
225
267
|
= (當期營業毛利)÷(當期在外流通股數)
|
226
268
|
"""
|
227
|
-
|
269
|
+
if ('gross_profit' not in finance_dict.keys()):
|
270
|
+
try:
|
271
|
+
finance_dict['gross_profit'] = (
|
272
|
+
finance_dict['revenue'] -
|
273
|
+
finance_dict['operating_cost']
|
274
|
+
)
|
275
|
+
except:
|
276
|
+
finance_dict['gross_profit'] = None
|
228
277
|
try:
|
229
278
|
gross_per_share = (finance_dict['gross_profit'] /
|
230
279
|
finance_dict['share_outstanding'])
|
@@ -267,7 +316,7 @@ class FinanceOverviewProcessor(StatsProcessor):
|
|
267
316
|
operating_cash_flow_per_share)
|
268
317
|
except (KeyError, ZeroDivisionError, TypeError) as e:
|
269
318
|
finance_dict['operating_cash_flow_per_share'] = None
|
270
|
-
print(f'operating_cash_flow_per_share because of {str(e)}')
|
319
|
+
# print(f'operating_cash_flow_per_share because of {str(e)}')
|
271
320
|
|
272
321
|
@classmethod
|
273
322
|
def fcf_per_share(cls, finance_dict):
|
@@ -292,12 +341,15 @@ class FinanceOverviewProcessor(StatsProcessor):
|
|
292
341
|
計算資產報酬率(ROA)
|
293
342
|
ROA = [ 本期淨利 + 利息費用 × (1-有效稅率) ] ÷(資產總額)
|
294
343
|
"""
|
295
|
-
|
296
|
-
|
297
|
-
|
298
|
-
|
344
|
+
try:
|
345
|
+
roa = (
|
346
|
+
finance_dict['net_income'] + finance_dict['interest'] +
|
347
|
+
(1 * 0.1) # 有效稅率需要改,這裡先設0.1
|
348
|
+
) / finance_dict['inventories']
|
299
349
|
|
300
|
-
|
350
|
+
finance_dict["roa"] = StatsProcessor.cal_percentage(roa)
|
351
|
+
except Exception as e:
|
352
|
+
finance_dict["roa"] = None
|
301
353
|
|
302
354
|
@classmethod
|
303
355
|
def cal_roe(cls, finance_dict):
|
@@ -305,8 +357,11 @@ class FinanceOverviewProcessor(StatsProcessor):
|
|
305
357
|
計算股東權益報酬率(ROE)
|
306
358
|
ROE = (本期淨利) ÷(權益總額)
|
307
359
|
"""
|
308
|
-
|
309
|
-
|
360
|
+
try:
|
361
|
+
roe = (finance_dict['net_income'] / finance_dict['equity'])
|
362
|
+
finance_dict['roe'] = StatsProcessor.cal_percentage(roe)
|
363
|
+
except Exception as e:
|
364
|
+
finance_dict['roe'] = None
|
310
365
|
|
311
366
|
@classmethod
|
312
367
|
def cal_gross_over_asset(cls, finance_dict):
|
@@ -315,7 +370,7 @@ class FinanceOverviewProcessor(StatsProcessor):
|
|
315
370
|
"""
|
316
371
|
try:
|
317
372
|
gross_over_asset = (finance_dict['gross_profit'] /
|
318
|
-
finance_dict['
|
373
|
+
finance_dict['total_assets'])
|
319
374
|
finance_dict['gross_over_asset'] = StatsProcessor.cal_percentage(
|
320
375
|
gross_over_asset)
|
321
376
|
except (KeyError, ZeroDivisionError, TypeError) as e:
|
@@ -331,7 +386,7 @@ class FinanceOverviewProcessor(StatsProcessor):
|
|
331
386
|
try:
|
332
387
|
roce = ((finance_dict['net_income_before_tax'] +
|
333
388
|
finance_dict['interest']) /
|
334
|
-
(finance_dict['
|
389
|
+
(finance_dict['total_assets'] -
|
335
390
|
finance_dict['current_liabilities']))
|
336
391
|
finance_dict['roce'] = StatsProcessor.cal_percentage(roce)
|
337
392
|
|
@@ -351,7 +406,7 @@ class FinanceOverviewProcessor(StatsProcessor):
|
|
351
406
|
finance_dict[
|
352
407
|
'gross_profit_margin'] = StatsProcessor.cal_percentage(
|
353
408
|
gross_profit_margin)
|
354
|
-
except:
|
409
|
+
except Exception as e:
|
355
410
|
finance_dict['gross_profit_margin'] = None
|
356
411
|
print(f"gross_profit_margin failed because of {str(e)}")
|
357
412
|
|
@@ -409,7 +464,7 @@ class FinanceOverviewProcessor(StatsProcessor):
|
|
409
464
|
(finance_dict['account_pay'] / finance_dict['revenue']))
|
410
465
|
finance_dict['dso'] = StatsProcessor.cal_non_percentage(
|
411
466
|
dso, to_str=True, postfix="日")
|
412
|
-
except:
|
467
|
+
except Exception as e:
|
413
468
|
finance_dict['dso'] = None
|
414
469
|
print(f"Error calculating 應收帳款收現天數 because of {str(e)}")
|
415
470
|
|
@@ -419,11 +474,15 @@ class FinanceOverviewProcessor(StatsProcessor):
|
|
419
474
|
計算應收帳款佔營收比率
|
420
475
|
= 應收帳款平均餘額 ÷ 營業收入
|
421
476
|
"""
|
422
|
-
|
423
|
-
|
424
|
-
|
425
|
-
|
426
|
-
account_receive_over_revenue
|
477
|
+
try:
|
478
|
+
account_receive_over_revenue = (finance_dict['account_receive'] /
|
479
|
+
finance_dict['revenue'])
|
480
|
+
finance_dict[
|
481
|
+
"account_receive_over_revenue"] = StatsProcessor.cal_percentage(
|
482
|
+
account_receive_over_revenue)
|
483
|
+
except Exception as e:
|
484
|
+
finance_dict[
|
485
|
+
"account_receive_over_revenue"] = None
|
427
486
|
|
428
487
|
@classmethod
|
429
488
|
def cal_dpo(cls, finance_dict):
|
@@ -513,10 +572,13 @@ class FinanceOverviewProcessor(StatsProcessor):
|
|
513
572
|
計算資產周轉率
|
514
573
|
營業收入 ÷ 資產總額
|
515
574
|
"""
|
516
|
-
|
517
|
-
|
518
|
-
|
519
|
-
asset_turnover
|
575
|
+
try:
|
576
|
+
asset_turnover = (finance_dict["revenue"] /
|
577
|
+
finance_dict["inventories"])
|
578
|
+
finance_dict["asset_turnover"] = StatsProcessor.cal_percentage(
|
579
|
+
asset_turnover)
|
580
|
+
except Exception as e:
|
581
|
+
finance_dict["asset_turnover"] = None
|
520
582
|
|
521
583
|
@classmethod
|
522
584
|
def cal_application_turnover(cls, finance_dict):
|
@@ -528,11 +590,12 @@ class FinanceOverviewProcessor(StatsProcessor):
|
|
528
590
|
applcation_turnover = (finance_dict['revenue'] /
|
529
591
|
finance_dict["application"])
|
530
592
|
finance_dict[
|
531
|
-
'
|
593
|
+
'application_turnover'] = StatsProcessor.cal_percentage(
|
532
594
|
applcation_turnover)
|
533
595
|
|
534
|
-
except
|
596
|
+
except Exception as e:
|
535
597
|
finance_dict['application_turnover'] = None
|
598
|
+
|
536
599
|
|
537
600
|
@classmethod
|
538
601
|
def cal_current_ratio(cls, finance_dict):
|
@@ -0,0 +1,214 @@
|
|
1
|
+
from .base import StatsFetcher
|
2
|
+
from datetime import datetime, timedelta
|
3
|
+
import json
|
4
|
+
import numpy as np
|
5
|
+
import pandas as pd
|
6
|
+
from ..utils import StatsDateTime, StatsProcessor
|
7
|
+
import importlib.resources as pkg_resources
|
8
|
+
import yaml
|
9
|
+
|
10
|
+
|
11
|
+
class InstitutionFetcher(StatsFetcher):
|
12
|
+
"""
|
13
|
+
iFa -> 交易資訊 -> 法人買賣
|
14
|
+
|
15
|
+
包括:
|
16
|
+
1. 當日交易
|
17
|
+
2. 一年內交易
|
18
|
+
"""
|
19
|
+
|
20
|
+
def __init__(self, ticker, db_client):
|
21
|
+
super().__init__(ticker, db_client)
|
22
|
+
|
23
|
+
def prepare_query(self, start_date, end_date):
|
24
|
+
pipeline = super().prepare_query()
|
25
|
+
|
26
|
+
# target_query = {
|
27
|
+
# "date": date,
|
28
|
+
# "institution_trading": "$$target_season_data.institution_trading"
|
29
|
+
# }
|
30
|
+
|
31
|
+
pipeline.append({
|
32
|
+
"$project": {
|
33
|
+
"_id": 0,
|
34
|
+
"ticker": 1,
|
35
|
+
"company_name": 1,
|
36
|
+
"daily_data": {
|
37
|
+
"$map": {
|
38
|
+
"input": {
|
39
|
+
"$filter": {
|
40
|
+
"input": "$daily_data",
|
41
|
+
"as": "daily",
|
42
|
+
"cond": {
|
43
|
+
"$and": [{
|
44
|
+
"$gte": ["$$daily.date", start_date]
|
45
|
+
}, {
|
46
|
+
"$lte": ["$$daily.date", end_date]
|
47
|
+
}]
|
48
|
+
}
|
49
|
+
}
|
50
|
+
},
|
51
|
+
"as": "target_daily_data",
|
52
|
+
"in": "$$target_daily_data"
|
53
|
+
}
|
54
|
+
}
|
55
|
+
}
|
56
|
+
})
|
57
|
+
|
58
|
+
return pipeline
|
59
|
+
|
60
|
+
def collect_data(self, start_date, end_date):
|
61
|
+
pipeline = self.prepare_query(start_date, end_date)
|
62
|
+
|
63
|
+
fetched_data = self.collection.aggregate(pipeline).to_list()
|
64
|
+
|
65
|
+
return fetched_data[-1]
|
66
|
+
|
67
|
+
def query_data(self):
|
68
|
+
try:
|
69
|
+
latest_time = StatsDateTime.get_latest_time(
|
70
|
+
self.ticker, self.collection)['last_update_time']
|
71
|
+
latest_date = latest_time['institution_trading'][
|
72
|
+
'latest_date']
|
73
|
+
date = latest_date.replace(hour=0,
|
74
|
+
minute=0,
|
75
|
+
second=0,
|
76
|
+
microsecond=0)
|
77
|
+
except Exception as e:
|
78
|
+
print(
|
79
|
+
f"No updated time for institution_trading in {self.ticker}, use current time instead"
|
80
|
+
)
|
81
|
+
date = datetime.now(self.timezone)
|
82
|
+
date = date.replace(hour=0, minute=0, second=0, microsecond=0)
|
83
|
+
|
84
|
+
if (date.hour < 17): # 拿不到今天的資料
|
85
|
+
date = date - timedelta(days=1)
|
86
|
+
|
87
|
+
start_date = date - timedelta(days=365)
|
88
|
+
|
89
|
+
daily_data = self.collect_data(start_date, end_date=date)
|
90
|
+
|
91
|
+
daily_data = sorted(daily_data['daily_data'],
|
92
|
+
key=lambda x: x['date'],
|
93
|
+
reverse=True)
|
94
|
+
|
95
|
+
table_dict = self.process_data(daily_data)
|
96
|
+
|
97
|
+
return table_dict
|
98
|
+
|
99
|
+
def process_data(self, daily_data):
|
100
|
+
table_dict = dict()
|
101
|
+
|
102
|
+
latest_data = daily_data[0]
|
103
|
+
yesterday_data = daily_data[1]
|
104
|
+
|
105
|
+
# 交易價格與昨天交易
|
106
|
+
price_dict = {
|
107
|
+
"open": latest_data['open'],
|
108
|
+
'close': latest_data['close'],
|
109
|
+
'range': f"{latest_data['low']}-{latest_data['high']}",
|
110
|
+
'volumn': latest_data['volume'] / 1000,
|
111
|
+
'last_open': yesterday_data['open'],
|
112
|
+
'last_close': yesterday_data['close'],
|
113
|
+
'last_range': f"{yesterday_data['low']}-{yesterday_data['high']}",
|
114
|
+
'last_volumn': yesterday_data['volume'] / 1000
|
115
|
+
}
|
116
|
+
# 一年範圍
|
117
|
+
annual_lows = [data['low'] for data in daily_data]
|
118
|
+
annual_highs = [data['high'] for data in daily_data]
|
119
|
+
lowest = np.min(annual_lows).item()
|
120
|
+
highest = np.max(annual_highs).item()
|
121
|
+
|
122
|
+
price_dict['52weeks_range'] = f"{lowest}-{highest}"
|
123
|
+
table_dict['price'] = price_dict
|
124
|
+
|
125
|
+
# 發行股數 & 市值
|
126
|
+
|
127
|
+
# 今日法人買賣
|
128
|
+
table_dict['latest_trading'] = {
|
129
|
+
"date":
|
130
|
+
daily_data[0]['date'],
|
131
|
+
"table":
|
132
|
+
self.process_latest_trading(daily_data[0]['institution_trading'], daily_data[0]['volume'])
|
133
|
+
}
|
134
|
+
# 一年內法人
|
135
|
+
annual_trading = [
|
136
|
+
{
|
137
|
+
**data['institution_trading'],
|
138
|
+
"收盤價": int(data['close'])
|
139
|
+
}
|
140
|
+
for data in daily_data
|
141
|
+
] # 將close也併入這個表格
|
142
|
+
annual_dates = [data['date'] for data in daily_data]
|
143
|
+
table_dict['annual_trading'] = self.process_annual_trading(
|
144
|
+
annual_dates, annual_trading)
|
145
|
+
|
146
|
+
return table_dict
|
147
|
+
|
148
|
+
def process_latest_trading(self, latest_trading, volume):
|
149
|
+
latest_table = {
|
150
|
+
"foreign": self.default_institution_chart(),
|
151
|
+
"mutual": self.default_institution_chart(),
|
152
|
+
"prop": self.default_institution_chart(),
|
153
|
+
"institutional_investor":self.default_institution_chart(),
|
154
|
+
}
|
155
|
+
|
156
|
+
for key in latest_trading.keys():
|
157
|
+
if (key.find("外陸資") >= 0 or key.find("外資") >= 0):
|
158
|
+
self.target_institution(latest_trading, latest_table['foreign'], key, volume)
|
159
|
+
elif (key.find("自營商") >= 0):
|
160
|
+
self.target_institution(latest_trading,latest_table['prop'], key, volume)
|
161
|
+
elif (key.find("投信") >= 0):
|
162
|
+
self.target_institution(latest_trading,latest_table['mutual'], key, volume)
|
163
|
+
elif (key.find("三大法人") >= 0):
|
164
|
+
self.target_institution(latest_trading,latest_table['institutional_investor'], key, volume)
|
165
|
+
|
166
|
+
frames = []
|
167
|
+
for category, trades in latest_table.items():
|
168
|
+
temp_df = pd.DataFrame(trades).T
|
169
|
+
temp_df['category'] = category
|
170
|
+
frames.append(temp_df)
|
171
|
+
|
172
|
+
latest_df = pd.concat(frames)
|
173
|
+
latest_df = latest_df.reset_index().rename(columns={'index': 'type'})
|
174
|
+
latest_df = latest_df[['type', 'category', 'stock', 'price', 'average_price', 'percentage']]
|
175
|
+
|
176
|
+
return latest_df
|
177
|
+
|
178
|
+
def process_annual_trading(self, dates, annual_tradings):
|
179
|
+
dates = [date.strftime("%m/%d") for date in dates]
|
180
|
+
return pd.DataFrame(annual_tradings, index=dates)
|
181
|
+
|
182
|
+
def target_institution(self, old_table, new_table, key, volume):
|
183
|
+
if (key.find("買進") >= 0):
|
184
|
+
self.cal_institution(old_table, new_table['buy'], key, volume)
|
185
|
+
elif (key.find("賣出") >= 0):
|
186
|
+
self.cal_institution(old_table, new_table['sell'], key, volume)
|
187
|
+
elif (key.find("買賣超") >= 0):
|
188
|
+
self.cal_institution(old_table, new_table['over_buy_sell'], key, volume)
|
189
|
+
|
190
|
+
def cal_institution(self, old_table, new_table, key, volume):
|
191
|
+
new_table['stock'] = np.round(old_table[key] / 1000, 2).item()
|
192
|
+
new_table['percentage'] = np.round((old_table[key] / volume) * 100, 2).item()
|
193
|
+
|
194
|
+
def default_institution_chart(self):
|
195
|
+
return {
|
196
|
+
"buy": {
|
197
|
+
"stock": 0,
|
198
|
+
"price": 0,
|
199
|
+
"average_price": 0,
|
200
|
+
"percentage": 0
|
201
|
+
},
|
202
|
+
"sell": {
|
203
|
+
"stock": 0,
|
204
|
+
"price": 0,
|
205
|
+
"average_price": 0,
|
206
|
+
"percentage": 0
|
207
|
+
},
|
208
|
+
"over_buy_sell": {
|
209
|
+
"stock": 0,
|
210
|
+
"price": 0,
|
211
|
+
"average_price": 0,
|
212
|
+
"percentage": 0
|
213
|
+
},
|
214
|
+
}
|
@@ -64,6 +64,17 @@ class MonthRevenueFetcher(StatsFetcher):
|
|
64
64
|
def process_data(self, fetched_data):
|
65
65
|
|
66
66
|
monthly_data = fetched_data['monthly_data']
|
67
|
+
for data in monthly_data:
|
68
|
+
for key, value in data.items():
|
69
|
+
if ("YoY" in key):
|
70
|
+
data[key] = StatsProcessor.cal_percentage(value)
|
71
|
+
elif ("ratio" in key or 'percentage' in key):
|
72
|
+
data[key] = StatsProcessor.cal_non_percentage(value,
|
73
|
+
to_str=True,
|
74
|
+
postfix="%")
|
75
|
+
elif (key not in ('year', 'month')):
|
76
|
+
data[key] = StatsProcessor.cal_non_percentage(value,
|
77
|
+
postfix="千元")
|
67
78
|
target_month = monthly_data[0]['month']
|
68
79
|
monthly_df = pd.DataFrame(monthly_data)
|
69
80
|
target_month_df = monthly_df[monthly_df['month'] == target_month]
|
@@ -77,21 +88,26 @@ class MonthRevenueFetcher(StatsFetcher):
|
|
77
88
|
|
78
89
|
grand_total_df.rename(index={target_month: f"grand_total"},
|
79
90
|
inplace=True)
|
80
|
-
month_revenue_df = month_revenue_df.sort_index(ascending
|
91
|
+
month_revenue_df = month_revenue_df.sort_index(ascending=False)
|
81
92
|
month_revenue_df = pd.concat([grand_total_df, month_revenue_df],
|
82
93
|
axis=0)
|
83
94
|
|
84
|
-
fetched_data['month_revenue'] = month_revenue_df[sorted(
|
95
|
+
fetched_data['month_revenue'] = month_revenue_df[sorted(
|
96
|
+
month_revenue_df.columns, reverse=True)]
|
85
97
|
# 歷年月營收
|
86
98
|
fetched_data[
|
87
99
|
'this_month_revenue_over_years'] = target_month_df.set_index(
|
88
|
-
"year")[[
|
89
|
-
|
100
|
+
"year")[[
|
101
|
+
"revenue", "revenue_increment_ratio", "YoY_1", "YoY_3",
|
102
|
+
"YoY_5", "YoY_10"
|
103
|
+
]].T
|
90
104
|
# 歷年營收成長量
|
91
105
|
fetched_data['grand_total_over_years'] = target_month_df.set_index(
|
92
|
-
"year")[[
|
93
|
-
|
94
|
-
|
106
|
+
"year")[[
|
107
|
+
"grand_total", "grand_total_increment_ratio",
|
108
|
+
"grand_total_YoY_1", "grand_total_YoY_3", "grand_total_YoY_5",
|
109
|
+
"grand_total_YoY_10"
|
110
|
+
]].T
|
95
111
|
|
96
112
|
fetched_data.pop("monthly_data")
|
97
113
|
|
@@ -115,12 +115,15 @@ class ProfitLoseFetcher(StatsFetcher):
|
|
115
115
|
for index_name, value_dict in profit_lose.items():
|
116
116
|
# (2020Q1, 項目, 金額或%)
|
117
117
|
for item_name, item in value_dict.items():
|
118
|
-
if (
|
118
|
+
if ('percentage' in item_name):
|
119
119
|
if (isinstance(item, (float, int))):
|
120
|
-
item =
|
121
|
-
|
120
|
+
item = StatsProcessor.cal_non_percentage(item, to_str=True, postfix="%")
|
121
|
+
elif ('YoY' in item_name):
|
122
122
|
if (isinstance(item, (float, int))):
|
123
|
-
item =
|
123
|
+
item = StatsProcessor.cal_percentage(item)
|
124
|
+
else:
|
125
|
+
if (isinstance(item, (float, int))):
|
126
|
+
item = StatsProcessor.cal_non_percentage(item, postfix="千元")
|
124
127
|
try:
|
125
128
|
table_dict[index_name][(time_index, item_name)] = item
|
126
129
|
|
@@ -137,10 +140,19 @@ class ProfitLoseFetcher(StatsFetcher):
|
|
137
140
|
total_table = total_table.replace("N/A", None)
|
138
141
|
|
139
142
|
for name, setting in self.table_settings.items():
|
140
|
-
|
141
|
-
|
142
|
-
|
143
|
-
|
144
|
-
|
143
|
+
if ('target_index' in setting.keys()):
|
144
|
+
target_indexes = [target.strip() for target in setting['target_index']]
|
145
|
+
else:
|
146
|
+
target_indexes = [None]
|
147
|
+
|
148
|
+
for target_index in target_indexes:
|
149
|
+
try:
|
150
|
+
return_dict[name] = StatsProcessor.slice_multi_col_table(
|
151
|
+
total_table=total_table,
|
152
|
+
mode=setting['mode'],
|
153
|
+
target_index=target_index)
|
154
|
+
break
|
155
|
+
except Exception as e:
|
156
|
+
continue
|
145
157
|
|
146
158
|
return return_dict
|
@@ -3,24 +3,32 @@ balance_sheet:
|
|
3
3
|
|
4
4
|
total_asset:
|
5
5
|
mode: value_and_percentage
|
6
|
-
target_index:
|
7
|
-
|
6
|
+
target_index:
|
7
|
+
- 資產總額 負債總額 權益總額
|
8
|
+
- 資產總計 負債總計 權益總計
|
9
|
+
|
8
10
|
current_asset:
|
9
11
|
mode: value_and_percentage
|
10
|
-
target_index:
|
12
|
+
target_index:
|
13
|
+
- 流動資產合計
|
11
14
|
|
12
15
|
non_current_asset:
|
13
16
|
mode: value_and_percentage
|
14
|
-
target_index:
|
17
|
+
target_index:
|
18
|
+
- 非流動資產合計
|
15
19
|
|
16
20
|
current_debt:
|
17
21
|
mode: value_and_percentage
|
18
|
-
target_index:
|
22
|
+
target_index:
|
23
|
+
- 流動負債合計
|
19
24
|
|
20
25
|
non_current_debt:
|
21
26
|
mode: value_and_percentage
|
22
|
-
target_index:
|
27
|
+
target_index:
|
28
|
+
- 非流動負債合計
|
23
29
|
|
24
30
|
equity:
|
25
31
|
mode: value_and_percentage
|
26
|
-
target_index:
|
32
|
+
target_index:
|
33
|
+
- 權益總額
|
34
|
+
- 權益總計
|
@@ -1,89 +1,111 @@
|
|
1
1
|
# 財務概況
|
2
2
|
revenue:
|
3
|
-
field:
|
3
|
+
field:
|
4
|
+
- 營業收入合計
|
4
5
|
value: value
|
5
6
|
|
6
7
|
gross_profit:
|
7
|
-
field:
|
8
|
+
field:
|
9
|
+
- 營業毛利(毛損)淨額
|
8
10
|
value: value
|
9
11
|
|
10
12
|
operating_income:
|
11
|
-
field:
|
13
|
+
field:
|
14
|
+
- 營業利益(損失)
|
12
15
|
value: value
|
13
16
|
|
14
17
|
net_income:
|
15
|
-
field:
|
18
|
+
field:
|
19
|
+
- 本期淨利(淨損)
|
16
20
|
value: value
|
17
21
|
|
18
22
|
tax_fee:
|
19
|
-
field:
|
23
|
+
field:
|
24
|
+
- 所得稅費用(利益)合計
|
20
25
|
value: value
|
21
26
|
|
22
27
|
# TODO: 以下所爬到的資料都是累計的,Ifa有額外計算當季的變化量
|
23
28
|
operating_cash_flow:
|
24
|
-
field:
|
29
|
+
field:
|
30
|
+
- 營業活動之淨現金流入(流出)
|
25
31
|
value: single_season_value
|
26
32
|
|
27
33
|
invest_cash_flow:
|
28
|
-
field:
|
34
|
+
field:
|
35
|
+
- 投資活動之淨現金流入(流出)
|
29
36
|
value: single_season_value
|
30
37
|
|
31
38
|
financing_cash_flow:
|
32
|
-
field:
|
39
|
+
field:
|
40
|
+
- 籌資活動之淨現金流入(流出)
|
33
41
|
value: single_season_value
|
34
42
|
# ^^^ 以上皆需要額外在DataBase處理
|
35
43
|
|
36
44
|
# 每股財務狀況
|
37
45
|
capital:
|
38
|
-
field:
|
46
|
+
field:
|
47
|
+
- 普通股股本
|
39
48
|
value: value
|
49
|
+
|
40
50
|
eps:
|
41
|
-
field:
|
51
|
+
field:
|
52
|
+
- 基本每股盈餘
|
42
53
|
value: value
|
43
54
|
|
44
55
|
# 獲利能力
|
45
|
-
|
46
|
-
field:
|
56
|
+
total_assets:
|
57
|
+
field:
|
58
|
+
- 資產總額
|
47
59
|
value: value
|
48
60
|
|
49
61
|
equity:
|
50
|
-
field:
|
62
|
+
field:
|
63
|
+
- 權益總額
|
51
64
|
value: value
|
52
65
|
|
53
66
|
net_income_before_tax:
|
54
|
-
field:
|
67
|
+
field:
|
68
|
+
- 稅前淨利(淨損)
|
55
69
|
value: value
|
56
70
|
|
57
71
|
interest:
|
58
|
-
field:
|
72
|
+
field:
|
73
|
+
- 利息收入
|
59
74
|
value: value
|
60
75
|
|
61
76
|
operating_expenses:
|
62
|
-
field:
|
77
|
+
field:
|
78
|
+
- 營業費用合計
|
63
79
|
value: value
|
64
80
|
|
65
81
|
net_income_rate:
|
66
|
-
field:
|
82
|
+
field:
|
83
|
+
- 本期淨利(淨損)
|
67
84
|
value: percentage
|
68
85
|
# 成長動能
|
69
86
|
revenue_YoY:
|
70
|
-
field:
|
87
|
+
field:
|
88
|
+
- 營業收入合計
|
71
89
|
value: YoY_1
|
72
90
|
|
73
91
|
gross_prof_YoY:
|
74
|
-
field:
|
92
|
+
field:
|
93
|
+
- 營業毛利(毛損)淨額
|
75
94
|
value: YoY_1
|
76
95
|
|
77
96
|
operating_income_YoY:
|
78
|
-
field:
|
97
|
+
field:
|
98
|
+
- 營業利益(損失)
|
79
99
|
value: YoY_1
|
80
100
|
|
81
101
|
net_income_YoY:
|
82
|
-
field:
|
102
|
+
field:
|
103
|
+
- 本期淨利(淨損)
|
83
104
|
value: YoY_1
|
84
105
|
|
85
106
|
operating_cash_flow_YoY:
|
86
|
-
field:
|
107
|
+
field:
|
108
|
+
- 營業活動之淨現金流入(流出)
|
87
109
|
value: single_season_YoY
|
88
110
|
|
89
111
|
# operating_cash_flow_per_share_YoY:
|
@@ -91,53 +113,73 @@ operating_cash_flow_YoY:
|
|
91
113
|
# value: YoY_1
|
92
114
|
# 營運指標
|
93
115
|
account_receive:
|
94
|
-
field:
|
116
|
+
field:
|
117
|
+
- 應收帳款淨額
|
95
118
|
value: value
|
96
119
|
|
97
120
|
account_pay:
|
98
|
-
field:
|
121
|
+
field:
|
122
|
+
- 應付帳款
|
99
123
|
value: value
|
100
124
|
|
101
125
|
inventories:
|
102
|
-
field:
|
126
|
+
field:
|
127
|
+
- 存貨
|
103
128
|
value: value
|
104
129
|
|
105
130
|
operating_cost:
|
106
|
-
field:
|
131
|
+
field:
|
132
|
+
- 營業成本合計
|
107
133
|
value: value
|
108
134
|
|
109
135
|
application:
|
110
|
-
field:
|
136
|
+
field:
|
137
|
+
- 不動產、廠房及設備
|
111
138
|
value: value
|
112
139
|
|
113
140
|
# 財務韌性
|
114
141
|
current_assets:
|
115
|
-
field:
|
142
|
+
field:
|
143
|
+
- 流動資產合計
|
116
144
|
value: value
|
117
145
|
|
118
146
|
current_liabilities:
|
119
|
-
field:
|
147
|
+
field:
|
148
|
+
- 流動負債合計
|
120
149
|
value: value
|
121
150
|
|
122
151
|
total_liabilities:
|
123
|
-
field:
|
152
|
+
field:
|
153
|
+
- 負債總額
|
124
154
|
value: value
|
125
155
|
|
126
156
|
short_term_liabilities:
|
127
|
-
field:
|
157
|
+
field:
|
158
|
+
- 短期借款
|
128
159
|
value: value
|
129
160
|
|
130
161
|
long_term_liabilities:
|
131
|
-
field:
|
162
|
+
field:
|
163
|
+
- 長期借款
|
132
164
|
value: value
|
133
165
|
#
|
134
166
|
cash_and_cash_equivalents:
|
135
|
-
field:
|
167
|
+
field:
|
168
|
+
- 現金及約當現金
|
136
169
|
value: value
|
137
170
|
|
138
171
|
interest_expense:
|
139
|
-
field:
|
172
|
+
field:
|
173
|
+
- 利息費用
|
140
174
|
value: value
|
141
175
|
|
176
|
+
non_current_assets:
|
177
|
+
field:
|
178
|
+
- 非流動資產合計
|
179
|
+
value: value
|
142
180
|
|
181
|
+
non_current_liabilities:
|
182
|
+
field:
|
183
|
+
- 非流動負債合計
|
184
|
+
value: value
|
143
185
|
|
@@ -6,88 +6,116 @@ grand_total_profit_lose:
|
|
6
6
|
|
7
7
|
revenue:
|
8
8
|
mode: growth
|
9
|
-
target_index:
|
9
|
+
target_index:
|
10
|
+
- 營業收入合計
|
11
|
+
- 利息收入
|
10
12
|
|
11
13
|
grand_total_revenue:
|
12
14
|
mode: grand_total_growth
|
13
|
-
target_index:
|
15
|
+
target_index:
|
16
|
+
- 營業收入合計
|
17
|
+
- 利息收入
|
14
18
|
|
15
19
|
gross_profit:
|
16
20
|
mode: growth
|
17
|
-
target_index:
|
21
|
+
target_index:
|
22
|
+
- 營業毛利(毛損)淨額
|
18
23
|
|
19
24
|
grand_total_gross_profit:
|
20
25
|
mode: grand_total_growth
|
21
|
-
target_index:
|
26
|
+
target_index:
|
27
|
+
- 營業毛利(毛損)淨額
|
22
28
|
|
23
29
|
gross_profit_percentage:
|
24
30
|
mode: percentage
|
25
|
-
target_index:
|
31
|
+
target_index:
|
32
|
+
- 營業毛利(毛損)淨額
|
26
33
|
|
27
34
|
grand_total_gross_profit_percentage:
|
28
35
|
mode: grand_total_percentage
|
29
|
-
target_index:
|
36
|
+
target_index:
|
37
|
+
- 營業毛利(毛損)淨額
|
30
38
|
# 營利
|
31
39
|
operating_income:
|
32
40
|
mode: growth
|
33
|
-
target_index:
|
41
|
+
target_index:
|
42
|
+
- 營業利益(損失)
|
34
43
|
|
35
44
|
grand_total_operating_income:
|
36
45
|
mode: grand_total_growth
|
37
|
-
target_index:
|
46
|
+
target_index:
|
47
|
+
- 營業利益(損失)
|
38
48
|
|
39
49
|
operating_income_percentage:
|
40
50
|
mode: percentage
|
41
|
-
target_index:
|
51
|
+
target_index:
|
52
|
+
- 營業利益(損失)
|
42
53
|
|
43
54
|
grand_total_operating_income_percentage:
|
44
55
|
mode: grand_total_percentage
|
45
|
-
target_index:
|
56
|
+
target_index:
|
57
|
+
- 營業利益(損失)
|
46
58
|
# 稅前淨利
|
47
59
|
net_income_before_tax:
|
48
60
|
mode: growth
|
49
|
-
target_index:
|
61
|
+
target_index:
|
62
|
+
- 稅前淨利(淨損)
|
50
63
|
|
51
64
|
grand_total_net_income_before_tax:
|
52
65
|
mode: grand_total_growth
|
53
|
-
target_index:
|
66
|
+
target_index:
|
67
|
+
- 稅前淨利(淨損)
|
54
68
|
|
55
69
|
net_income_before_tax_percentage:
|
56
70
|
mode: percentage
|
57
|
-
target_index:
|
71
|
+
target_index:
|
72
|
+
- 稅前淨利(淨損)
|
58
73
|
|
59
74
|
grand_total_net_income_before_tax_percentage:
|
60
75
|
mode: grand_total_percentage
|
61
|
-
target_index:
|
76
|
+
target_index:
|
77
|
+
- 稅前淨利(淨損)
|
62
78
|
# 本期淨利
|
63
79
|
net_income:
|
64
80
|
mode: growth
|
65
|
-
target_index:
|
81
|
+
target_index:
|
82
|
+
- 本期淨利(淨損)
|
66
83
|
|
67
84
|
grand_total_net_income:
|
68
85
|
mode: grand_total_growth
|
69
|
-
target_index:
|
86
|
+
target_index:
|
87
|
+
- 本期淨利(淨損)
|
70
88
|
|
71
89
|
net_income_percentage:
|
72
90
|
mode: percentage
|
73
|
-
target_index:
|
91
|
+
target_index:
|
92
|
+
- 本期淨利(淨損)
|
74
93
|
|
75
94
|
grand_total_income_percentage:
|
76
95
|
mode: grand_total_percentage
|
77
|
-
target_index:
|
96
|
+
target_index:
|
97
|
+
- 本期淨利(淨損)
|
78
98
|
# EPS
|
79
99
|
EPS:
|
80
100
|
mode: value
|
81
|
-
target_index:
|
101
|
+
target_index:
|
102
|
+
- 基本每股盈餘
|
103
|
+
- 基本每股盈餘合計
|
82
104
|
|
83
105
|
EPS_growth:
|
84
106
|
mode: growth
|
85
|
-
target_index:
|
107
|
+
target_index:
|
108
|
+
- 基本每股盈餘
|
109
|
+
- 基本每股盈餘合計
|
86
110
|
|
87
111
|
grand_total_EPS:
|
88
112
|
mode: grand_total
|
89
|
-
target_index:
|
113
|
+
target_index:
|
114
|
+
- 基本每股盈餘
|
115
|
+
- 基本每股盈餘合計
|
90
116
|
|
91
117
|
grand_total_EPS_growth:
|
92
118
|
mode: grand_total_growth
|
93
|
-
target_index:
|
119
|
+
target_index:
|
120
|
+
- 基本每股盈餘
|
121
|
+
- 基本每股盈餘合計
|
@@ -22,11 +22,14 @@
|
|
22
22
|
"其他非流動資產": "balance_sheet",
|
23
23
|
"非流動資產合計": "balance_sheet",
|
24
24
|
"資產總額": "balance_sheet",
|
25
|
+
"資產總計": "balance_sheet",
|
25
26
|
"短期借款": "balance_sheet",
|
26
27
|
"長期借款": "balance_sheet",
|
27
28
|
"透過損益按公允價值衡量之金融負債-流動": "balance_sheet",
|
28
29
|
"應付票據": "balance_sheet",
|
29
30
|
"應付帳款": "balance_sheet",
|
31
|
+
"應收款項-淨額": "balance_sheet",
|
32
|
+
"應付款項": "balance_sheet",
|
30
33
|
"應付帳款-關係人": "balance_sheet",
|
31
34
|
"其他應付款": "balance_sheet",
|
32
35
|
"其他應付款項-關係人": "balance_sheet",
|
@@ -38,6 +41,7 @@
|
|
38
41
|
"其他非流動負債": "balance_sheet",
|
39
42
|
"非流動負債合計": "balance_sheet",
|
40
43
|
"負債總額": "balance_sheet",
|
44
|
+
"負債總計": "balance_sheet",
|
41
45
|
"普通股股本": "balance_sheet",
|
42
46
|
"股本合計": "balance_sheet",
|
43
47
|
"資本公積-發行溢價": "balance_sheet",
|
@@ -52,10 +56,12 @@
|
|
52
56
|
"歸屬於母公司業主之權益合計": "balance_sheet",
|
53
57
|
"非控制權益": "balance_sheet",
|
54
58
|
"權益總額": "balance_sheet",
|
59
|
+
"權益總計": "balance_sheet",
|
55
60
|
"負債及權益總計": "balance_sheet",
|
56
61
|
"待註銷股本股數(單位:股)": "balance_sheet",
|
57
62
|
"預收股款(權益項下)之約當發行股數(單位:股)": "balance_sheet",
|
58
63
|
"母公司暨子公司所持有之母公司庫藏股股數(單位:股)": "balance_sheet",
|
64
|
+
"應收款項-淨額": "balance_sheet",
|
59
65
|
"繼續營業單位稅前淨利(淨損)": "cash_flow",
|
60
66
|
"停業單位稅前淨利(淨損)": "cash_flow",
|
61
67
|
"本期稅前淨利(淨損)": "cash_flow",
|
@@ -135,6 +141,7 @@
|
|
135
141
|
"管理費用": "profit_lose",
|
136
142
|
"研究發展費用": "profit_lose",
|
137
143
|
"營業費用合計": "profit_lose",
|
144
|
+
"營業費用": "profit_lose",
|
138
145
|
"營業利益(損失)": "profit_lose",
|
139
146
|
"其他收入": "profit_lose",
|
140
147
|
"其他利益及損失淨額": "profit_lose",
|
@@ -142,6 +149,7 @@
|
|
142
149
|
"營業外收入及支出合計": "profit_lose",
|
143
150
|
"稅前淨利(淨損)": "profit_lose",
|
144
151
|
"所得稅費用(利益)合計": "profit_lose",
|
152
|
+
"所得稅費用(利益)": "profit_lose",
|
145
153
|
"繼續營業單位本期淨利(淨損)": "profit_lose",
|
146
154
|
"本期淨利(淨損)": "profit_lose",
|
147
155
|
"確定福利計畫之再衡量數": "profit_lose",
|
@@ -155,5 +163,12 @@
|
|
155
163
|
"母公司業主(綜合損益)": "profit_lose",
|
156
164
|
"非控制權益(綜合損益)": "profit_lose",
|
157
165
|
"基本每股盈餘": "profit_lose",
|
158
|
-
"稀釋每股盈餘": "profit_lose"
|
166
|
+
"稀釋每股盈餘": "profit_lose",
|
167
|
+
"淨收益": "profit_lose",
|
168
|
+
"利息收入": "profit_lose",
|
169
|
+
"利息費用_bank": "profit_lose",
|
170
|
+
"利息淨收益": "profit_lose",
|
171
|
+
"繼續營業單位稅前損益": "profit_lose",
|
172
|
+
"本期稅後淨利(淨損)": "profit_lose",
|
173
|
+
"減:利息費用": "profit_lose"
|
159
174
|
}
|
@@ -152,10 +152,21 @@ class StatsProcessor:
|
|
152
152
|
@classmethod
|
153
153
|
def cal_non_percentage(cls, value, to_str=False, postfix="元"):
|
154
154
|
if (isinstance(value, (float, int))):
|
155
|
+
|
155
156
|
value = np.round(value, 2).item()
|
157
|
+
if (postfix == "千元"):
|
158
|
+
value *= 1000
|
159
|
+
value = int(value)
|
160
|
+
|
161
|
+
postfix = "元"
|
162
|
+
|
156
163
|
if (to_str):
|
157
|
-
value
|
158
|
-
|
164
|
+
if (isinstance(value, float)):
|
165
|
+
value = f"{value:.2f}{postfix}"
|
166
|
+
return value
|
167
|
+
elif (isinstance(value, int)):
|
168
|
+
value = f"{value}{postfix}"
|
169
|
+
return value
|
159
170
|
|
160
171
|
else:
|
161
172
|
return value
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: neurostats-API
|
3
|
-
Version: 0.0.
|
3
|
+
Version: 0.0.11
|
4
4
|
Summary: The service of NeuroStats website
|
5
5
|
Home-page: https://github.com/NeurowattStats/NeuroStats_API.git
|
6
6
|
Author: JasonWang@Neurowatt
|
@@ -19,6 +19,8 @@ Description-Content-Type: text/markdown
|
|
19
19
|
- [損益表](#損益表)
|
20
20
|
- [資產負債表](#資產負債表)
|
21
21
|
- [現金流量表](#現金流量表)
|
22
|
+
- [版本紀錄](#版本紀錄)
|
23
|
+
|
22
24
|
|
23
25
|
## 檔案架構
|
24
26
|
|
@@ -78,7 +80,7 @@ pip install neurostats-API
|
|
78
80
|
```Python
|
79
81
|
>>> import neurostats_API
|
80
82
|
>>> print(neurostats_API.__version__)
|
81
|
-
0.0.
|
83
|
+
0.0.10
|
82
84
|
```
|
83
85
|
|
84
86
|
### 得到最新一期的評價資料與歷年評價
|
@@ -434,6 +436,11 @@ stats_fetcher.query()
|
|
434
436
|
> 大部分資料缺失是因為尚未計算,僅先填上已經有的資料
|
435
437
|
|
436
438
|
|
437
|
-
##
|
438
|
-
|
439
|
+
## 版本紀錄
|
440
|
+
### 0.0.10
|
441
|
+
- 更新指標的資料型態: 單位為千元乘以1000之後回傳整數
|
442
|
+
|
443
|
+
- 處理銀行公司在finanace_overview會報錯誤的問題(未完全解決,因銀行公司財報有許多名稱不同,目前都會顯示為None)
|
439
444
|
|
445
|
+
### 0.0.9
|
446
|
+
- 更新指標的資料型態: 單位為日, %, 倍轉為字串
|
@@ -0,0 +1,27 @@
|
|
1
|
+
neurostats_API/__init__.py,sha256=oR5iCRZvbIRoODxS1VocreTo19N5L8Omvx_AgflzOO0,20
|
2
|
+
neurostats_API/cli.py,sha256=UJSWLIw03P24p-gkBb6JSEI5dW5U12UvLf1L8HjQD-o,873
|
3
|
+
neurostats_API/main.py,sha256=QcsfmWivg2Dnqw3MTJWiI0QvEiRs0VuH-BjwQHFCv00,677
|
4
|
+
neurostats_API/fetchers/__init__.py,sha256=27kdeBuM7dNBRcIyQ1u863CYw0P_DQz-I1G6iSFDq-c,357
|
5
|
+
neurostats_API/fetchers/balance_sheet.py,sha256=sQv4Gk5uoKURLEdh57YknOQWiyVwaXJ2Mw75jxNqUS0,5804
|
6
|
+
neurostats_API/fetchers/base.py,sha256=NW2SFzrimyAIrdJx1LVmTazelyZOAtcj54kJKHc4Vaw,1662
|
7
|
+
neurostats_API/fetchers/cash_flow.py,sha256=TY7VAWVXkj5-mzH5Iu0sIE-oV8MvGmmDy0URNotNV1E,7614
|
8
|
+
neurostats_API/fetchers/finance_overview.py,sha256=PxUdWY0x030olYMLcCHDBn068JLmCE2RTOce1dxs5vM,27753
|
9
|
+
neurostats_API/fetchers/institution.py,sha256=aODtsFyQcnD9PnMeaehMAN9wZdZ2a0EqSSZO57dY9RE,7691
|
10
|
+
neurostats_API/fetchers/month_revenue.py,sha256=nixX2llzjCFr2m2YVjxrSfkBusnZPrPb2dRDq1XLGhw,4251
|
11
|
+
neurostats_API/fetchers/profit_lose.py,sha256=xlLNsGSy4Azf4HyZyYaX3dFad-ACO-vuQToBooZi1_w,5698
|
12
|
+
neurostats_API/fetchers/tech.py,sha256=wH1kkqiETQhF0HAhk-UIiucnZ3EiL85Q-yMWCcVOiFM,11395
|
13
|
+
neurostats_API/fetchers/value_invest.py,sha256=O5IKC8Nl7p5-E-1zoyAyWtiDznaxNemeabanmaHDdJs,3327
|
14
|
+
neurostats_API/tools/balance_sheet.yaml,sha256=yTxrWh7m4K3LnaNunETidfNzl6S4Bf58VIg9U38XShQ,648
|
15
|
+
neurostats_API/tools/cash_flow_percentage.yaml,sha256=fk2Z4eb1JjGFvP134eJatHacB7BgTkBenhDJr83w8RE,1345
|
16
|
+
neurostats_API/tools/finance_overview_dict.yaml,sha256=B9nV75StXkrF3yv2-eezzitlJ38eEK86RD_VY6588gQ,2884
|
17
|
+
neurostats_API/tools/profit_lose.yaml,sha256=dcO-0J0BC4p06XBNuowu8ux0NTbyZiOkGfy6szHF6fw,2402
|
18
|
+
neurostats_API/tools/seasonal_data_field_dict.txt,sha256=X8yc_el6p8BH_3FikTqBVFGsvWdXT6MHXLfKfi44334,8491
|
19
|
+
neurostats_API/utils/__init__.py,sha256=FTYKRFzW2XVXdnSHXnS3mQQaHlKF9xGqrMsgZZ2kroc,142
|
20
|
+
neurostats_API/utils/data_process.py,sha256=mDznLqAAZ7gFX3LlJkJvtrMPt38Lh5-NONqgnqT5tSY,5990
|
21
|
+
neurostats_API/utils/datetime.py,sha256=XJya4G8b_-ZOaBbMXgQjWh2MC4wc-o6goQ7EQJQMWrQ,773
|
22
|
+
neurostats_API/utils/db_client.py,sha256=OYe6yazcR4Aa6jYmy47JrryUeh2NnKGqY2K_lSZe6i8,455
|
23
|
+
neurostats_API/utils/fetcher.py,sha256=VbrUhjA-GG5AyjPX2SHtFIbZM4dm3jo0RgZzuCbb_Io,40927
|
24
|
+
neurostats_API-0.0.11.dist-info/METADATA,sha256=Tddw5SxRekTkTtemDXgYPoiJf9sxICyRkdlFAbvniSM,18529
|
25
|
+
neurostats_API-0.0.11.dist-info/WHEEL,sha256=bFJAMchF8aTQGUgMZzHJyDDMPTO3ToJ7x23SLJa1SVo,92
|
26
|
+
neurostats_API-0.0.11.dist-info/top_level.txt,sha256=nSlQPMG0VtXivJyedp4Bkf86EOy2TpW10VGxolXrqnU,15
|
27
|
+
neurostats_API-0.0.11.dist-info/RECORD,,
|
@@ -1,26 +0,0 @@
|
|
1
|
-
neurostats_API/__init__.py,sha256=9_jSwg7P5SlFv0Ci2ZSYBcAbygp9XV2C8sryRO8tvko,19
|
2
|
-
neurostats_API/cli.py,sha256=UJSWLIw03P24p-gkBb6JSEI5dW5U12UvLf1L8HjQD-o,873
|
3
|
-
neurostats_API/main.py,sha256=QcsfmWivg2Dnqw3MTJWiI0QvEiRs0VuH-BjwQHFCv00,677
|
4
|
-
neurostats_API/fetchers/__init__.py,sha256=U_OMG-mLpsVKYnCBrW2OjFuCzvPeVQ__7A676vGzztY,313
|
5
|
-
neurostats_API/fetchers/balance_sheet.py,sha256=VeWhd8Z2XZnL5RzxmenLzAd4eyK2sWTuiRGkqWsEmzk,5219
|
6
|
-
neurostats_API/fetchers/base.py,sha256=NW2SFzrimyAIrdJx1LVmTazelyZOAtcj54kJKHc4Vaw,1662
|
7
|
-
neurostats_API/fetchers/cash_flow.py,sha256=4G4SIUoBSwT-BePmz-SprQ0IJRL2QNWqWdQtlgaRKd4,7371
|
8
|
-
neurostats_API/fetchers/finance_overview.py,sha256=EVP7k0JkQq3ydXy0f3t2kzy12iIQEwDniTLn98qZ460,25637
|
9
|
-
neurostats_API/fetchers/month_revenue.py,sha256=QmhMAO8jbkjg2R1LR0TAPE3bmDnyuLNjnD24ZsFkTBU,3501
|
10
|
-
neurostats_API/fetchers/profit_lose.py,sha256=C0y42RBA-s20XcG6CJ10Rt6Gm_rB6lcvBmIzbTpn64o,5123
|
11
|
-
neurostats_API/fetchers/tech.py,sha256=wH1kkqiETQhF0HAhk-UIiucnZ3EiL85Q-yMWCcVOiFM,11395
|
12
|
-
neurostats_API/fetchers/value_invest.py,sha256=O5IKC8Nl7p5-E-1zoyAyWtiDznaxNemeabanmaHDdJs,3327
|
13
|
-
neurostats_API/tools/balance_sheet.yaml,sha256=dKTMbsYR9EFp48WAzmm_ISHMiJQLyE0V-XWS_gkxmr0,541
|
14
|
-
neurostats_API/tools/cash_flow_percentage.yaml,sha256=fk2Z4eb1JjGFvP134eJatHacB7BgTkBenhDJr83w8RE,1345
|
15
|
-
neurostats_API/tools/finance_overview_dict.yaml,sha256=URL1IFqO0j5uOwN3xETHriy_u9lYbLvdwghuznenP2Q,2500
|
16
|
-
neurostats_API/tools/profit_lose.yaml,sha256=qHBnqG7fR4Pxc_c3n4raL-3l7o5RnABLz9YGOXoaGiA,2086
|
17
|
-
neurostats_API/tools/seasonal_data_field_dict.txt,sha256=Za1fJR1yERbqrX8TgsS2kmMYMbaye43Gu_5ukUNBCNM,7904
|
18
|
-
neurostats_API/utils/__init__.py,sha256=FTYKRFzW2XVXdnSHXnS3mQQaHlKF9xGqrMsgZZ2kroc,142
|
19
|
-
neurostats_API/utils/data_process.py,sha256=m1B4EhCNSzOMfTBDtYCjkQSjbDTAEFC6TNf3NNxV36k,5657
|
20
|
-
neurostats_API/utils/datetime.py,sha256=XJya4G8b_-ZOaBbMXgQjWh2MC4wc-o6goQ7EQJQMWrQ,773
|
21
|
-
neurostats_API/utils/db_client.py,sha256=OYe6yazcR4Aa6jYmy47JrryUeh2NnKGqY2K_lSZe6i8,455
|
22
|
-
neurostats_API/utils/fetcher.py,sha256=VbrUhjA-GG5AyjPX2SHtFIbZM4dm3jo0RgZzuCbb_Io,40927
|
23
|
-
neurostats_API-0.0.9.dist-info/METADATA,sha256=z--BAc0e6HHBuXSQgc5ikwjPFzTfe-2o02gFLmgY_do,18232
|
24
|
-
neurostats_API-0.0.9.dist-info/WHEEL,sha256=bFJAMchF8aTQGUgMZzHJyDDMPTO3ToJ7x23SLJa1SVo,92
|
25
|
-
neurostats_API-0.0.9.dist-info/top_level.txt,sha256=nSlQPMG0VtXivJyedp4Bkf86EOy2TpW10VGxolXrqnU,15
|
26
|
-
neurostats_API-0.0.9.dist-info/RECORD,,
|
File without changes
|
File without changes
|