neurostats-API 0.0.24__py3-none-any.whl → 0.0.25__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- neurostats_API/__init__.py +2 -1
- neurostats_API/fetchers/__init__.py +1 -1
- neurostats_API/fetchers/balance_sheet.py +1 -1
- neurostats_API/fetchers/finance_overview.py +513 -194
- neurostats_API/fetchers/institution.py +5 -2
- neurostats_API/tools/company_list/us_TradingView_list.json +49922 -0
- neurostats_API/utils/__init__.py +2 -1
- neurostats_API/utils/data_process.py +2 -2
- neurostats_API/utils/exception.py +3 -0
- {neurostats_API-0.0.24.dist-info → neurostats_API-0.0.25.dist-info}/METADATA +3 -2
- {neurostats_API-0.0.24.dist-info → neurostats_API-0.0.25.dist-info}/RECORD +13 -13
- neurostats_API/fetchers/macro_daily_event.py +0 -8
- neurostats_API/utils/logger.py +0 -21
- {neurostats_API-0.0.24.dist-info → neurostats_API-0.0.25.dist-info}/WHEEL +0 -0
- {neurostats_API-0.0.24.dist-info → neurostats_API-0.0.25.dist-info}/top_level.txt +0 -0
@@ -355,8 +355,6 @@ class InstitutionFetcher(StatsFetcher):
|
|
355
355
|
result = self.tej_collection.aggregate(pipeline)
|
356
356
|
result = result.to_list()
|
357
357
|
|
358
|
-
result_df = pd.DataFrame(result[0]['filtered_data'])
|
359
|
-
|
360
358
|
proj_columns = {
|
361
359
|
"mdate": "date",
|
362
360
|
"qfii_buy": "外資買進股數",
|
@@ -373,6 +371,11 @@ class InstitutionFetcher(StatsFetcher):
|
|
373
371
|
"dlrh_ex" : "自營買賣超股數(避險)",
|
374
372
|
"tot_ex" : "三大法人買賣超股數"
|
375
373
|
}
|
374
|
+
|
375
|
+
try:
|
376
|
+
result_df = pd.DataFrame(result[0]['filtered_data'])
|
377
|
+
except Exception as e:
|
378
|
+
result_df = pd.DataFrame(columns = list(proj_columns.keys()))
|
376
379
|
|
377
380
|
target_index = list(proj_columns.keys())[1:]
|
378
381
|
result_df.loc[:, target_index] = result_df.loc[:, target_index].map(lambda x : 1000 * x) # TEJ單位為千股
|