neurostats-API 0.0.14__py3-none-any.whl → 0.0.15__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1 +1,13 @@
1
- __version__='0.0.14'
1
+ __version__='0.0.15'
2
+
3
+ from .fetchers import (
4
+ BalanceSheetFetcher,
5
+ CashFlowFetcher,
6
+ FinanceOverviewFetcher,
7
+ FinanceReportFetcher,
8
+ InstitutionFetcher,
9
+ MarginTradingFetcher,
10
+ MonthRevenueFetcher,
11
+ TechFetcher,
12
+ ProfitLoseFetcher
13
+ )
@@ -2,6 +2,8 @@ from .base import StatsDateTime, StatsFetcher
2
2
  from .balance_sheet import BalanceSheetFetcher
3
3
  from .cash_flow import CashFlowFetcher
4
4
  from .finance_overview import FinanceOverviewFetcher
5
+ from .tej_finance_report import FinanceReportFetcher
6
+ from .tech import TechFetcher
5
7
  from .institution import InstitutionFetcher
6
8
  from .margin_trading import MarginTradingFetcher
7
9
  from .month_revenue import MonthRevenueFetcher
@@ -1,16 +1,16 @@
1
+ import abc
1
2
  from pymongo import MongoClient
2
3
  import pandas as pd
3
4
  import json
4
5
  import pytz
5
6
  from datetime import datetime, timedelta, date
6
- from ..utils import StatsDateTime, StatsProcessor
7
+ from ..utils import StatsDateTime, StatsProcessor, YoY_Calculator
7
8
  import yaml
8
9
 
9
10
  class StatsFetcher:
10
11
  def __init__(self, ticker, db_client):
11
12
  self.ticker = ticker
12
- self.db = db_client[
13
- "company"] # Replace with your database name
13
+ self.db = db_client["company"] # Replace with your database name
14
14
  self.collection = self.db["twse_stats"]
15
15
 
16
16
  self.timezone = pytz.timezone("Asia/Taipei")
@@ -37,7 +37,7 @@ class StatsFetcher:
37
37
  ]
38
38
 
39
39
  def collect_data(self, start_date, end_date):
40
- pipeline = self.prepare_query(start_date, end_date)
40
+ pipeline = self.prepare_query()
41
41
 
42
42
  fetched_data = list(self.collection.aggregate(pipeline))
43
43
 
@@ -52,3 +52,101 @@ class StatsFetcher:
52
52
  season = (month - 1) // 3 + 1
53
53
 
54
54
  return StatsDateTime(date, year, month, day, season)
55
+
56
+ class BaseTEJFetcher(abc.ABC):
57
+ def __init__(self):
58
+ self.client = None
59
+ self.db = None
60
+ self.collection = None
61
+
62
+ @abc.abstractmethod
63
+ def get(self):
64
+ pass
65
+
66
+ def get_latest_data_time(self, ticker):
67
+ latest_data = self.collection.find_one(
68
+ {"ticker": ticker},
69
+ {"last_update": 1, "_id" : 0}
70
+ )
71
+
72
+ try:
73
+ latest_date = latest_data['last_update']["latest_data_date"]
74
+ except Exception as e:
75
+ latest_date = None
76
+
77
+ return latest_date
78
+
79
+ def cal_YoY(self, data_dict: dict, start_year: int, end_year: int):
80
+ year_shifts = [1,3,5,10]
81
+ return_dict = {}
82
+ for year in range(start_year, end_year+1):
83
+ year_data = data_dict[str(year)]
84
+ year_keys = list(year_data.keys())
85
+ for key in year_keys:
86
+ if (key in 'season'):
87
+ continue
88
+
89
+ if (isinstance(year_data[key], (int, float))):
90
+ temp_dict = {"value": year_data[key]}
91
+
92
+ for shift in year_shifts:
93
+ this_value = year_data[key]
94
+ try:
95
+ past_year = str(year - shift)
96
+ last_value = data_dict[past_year][key]['value']
97
+ temp_dict[f"YoY_{shift}"] = YoY_Calculator.cal_growth(
98
+ this_value, last_value, delta = shift
99
+ )
100
+ except Exception as e:
101
+ temp_dict[f"YoY_{shift}"] = None
102
+
103
+ year_data[key] = temp_dict
104
+
105
+ else:
106
+ year_data.pop(key)
107
+
108
+ return_dict[year] = year_data
109
+
110
+
111
+ return return_dict
112
+
113
+ def cal_QoQ(self, data_dict):
114
+ return_dict = {}
115
+ for i, time_index in enumerate(data_dict.keys()):
116
+ year, season = time_index.split("Q")
117
+ year = int(year)
118
+ season = int(season)
119
+ if (season == 1):
120
+ last_year = year - 1
121
+ last_season = 4
122
+ else:
123
+ last_year = year
124
+ last_season = season - 1
125
+
126
+ this_data = data_dict[time_index]
127
+ this_keys = list(this_data.keys())
128
+ for key in this_keys:
129
+ if (key in 'season'):
130
+ continue
131
+
132
+ this_value = this_data[key]
133
+
134
+ if (isinstance(this_value, (int, float))):
135
+ temp_dict = {"value": this_value}
136
+
137
+ try:
138
+ last_value = data_dict[f"{last_year}Q{last_season}"][key]['value']
139
+
140
+ temp_dict['growth'] = YoY_Calculator.cal_growth(
141
+ this_value, last_value, delta=1
142
+ )
143
+ except Exception as e:
144
+ temp_dict['growth'] = None
145
+
146
+ this_data[key] = temp_dict
147
+
148
+ else:
149
+ this_data.pop(key)
150
+ return_dict[time_index] = this_data
151
+ return return_dict
152
+
@@ -1,9 +1,16 @@
1
1
  from .base import StatsFetcher
2
2
  import pandas as pd
3
+ import yfinance as yf
3
4
 
4
5
  class TechFetcher(StatsFetcher):
5
6
 
6
7
  def __init__(self, ticker:str, db_client):
8
+
9
+ """
10
+ The Capitalization-Weighted Index includes the following tickers:
11
+ ['GSPC', 'IXIC', 'DJI', 'TWII']
12
+ """
13
+
7
14
  super().__init__(ticker, db_client)
8
15
  self.full_ohlcv = self._get_ohlcv()
9
16
  self.basic_indexes = ['SMA5', 'SMA20', 'SMA60', 'EMA5', 'EMA20',
@@ -40,16 +47,36 @@ class TechFetcher(StatsFetcher):
40
47
  )
41
48
 
42
49
  def _get_ohlcv(self):
43
- query = {'ticker': self.ticker}
44
- ticker_full = list(self.collection.find(query))
50
+
51
+ if self.ticker in ['GSPC', 'IXIC', 'DJI', 'TWII']:
52
+
53
+ full_tick = f'^{self.ticker}'
54
+ yf_ticker = yf.Ticker(full_tick)
55
+ origin_df = yf_ticker.history(period="10y")
56
+ origin_df = origin_df.reset_index()
57
+ origin_df["Date"] = pd.to_datetime(origin_df["Date"]).dt.date
58
+ df = origin_df.rename(
59
+ columns={
60
+ "Date": "date",
61
+ "Open": "open",
62
+ "High": "high",
63
+ "Low": "low",
64
+ "Close": "close",
65
+ "Volume": "volume"
66
+ }
67
+ )
68
+ else:
69
+
70
+ query = {'ticker': self.ticker}
71
+ ticker_full = list(self.collection.find(query))
45
72
 
46
- if not ticker_full:
47
- raise ValueError(f"No data found for ticker: {self.ticker}")
73
+ if not ticker_full:
74
+ raise ValueError(f"No data found for ticker: {self.ticker}")
48
75
 
49
- if 'daily_data' not in ticker_full[0] or ticker_full[0]['daily_data'] is None:
50
- raise KeyError("Missing 'daily_data' in the retrieved data")
76
+ if 'daily_data' not in ticker_full[0] or ticker_full[0]['daily_data'] is None:
77
+ raise KeyError("Missing 'daily_data' in the retrieved data")
51
78
 
52
- df = pd.DataFrame(ticker_full[0]['daily_data'])
79
+ df = pd.DataFrame(ticker_full[0]['daily_data'])
53
80
 
54
81
  selected_cols = ['date','open','high','low','close','volume']
55
82
 
@@ -0,0 +1,313 @@
1
+ from .base import BaseTEJFetcher
2
+ from datetime import datetime
3
+ from enum import Enum
4
+ import pandas as pd
5
+ from pymongo import MongoClient
6
+ from ..utils import StatsProcessor, YoY_Calculator
7
+ import warnings
8
+
9
+
10
+ class FinanceReportFetcher(BaseTEJFetcher):
11
+ class FetchMode(Enum):
12
+ YOY = 1
13
+ QOQ = 2
14
+ YOY_NOCAL = 3
15
+ QOQ_NOCAL = 4
16
+
17
+ def __init__(self, mongo_uri, db_name = "company", collection_name = "TWN/AINVFQ1"):
18
+ self.client = MongoClient(mongo_uri)
19
+ self.db = self.client[db_name]
20
+ self.collection = self.db[collection_name]
21
+
22
+ self.check_index = {
23
+ 'coid', 'mdate', 'key3', 'no',
24
+ 'sem', 'merg', 'curr', 'annd',
25
+ 'fin_ind', 'bp11', 'bp21', 'bp22',
26
+ 'bp31', 'bp41', 'bp51', 'bp53',
27
+ 'bp61', 'bp62', 'bp63', 'bp64',
28
+ 'bp65', 'bf11', 'bf12', 'bf21',
29
+ 'bf22', 'bf41', 'bf42', 'bf43',
30
+ 'bf44', 'bf45', 'bf99', 'bsca',
31
+ 'bsnca', 'bsta','bscl','bsncl',
32
+ 'bstl','bsse','bslse','debt',
33
+ 'quick','ppe','ar','ip12',
34
+ 'ip22','ip31','ip51','iv41',
35
+ 'if11','isibt','isni','isnip',
36
+ 'eps','ispsd','gm','opi',
37
+ 'nri','ri','nopi','ebit',
38
+ 'cip31','cscfo','cscfi','cscff',
39
+ 'person','shares','wavg','taxrate',
40
+ 'r104','r115','r105','r106',
41
+ 'r107','r108','r201','r112',
42
+ 'r401','r402','r403','r404',
43
+ 'r405','r408','r409','r410',
44
+ 'r502','r501','r205','r505',
45
+ 'r517','r512','r509','r608',
46
+ 'r616','r610','r607','r613',
47
+ 'r612','r609','r614','r611',
48
+ 'r307','r304','r305','r306',
49
+ 'r316','r834'
50
+ }
51
+
52
+ def get(
53
+ self,
54
+ ticker,
55
+ fetch_mode: FetchMode = FetchMode.QOQ,
56
+ start_date: str = None,
57
+ end_date: str = None,
58
+ report_type: str = "Q",
59
+ indexes: list = []
60
+ ):
61
+ """
62
+ 基礎的query function
63
+ ticker(str): 股票代碼
64
+ start_date(str): 開頭日期範圍
65
+ end_date(str): = 結束日期範圍
66
+ report_type(str): 報告型態 {"A", "Q", "TTM"}
67
+ fetch_mode(class FetchMode):
68
+ YoY : 起始日期到結束日期範圍內,特定該季的資料
69
+ QoQ : 起始日期到結束日期內,每季的資料(與上一季成長率)
70
+ indexes(List): 指定的index
71
+ """
72
+ # 確認indexes中是否有錯誤的index,有的話回傳warning
73
+ if (indexes and self.check_index):
74
+ indexes = set(indexes)
75
+ difference = indexes-self.check_index
76
+ if (difference):
77
+ warnings.warn(
78
+ f"{list(difference)} 沒有出現在資料表中,請確認column名稱是否正確",
79
+ UserWarning
80
+ )
81
+
82
+
83
+ if (fetch_mode in {
84
+ self.FetchMode.QOQ,
85
+ self.FetchMode.QOQ_NOCAL
86
+ }
87
+ ):
88
+ if (not start_date):
89
+ warnings.warn("No start_date specified, use default date = \"2005-01-01\"", UserWarning)
90
+ start_date = datetime.strptime("2005-01-01", "%Y-%m-%d")
91
+ if (not end_date):
92
+ warnings.warn("No end_date specified, use default date = today", UserWarning)
93
+ end_date = datetime.today()
94
+
95
+ assert (start_date <= end_date)
96
+ start_date = datetime.strptime(start_date, "%Y-%m-%d")
97
+ end_date = datetime.strptime(end_date, "%Y-%m-%d")
98
+
99
+ start_year = start_date.year
100
+ start_season = (start_date.month - 1) // 4 + 1
101
+ end_year = end_date.year
102
+ end_season = (end_date.month - 1) // 4 + 1
103
+
104
+ if (fetch_mode == self.FetchMode.QOQ):
105
+ use_cal = True
106
+ else:
107
+ use_cal = False
108
+
109
+ data_df = self.get_QoQ_data(
110
+ ticker=ticker,
111
+ start_year=start_year,
112
+ start_season=start_season,
113
+ end_year=end_year,
114
+ end_season=end_season,
115
+ report_type=report_type,
116
+ indexes=indexes,
117
+ use_cal=use_cal
118
+ )
119
+
120
+ return data_df
121
+
122
+ elif (fetch_mode in {
123
+ self.FetchMode.YOY,
124
+ self.FetchMode.YOY_NOCAL
125
+ }
126
+ ):
127
+ start_year = 2005
128
+ end_date = self.get_latest_data_time(ticker)
129
+ if (not end_date):
130
+ end_date = datetime.today()
131
+
132
+ end_year = end_date.year
133
+ season = (end_date.month - 1) // 4 + 1
134
+
135
+ if (fetch_mode == self.FetchMode.YOY):
136
+ use_cal = True
137
+ else:
138
+ use_cal = False
139
+
140
+ data_df = self.get_YoY_data(
141
+ ticker = ticker,
142
+ start_year = start_year,
143
+ end_year = end_year,
144
+ season = season,
145
+ report_type = report_type,
146
+ indexes = indexes
147
+ )
148
+
149
+ return data_df
150
+
151
+ def get_QoQ_data(
152
+ self,
153
+ ticker,
154
+ start_year,
155
+ start_season,
156
+ end_year,
157
+ end_season,
158
+ report_type = "Q",
159
+ indexes = [],
160
+ use_cal = False
161
+ ):
162
+ """
163
+ 取得時間範圍內每季資料
164
+ """
165
+ if (not indexes): # 沒有指定 -> 取全部
166
+ pipeline = [
167
+ { "$match": { "ticker": ticker } },
168
+ { "$unwind": "$data" },
169
+ { "$match": {
170
+ "$or": [
171
+ { "data.year": { "$gt": start_year, "$lt": end_year } },
172
+ { "data.year": start_year, "data.season": { "$gte": start_season } },
173
+ { "data.year": end_year, "data.season": { "$lte": end_season } }
174
+ ]
175
+ }},
176
+ { "$project": {
177
+ "data.year": 1,
178
+ "data.season": 1,
179
+ f"data.{report_type}": 1,
180
+ "_id": 0
181
+ }
182
+ }
183
+ ]
184
+
185
+
186
+ else: # 取指定index
187
+ project_stage = {
188
+ "data.year": 1,
189
+ "data.season": 1
190
+ }
191
+ for index in indexes:
192
+ project_stage[f"data.{report_type}.{index}"] = 1
193
+
194
+ pipeline = [
195
+ { "$match": { "ticker": ticker } },
196
+ { "$unwind": "$data" },
197
+ { "$match": {
198
+ "$or": [
199
+ { "data.year": { "$gt": start_year, "$lt": end_year } },
200
+ { "data.year": start_year, "data.season": { "$gte": start_season } },
201
+ { "data.year": end_year, "data.season": { "$lte": end_season } }
202
+ ]
203
+ }},
204
+ { "$project": project_stage }
205
+ ]
206
+
207
+
208
+ fetched_data = self.collection.aggregate(pipeline).to_list()
209
+
210
+ data_dict = StatsProcessor.list_of_dict_to_dict(
211
+ fetched_data,
212
+ keys = ["year", "season"],
213
+ delimeter = "Q",
214
+ data_key=report_type
215
+ )
216
+ if (use_cal):
217
+ data_with_QoQ = self.cal_QoQ(data_dict)
218
+ data_df = pd.DataFrame.from_dict(data_with_QoQ)
219
+ else:
220
+ data_df = pd.DataFrame.from_dict(data_dict)
221
+ return data_df
222
+
223
+ def get_YoY_data(
224
+ self,
225
+ ticker,
226
+ start_year,
227
+ end_year,
228
+ season,
229
+ report_type = "Q",
230
+ indexes = [],
231
+ use_cal = False
232
+ ):
233
+ """
234
+ 取得某季歷年資料
235
+ """
236
+ if (use_cal):
237
+ select_year = set()
238
+
239
+ for year in range(start_year, end_year + 1):
240
+ year_shifts = {
241
+ year,
242
+ year - 1,
243
+ year - 3,
244
+ year - 5,
245
+ year - 10
246
+ }
247
+
248
+ select_year = select_year.union(year_shifts)
249
+
250
+ select_year = sorted(list(select_year), reverse=True)
251
+ else:
252
+ select_year = [year for year in range(start_year, end_year + 1)]
253
+
254
+ if (not indexes): # 沒有指定 -> 取全部
255
+ pipeline = [
256
+ { "$match": { "ticker": ticker } },
257
+ { "$unwind": "$data" },
258
+ { "$match": {
259
+ "$or":[
260
+ {
261
+ "$and": [
262
+ { "data.year": {"$in": select_year }},
263
+ { "data.season": {"$eq": season}}
264
+ ]
265
+ },
266
+ ]
267
+ }},
268
+ { "$project": {
269
+ "data.year": 1,
270
+ "data.season": 1,
271
+ f"data.{report_type}": 1,
272
+ "_id": 0
273
+ }
274
+ }
275
+ ]
276
+
277
+
278
+ else: # 取指定index
279
+ project_stage = {
280
+ "data.year": 1,
281
+ "data.season": 1
282
+ }
283
+ for index in indexes:
284
+ project_stage[f"data.{report_type}.{index}"] = 1
285
+
286
+ pipeline = [
287
+ { "$match": { "ticker": ticker } },
288
+ { "$unwind": "$data" },
289
+ { "$match": {
290
+ "$and": [
291
+ { "data.year": {"$in": select_year}},
292
+ { "data.season": {"$eq": season}}
293
+ ]
294
+ }},
295
+ { "$project": project_stage }
296
+ ]
297
+
298
+ fetched_data = self.collection.aggregate(pipeline).to_list()
299
+
300
+ # 處理計算YoY
301
+ data_dict = StatsProcessor.list_of_dict_to_dict(
302
+ fetched_data,
303
+ keys = ['year', 'season'],
304
+ data_key=report_type,
305
+ delimeter='Q'
306
+ )
307
+ if (use_cal):
308
+ data_with_YoY = self.cal_YoY(data_dict, start_year, end_year)
309
+ result_df = pd.DataFrame.from_dict(data_with_YoY)
310
+ else:
311
+ result_df = pd.DataFrame.from_dict(data_dict)
312
+
313
+ return result_df
@@ -1,4 +1,5 @@
1
1
  from .datetime import StatsDateTime
2
2
  from .db_client import DBClient
3
3
  from .data_process import StatsProcessor
4
- from .fetcher import StatsFetcher
4
+ from .fetcher import StatsFetcher
5
+ from .calculate_value import YoY_Calculator
@@ -0,0 +1,26 @@
1
+ class YoY_Calculator:
2
+ def __init__(self):
3
+ pass
4
+
5
+ @classmethod
6
+ def cal_growth(cls, target_value: float, past_value: float, delta: int):
7
+ """
8
+ 計算成長率以及年化成長率
9
+ target_value: float,這個時間的數值
10
+ past_value: float,過去的這個時間數值
11
+ delta: int,代表隔了幾年/季 delta > 1 時改以年化成長率計算
12
+ """
13
+ try:
14
+ if (delta > 1):
15
+ YoY = ((target_value / past_value)**(1 / delta)) - 1
16
+
17
+ else:
18
+ YoY = ((target_value - past_value) / past_value)
19
+
20
+ except Exception as e:
21
+ return None
22
+
23
+ if (isinstance(YoY, complex)): # 年化成長率有複數問題
24
+ return None
25
+
26
+ return YoY
@@ -20,7 +20,6 @@ class StatsProcessor:
20
20
  """
21
21
  1. 讀檔: txt / yaml
22
22
  2. 將巢狀dictionary / DataFrame扁平化
23
-
24
23
  """
25
24
 
26
25
  @classmethod
@@ -215,3 +214,59 @@ class StatsProcessor:
215
214
  return int(np.round(value).item())
216
215
  else:
217
216
  return value
217
+
218
+ @classmethod
219
+ def list_of_dict_to_dict(
220
+ cls,
221
+ data_list: list,
222
+ key: str = "",
223
+ keys: list = [],
224
+ delimeter: str = "_",
225
+ data_key: str = "Q"
226
+ ):
227
+ """
228
+ TEJ DB 用
229
+ List[Dict] -> Dict[Dict]
230
+ input:
231
+ data_list(List):
232
+ [
233
+ { "data":
234
+ {
235
+ "year": 2021...
236
+ "season": 1,
237
+ "Q": {}...
238
+
239
+ }
240
+ }
241
+ ]
242
+
243
+ key(str): 選擇哪一個key作為轉化後的index
244
+ delimeter(str): 多個key時要用甚麼分隔
245
+ return:
246
+ {
247
+ "2021" : {# Q下的資料} ...
248
+ }
249
+
250
+ or (keys = ['year', 'season'])
251
+ {
252
+ "2021Q2" : {}
253
+ }
254
+ """
255
+ assert (key or keys), "func list_of_dict_to_dict must have argument \"key\" or \"keys\""
256
+
257
+ return_dict = {}
258
+ if (key):
259
+ keys = [key]
260
+ for data in data_list:
261
+ data = data['data']
262
+
263
+ pop_keys = []
264
+
265
+ for key in keys:
266
+ assert (key in data.keys())
267
+ pop_keys.append(str(data.pop(key)))
268
+
269
+ pop_key = delimeter.join(pop_keys)
270
+ return_dict[pop_key] = data[data_key]
271
+
272
+ return return_dict
@@ -1,12 +1,18 @@
1
1
  Metadata-Version: 2.1
2
- Name: neurostats_API
3
- Version: 0.0.14
2
+ Name: neurostats-API
3
+ Version: 0.0.15
4
4
  Summary: The service of NeuroStats website
5
5
  Home-page: https://github.com/NeurowattStats/NeuroStats_API.git
6
6
  Author: JasonWang@Neurowatt
7
7
  Author-email: jason@neurowatt.ai
8
8
  Requires-Python: >=3.6
9
9
  Description-Content-Type: text/markdown
10
+ Requires-Dist: numpy>=2.1.0
11
+ Requires-Dist: pandas>=2.2.0
12
+ Requires-Dist: pymongo
13
+ Requires-Dist: pytz
14
+ Requires-Dist: python-dotenv
15
+ Requires-Dist: yfinance
10
16
 
11
17
  # neurostats_API
12
18
 
@@ -83,7 +89,7 @@ pip install neurostats-API
83
89
  ```Python
84
90
  >>> import neurostats_API
85
91
  >>> print(neurostats_API.__version__)
86
- 0.0.14
92
+ 0.0.15
87
93
  ```
88
94
 
89
95
  ### 得到最新一期的評價資料與歷年評價
@@ -667,7 +673,66 @@ fetcher.query()
667
673
 
668
674
  請注意`range`, `last_range`, `52week_range`這三個項目型態為字串,其餘為float
669
675
 
676
+
677
+ ## TEJ 相關
678
+ ### 會計師簽證財務資料
679
+ ```Python
680
+ from neurostats_API import FinanceReportFetcher
681
+
682
+ mongo_uri = <MongoDB 的 URI>
683
+ db_name = 'company' # 連接的DB名稱
684
+ collection_name = "TWN/AINVFQ1" # 連接的collection對象
685
+
686
+ fetcher = FinanceReportFetcher(
687
+ mongo_uri = mongo_uri,
688
+ db_name = db_name,
689
+ collection_name = collection_name
690
+ )
691
+
692
+ data = fetcher.get(
693
+ ticker = "2330" # 任意的股票代碼
694
+ fetch_mode = fetcher.YOY_NOCAL # 取得模式
695
+ start_date = "2005-01-01",
696
+ end_date = "2024-12-31",
697
+ report_type = "Q",
698
+ indexes = []
699
+ )
700
+ ```
701
+ - `ticker`: 股票代碼
702
+
703
+ - `fetch_mode` : 取得模式,為`fetcher.YOY_NOCAL` 或 `fetcher.QOQ_NOCAL`
704
+ - `YOY_NOCAL`: 以end_date為準,取得與end_date為準同季的歷年資料,時間範圍以start_date為準
705
+ > 例如`start_date = "2020-07-01"`, `end_date = "2024-01-01"`,會回傳2020~2024的第一季資料
706
+
707
+ - `QOQ_NOCAL`: 時間範圍內的每季資料
708
+
709
+ - `start_date`: 開始日期,不設定時預設為`2005-01-01`
710
+
711
+ - `end_date`: 結束日期,不設定時預設為資料庫最新資料的日期
712
+
713
+ - `report_type`: 選擇哪種報告,預設為`Q`
714
+ - `A`: 當年累計
715
+ - `Q`: 當季數值
716
+ - `TTM`: 移動四季 (包括當季在內,往前累計四個季度)
717
+
718
+ - `indexes`: 選擇的column,需要以TEJ提供的欄位名稱為準,不提供時或提供`[]`會回傳全部column
719
+ - 範例輸入: `['bp41', 'bp51']`
720
+
721
+ [TEJ資料集連結](https://tquant.tejwin.com/%E8%B3%87%E6%96%99%E9%9B%86/)
722
+ 請看 `會計師簽證財務資料`
723
+
724
+ #### 回傳資料
725
+ fetch_mode設定為`YOY_NOCAL`與`QOQ_NOCAL`下
726
+ 為回傳pd.DataFrame,column名稱為<年份>Q<季>, row名稱為指定財報項目
727
+
670
728
  ## 版本紀錄
729
+ ## 0.0.15
730
+ - TechFetcher中新增指數條件
731
+
732
+ - 新增tej_fetcher索取TEJ相關的資料
733
+
734
+ - package新增depensnecy,可以安裝需要的相關package
735
+
671
736
  ## 0.0.14
672
737
  - 修改部分財報資料錯誤的乘以1000的問題
673
738
 
@@ -1,28 +1,30 @@
1
- neurostats_API/__init__.py,sha256=zDrZHoj7CyPMzwVv9Yxva_-e95Gd1sRJSB99gLu9kXU,20
1
+ neurostats_API/__init__.py,sha256=oEkbIWbrC6-8sBPEJQXg0QYoz3TNZtYXhSTEO6d0JcU,261
2
2
  neurostats_API/cli.py,sha256=UJSWLIw03P24p-gkBb6JSEI5dW5U12UvLf1L8HjQD-o,873
3
3
  neurostats_API/main.py,sha256=QcsfmWivg2Dnqw3MTJWiI0QvEiRs0VuH-BjwQHFCv00,677
4
- neurostats_API/fetchers/__init__.py,sha256=ylYEySHQxcAhUUWEOCGZfmaAg7Mir5MfuEhOjk3POJg,406
4
+ neurostats_API/fetchers/__init__.py,sha256=B4aBwVzf_X-YieEf3fZteU0qmBPVIB9VjrmkyWhLK18,489
5
5
  neurostats_API/fetchers/balance_sheet.py,sha256=sQv4Gk5uoKURLEdh57YknOQWiyVwaXJ2Mw75jxNqUS0,5804
6
- neurostats_API/fetchers/base.py,sha256=NW2SFzrimyAIrdJx1LVmTazelyZOAtcj54kJKHc4Vaw,1662
6
+ neurostats_API/fetchers/base.py,sha256=4YS8MJR3u9Sg6dKX7QoCYuqNeQaoYHIlvPm5x8VQ72U,4882
7
7
  neurostats_API/fetchers/cash_flow.py,sha256=TY7VAWVXkj5-mzH5Iu0sIE-oV8MvGmmDy0URNotNV1E,7614
8
8
  neurostats_API/fetchers/finance_overview.py,sha256=PxUdWY0x030olYMLcCHDBn068JLmCE2RTOce1dxs5vM,27753
9
9
  neurostats_API/fetchers/institution.py,sha256=UrcBc6t7u7CnEwUsf6YmLbbJ8VncdWpq8bCz17q2dgs,11168
10
10
  neurostats_API/fetchers/margin_trading.py,sha256=lQImtNdvaBoSlKhJvQ3DkH3HjSSgKRJz4ZZpyR5-Z4I,10433
11
11
  neurostats_API/fetchers/month_revenue.py,sha256=nixX2llzjCFr2m2YVjxrSfkBusnZPrPb2dRDq1XLGhw,4251
12
12
  neurostats_API/fetchers/profit_lose.py,sha256=EN9Y0iamcAaHMZdjHXO6b_2buLnORssf8ZS7A0hi74s,5896
13
- neurostats_API/fetchers/tech.py,sha256=wH1kkqiETQhF0HAhk-UIiucnZ3EiL85Q-yMWCcVOiFM,11395
13
+ neurostats_API/fetchers/tech.py,sha256=Hol1bcwJ_ERcnoTXNWlqqaWOuzdl7MeiAjCvzQMZDTg,12269
14
+ neurostats_API/fetchers/tej_finance_report.py,sha256=VDP0Lx2ErCgIBBz7nbquC1ugkcnj6p7ehM2JtFInjsQ,10218
14
15
  neurostats_API/fetchers/value_invest.py,sha256=_eQxuEnIYvksb06QHixGK29Gnwr_3xmI6Tu7dv4J__E,5769
15
16
  neurostats_API/tools/balance_sheet.yaml,sha256=6XygNG_Ybb1Xkk1e39LMLKr7ATvaCP3xxuwFbgNl6dA,673
16
17
  neurostats_API/tools/cash_flow_percentage.yaml,sha256=fk2Z4eb1JjGFvP134eJatHacB7BgTkBenhDJr83w8RE,1345
17
18
  neurostats_API/tools/finance_overview_dict.yaml,sha256=B9nV75StXkrF3yv2-eezzitlJ38eEK86RD_VY6588gQ,2884
18
19
  neurostats_API/tools/profit_lose.yaml,sha256=iyp9asYJ04vAxk_HBUDse_IBy5oVvYHpwsyACg5YEeg,3029
19
20
  neurostats_API/tools/seasonal_data_field_dict.txt,sha256=X8yc_el6p8BH_3FikTqBVFGsvWdXT6MHXLfKfi44334,8491
20
- neurostats_API/utils/__init__.py,sha256=FTYKRFzW2XVXdnSHXnS3mQQaHlKF9xGqrMsgZZ2kroc,142
21
- neurostats_API/utils/data_process.py,sha256=YKfk3fXkcmwFS_8YxOV2uRLnt9NX3cYPV_XxrCgk8Yo,7597
21
+ neurostats_API/utils/__init__.py,sha256=0tJCRmlJq2aDwcNNW-oEaA9H0OxTJMFvjpVYtG4AvZU,186
22
+ neurostats_API/utils/calculate_value.py,sha256=lUKSsWU76XRmDUcmi4eDjoQxjb3vWpAAKInF9w49VNI,782
23
+ neurostats_API/utils/data_process.py,sha256=A--dzOsu42jRxqqCD41gTtjE5rhEBYmhB6y-AnCvo5U,8986
22
24
  neurostats_API/utils/datetime.py,sha256=XJya4G8b_-ZOaBbMXgQjWh2MC4wc-o6goQ7EQJQMWrQ,773
23
25
  neurostats_API/utils/db_client.py,sha256=OYe6yazcR4Aa6jYmy47JrryUeh2NnKGqY2K_lSZe6i8,455
24
26
  neurostats_API/utils/fetcher.py,sha256=VbrUhjA-GG5AyjPX2SHtFIbZM4dm3jo0RgZzuCbb_Io,40927
25
- neurostats_API-0.0.14.dist-info/METADATA,sha256=MeV1goaFbTQI0ddvr-TvElrggROHEiAixNCqP_gyLkI,25935
26
- neurostats_API-0.0.14.dist-info/WHEEL,sha256=R06PA3UVYHThwHvxuRWMqaGcr-PuniXahwjmQRFMEkY,91
27
- neurostats_API-0.0.14.dist-info/top_level.txt,sha256=nSlQPMG0VtXivJyedp4Bkf86EOy2TpW10VGxolXrqnU,15
28
- neurostats_API-0.0.14.dist-info/RECORD,,
27
+ neurostats_API-0.0.15.dist-info/METADATA,sha256=btfdGRam5QpUHFFiA_UPWYeZuAqAMYkEJ0Ufod399T4,27959
28
+ neurostats_API-0.0.15.dist-info/WHEEL,sha256=bFJAMchF8aTQGUgMZzHJyDDMPTO3ToJ7x23SLJa1SVo,92
29
+ neurostats_API-0.0.15.dist-info/top_level.txt,sha256=nSlQPMG0VtXivJyedp4Bkf86EOy2TpW10VGxolXrqnU,15
30
+ neurostats_API-0.0.15.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.5.0)
2
+ Generator: bdist_wheel (0.45.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5