neurostats-API 0.0.14__py3-none-any.whl → 0.0.16__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- neurostats_API/__init__.py +13 -1
- neurostats_API/fetchers/__init__.py +2 -0
- neurostats_API/fetchers/base.py +105 -5
- neurostats_API/fetchers/tech.py +34 -7
- neurostats_API/fetchers/tej_finance_report.py +339 -0
- neurostats_API/fetchers/value_invest.py +84 -67
- neurostats_API/utils/__init__.py +2 -1
- neurostats_API/utils/calculate_value.py +26 -0
- neurostats_API/utils/data_process.py +56 -1
- {neurostats_API-0.0.14.dist-info → neurostats_API-0.0.16.dist-info}/METADATA +122 -2
- {neurostats_API-0.0.14.dist-info → neurostats_API-0.0.16.dist-info}/RECORD +13 -11
- {neurostats_API-0.0.14.dist-info → neurostats_API-0.0.16.dist-info}/WHEEL +0 -0
- {neurostats_API-0.0.14.dist-info → neurostats_API-0.0.16.dist-info}/top_level.txt +0 -0
neurostats_API/__init__.py
CHANGED
@@ -1 +1,13 @@
|
|
1
|
-
__version__='0.0.
|
1
|
+
__version__='0.0.16'
|
2
|
+
|
3
|
+
from .fetchers import (
|
4
|
+
BalanceSheetFetcher,
|
5
|
+
CashFlowFetcher,
|
6
|
+
FinanceOverviewFetcher,
|
7
|
+
FinanceReportFetcher,
|
8
|
+
InstitutionFetcher,
|
9
|
+
MarginTradingFetcher,
|
10
|
+
MonthRevenueFetcher,
|
11
|
+
TechFetcher,
|
12
|
+
ProfitLoseFetcher
|
13
|
+
)
|
@@ -2,6 +2,8 @@ from .base import StatsDateTime, StatsFetcher
|
|
2
2
|
from .balance_sheet import BalanceSheetFetcher
|
3
3
|
from .cash_flow import CashFlowFetcher
|
4
4
|
from .finance_overview import FinanceOverviewFetcher
|
5
|
+
from .tej_finance_report import FinanceReportFetcher
|
6
|
+
from .tech import TechFetcher
|
5
7
|
from .institution import InstitutionFetcher
|
6
8
|
from .margin_trading import MarginTradingFetcher
|
7
9
|
from .month_revenue import MonthRevenueFetcher
|
neurostats_API/fetchers/base.py
CHANGED
@@ -1,16 +1,18 @@
|
|
1
|
+
import abc
|
1
2
|
from pymongo import MongoClient
|
2
3
|
import pandas as pd
|
3
4
|
import json
|
4
5
|
import pytz
|
5
6
|
from datetime import datetime, timedelta, date
|
6
|
-
from ..utils import StatsDateTime, StatsProcessor
|
7
|
+
from ..utils import StatsDateTime, StatsProcessor, YoY_Calculator
|
7
8
|
import yaml
|
8
9
|
|
10
|
+
|
9
11
|
class StatsFetcher:
|
12
|
+
|
10
13
|
def __init__(self, ticker, db_client):
|
11
14
|
self.ticker = ticker
|
12
|
-
self.db = db_client[
|
13
|
-
"company"] # Replace with your database name
|
15
|
+
self.db = db_client["company"] # Replace with your database name
|
14
16
|
self.collection = self.db["twse_stats"]
|
15
17
|
|
16
18
|
self.timezone = pytz.timezone("Asia/Taipei")
|
@@ -26,7 +28,6 @@ class StatsFetcher:
|
|
26
28
|
'grand_total_growth': [f"YoY_{i}" for i in [1, 3, 5, 10]]
|
27
29
|
}
|
28
30
|
|
29
|
-
|
30
31
|
def prepare_query(self):
|
31
32
|
return [
|
32
33
|
{
|
@@ -37,7 +38,7 @@ class StatsFetcher:
|
|
37
38
|
]
|
38
39
|
|
39
40
|
def collect_data(self, start_date, end_date):
|
40
|
-
pipeline = self.prepare_query(
|
41
|
+
pipeline = self.prepare_query()
|
41
42
|
|
42
43
|
fetched_data = list(self.collection.aggregate(pipeline))
|
43
44
|
|
@@ -52,3 +53,102 @@ class StatsFetcher:
|
|
52
53
|
season = (month - 1) // 3 + 1
|
53
54
|
|
54
55
|
return StatsDateTime(date, year, month, day, season)
|
56
|
+
|
57
|
+
|
58
|
+
class BaseTEJFetcher(abc.ABC):
|
59
|
+
|
60
|
+
def __init__(self):
|
61
|
+
self.client = None
|
62
|
+
self.db = None
|
63
|
+
self.collection = None
|
64
|
+
|
65
|
+
@abc.abstractmethod
|
66
|
+
def get(self):
|
67
|
+
pass
|
68
|
+
|
69
|
+
def get_latest_data_time(self, ticker):
|
70
|
+
latest_data = self.collection.find_one({"ticker": ticker}, {"last_update": 1, "_id": 0})
|
71
|
+
|
72
|
+
try:
|
73
|
+
latest_date = latest_data['last_update']["latest_data_date"]
|
74
|
+
except Exception as e:
|
75
|
+
latest_date = None
|
76
|
+
|
77
|
+
return latest_date
|
78
|
+
|
79
|
+
def cal_YoY(self, data_dict: dict, start_year: int, end_year: int, season: int):
|
80
|
+
year_shifts = [1, 3, 5, 10]
|
81
|
+
return_dict = {}
|
82
|
+
for year in range(start_year, end_year + 1):
|
83
|
+
year_data = data_dict[f"{year}Q{season}"]
|
84
|
+
year_keys = list(year_data.keys())
|
85
|
+
for key in year_keys:
|
86
|
+
if (key in 'season'):
|
87
|
+
continue
|
88
|
+
|
89
|
+
if (isinstance(year_data[key], (int, float))):
|
90
|
+
temp_dict = {"value": year_data[key]}
|
91
|
+
|
92
|
+
for shift in year_shifts:
|
93
|
+
this_value = year_data[key]
|
94
|
+
try:
|
95
|
+
past_year = str(year - shift)
|
96
|
+
last_value = data_dict[f"{past_year}Q{season}"][key]
|
97
|
+
temp_dict[f"YoY_{shift}"] = YoY_Calculator.cal_growth(this_value, last_value, delta=shift)
|
98
|
+
except Exception as e:
|
99
|
+
temp_dict[f"YoY_{shift}"] = None
|
100
|
+
|
101
|
+
year_data[key] = temp_dict
|
102
|
+
|
103
|
+
else:
|
104
|
+
year_data.pop(key)
|
105
|
+
|
106
|
+
return_dict[f"{year}Q{season}"] = year_data
|
107
|
+
|
108
|
+
return return_dict
|
109
|
+
|
110
|
+
def cal_QoQ(self, data_dict):
|
111
|
+
return_dict = {}
|
112
|
+
for i, time_index in enumerate(data_dict.keys()):
|
113
|
+
year, season = time_index.split("Q")
|
114
|
+
year = int(year)
|
115
|
+
season = int(season)
|
116
|
+
if (season == 1):
|
117
|
+
last_year = year - 1
|
118
|
+
last_season = 4
|
119
|
+
else:
|
120
|
+
last_year = year
|
121
|
+
last_season = season - 1
|
122
|
+
|
123
|
+
this_data = data_dict[time_index]
|
124
|
+
this_keys = list(this_data.keys())
|
125
|
+
for key in this_keys:
|
126
|
+
if (key in 'season'):
|
127
|
+
continue
|
128
|
+
|
129
|
+
this_value = this_data[key]
|
130
|
+
|
131
|
+
if (isinstance(this_value, (int, float))):
|
132
|
+
temp_dict = {"value": this_value}
|
133
|
+
|
134
|
+
try:
|
135
|
+
last_value = data_dict[f"{last_year}Q{last_season}"][key]['value']
|
136
|
+
|
137
|
+
temp_dict['growth'] = YoY_Calculator.cal_growth(this_value, last_value, delta=1)
|
138
|
+
except Exception as e:
|
139
|
+
temp_dict['growth'] = None
|
140
|
+
|
141
|
+
this_data[key] = temp_dict
|
142
|
+
|
143
|
+
else:
|
144
|
+
this_data.pop(key)
|
145
|
+
return_dict[time_index] = this_data
|
146
|
+
return return_dict
|
147
|
+
|
148
|
+
def get_dict_of_df(self, data_dict):
|
149
|
+
"""
|
150
|
+
dict[dict] -> dict[df]
|
151
|
+
"""
|
152
|
+
for key in data_dict.keys():
|
153
|
+
data_dict[key] = pd.DataFrame.from_dict(data_dict[key])
|
154
|
+
return data_dict
|
neurostats_API/fetchers/tech.py
CHANGED
@@ -1,9 +1,16 @@
|
|
1
1
|
from .base import StatsFetcher
|
2
2
|
import pandas as pd
|
3
|
+
import yfinance as yf
|
3
4
|
|
4
5
|
class TechFetcher(StatsFetcher):
|
5
6
|
|
6
7
|
def __init__(self, ticker:str, db_client):
|
8
|
+
|
9
|
+
"""
|
10
|
+
The Capitalization-Weighted Index includes the following tickers:
|
11
|
+
['GSPC', 'IXIC', 'DJI', 'TWII']
|
12
|
+
"""
|
13
|
+
|
7
14
|
super().__init__(ticker, db_client)
|
8
15
|
self.full_ohlcv = self._get_ohlcv()
|
9
16
|
self.basic_indexes = ['SMA5', 'SMA20', 'SMA60', 'EMA5', 'EMA20',
|
@@ -40,16 +47,36 @@ class TechFetcher(StatsFetcher):
|
|
40
47
|
)
|
41
48
|
|
42
49
|
def _get_ohlcv(self):
|
43
|
-
|
44
|
-
|
50
|
+
|
51
|
+
if self.ticker in ['GSPC', 'IXIC', 'DJI', 'TWII']:
|
52
|
+
|
53
|
+
full_tick = f'^{self.ticker}'
|
54
|
+
yf_ticker = yf.Ticker(full_tick)
|
55
|
+
origin_df = yf_ticker.history(period="10y")
|
56
|
+
origin_df = origin_df.reset_index()
|
57
|
+
origin_df["Date"] = pd.to_datetime(origin_df["Date"]).dt.date
|
58
|
+
df = origin_df.rename(
|
59
|
+
columns={
|
60
|
+
"Date": "date",
|
61
|
+
"Open": "open",
|
62
|
+
"High": "high",
|
63
|
+
"Low": "low",
|
64
|
+
"Close": "close",
|
65
|
+
"Volume": "volume"
|
66
|
+
}
|
67
|
+
)
|
68
|
+
else:
|
69
|
+
|
70
|
+
query = {'ticker': self.ticker}
|
71
|
+
ticker_full = list(self.collection.find(query))
|
45
72
|
|
46
|
-
|
47
|
-
|
73
|
+
if not ticker_full:
|
74
|
+
raise ValueError(f"No data found for ticker: {self.ticker}")
|
48
75
|
|
49
|
-
|
50
|
-
|
76
|
+
if 'daily_data' not in ticker_full[0] or ticker_full[0]['daily_data'] is None:
|
77
|
+
raise KeyError("Missing 'daily_data' in the retrieved data")
|
51
78
|
|
52
|
-
|
79
|
+
df = pd.DataFrame(ticker_full[0]['daily_data'])
|
53
80
|
|
54
81
|
selected_cols = ['date','open','high','low','close','volume']
|
55
82
|
|
@@ -0,0 +1,339 @@
|
|
1
|
+
from .base import BaseTEJFetcher
|
2
|
+
from datetime import datetime
|
3
|
+
from enum import Enum
|
4
|
+
import pandas as pd
|
5
|
+
from pymongo import MongoClient
|
6
|
+
from ..utils import StatsProcessor, YoY_Calculator
|
7
|
+
import warnings
|
8
|
+
|
9
|
+
|
10
|
+
class FinanceReportFetcher(BaseTEJFetcher):
|
11
|
+
|
12
|
+
class FetchMode(Enum):
|
13
|
+
YOY = 1
|
14
|
+
QOQ = 2
|
15
|
+
YOY_NOCAL = 3
|
16
|
+
QOQ_NOCAL = 4
|
17
|
+
|
18
|
+
def __init__(self, mongo_uri, db_name="company", collection_name="TWN/AINVFQ1"):
|
19
|
+
self.client = MongoClient(mongo_uri)
|
20
|
+
self.db = self.client[db_name]
|
21
|
+
self.collection = self.db[collection_name]
|
22
|
+
|
23
|
+
# yapf: disabled
|
24
|
+
self.check_index = {
|
25
|
+
'coid', 'mdate', 'key3', 'no', 'sem', 'merg', 'curr', 'annd', 'fin_ind', 'bp11', 'bp21', 'bp22', 'bp31',
|
26
|
+
'bp41', 'bp51', 'bp53', 'bp61', 'bp62', 'bp63', 'bp64', 'bp65', 'bf11', 'bf12', 'bf21', 'bf22', 'bf41',
|
27
|
+
'bf42', 'bf43', 'bf44', 'bf45', 'bf99', 'bsca', 'bsnca', 'bsta', 'bscl', 'bsncl', 'bstl', 'bsse', 'bslse',
|
28
|
+
'debt', 'quick', 'ppe', 'ar', 'ip12', 'ip22', 'ip31', 'ip51', 'iv41', 'if11', 'isibt', 'isni', 'isnip',
|
29
|
+
'eps', 'ispsd', 'gm', 'opi', 'nri', 'ri', 'nopi', 'ebit', 'cip31', 'cscfo', 'cscfi', 'cscff', 'person',
|
30
|
+
'shares', 'wavg', 'taxrate', 'r104', 'r115', 'r105', 'r106', 'r107', 'r108', 'r201', 'r112', 'r401', 'r402',
|
31
|
+
'r403', 'r404', 'r405', 'r408', 'r409', 'r410', 'r502', 'r501', 'r205', 'r505', 'r517', 'r512', 'r509',
|
32
|
+
'r608', 'r616', 'r610', 'r607', 'r613', 'r612', 'r609', 'r614', 'r611', 'r307', 'r304', 'r305', 'r306',
|
33
|
+
'r316', 'r834'
|
34
|
+
} # yapf: enabled
|
35
|
+
|
36
|
+
def get(
|
37
|
+
self,
|
38
|
+
ticker,
|
39
|
+
fetch_mode: FetchMode = FetchMode.QOQ_NOCAL,
|
40
|
+
start_date: str = None,
|
41
|
+
end_date: str = None,
|
42
|
+
report_type: str = "Q",
|
43
|
+
indexes: list = []):
|
44
|
+
"""
|
45
|
+
基礎的query function
|
46
|
+
ticker(str): 股票代碼
|
47
|
+
start_date(str): 開頭日期範圍
|
48
|
+
end_date(str): = 結束日期範圍
|
49
|
+
report_type(str): 報告型態 {"A", "Q", "TTM"}
|
50
|
+
fetch_mode(class FetchMode):
|
51
|
+
YoY : 起始日期到結束日期範圍內,特定該季的資料
|
52
|
+
QoQ : 起始日期到結束日期內,每季的資料(與上一季成長率)
|
53
|
+
indexes(List): 指定的index
|
54
|
+
"""
|
55
|
+
# 確認indexes中是否有錯誤的index,有的話回傳warning
|
56
|
+
if (indexes and self.check_index):
|
57
|
+
indexes = set(indexes)
|
58
|
+
difference = indexes - self.check_index
|
59
|
+
if (difference):
|
60
|
+
warnings.warn(f"{list(difference)} 沒有出現在資料表中,請確認column名稱是否正確", UserWarning)
|
61
|
+
|
62
|
+
if (fetch_mode in {self.FetchMode.QOQ, self.FetchMode.QOQ_NOCAL}):
|
63
|
+
if (not start_date):
|
64
|
+
warnings.warn("No start_date specified, use default date = \"2005-01-01\"", UserWarning)
|
65
|
+
start_date = datetime.strptime("2005-01-01", "%Y-%m-%d")
|
66
|
+
if (not end_date):
|
67
|
+
warnings.warn("No end_date specified, use default date = today", UserWarning)
|
68
|
+
end_date = datetime.today()
|
69
|
+
|
70
|
+
assert (start_date <= end_date)
|
71
|
+
start_date = datetime.strptime(start_date, "%Y-%m-%d")
|
72
|
+
end_date = datetime.strptime(end_date, "%Y-%m-%d")
|
73
|
+
|
74
|
+
start_year = start_date.year
|
75
|
+
start_season = (start_date.month - 1) // 4 + 1
|
76
|
+
end_year = end_date.year
|
77
|
+
end_season = (end_date.month - 1) // 4 + 1
|
78
|
+
|
79
|
+
if (fetch_mode == self.FetchMode.QOQ):
|
80
|
+
use_cal = True
|
81
|
+
else:
|
82
|
+
use_cal = False
|
83
|
+
|
84
|
+
data_df = self.get_QoQ_data(
|
85
|
+
ticker=ticker,
|
86
|
+
start_year=start_year,
|
87
|
+
start_season=start_season,
|
88
|
+
end_year=end_year,
|
89
|
+
end_season=end_season,
|
90
|
+
report_type=report_type,
|
91
|
+
indexes=indexes,
|
92
|
+
use_cal=use_cal)
|
93
|
+
|
94
|
+
return data_df
|
95
|
+
|
96
|
+
elif (fetch_mode in {self.FetchMode.YOY, self.FetchMode.YOY_NOCAL}):
|
97
|
+
start_date = datetime.strptime(start_date, "%Y-%m-%d")
|
98
|
+
start_year = start_date.year
|
99
|
+
end_date = self.get_latest_data_time(ticker)
|
100
|
+
if (not end_date):
|
101
|
+
end_date = datetime.today()
|
102
|
+
|
103
|
+
end_year = end_date.year
|
104
|
+
season = (end_date.month - 1) // 4 + 1
|
105
|
+
|
106
|
+
if (fetch_mode == self.FetchMode.YOY):
|
107
|
+
use_cal = True
|
108
|
+
else:
|
109
|
+
use_cal = False
|
110
|
+
|
111
|
+
data_df = self.get_YoY_data(
|
112
|
+
ticker=ticker,
|
113
|
+
start_year=start_year,
|
114
|
+
end_year=end_year,
|
115
|
+
season=season,
|
116
|
+
report_type=report_type,
|
117
|
+
indexes=indexes,
|
118
|
+
use_cal=use_cal)
|
119
|
+
|
120
|
+
return data_df
|
121
|
+
|
122
|
+
def get_QoQ_data(
|
123
|
+
self, ticker, start_year, start_season, end_year, end_season, report_type="Q", indexes=[], use_cal=False):
|
124
|
+
"""
|
125
|
+
取得時間範圍內每季資料
|
126
|
+
"""
|
127
|
+
if (use_cal):
|
128
|
+
if (start_season == 1):
|
129
|
+
lower_bound_year = start_year - 1
|
130
|
+
lower_bound_season = 4
|
131
|
+
|
132
|
+
else:
|
133
|
+
lower_bound_year = start_year
|
134
|
+
lower_bound_season = start_season - 1
|
135
|
+
|
136
|
+
else:
|
137
|
+
lower_bound_year = start_year,
|
138
|
+
lower_bound_season = start_season
|
139
|
+
|
140
|
+
if (not indexes): # 沒有指定 -> 取全部
|
141
|
+
pipeline = [
|
142
|
+
{
|
143
|
+
"$match": {
|
144
|
+
"ticker": ticker
|
145
|
+
}
|
146
|
+
}, {
|
147
|
+
"$unwind": "$data"
|
148
|
+
}, {
|
149
|
+
"$match":
|
150
|
+
{
|
151
|
+
"$or":
|
152
|
+
[
|
153
|
+
{
|
154
|
+
"data.year": {
|
155
|
+
"$gt": start_year,
|
156
|
+
"$lt": end_year
|
157
|
+
}
|
158
|
+
}, {
|
159
|
+
"data.year": start_year,
|
160
|
+
"data.season": {
|
161
|
+
"$gte": start_season
|
162
|
+
}
|
163
|
+
}, {
|
164
|
+
"data.year": end_year,
|
165
|
+
"data.season": {
|
166
|
+
"$lte": end_season
|
167
|
+
}
|
168
|
+
}, {
|
169
|
+
"data.year": lower_bound_year,
|
170
|
+
"data.season": lower_bound_season
|
171
|
+
}
|
172
|
+
]
|
173
|
+
}
|
174
|
+
}, {
|
175
|
+
"$project": {
|
176
|
+
"data.year": 1,
|
177
|
+
"data.season": 1,
|
178
|
+
f"data.{report_type}": 1,
|
179
|
+
"_id": 0
|
180
|
+
}
|
181
|
+
}
|
182
|
+
]
|
183
|
+
|
184
|
+
else: # 取指定index
|
185
|
+
project_stage = {"data.year": 1, "data.season": 1}
|
186
|
+
for index in indexes:
|
187
|
+
project_stage[f"data.{report_type}.{index}"] = 1
|
188
|
+
|
189
|
+
pipeline = [
|
190
|
+
{
|
191
|
+
"$match": {
|
192
|
+
"ticker": ticker
|
193
|
+
}
|
194
|
+
}, {
|
195
|
+
"$unwind": "$data"
|
196
|
+
}, {
|
197
|
+
"$match":
|
198
|
+
{
|
199
|
+
"$or":
|
200
|
+
[
|
201
|
+
{
|
202
|
+
"data.year": {
|
203
|
+
"$gt": start_year,
|
204
|
+
"$lt": end_year
|
205
|
+
}
|
206
|
+
}, {
|
207
|
+
"data.year": start_year,
|
208
|
+
"data.season": {
|
209
|
+
"$gte": start_season
|
210
|
+
}
|
211
|
+
}, {
|
212
|
+
"data.year": end_year,
|
213
|
+
"data.season": {
|
214
|
+
"$lte": end_season
|
215
|
+
}
|
216
|
+
}, {
|
217
|
+
"data.year": lower_bound_year,
|
218
|
+
"data.season": lower_bound_season
|
219
|
+
}
|
220
|
+
]
|
221
|
+
}
|
222
|
+
}, {
|
223
|
+
"$project": project_stage
|
224
|
+
}
|
225
|
+
]
|
226
|
+
|
227
|
+
fetched_data = self.collection.aggregate(pipeline).to_list()
|
228
|
+
|
229
|
+
data_dict = StatsProcessor.list_of_dict_to_dict(
|
230
|
+
fetched_data, keys=["year", "season"], delimeter="Q", data_key=report_type)
|
231
|
+
|
232
|
+
if (use_cal):
|
233
|
+
data_with_QoQ = self.cal_QoQ(data_dict)
|
234
|
+
data_df = pd.DataFrame.from_dict(data_with_QoQ)
|
235
|
+
data_df = data_df.iloc[:, 1:]
|
236
|
+
data_df = data_df.iloc[:, ::-1].T
|
237
|
+
data_dict = data_df.to_dict()
|
238
|
+
data_dict = self.get_dict_of_df(data_dict)
|
239
|
+
return data_dict
|
240
|
+
else:
|
241
|
+
data_df = pd.DataFrame.from_dict(data_dict)
|
242
|
+
data_df = data_df.iloc[:, ::-1]
|
243
|
+
return data_df
|
244
|
+
|
245
|
+
def get_YoY_data(self, ticker, start_year, end_year, season, report_type="Q", indexes=[], use_cal=False):
|
246
|
+
"""
|
247
|
+
取得某季歷年資料
|
248
|
+
"""
|
249
|
+
if (use_cal):
|
250
|
+
select_year = set()
|
251
|
+
|
252
|
+
for year in range(start_year, end_year + 1):
|
253
|
+
year_shifts = {year, year - 1, year - 3, year - 5, year - 10}
|
254
|
+
|
255
|
+
select_year = select_year.union(year_shifts)
|
256
|
+
|
257
|
+
select_year = sorted(list(select_year), reverse=True)
|
258
|
+
else:
|
259
|
+
select_year = [year for year in range(start_year, end_year + 1)]
|
260
|
+
|
261
|
+
if (not indexes): # 沒有指定 -> 取全部
|
262
|
+
pipeline = [
|
263
|
+
{
|
264
|
+
"$match": {
|
265
|
+
"ticker": ticker
|
266
|
+
}
|
267
|
+
}, {
|
268
|
+
"$unwind": "$data"
|
269
|
+
}, {
|
270
|
+
"$match":
|
271
|
+
{
|
272
|
+
"$or": [{
|
273
|
+
"$and": [{
|
274
|
+
"data.year": {
|
275
|
+
"$in": select_year
|
276
|
+
}
|
277
|
+
}, {
|
278
|
+
"data.season": {
|
279
|
+
"$eq": season
|
280
|
+
}
|
281
|
+
}]
|
282
|
+
},]
|
283
|
+
}
|
284
|
+
}, {
|
285
|
+
"$project": {
|
286
|
+
"data.year": 1,
|
287
|
+
"data.season": 1,
|
288
|
+
f"data.{report_type}": 1,
|
289
|
+
"_id": 0
|
290
|
+
}
|
291
|
+
}
|
292
|
+
]
|
293
|
+
|
294
|
+
else: # 取指定index
|
295
|
+
project_stage = {"data.year": 1, "data.season": 1}
|
296
|
+
for index in indexes:
|
297
|
+
project_stage[f"data.{report_type}.{index}"] = 1
|
298
|
+
|
299
|
+
pipeline = [
|
300
|
+
{
|
301
|
+
"$match": {
|
302
|
+
"ticker": ticker
|
303
|
+
}
|
304
|
+
}, {
|
305
|
+
"$unwind": "$data"
|
306
|
+
}, {
|
307
|
+
"$match": {
|
308
|
+
"$and": [{
|
309
|
+
"data.year": {
|
310
|
+
"$in": select_year
|
311
|
+
}
|
312
|
+
}, {
|
313
|
+
"data.season": {
|
314
|
+
"$eq": season
|
315
|
+
}
|
316
|
+
}]
|
317
|
+
}
|
318
|
+
}, {
|
319
|
+
"$project": project_stage
|
320
|
+
}
|
321
|
+
]
|
322
|
+
|
323
|
+
fetched_data = self.collection.aggregate(pipeline).to_list()
|
324
|
+
|
325
|
+
# 處理計算YoY
|
326
|
+
data_dict = StatsProcessor.list_of_dict_to_dict(
|
327
|
+
fetched_data, keys=['year', 'season'], data_key=report_type, delimeter='Q')
|
328
|
+
|
329
|
+
if (use_cal):
|
330
|
+
data_with_YoY = self.cal_YoY(data_dict, start_year, end_year, season)
|
331
|
+
data_df = pd.DataFrame.from_dict(data_with_YoY)
|
332
|
+
data_df = data_df.iloc[:, ::-1].T
|
333
|
+
data_dict = data_df.to_dict()
|
334
|
+
data_dict = self.get_dict_of_df(data_dict)
|
335
|
+
return data_dict
|
336
|
+
else:
|
337
|
+
data_df = pd.DataFrame.from_dict(data_dict)
|
338
|
+
data_df = data_df.iloc[:, ::-1]
|
339
|
+
return data_df
|
@@ -12,51 +12,68 @@ class ValueFetcher(StatsFetcher):
|
|
12
12
|
def prepare_query(self, start_date, end_date):
|
13
13
|
pipeline = super().prepare_query()
|
14
14
|
|
15
|
-
pipeline.append(
|
16
|
-
|
17
|
-
"
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
"
|
23
|
-
|
24
|
-
"
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
|
39
|
-
|
40
|
-
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
|
15
|
+
pipeline.append(
|
16
|
+
{
|
17
|
+
"$project":
|
18
|
+
{
|
19
|
+
"_id": 0,
|
20
|
+
"ticker": 1,
|
21
|
+
"company_name": 1,
|
22
|
+
"daily_data":
|
23
|
+
{
|
24
|
+
"$map":
|
25
|
+
{
|
26
|
+
"input":
|
27
|
+
{
|
28
|
+
"$filter":
|
29
|
+
{
|
30
|
+
"input": "$daily_data",
|
31
|
+
"as": "daily",
|
32
|
+
"cond":
|
33
|
+
{
|
34
|
+
"$and":
|
35
|
+
[
|
36
|
+
{
|
37
|
+
"$gte": ["$$daily.date", start_date]
|
38
|
+
}, {
|
39
|
+
"$lte": ["$$daily.date", end_date]
|
40
|
+
}
|
41
|
+
]
|
42
|
+
}
|
43
|
+
}
|
44
|
+
},
|
45
|
+
"as": "daily_item",
|
46
|
+
"in":
|
47
|
+
{
|
48
|
+
"date": "$$daily_item.date",
|
49
|
+
"close": "$$daily_item.close",
|
50
|
+
"P_B": "$$daily_item.P_B",
|
51
|
+
"P_E": "$$daily_item.P_E",
|
52
|
+
"P_FCF": "$$daily_item.P_FCF",
|
53
|
+
"P_S": "$$daily_item.P_S",
|
54
|
+
"EV_OPI": "$$daily_item.EV_OPI",
|
55
|
+
"EV_EBIT": "$$daily_item.EV_EBIT",
|
56
|
+
"EV_EBITDA": "$$daily_item.EV_EBITDA",
|
57
|
+
"EV_S": "$$daily_item.EV_S"
|
58
|
+
}
|
59
|
+
}
|
60
|
+
},
|
61
|
+
"yearly_data": 1
|
48
62
|
}
|
49
|
-
|
50
|
-
"yearly_data": 1
|
51
|
-
}
|
52
|
-
})
|
63
|
+
})
|
53
64
|
|
54
65
|
return pipeline
|
55
66
|
|
67
|
+
def collect_data(self, start_date, end_date):
|
68
|
+
pipeline = self.prepare_query(start_date, end_date)
|
69
|
+
|
70
|
+
fetched_data = list(self.collection.aggregate(pipeline))
|
71
|
+
|
72
|
+
return fetched_data[0]
|
73
|
+
|
56
74
|
def query_data(self):
|
57
75
|
try:
|
58
|
-
latest_time = StatsDateTime.get_latest_time(
|
59
|
-
self.ticker, self.collection)['last_update_time']
|
76
|
+
latest_time = StatsDateTime.get_latest_time(self.ticker, self.collection)['last_update_time']
|
60
77
|
target_year = latest_time['daily_data']['last_update'].year
|
61
78
|
start_date = latest_time['daily_data']['last_update'] - timedelta(days=31)
|
62
79
|
end_date = latest_time['daily_data']['last_update']
|
@@ -79,7 +96,7 @@ class ValueFetcher(StatsFetcher):
|
|
79
96
|
)
|
80
97
|
|
81
98
|
return fetched_data
|
82
|
-
|
99
|
+
|
83
100
|
def query_value_serie(self):
|
84
101
|
"""
|
85
102
|
回傳指定公司的歷來評價
|
@@ -104,28 +121,32 @@ class ValueFetcher(StatsFetcher):
|
|
104
121
|
}
|
105
122
|
},
|
106
123
|
{
|
107
|
-
"$project":
|
108
|
-
|
109
|
-
|
110
|
-
|
111
|
-
|
112
|
-
"
|
113
|
-
|
114
|
-
|
115
|
-
|
116
|
-
|
117
|
-
|
118
|
-
|
119
|
-
|
120
|
-
|
121
|
-
|
122
|
-
|
123
|
-
|
124
|
-
|
124
|
+
"$project":
|
125
|
+
{
|
126
|
+
"_id": 0,
|
127
|
+
"ticker": 1,
|
128
|
+
"company_name": 1,
|
129
|
+
"daily_data":
|
130
|
+
{
|
131
|
+
"$map":
|
132
|
+
{
|
133
|
+
"input": "$daily_data", # 正確地指定要處理的陣列
|
134
|
+
"as": "daily", # 每個元素的名稱
|
135
|
+
"in":
|
136
|
+
{
|
137
|
+
"date": "$$daily.date",
|
138
|
+
"P_E": "$$daily.P_E",
|
139
|
+
"P_FCF": "$$daily.P_FCF",
|
140
|
+
"P_B": "$$daily.P_B",
|
141
|
+
"P_S": "$$daily.P_S",
|
142
|
+
"EV_OPI": "$$daily.EV_OPI",
|
143
|
+
"EV_EBIT": "$$daily.EV_EBIT",
|
144
|
+
"EV_EBITDA": "$$daily.EV_EBITDA",
|
145
|
+
"EV_S": "$$daily.EV_S"
|
146
|
+
}
|
147
|
+
}
|
125
148
|
}
|
126
|
-
}
|
127
149
|
}
|
128
|
-
}
|
129
150
|
}
|
130
151
|
]
|
131
152
|
|
@@ -133,21 +154,17 @@ class ValueFetcher(StatsFetcher):
|
|
133
154
|
fetched_data = fetched_data[0]
|
134
155
|
|
135
156
|
value_keys = ["P_E", "P_FCF", "P_B", "P_S", "EV_OPI", "EV_EBIT", "EV_EVITDA", "EV_S"]
|
136
|
-
return_dict = {
|
137
|
-
value_key: dict() for value_key in value_keys
|
138
|
-
}
|
157
|
+
return_dict = {value_key: dict() for value_key in value_keys}
|
139
158
|
|
140
159
|
for value_key in value_keys:
|
141
160
|
for data in fetched_data['daily_data']:
|
142
161
|
if (value_key not in data.keys()):
|
143
162
|
continue
|
144
163
|
else:
|
145
|
-
return_dict[value_key].update({
|
146
|
-
data['date']: data[value_key]
|
147
|
-
})
|
164
|
+
return_dict[value_key].update({data['date']: data[value_key]})
|
148
165
|
|
149
166
|
return_dict = {
|
150
|
-
value_key: pd.DataFrame.from_dict(value_dict, orient
|
167
|
+
value_key: pd.DataFrame.from_dict(value_dict, orient='index', columns=[value_key])
|
151
168
|
for value_key, value_dict in return_dict.items()
|
152
169
|
}
|
153
170
|
return return_dict
|
neurostats_API/utils/__init__.py
CHANGED
@@ -0,0 +1,26 @@
|
|
1
|
+
class YoY_Calculator:
|
2
|
+
def __init__(self):
|
3
|
+
pass
|
4
|
+
|
5
|
+
@classmethod
|
6
|
+
def cal_growth(cls, target_value: float, past_value: float, delta: int):
|
7
|
+
"""
|
8
|
+
計算成長率以及年化成長率
|
9
|
+
target_value: float,這個時間的數值
|
10
|
+
past_value: float,過去的這個時間數值
|
11
|
+
delta: int,代表隔了幾年/季 delta > 1 時改以年化成長率計算
|
12
|
+
"""
|
13
|
+
try:
|
14
|
+
if (delta > 1):
|
15
|
+
YoY = ((target_value / past_value)**(1 / delta)) - 1
|
16
|
+
|
17
|
+
else:
|
18
|
+
YoY = ((target_value - past_value) / past_value)
|
19
|
+
|
20
|
+
except Exception as e:
|
21
|
+
return None
|
22
|
+
|
23
|
+
if (isinstance(YoY, complex)): # 年化成長率有複數問題
|
24
|
+
return None
|
25
|
+
|
26
|
+
return YoY
|
@@ -20,7 +20,6 @@ class StatsProcessor:
|
|
20
20
|
"""
|
21
21
|
1. 讀檔: txt / yaml
|
22
22
|
2. 將巢狀dictionary / DataFrame扁平化
|
23
|
-
|
24
23
|
"""
|
25
24
|
|
26
25
|
@classmethod
|
@@ -215,3 +214,59 @@ class StatsProcessor:
|
|
215
214
|
return int(np.round(value).item())
|
216
215
|
else:
|
217
216
|
return value
|
217
|
+
|
218
|
+
@classmethod
|
219
|
+
def list_of_dict_to_dict(
|
220
|
+
cls,
|
221
|
+
data_list: list,
|
222
|
+
key: str = "",
|
223
|
+
keys: list = [],
|
224
|
+
delimeter: str = "_",
|
225
|
+
data_key: str = "Q"
|
226
|
+
):
|
227
|
+
"""
|
228
|
+
TEJ DB 用
|
229
|
+
List[Dict] -> Dict[Dict]
|
230
|
+
input:
|
231
|
+
data_list(List):
|
232
|
+
[
|
233
|
+
{ "data":
|
234
|
+
{
|
235
|
+
"year": 2021...
|
236
|
+
"season": 1,
|
237
|
+
"Q": {}...
|
238
|
+
|
239
|
+
}
|
240
|
+
}
|
241
|
+
]
|
242
|
+
|
243
|
+
key(str): 選擇哪一個key作為轉化後的index
|
244
|
+
delimeter(str): 多個key時要用甚麼分隔
|
245
|
+
return:
|
246
|
+
{
|
247
|
+
"2021" : {# Q下的資料} ...
|
248
|
+
}
|
249
|
+
|
250
|
+
or (keys = ['year', 'season'])
|
251
|
+
{
|
252
|
+
"2021Q2" : {}
|
253
|
+
}
|
254
|
+
"""
|
255
|
+
assert (key or keys), "func list_of_dict_to_dict must have argument \"key\" or \"keys\""
|
256
|
+
|
257
|
+
return_dict = {}
|
258
|
+
if (key):
|
259
|
+
keys = [key]
|
260
|
+
for data in data_list:
|
261
|
+
data = data['data']
|
262
|
+
|
263
|
+
pop_keys = []
|
264
|
+
|
265
|
+
for key in keys:
|
266
|
+
assert (key in data.keys())
|
267
|
+
pop_keys.append(str(data.pop(key)))
|
268
|
+
|
269
|
+
pop_key = delimeter.join(pop_keys)
|
270
|
+
return_dict[pop_key] = data[data_key]
|
271
|
+
|
272
|
+
return return_dict
|
@@ -1,12 +1,18 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: neurostats_API
|
3
|
-
Version: 0.0.
|
3
|
+
Version: 0.0.16
|
4
4
|
Summary: The service of NeuroStats website
|
5
5
|
Home-page: https://github.com/NeurowattStats/NeuroStats_API.git
|
6
6
|
Author: JasonWang@Neurowatt
|
7
7
|
Author-email: jason@neurowatt.ai
|
8
8
|
Requires-Python: >=3.6
|
9
9
|
Description-Content-Type: text/markdown
|
10
|
+
Requires-Dist: numpy>=2.1.0
|
11
|
+
Requires-Dist: pandas>=2.2.0
|
12
|
+
Requires-Dist: pymongo
|
13
|
+
Requires-Dist: pytz
|
14
|
+
Requires-Dist: python-dotenv
|
15
|
+
Requires-Dist: yfinance
|
10
16
|
|
11
17
|
# neurostats_API
|
12
18
|
|
@@ -83,7 +89,7 @@ pip install neurostats-API
|
|
83
89
|
```Python
|
84
90
|
>>> import neurostats_API
|
85
91
|
>>> print(neurostats_API.__version__)
|
86
|
-
0.0.
|
92
|
+
0.0.16
|
87
93
|
```
|
88
94
|
|
89
95
|
### 得到最新一期的評價資料與歷年評價
|
@@ -667,7 +673,121 @@ fetcher.query()
|
|
667
673
|
|
668
674
|
請注意`range`, `last_range`, `52week_range`這三個項目型態為字串,其餘為float
|
669
675
|
|
676
|
+
|
677
|
+
## TEJ 相關
|
678
|
+
### 會計師簽證財務資料
|
679
|
+
```Python
|
680
|
+
from neurostats_API import FinanceReportFetcher
|
681
|
+
|
682
|
+
mongo_uri = <MongoDB 的 URI>
|
683
|
+
db_name = 'company' # 連接的DB名稱
|
684
|
+
collection_name = "TWN/AINVFQ1" # 連接的collection對象
|
685
|
+
|
686
|
+
fetcher = FinanceReportFetcher(
|
687
|
+
mongo_uri = mongo_uri,
|
688
|
+
db_name = db_name,
|
689
|
+
collection_name = collection_name
|
690
|
+
)
|
691
|
+
|
692
|
+
data = fetcher.get(
|
693
|
+
ticker = "2330" # 任意的股票代碼
|
694
|
+
fetch_mode = fetcher.FetchMode.QOQ_NOCAL # 取得模式
|
695
|
+
start_date = "2005-01-01",
|
696
|
+
end_date = "2024-12-31",
|
697
|
+
report_type = "Q",
|
698
|
+
indexes = []
|
699
|
+
) # -> pd.DataFrame or Dict[pd.DataFrame]
|
700
|
+
```
|
701
|
+
- `ticker`: 股票代碼
|
702
|
+
|
703
|
+
- `fetch_mode` : 取得模式,為`fetcher.YOY_NOCAL` 或 `fetcher.QOQ_NOCAL`
|
704
|
+
- `YOY_NOCAL`: 以end_date為準,取得與end_date同季的歷年資料,時間範圍以start_date為起始
|
705
|
+
> 例如`start_date = "2020-07-01"`, `end_date = "2024-01-01"`,會回傳2020~2024的第一季資料
|
706
|
+
|
707
|
+
- `QOQ_NOCAL`: 時間範圍內的每季資料
|
708
|
+
|
709
|
+
- `QOQ`: 時間範圍內每季的每個index的數值以及QoQ
|
710
|
+
|
711
|
+
- `YoY`: 以end_date為準,取得與end_date同季的歷年資料以及成長率,時間範圍以start_date為起始
|
712
|
+
|
713
|
+
- `start_date`: 開始日期,不設定時預設為`2005-01-01`
|
714
|
+
|
715
|
+
- `end_date`: 結束日期,不設定時預設為資料庫最新資料的日期
|
716
|
+
|
717
|
+
- `report_type`: 選擇哪種報告,預設為`Q`
|
718
|
+
- `A`: 當年累計
|
719
|
+
- `Q`: 當季數值
|
720
|
+
- `TTM`: 移動四季 (包括當季在內,往前累計四個季度)
|
721
|
+
|
722
|
+
- `indexes`: 選擇的column,需要以TEJ提供的欄位名稱為準,不提供時或提供`[]`會回傳全部column
|
723
|
+
- 範例輸入: `['bp41', 'bp51']`
|
724
|
+
|
725
|
+
[TEJ資料集連結](https://tquant.tejwin.com/%E8%B3%87%E6%96%99%E9%9B%86/)
|
726
|
+
請看 `會計師簽證財務資料`
|
727
|
+
|
728
|
+
#### 回傳資料
|
729
|
+
##### `YOY_NOCAL` 與 `QOQ_NOCAL`
|
730
|
+
為回傳`pd.DataFrame`,column名稱為<年份>Q<季>, row名稱為指定財報項目
|
731
|
+
```Python
|
732
|
+
# fetch_mode = fetcher.FetchMode.QOQ_NOCAL
|
733
|
+
2024Q3 2024Q2 2024Q1
|
734
|
+
bp41 7.082005e+07 6.394707e+07 5.761001e+07
|
735
|
+
bp51 3.111298e+09 3.145373e+09 3.091985e+09
|
736
|
+
|
737
|
+
# fetch_mode = fetcher.FetchMode.YOY_NOCAL
|
738
|
+
2024Q3 2023Q3 2022Q3
|
739
|
+
bp41 7.082005e+07 5.377231e+07 6.201822e+07
|
740
|
+
bp51 3.111298e+09 3.173919e+09 2.453840e+09
|
741
|
+
```
|
742
|
+
|
743
|
+
##### `YOY` 與 `QOQ`
|
744
|
+
回傳為`Dict[pd.DataFrame]`, key 為指定的index, DataFrame中則是該index歷年的數值與成長率
|
745
|
+
```Python
|
746
|
+
# fetch_mode = fetcher.FetchMode.QOQ
|
747
|
+
{
|
748
|
+
'bp41':
|
749
|
+
2024Q3 2024Q2 2024Q1
|
750
|
+
value 7.082005e+07 6.394707e+07 5.761001e+07
|
751
|
+
growth 1.074791e-01 1.099994e-01 5.532101e-03,
|
752
|
+
'bp51':
|
753
|
+
2024Q3 2024Q2 2024Q1
|
754
|
+
value 3.111298e+09 3.145373e+09 3.091985e+09
|
755
|
+
growth -1.083335e-02 1.726663e-02 -4.159542e-03
|
756
|
+
}
|
757
|
+
|
758
|
+
# fetch_mode = fetcher.FetchMode.YOY
|
759
|
+
{
|
760
|
+
'bp41':
|
761
|
+
2024Q3 2023Q3 2022Q3
|
762
|
+
value 7.082005e+07 5.377231e+07 6.201822e+07
|
763
|
+
YoY_1 NaN NaN 4.130744e-01
|
764
|
+
YoY_3 1.729171e-01 9.556684e-02 1.883274e-01
|
765
|
+
YoY_5 1.389090e-01 1.215242e-01 1.642914e-01
|
766
|
+
YoY_10 1.255138e-01 1.356297e-01 1.559702e-01,
|
767
|
+
'bp51':
|
768
|
+
2024Q3 2023Q3 2022Q3
|
769
|
+
value 3.111298e+09 3.173919e+09 2.453840e+09
|
770
|
+
YoY_1 NaN NaN 3.179539e-01
|
771
|
+
YoY_3 1.866752e-01 2.766851e-01 2.638677e-01
|
772
|
+
YoY_5 2.068132e-01 2.479698e-01 1.815106e-01
|
773
|
+
YoY_10 1.420500e-01 1.586797e-01 1.551364e-01
|
774
|
+
}
|
775
|
+
```
|
776
|
+
|
777
|
+
|
670
778
|
## 版本紀錄
|
779
|
+
## 0.0.16
|
780
|
+
- 處理ValueFetcher的error #issue76
|
781
|
+
|
782
|
+
- tej_fetcher新增 QOQ, YOY功能
|
783
|
+
|
784
|
+
## 0.0.15
|
785
|
+
- TechFetcher中新增指數條件
|
786
|
+
|
787
|
+
- 新增tej_fetcher索取TEJ相關的資料
|
788
|
+
|
789
|
+
- package新增depensnecy,可以安裝需要的相關package
|
790
|
+
|
671
791
|
## 0.0.14
|
672
792
|
- 修改部分財報資料錯誤的乘以1000的問題
|
673
793
|
|
@@ -1,28 +1,30 @@
|
|
1
|
-
neurostats_API/__init__.py,sha256=
|
1
|
+
neurostats_API/__init__.py,sha256=5ToELVqNOIdVJrMj5G8JvbyRIjvo1FxcP6e-a-iMe1Y,261
|
2
2
|
neurostats_API/cli.py,sha256=UJSWLIw03P24p-gkBb6JSEI5dW5U12UvLf1L8HjQD-o,873
|
3
3
|
neurostats_API/main.py,sha256=QcsfmWivg2Dnqw3MTJWiI0QvEiRs0VuH-BjwQHFCv00,677
|
4
|
-
neurostats_API/fetchers/__init__.py,sha256=
|
4
|
+
neurostats_API/fetchers/__init__.py,sha256=B4aBwVzf_X-YieEf3fZteU0qmBPVIB9VjrmkyWhLK18,489
|
5
5
|
neurostats_API/fetchers/balance_sheet.py,sha256=sQv4Gk5uoKURLEdh57YknOQWiyVwaXJ2Mw75jxNqUS0,5804
|
6
|
-
neurostats_API/fetchers/base.py,sha256=
|
6
|
+
neurostats_API/fetchers/base.py,sha256=rcrKW2PTJYfBsxsiGpCYiVTK9pQW4aALYLixIjvNMUk,4890
|
7
7
|
neurostats_API/fetchers/cash_flow.py,sha256=TY7VAWVXkj5-mzH5Iu0sIE-oV8MvGmmDy0URNotNV1E,7614
|
8
8
|
neurostats_API/fetchers/finance_overview.py,sha256=PxUdWY0x030olYMLcCHDBn068JLmCE2RTOce1dxs5vM,27753
|
9
9
|
neurostats_API/fetchers/institution.py,sha256=UrcBc6t7u7CnEwUsf6YmLbbJ8VncdWpq8bCz17q2dgs,11168
|
10
10
|
neurostats_API/fetchers/margin_trading.py,sha256=lQImtNdvaBoSlKhJvQ3DkH3HjSSgKRJz4ZZpyR5-Z4I,10433
|
11
11
|
neurostats_API/fetchers/month_revenue.py,sha256=nixX2llzjCFr2m2YVjxrSfkBusnZPrPb2dRDq1XLGhw,4251
|
12
12
|
neurostats_API/fetchers/profit_lose.py,sha256=EN9Y0iamcAaHMZdjHXO6b_2buLnORssf8ZS7A0hi74s,5896
|
13
|
-
neurostats_API/fetchers/tech.py,sha256=
|
14
|
-
neurostats_API/fetchers/
|
13
|
+
neurostats_API/fetchers/tech.py,sha256=Hol1bcwJ_ERcnoTXNWlqqaWOuzdl7MeiAjCvzQMZDTg,12269
|
14
|
+
neurostats_API/fetchers/tej_finance_report.py,sha256=laXph2ca1LCFocZjjdvtzmm5fcUecHk2Gs5h6-XMSWY,12967
|
15
|
+
neurostats_API/fetchers/value_invest.py,sha256=b_x2Dpgs8VBU5HdG8ocKtfIEkqhU-Q0S5n6RxuFuM2g,7467
|
15
16
|
neurostats_API/tools/balance_sheet.yaml,sha256=6XygNG_Ybb1Xkk1e39LMLKr7ATvaCP3xxuwFbgNl6dA,673
|
16
17
|
neurostats_API/tools/cash_flow_percentage.yaml,sha256=fk2Z4eb1JjGFvP134eJatHacB7BgTkBenhDJr83w8RE,1345
|
17
18
|
neurostats_API/tools/finance_overview_dict.yaml,sha256=B9nV75StXkrF3yv2-eezzitlJ38eEK86RD_VY6588gQ,2884
|
18
19
|
neurostats_API/tools/profit_lose.yaml,sha256=iyp9asYJ04vAxk_HBUDse_IBy5oVvYHpwsyACg5YEeg,3029
|
19
20
|
neurostats_API/tools/seasonal_data_field_dict.txt,sha256=X8yc_el6p8BH_3FikTqBVFGsvWdXT6MHXLfKfi44334,8491
|
20
|
-
neurostats_API/utils/__init__.py,sha256=
|
21
|
-
neurostats_API/utils/
|
21
|
+
neurostats_API/utils/__init__.py,sha256=0tJCRmlJq2aDwcNNW-oEaA9H0OxTJMFvjpVYtG4AvZU,186
|
22
|
+
neurostats_API/utils/calculate_value.py,sha256=lUKSsWU76XRmDUcmi4eDjoQxjb3vWpAAKInF9w49VNI,782
|
23
|
+
neurostats_API/utils/data_process.py,sha256=A--dzOsu42jRxqqCD41gTtjE5rhEBYmhB6y-AnCvo5U,8986
|
22
24
|
neurostats_API/utils/datetime.py,sha256=XJya4G8b_-ZOaBbMXgQjWh2MC4wc-o6goQ7EQJQMWrQ,773
|
23
25
|
neurostats_API/utils/db_client.py,sha256=OYe6yazcR4Aa6jYmy47JrryUeh2NnKGqY2K_lSZe6i8,455
|
24
26
|
neurostats_API/utils/fetcher.py,sha256=VbrUhjA-GG5AyjPX2SHtFIbZM4dm3jo0RgZzuCbb_Io,40927
|
25
|
-
neurostats_API-0.0.
|
26
|
-
neurostats_API-0.0.
|
27
|
-
neurostats_API-0.0.
|
28
|
-
neurostats_API-0.0.
|
27
|
+
neurostats_API-0.0.16.dist-info/METADATA,sha256=9US1mdwWnOCAnwfsOj-ZLRCfo07p3yd0UfwMKS6989g,29848
|
28
|
+
neurostats_API-0.0.16.dist-info/WHEEL,sha256=R06PA3UVYHThwHvxuRWMqaGcr-PuniXahwjmQRFMEkY,91
|
29
|
+
neurostats_API-0.0.16.dist-info/top_level.txt,sha256=nSlQPMG0VtXivJyedp4Bkf86EOy2TpW10VGxolXrqnU,15
|
30
|
+
neurostats_API-0.0.16.dist-info/RECORD,,
|
File without changes
|
File without changes
|