neurostats-API 0.0.21__py3-none-any.whl → 0.0.22__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -12,7 +12,9 @@ class TechFetcher(StatsFetcher):
12
12
  """
13
13
 
14
14
  super().__init__(ticker, db_client)
15
- self.collection = self.db["TWN/APIPRCD"]
15
+ if (ticker in self.tw_company_list.keys()):
16
+ self.collection = self.db["TWN/APIPRCD"]
17
+
16
18
  self.full_ohlcv = self._get_ohlcv()
17
19
  self.basic_indexes = [
18
20
  'SMA5', 'SMA20', 'SMA60', 'EMA5', 'EMA20', 'EMA40', 'EMA12',
@@ -55,49 +57,31 @@ class TechFetcher(StatsFetcher):
55
57
  # 先對yf search
56
58
  if self.ticker in ['GSPC', 'IXIC', 'DJI', 'TWII']:
57
59
  full_tick = f'^{self.ticker}'
58
- else:
60
+ elif(self.ticker in self.tw_company_list.keys()):
59
61
  full_tick = f'{self.ticker}.tw'
62
+ else:
63
+ full_tick = f"{self.ticker}"
60
64
 
61
65
  df = self.conduct_yf_search(full_tick)
62
66
 
63
- if not self.has_required_columns(df, required_cols):
64
-
65
- print(f".tw failed, try .two")
66
-
67
+ if (
68
+ self.ticker in self.tw_company_list.keys() and
69
+ not self.has_required_columns(df, required_cols)
70
+ ):
67
71
  full_tick = f'{self.ticker}.two'
68
72
 
69
73
  df = self.conduct_yf_search(full_tick)
70
74
 
71
75
  if (df.empty):
72
- raise ValueError(f"No data found for ticker: {self.ticker}")
76
+ raise ValueError(f"No data found for ticker: {self.ticker}")\
77
+
78
+ return df[required_cols]
73
79
 
74
80
  except (KeyError, ValueError, TypeError) as e:
75
- # 再對TEJ search
76
- tej_required_cols = [
77
- "mdate", "open_d", 'high_d', 'low_d', 'close_d', 'vol'
78
- ]
79
- tej_name_proj = {
80
- tej_name: org_name
81
- for tej_name, org_name in zip(tej_required_cols, required_cols)
82
- }
83
-
84
- query = {'ticker': self.ticker}
85
- ticker_full = self.collection.find_one(query)
86
-
87
- if not ticker_full:
88
- raise ValueError("No ticker found in database")
89
-
90
- daily_data = ticker_full.get("data", [])
91
- if not isinstance(daily_data, list):
92
- raise TypeError("Expected 'daily_data' to be a list.")
93
-
94
- df = pd.DataFrame(daily_data)
95
-
96
- if not self.has_required_columns(df, tej_required_cols):
97
- raise KeyError(f"Missing required columns")
98
- df = df.rename(columns=tej_name_proj)
99
-
100
- return df[required_cols]
81
+ if (self.collection_name in ['TWN/APIPRCD']):
82
+ return self.conduct_db_search_tej()
83
+ elif (self.collection_name == 'us_stats'):
84
+ return self.conduct_db_search_us()
101
85
 
102
86
  def get_daily(self):
103
87
 
@@ -141,6 +125,62 @@ class TechFetcher(StatsFetcher):
141
125
  )
142
126
 
143
127
  return df
128
+
129
+ def conduct_db_search_tej(self):
130
+ # 再對TEJ search
131
+ tej_required_cols = [
132
+ "mdate", "open_d", 'high_d', 'low_d', 'close_d', 'vol'
133
+ ]
134
+
135
+ required_cols = ['date', 'open', 'high', 'low', 'close', 'volume']
136
+ tej_name_proj = {
137
+ tej_name: org_name
138
+ for tej_name, org_name in zip(tej_required_cols, required_cols)
139
+ }
140
+
141
+ query = {'ticker': self.ticker}
142
+ ticker_full = self.collection.find_one(query)
143
+
144
+ if not ticker_full:
145
+ raise ValueError("No ticker found in database")
146
+
147
+ daily_data = ticker_full.get("data", [])
148
+ if not isinstance(daily_data, list):
149
+ raise TypeError("Expected 'daily_data' to be a list.")
150
+
151
+ df = pd.DataFrame(daily_data)
152
+
153
+ if not self.has_required_columns(df, tej_required_cols):
154
+ raise KeyError(f"Missing required columns")
155
+ df = df.rename(columns=tej_name_proj)
156
+
157
+ return df[required_cols]
158
+
159
+ def conduct_db_search_us(self):
160
+ required_cols = ['date', 'open', 'high', 'low', 'close', 'volume']
161
+
162
+ query = {'ticker': self.ticker}
163
+ filter_query = {"daily_data" : 1, "_id": 0}
164
+ ticker_full = self.collection.find_one(query, filter_query)
165
+
166
+ if not ticker_full:
167
+ raise ValueError("No ticker found in database")
168
+
169
+ daily_data = ticker_full.get("daily_data", [])
170
+ if not isinstance(daily_data, list):
171
+ raise TypeError("Expected 'daily_data' to be a list.")
172
+
173
+ df = pd.DataFrame(daily_data)
174
+
175
+ if not self.has_required_columns(df, required_cols):
176
+ missing_cols = [col for col in required_cols if col not in df.columns]
177
+ missing_cols = ",".join(missing_cols)
178
+ print(Warning(f"{missing_cols} not in columns"))
179
+ for col in missing_cols:
180
+ df[col] = pd.NA
181
+ # raise KeyError(f"Missing required columns")
182
+
183
+ return df[required_cols]
144
184
 
145
185
 
146
186
  class TechProcessor: