neurostats-API 0.0.21b0__py3-none-any.whl → 0.0.23b0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- neurostats_API/__init__.py +1 -1
- neurostats_API/fetchers/balance_sheet.py +138 -111
- neurostats_API/fetchers/base.py +89 -74
- neurostats_API/fetchers/cash_flow.py +120 -111
- neurostats_API/fetchers/finance_overview.py +2 -2
- neurostats_API/fetchers/month_revenue.py +1 -1
- neurostats_API/fetchers/profit_lose.py +188 -113
- neurostats_API/fetchers/tech.py +175 -42
- neurostats_API/fetchers/tej_finance_report.py +230 -335
- neurostats_API/tools/company_list/tw.json +2175 -0
- neurostats_API/tools/tej_db/tej_db_skip_index.yaml +3 -1
- neurostats_API/tools/tej_db/tej_db_thousand_index.yaml +0 -1
- neurostats_API/utils/__init__.py +0 -1
- neurostats_API/utils/calculate_value.py +99 -1
- neurostats_API/utils/data_process.py +43 -15
- {neurostats_API-0.0.21b0.dist-info → neurostats_API-0.0.23b0.dist-info}/METADATA +2 -2
- neurostats_API-0.0.23b0.dist-info/RECORD +34 -0
- neurostats_API/utils/fetcher.py +0 -1056
- neurostats_API-0.0.21b0.dist-info/RECORD +0 -34
- /neurostats_API/tools/{balance_sheet.yaml → twse/balance_sheet.yaml} +0 -0
- /neurostats_API/tools/{cash_flow_percentage.yaml → twse/cash_flow_percentage.yaml} +0 -0
- /neurostats_API/tools/{finance_overview_dict.yaml → twse/finance_overview_dict.yaml} +0 -0
- /neurostats_API/tools/{profit_lose.yaml → twse/profit_lose.yaml} +0 -0
- /neurostats_API/tools/{seasonal_data_field_dict.txt → twse/seasonal_data_field_dict.txt} +0 -0
- {neurostats_API-0.0.21b0.dist-info → neurostats_API-0.0.23b0.dist-info}/WHEEL +0 -0
- {neurostats_API-0.0.21b0.dist-info → neurostats_API-0.0.23b0.dist-info}/top_level.txt +0 -0
@@ -18,34 +18,39 @@ class FinanceReportFetcher(BaseTEJFetcher):
|
|
18
18
|
QOQ_NOCAL = 4
|
19
19
|
|
20
20
|
def __init__(
|
21
|
-
|
22
|
-
|
23
|
-
db_name="company",
|
24
|
-
collection_name="TWN/AINVFQ1"
|
25
|
-
):
|
21
|
+
self, mongo_uri, db_name="company", collection_name="TWN/AINVFQ1"
|
22
|
+
):
|
26
23
|
self.client = MongoClient(mongo_uri)
|
27
24
|
self.db = self.client[db_name]
|
28
25
|
self.collection = self.db[collection_name]
|
29
26
|
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
self.check_index = set(index_dict[collection_name])
|
35
|
-
self.skip_index = set(skip_dict[collection_name])
|
27
|
+
index_files = [
|
28
|
+
"tej_db/tej_db_index.yaml", "tej_db/tej_db_thousand_index.yaml",
|
29
|
+
"tej_db/tej_db_percent_index.yaml"
|
30
|
+
]
|
36
31
|
|
37
|
-
self.
|
38
|
-
|
32
|
+
self.index_dict, self.thousand_dict, self.percent_dict = [
|
33
|
+
StatsProcessor.load_yaml(file) for file in index_files
|
34
|
+
]
|
39
35
|
|
36
|
+
self.check_index = set(self.index_dict.get(collection_name, []))
|
37
|
+
self.skip_index = set(self.percent_dict.get(collection_name, []))
|
38
|
+
self.thousand_index_list = list(
|
39
|
+
self.thousand_dict.get(collection_name, [])
|
40
|
+
)
|
41
|
+
self.percent_index_list = list(
|
42
|
+
self.percent_dict.get(collection_name, [])
|
43
|
+
)
|
40
44
|
|
41
45
|
def get(
|
42
|
-
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
|
48
|
-
|
46
|
+
self,
|
47
|
+
ticker,
|
48
|
+
fetch_mode: FetchMode = FetchMode.QOQ_NOCAL,
|
49
|
+
start_date: str = None,
|
50
|
+
end_date: str = None,
|
51
|
+
report_type: str = "Q",
|
52
|
+
indexes: list = []
|
53
|
+
):
|
49
54
|
"""
|
50
55
|
基礎的query function
|
51
56
|
ticker(str): 股票代碼
|
@@ -58,351 +63,239 @@ class FinanceReportFetcher(BaseTEJFetcher):
|
|
58
63
|
indexes(List): 指定的index
|
59
64
|
"""
|
60
65
|
# 確認indexes中是否有錯誤的index,有的話回傳warning
|
61
|
-
if
|
62
|
-
|
63
|
-
|
64
|
-
if (difference):
|
66
|
+
if indexes and self.check_index:
|
67
|
+
invalid_indexes = set(indexes) - self.check_index
|
68
|
+
if invalid_indexes:
|
65
69
|
warnings.warn(
|
66
|
-
f"{list(
|
67
|
-
|
68
|
-
|
69
|
-
|
70
|
-
start_date
|
71
|
-
else
|
72
|
-
|
73
|
-
|
74
|
-
|
75
|
-
|
76
|
-
|
77
|
-
|
78
|
-
|
79
|
-
end_date = datetime.strptime(end_date, "%Y-%m-%d")
|
80
|
-
|
81
|
-
assert (start_date <= end_date)
|
82
|
-
|
83
|
-
start_year = start_date.year
|
84
|
-
start_season = (start_date.month - 1) // 4 + 1
|
85
|
-
end_year = end_date.year
|
86
|
-
end_season = (end_date.month - 1) // 4 + 1
|
87
|
-
|
88
|
-
if (fetch_mode == self.FetchMode.QOQ):
|
89
|
-
use_cal = True
|
90
|
-
else:
|
91
|
-
use_cal = False
|
92
|
-
|
93
|
-
data_df = self.get_QoQ_data(
|
70
|
+
f"{list(invalid_indexes)} 不存在,請確認欄位名稱", UserWarning
|
71
|
+
)
|
72
|
+
|
73
|
+
start_date = datetime.strptime(
|
74
|
+
start_date, "%Y-%m-%d"
|
75
|
+
) if start_date else datetime(2005, 1, 1)
|
76
|
+
|
77
|
+
if fetch_mode in {self.FetchMode.QOQ, self.FetchMode.QOQ_NOCAL}:
|
78
|
+
end_date = datetime.strptime(end_date, "%Y-%m-%d"
|
79
|
+
) if end_date else datetime.today()
|
80
|
+
assert start_date <= end_date
|
81
|
+
start_year, end_year = start_date.year, end_date.year
|
82
|
+
return self.get_QoQ_data(
|
94
83
|
ticker=ticker,
|
95
|
-
|
96
|
-
|
97
|
-
end_year=end_year,
|
98
|
-
end_season=end_season,
|
84
|
+
start_date=start_date,
|
85
|
+
end_date=end_date,
|
99
86
|
report_type=report_type,
|
100
87
|
indexes=indexes,
|
101
|
-
use_cal=
|
102
|
-
|
103
|
-
return data_df
|
104
|
-
|
105
|
-
elif (fetch_mode in {self.FetchMode.YOY, self.FetchMode.YOY_NOCAL}):
|
106
|
-
start_year = start_date.year
|
107
|
-
end_date = self.get_latest_data_time(ticker)
|
108
|
-
if (not end_date):
|
109
|
-
end_date = datetime.today()
|
110
|
-
|
111
|
-
end_year = end_date.year
|
112
|
-
season = (end_date.month - 1) // 4 + 1
|
88
|
+
use_cal=(fetch_mode == self.FetchMode.QOQ)
|
89
|
+
)
|
113
90
|
|
114
|
-
|
115
|
-
|
116
|
-
|
117
|
-
|
118
|
-
|
119
|
-
data_df = self.get_YoY_data(
|
91
|
+
elif fetch_mode in {self.FetchMode.YOY, self.FetchMode.YOY_NOCAL}:
|
92
|
+
end_date = self.get_latest_data_time(ticker) or datetime.today()
|
93
|
+
start_year, end_year = start_date.year, end_date.year
|
94
|
+
end_season = (end_date.month - 1) // 4 + 1
|
95
|
+
return self.get_YoY_data(
|
120
96
|
ticker=ticker,
|
121
97
|
start_year=start_year,
|
122
98
|
end_year=end_year,
|
123
|
-
season=
|
99
|
+
season=end_season,
|
124
100
|
report_type=report_type,
|
125
101
|
indexes=indexes,
|
126
|
-
use_cal=
|
127
|
-
|
128
|
-
return data_df
|
102
|
+
use_cal=(fetch_mode == self.FetchMode.YOY)
|
103
|
+
)
|
129
104
|
|
130
105
|
def get_QoQ_data(
|
131
|
-
|
132
|
-
|
133
|
-
|
134
|
-
|
135
|
-
|
136
|
-
|
137
|
-
|
138
|
-
|
139
|
-
use_cal=False):
|
106
|
+
self,
|
107
|
+
ticker,
|
108
|
+
start_date,
|
109
|
+
end_date,
|
110
|
+
report_type="Q",
|
111
|
+
indexes=[],
|
112
|
+
use_cal=False
|
113
|
+
):
|
140
114
|
"""
|
141
115
|
取得時間範圍內每季資料
|
142
116
|
"""
|
143
|
-
|
144
|
-
|
145
|
-
|
146
|
-
|
147
|
-
|
148
|
-
|
149
|
-
|
150
|
-
|
151
|
-
|
152
|
-
|
153
|
-
lower_bound_year
|
154
|
-
|
155
|
-
|
156
|
-
if (not indexes): # 沒有指定 -> 取全部
|
157
|
-
pipeline = [
|
158
|
-
{
|
159
|
-
"$match": {
|
160
|
-
"ticker": ticker
|
161
|
-
}
|
162
|
-
}, {
|
163
|
-
"$unwind": "$data"
|
164
|
-
}, {
|
165
|
-
"$match": {
|
166
|
-
"$or": [
|
167
|
-
{
|
168
|
-
"data.year": {
|
169
|
-
"$gt": start_year,
|
170
|
-
"$lt": end_year
|
171
|
-
}
|
172
|
-
}, {
|
173
|
-
"data.year": start_year,
|
174
|
-
"data.season": {
|
175
|
-
"$gte": start_season
|
176
|
-
}
|
177
|
-
}, {
|
178
|
-
"data.year": end_year,
|
179
|
-
"data.season": {
|
180
|
-
"$lte": end_season
|
181
|
-
}
|
182
|
-
}, {
|
183
|
-
"data.year": lower_bound_year,
|
184
|
-
"data.season": lower_bound_season
|
185
|
-
}
|
186
|
-
]
|
187
|
-
}
|
188
|
-
}, {
|
189
|
-
"$project": {
|
190
|
-
"data.year": 1,
|
191
|
-
"data.season": 1,
|
192
|
-
f"data.{report_type}": 1,
|
193
|
-
"_id": 0
|
194
|
-
}
|
195
|
-
}
|
196
|
-
]
|
197
|
-
|
198
|
-
else: # 取指定index
|
199
|
-
project_stage = {"data.year": 1, "data.season": 1}
|
200
|
-
for index in indexes:
|
201
|
-
project_stage[f"data.{report_type}.{index}"] = 1
|
117
|
+
start_year, start_season = start_date.year, (
|
118
|
+
start_date.month - 1
|
119
|
+
) // 4 + 1
|
120
|
+
end_year, end_season = end_date.year, (end_date.month - 1) // 4 + 1
|
121
|
+
lower_bound_year, lower_bound_season = (
|
122
|
+
start_year - 1, 4
|
123
|
+
) if start_season == 1 else (start_year, start_season - 1)
|
124
|
+
|
125
|
+
pipeline = self.build_pipeline(
|
126
|
+
ticker, start_year, start_season, end_year, end_season,
|
127
|
+
lower_bound_year, lower_bound_season, report_type, indexes
|
128
|
+
)
|
129
|
+
fetched_data = self.collection.aggregate(pipeline).to_list()
|
202
130
|
|
203
|
-
|
204
|
-
|
205
|
-
|
206
|
-
|
207
|
-
|
208
|
-
|
209
|
-
|
210
|
-
|
211
|
-
"$match": {
|
212
|
-
"$or": [
|
213
|
-
{
|
214
|
-
"data.year": {
|
215
|
-
"$gt": start_year,
|
216
|
-
"$lt": end_year
|
217
|
-
}
|
218
|
-
}, {
|
219
|
-
"data.year": start_year,
|
220
|
-
"data.season": {
|
221
|
-
"$gte": start_season
|
222
|
-
}
|
223
|
-
}, {
|
224
|
-
"data.year": end_year,
|
225
|
-
"data.season": {
|
226
|
-
"$lte": end_season
|
227
|
-
}
|
228
|
-
}, {
|
229
|
-
"data.year": lower_bound_year,
|
230
|
-
"data.season": lower_bound_season
|
231
|
-
}
|
232
|
-
]
|
233
|
-
}
|
234
|
-
}, {
|
235
|
-
"$project": project_stage
|
236
|
-
}
|
237
|
-
]
|
131
|
+
data_dict = self.transform_value(
|
132
|
+
StatsProcessor.list_of_dict_to_dict(
|
133
|
+
data_list=fetched_data,
|
134
|
+
keys=["year", "season"],
|
135
|
+
delimeter="Q",
|
136
|
+
data_key=report_type
|
137
|
+
)
|
138
|
+
)
|
238
139
|
|
239
|
-
|
240
|
-
data_dict = StatsProcessor.list_of_dict_to_dict(
|
241
|
-
fetched_data,
|
242
|
-
keys=["year", "season"],
|
243
|
-
delimeter="Q",
|
244
|
-
data_key=report_type)
|
245
|
-
|
246
|
-
data_dict = self.transform_value(data_dict)
|
247
|
-
|
248
|
-
if (use_cal):
|
249
|
-
data_with_QoQ = self.cal_QoQ(data_dict)
|
250
|
-
data_df = pd.DataFrame.from_dict(data_with_QoQ)
|
251
|
-
data_df = data_df.iloc[:, 1:]
|
252
|
-
data_df = data_df.iloc[:, ::-1].T
|
253
|
-
data_dict = data_df.to_dict()
|
254
|
-
data_dict = self.get_dict_of_df(data_dict)
|
255
|
-
return data_dict
|
256
|
-
else:
|
257
|
-
data_df = pd.DataFrame.from_dict(data_dict)
|
258
|
-
data_df = data_df.iloc[:, ::-1]
|
259
|
-
return data_df
|
140
|
+
return self.calculate_and_format(data_dict, use_cal, self.cal_QoQ)
|
260
141
|
|
261
142
|
def get_YoY_data(
|
262
|
-
|
263
|
-
|
264
|
-
|
265
|
-
|
266
|
-
|
267
|
-
|
268
|
-
|
269
|
-
|
143
|
+
self,
|
144
|
+
ticker,
|
145
|
+
start_year,
|
146
|
+
end_year,
|
147
|
+
season,
|
148
|
+
report_type="Q",
|
149
|
+
indexes=[],
|
150
|
+
use_cal=False
|
151
|
+
):
|
270
152
|
"""
|
271
153
|
取得某季歷年資料
|
272
154
|
"""
|
273
|
-
|
274
|
-
|
275
|
-
|
276
|
-
|
277
|
-
|
278
|
-
|
279
|
-
|
280
|
-
|
281
|
-
|
282
|
-
|
283
|
-
|
284
|
-
|
285
|
-
|
286
|
-
|
287
|
-
|
288
|
-
|
289
|
-
|
290
|
-
|
291
|
-
|
292
|
-
|
293
|
-
|
294
|
-
"$match": {
|
295
|
-
"$or": [
|
296
|
-
{
|
297
|
-
"$and": [
|
298
|
-
{
|
299
|
-
"data.year": {
|
300
|
-
"$in": select_year
|
301
|
-
}
|
302
|
-
}, {
|
303
|
-
"data.season": {
|
304
|
-
"$eq": season
|
305
|
-
}
|
306
|
-
}
|
307
|
-
]
|
308
|
-
},
|
309
|
-
]
|
310
|
-
}
|
311
|
-
}, {
|
312
|
-
"$project": {
|
313
|
-
"data.year": 1,
|
314
|
-
"data.season": 1,
|
315
|
-
f"data.{report_type}": 1,
|
316
|
-
"_id": 0
|
317
|
-
}
|
318
|
-
}
|
319
|
-
]
|
320
|
-
|
321
|
-
else: # 取指定index
|
322
|
-
project_stage = {"data.year": 1, "data.season": 1}
|
323
|
-
for index in indexes:
|
324
|
-
project_stage[f"data.{report_type}.{index}"] = 1
|
325
|
-
|
326
|
-
pipeline = [
|
327
|
-
{
|
328
|
-
"$match": {
|
329
|
-
"ticker": ticker
|
330
|
-
}
|
331
|
-
}, {
|
332
|
-
"$unwind": "$data"
|
333
|
-
}, {
|
334
|
-
"$match": {
|
335
|
-
"$and": [
|
336
|
-
{
|
337
|
-
"data.year": {
|
338
|
-
"$in": select_year
|
339
|
-
}
|
340
|
-
}, {
|
341
|
-
"data.season": {
|
342
|
-
"$eq": season
|
343
|
-
}
|
344
|
-
}
|
345
|
-
]
|
346
|
-
}
|
347
|
-
}, {
|
348
|
-
"$project": project_stage
|
349
|
-
}
|
350
|
-
]
|
351
|
-
|
155
|
+
select_year = sorted(
|
156
|
+
{year
|
157
|
+
for year in range(start_year, end_year + 1)} | {
|
158
|
+
y
|
159
|
+
for year in range(start_year, end_year + 1)
|
160
|
+
for y in {year, year - 1, year - 3, year - 5, year - 10}
|
161
|
+
}
|
162
|
+
) if use_cal else list(range(start_year, end_year + 1))
|
163
|
+
|
164
|
+
pipeline = self.build_pipeline(
|
165
|
+
ticker,
|
166
|
+
select_year,
|
167
|
+
season,
|
168
|
+
None,
|
169
|
+
None,
|
170
|
+
None,
|
171
|
+
None,
|
172
|
+
report_type,
|
173
|
+
indexes,
|
174
|
+
year_based=True
|
175
|
+
)
|
352
176
|
fetched_data = self.collection.aggregate(pipeline).to_list()
|
177
|
+
data_dict = self.transform_value(
|
178
|
+
StatsProcessor.list_of_dict_to_dict(
|
179
|
+
fetched_data, ["year", "season"], "Q", report_type
|
180
|
+
)
|
181
|
+
)
|
182
|
+
|
183
|
+
return self.calculate_and_format(
|
184
|
+
data_dict, use_cal,
|
185
|
+
lambda x: self.cal_YoY(x, start_year, end_year, season)
|
186
|
+
)
|
353
187
|
|
354
|
-
# 處理計算YoY
|
355
|
-
data_dict = StatsProcessor.list_of_dict_to_dict(
|
356
|
-
fetched_data,
|
357
|
-
keys=['year', 'season'],
|
358
|
-
data_key=report_type,
|
359
|
-
delimeter='Q')
|
360
|
-
|
361
|
-
data_dict = self.transform_value(data_dict)
|
362
|
-
|
363
|
-
if (use_cal):
|
364
|
-
data_with_YoY = self.cal_YoY(
|
365
|
-
data_dict, start_year, end_year, season)
|
366
|
-
data_df = pd.DataFrame.from_dict(data_with_YoY)
|
367
|
-
data_df = data_df.iloc[:, ::-1].T
|
368
|
-
data_dict = data_df.to_dict()
|
369
|
-
data_dict = self.get_dict_of_df(data_dict)
|
370
|
-
return data_dict
|
371
|
-
else:
|
372
|
-
data_df = pd.DataFrame.from_dict(data_dict)
|
373
|
-
data_df = data_df.iloc[:, ::-1]
|
374
|
-
return data_df
|
375
|
-
|
376
188
|
def transform_value(self, data_dict):
|
377
189
|
"""
|
378
190
|
處理千元, %等單位
|
379
191
|
"""
|
380
192
|
|
381
193
|
data_df = pd.DataFrame.from_dict(data_dict)
|
382
|
-
|
383
|
-
|
384
|
-
|
385
|
-
|
386
|
-
|
387
|
-
|
194
|
+
for category, postfix in [(self.thousand_index_list, "千元"),
|
195
|
+
(self.percent_index_list, "%")]:
|
196
|
+
process_list = list(set(data_df.index) & set(category))
|
197
|
+
if postfix == "%":
|
198
|
+
data_df.loc[process_list] = data_df.loc[process_list].astype(
|
199
|
+
str
|
200
|
+
).map(lambda x: f"{x}%")
|
201
|
+
else:
|
202
|
+
data_df.loc[process_list] = data_df.loc[process_list].map(
|
203
|
+
lambda x: StatsProcessor.
|
204
|
+
cal_non_percentage(x, postfix=postfix)
|
205
|
+
)
|
206
|
+
return data_df.to_dict()
|
207
|
+
|
208
|
+
def build_pipeline(
|
209
|
+
self,
|
210
|
+
ticker,
|
211
|
+
start_year,
|
212
|
+
start_season,
|
213
|
+
end_year,
|
214
|
+
end_season,
|
215
|
+
lower_bound_year,
|
216
|
+
lower_bound_season,
|
217
|
+
report_type,
|
218
|
+
indexes,
|
219
|
+
year_based=False
|
220
|
+
):
|
221
|
+
project_stage = {
|
222
|
+
"_id": 0,
|
223
|
+
"data.year": 1,
|
224
|
+
"data.season": 1,
|
225
|
+
**{
|
226
|
+
f"data.{report_type}.{idx}": 1
|
227
|
+
for idx in indexes
|
228
|
+
}
|
229
|
+
} if indexes else {
|
230
|
+
"_id": 0,
|
231
|
+
"data.year": 1,
|
232
|
+
"data.season": 1,
|
233
|
+
f"data.{report_type}": 1
|
234
|
+
}
|
235
|
+
|
236
|
+
if (year_based):
|
237
|
+
match_stage = {
|
238
|
+
"data.year": {
|
239
|
+
"$in": start_year
|
240
|
+
} if year_based else {
|
241
|
+
"$gt": start_year,
|
242
|
+
"$lt": end_year
|
243
|
+
},
|
244
|
+
"data.season": end_season
|
245
|
+
}
|
246
|
+
else:
|
247
|
+
match_stage = {
|
248
|
+
"$or": [
|
249
|
+
{
|
250
|
+
"data.year": {
|
251
|
+
"$gt": start_year,
|
252
|
+
"$lt": end_year
|
253
|
+
}
|
254
|
+
}, {
|
255
|
+
"data.year": start_year,
|
256
|
+
"data.season": {
|
257
|
+
"$gte": start_season
|
258
|
+
}
|
259
|
+
}, {
|
260
|
+
"data.year": end_year,
|
261
|
+
"data.season": {
|
262
|
+
"$lte": end_season
|
263
|
+
}
|
264
|
+
}, {
|
265
|
+
"data.year": lower_bound_year,
|
266
|
+
"data.season": lower_bound_season
|
267
|
+
}
|
268
|
+
]
|
269
|
+
}
|
388
270
|
|
389
|
-
|
390
|
-
|
391
|
-
|
392
|
-
|
271
|
+
return [
|
272
|
+
{
|
273
|
+
"$match": {
|
274
|
+
"ticker": ticker
|
275
|
+
}
|
276
|
+
}, {
|
277
|
+
"$unwind": "$data"
|
278
|
+
}, {
|
279
|
+
"$match": match_stage
|
280
|
+
}, {
|
281
|
+
"$project": project_stage
|
282
|
+
}
|
283
|
+
]
|
284
|
+
|
285
|
+
def calculate_and_format(self, data_dict, use_cal, calc_function):
|
286
|
+
data_df = pd.DataFrame.from_dict(
|
287
|
+
calc_function(data_dict) if use_cal else data_dict
|
288
|
+
).iloc[:, ::-1]
|
289
|
+
return data_df if not use_cal else self.get_dict_of_df(
|
290
|
+
data_df.T.to_dict()
|
393
291
|
)
|
394
292
|
|
395
|
-
data_dict = data_df.to_dict()
|
396
|
-
|
397
|
-
return data_dict
|
398
293
|
|
399
294
|
class TEJStockPriceFetcher(BaseTEJFetcher):
|
400
295
|
|
401
296
|
def __init__(
|
402
|
-
|
403
|
-
|
404
|
-
db_name: str = "company",
|
405
|
-
collection_name: str = None):
|
297
|
+
self, mongo_uri, db_name: str = "company", collection_name: str = None
|
298
|
+
):
|
406
299
|
self.mongo_uri = mongo_uri
|
407
300
|
self.db_name = db_name
|
408
301
|
self.collection_name = collection_name
|
@@ -411,14 +304,16 @@ class TEJStockPriceFetcher(BaseTEJFetcher):
|
|
411
304
|
self.db = self.client[self.db_name]
|
412
305
|
self.collection = self.db[self.collection_name]
|
413
306
|
|
414
|
-
self.check_period = [
|
307
|
+
self.check_period = [
|
308
|
+
'1d', '7d', '1m', '3m', '1y', '3y', '5y', '10y', 'all'
|
309
|
+
]
|
415
310
|
|
416
311
|
def get(
|
417
|
-
|
418
|
-
|
419
|
-
|
420
|
-
|
421
|
-
|
312
|
+
self,
|
313
|
+
ticker: str = "2330",
|
314
|
+
start_date: str = "2024-10-01",
|
315
|
+
period: str = None
|
316
|
+
):
|
422
317
|
"""
|
423
318
|
取得開高低收資料
|
424
319
|
start_date: str: 起始的日期
|
@@ -463,4 +358,4 @@ class TEJStockPriceFetcher(BaseTEJFetcher):
|
|
463
358
|
|
464
359
|
data_df = pd.DataFrame(elements).set_index('mdate')
|
465
360
|
|
466
|
-
return data_df
|
361
|
+
return data_df
|