nettracer3d 1.3.1__py3-none-any.whl → 1.3.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of nettracer3d might be problematic. Click here for more details.
- nettracer3d/community_extractor.py +3 -2
- nettracer3d/endpoint_joiner.py +286 -0
- nettracer3d/filaments.py +348 -106
- nettracer3d/histos.py +1182 -0
- nettracer3d/modularity.py +14 -96
- nettracer3d/neighborhoods.py +3 -2
- nettracer3d/nettracer.py +91 -50
- nettracer3d/nettracer_gui.py +359 -803
- nettracer3d/network_analysis.py +12 -5
- nettracer3d/network_graph_widget.py +302 -101
- nettracer3d/segmenter.py +1 -1
- nettracer3d/segmenter_GPU.py +0 -1
- nettracer3d/tutorial.py +41 -25
- {nettracer3d-1.3.1.dist-info → nettracer3d-1.3.6.dist-info}/METADATA +4 -6
- nettracer3d-1.3.6.dist-info/RECORD +32 -0
- {nettracer3d-1.3.1.dist-info → nettracer3d-1.3.6.dist-info}/WHEEL +1 -1
- nettracer3d-1.3.1.dist-info/RECORD +0 -30
- {nettracer3d-1.3.1.dist-info → nettracer3d-1.3.6.dist-info}/entry_points.txt +0 -0
- {nettracer3d-1.3.1.dist-info → nettracer3d-1.3.6.dist-info}/licenses/LICENSE +0 -0
- {nettracer3d-1.3.1.dist-info → nettracer3d-1.3.6.dist-info}/top_level.txt +0 -0
nettracer3d/segmenter_GPU.py
CHANGED
nettracer3d/tutorial.py
CHANGED
|
@@ -879,28 +879,28 @@ def setup_start_tutorial(window):
|
|
|
879
879
|
|
|
880
880
|
# Step 1: Welcome
|
|
881
881
|
tutorial.add_step(
|
|
882
|
-
window.
|
|
882
|
+
window.graphics_widget,
|
|
883
883
|
"Welcome to NetTracer3D! This tutorial will give you a basic overview of this application. Click 'Next' or use Right-Click to continue.",
|
|
884
884
|
highlight_type=None,
|
|
885
885
|
message_position="bottom"
|
|
886
886
|
)
|
|
887
887
|
|
|
888
888
|
tutorial.add_step(
|
|
889
|
-
window.
|
|
889
|
+
window.graphics_widget,
|
|
890
890
|
"This program is designed to analysis of two or three dimensional images, such as those aquired via microscopy or medical imaging.",
|
|
891
891
|
highlight_type=None,
|
|
892
892
|
message_position="bottom"
|
|
893
893
|
)
|
|
894
894
|
|
|
895
895
|
tutorial.add_step(
|
|
896
|
-
window.
|
|
896
|
+
window.graphics_widget,
|
|
897
897
|
"The major form of analysis is done by creating undirected networks between objects of interest, called nodes. These can be biological structures such as cells or functional tissue units.",
|
|
898
898
|
highlight_type=None,
|
|
899
899
|
message_position="bottom"
|
|
900
900
|
)
|
|
901
901
|
|
|
902
902
|
tutorial.add_step(
|
|
903
|
-
window.
|
|
903
|
+
window.graphics_widget,
|
|
904
904
|
"Analysis can also be done on more direct measures of morphology or spatial arrangement, such as analyzing object measures like volumes or making clustering heatmaps.",
|
|
905
905
|
highlight_type=None,
|
|
906
906
|
message_position="bottom"
|
|
@@ -915,14 +915,14 @@ def setup_start_tutorial(window):
|
|
|
915
915
|
)
|
|
916
916
|
|
|
917
917
|
tutorial.add_step(
|
|
918
|
-
window.
|
|
918
|
+
window.graphics_widget,
|
|
919
919
|
"When it comes to making networks, there are three major modalities that NetTracer3D offers.",
|
|
920
920
|
highlight_type=None,
|
|
921
921
|
message_position="bottom"
|
|
922
922
|
)
|
|
923
923
|
|
|
924
924
|
tutorial.add_step(
|
|
925
|
-
window.
|
|
925
|
+
window.graphics_widget,
|
|
926
926
|
"The first is the 'connectivity network', where your node objects are connected via a secondary structure, deemed 'edges'. For example, we can evaluate how groups of segmented cell aggregates are connected via vasculature.",
|
|
927
927
|
highlight_type=None,
|
|
928
928
|
message_position="bottom"
|
|
@@ -942,7 +942,7 @@ def setup_start_tutorial(window):
|
|
|
942
942
|
message_position="top")
|
|
943
943
|
|
|
944
944
|
tutorial.add_step(
|
|
945
|
-
window.
|
|
945
|
+
window.graphics_widget,
|
|
946
946
|
"The second modality is making networks directly from branched structures. First, you would provide a binary segmentation of a branching structure like a nerve or a blood vessel. Next, you can algorithmically label the branches in NetTracer3D.",
|
|
947
947
|
highlight_type=None,
|
|
948
948
|
message_position="bottom"
|
|
@@ -962,14 +962,14 @@ def setup_start_tutorial(window):
|
|
|
962
962
|
)
|
|
963
963
|
|
|
964
964
|
tutorial.add_step(
|
|
965
|
-
window.
|
|
965
|
+
window.graphics_widget,
|
|
966
966
|
"Labeled branches can be turned into two types of networks. The first way is to connect the branchpoints. The second is to connect the branches themselves, just based on what other branches they come off of.",
|
|
967
967
|
highlight_type=None,
|
|
968
968
|
message_position="bottom"
|
|
969
969
|
)
|
|
970
970
|
|
|
971
971
|
tutorial.add_step(
|
|
972
|
-
window.
|
|
972
|
+
window.graphics_widget,
|
|
973
973
|
"The final modality is making networks based on proximity. This is an option to evaluate spatial clusters in your image, for example, deciphering what sort of groups a set of cells are arranged in. This would be an ideal way to analyze a multiplexed image with a lot of different channels bearing cellular fluorescent labels, for example.",
|
|
974
974
|
highlight_type=None,
|
|
975
975
|
message_position="bottom"
|
|
@@ -1129,7 +1129,7 @@ def setup_basics_tutorial(window):
|
|
|
1129
1129
|
|
|
1130
1130
|
# Step 1: Welcome
|
|
1131
1131
|
tutorial.add_step(
|
|
1132
|
-
window.
|
|
1132
|
+
window.graphics_widget,
|
|
1133
1133
|
"This tutorial will guide you through the main features of the GUI window. Click 'Next' or use 'Right-Click' to continue.",
|
|
1134
1134
|
highlight_type="rect",
|
|
1135
1135
|
message_position="bottom"
|
|
@@ -1137,28 +1137,28 @@ def setup_basics_tutorial(window):
|
|
|
1137
1137
|
|
|
1138
1138
|
# Step 2: Canvas explanation
|
|
1139
1139
|
tutorial.add_step(
|
|
1140
|
-
window.
|
|
1140
|
+
window.graphics_widget,
|
|
1141
1141
|
"This canvas is where your loaded images will render.",
|
|
1142
1142
|
highlight_type="rect",
|
|
1143
1143
|
message_position="bottom"
|
|
1144
1144
|
)
|
|
1145
1145
|
|
|
1146
1146
|
tutorial.add_step(
|
|
1147
|
-
window.
|
|
1147
|
+
window.graphics_widget,
|
|
1148
1148
|
"Clicking a node or edge in this canvas will select it (if the nodes or edges channels are set as the 'active channel', respectively). Click and drag to select multiple objects. This is intended mainly for segmented, labeled data rather than interacting directly with raw images.",
|
|
1149
1149
|
highlight_type="rect",
|
|
1150
1150
|
message_position="bottom"
|
|
1151
1151
|
)
|
|
1152
1152
|
|
|
1153
1153
|
tutorial.add_step(
|
|
1154
|
-
window.
|
|
1154
|
+
window.graphics_widget,
|
|
1155
1155
|
"Selected objects will be highlighted yellow and can be used for certain functions. Clicking a background val in an image (ie voxel with value 0) will deselect your objects.",
|
|
1156
1156
|
highlight_type="rect",
|
|
1157
1157
|
message_position="bottom"
|
|
1158
1158
|
)
|
|
1159
1159
|
|
|
1160
1160
|
tutorial.add_step(
|
|
1161
|
-
window.
|
|
1161
|
+
window.graphics_widget,
|
|
1162
1162
|
"Use right click to interact with highlighted objects (ie, delete them or merge them into one object); or rather to select objects algorithmically (for example, the neighbors of a node in your network)",
|
|
1163
1163
|
highlight_type="rect",
|
|
1164
1164
|
message_position="bottom"
|
|
@@ -1287,11 +1287,19 @@ def setup_basics_tutorial(window):
|
|
|
1287
1287
|
highlight_type="rect",
|
|
1288
1288
|
message_position="top"
|
|
1289
1289
|
)
|
|
1290
|
+
|
|
1291
|
+
# Data Tables
|
|
1292
|
+
tutorial.add_step(
|
|
1293
|
+
window.network_graph_button,
|
|
1294
|
+
"Similarly the network graph will allow you top render your network in a dedicated viewer that is interactable and linked with the main display window..",
|
|
1295
|
+
highlight_type="rect",
|
|
1296
|
+
message_position="top"
|
|
1297
|
+
)
|
|
1290
1298
|
|
|
1291
1299
|
# The actual table
|
|
1292
1300
|
tutorial.add_step(
|
|
1293
1301
|
window.network_table,
|
|
1294
|
-
"This table displays your network data. You can click rows to highlight corresponding elements in the image, and sort columns by clicking headers. Right click to export any tables in spreadsheet format, or in a format for a few other types of network analysis software.",
|
|
1302
|
+
"This table view displays your network data. You can click rows to highlight corresponding elements in the image, and sort columns by clicking headers. The graph view allows you to evaluate network connectivity and highlight those items in your main display window. Right click to export any tables in spreadsheet format, or in a format for a few other types of network analysis software.",
|
|
1295
1303
|
highlight_type="rect",
|
|
1296
1304
|
message_position="left"
|
|
1297
1305
|
)
|
|
@@ -1324,6 +1332,13 @@ def setup_basics_tutorial(window):
|
|
|
1324
1332
|
message_position="bottom"
|
|
1325
1333
|
)
|
|
1326
1334
|
|
|
1335
|
+
tutorial.add_step(
|
|
1336
|
+
window.threed_button,
|
|
1337
|
+
"This button can be used to create a 3D display of the current data. This can be called with additional optional settings from the 'Image' menu as well.",
|
|
1338
|
+
highlight_type="circle",
|
|
1339
|
+
message_position="bottom"
|
|
1340
|
+
)
|
|
1341
|
+
|
|
1327
1342
|
# File Menu - show where to load data
|
|
1328
1343
|
tutorial.add_step(
|
|
1329
1344
|
lambda: window.menuBar(),
|
|
@@ -1417,7 +1432,7 @@ def setup_file_tutorial(window):
|
|
|
1417
1432
|
tutorial.add_step(
|
|
1418
1433
|
MenuHelper.create_submenu_action_rect_getter(window, "File", "Save As", "Save Nodes As"),
|
|
1419
1434
|
f"""--Saving occurs from the SaveAs menu.
|
|
1420
|
-
\n\n--Use 'Save
|
|
1435
|
+
\n\n--Use 'Save Current Session As' as the primary save function. This will dump all the relevant properties to a folder. First, you will be prompted to select a folder on your computer. Next, you will enter the name of a new folder to create in the aforementioned parent folder. All the outputs will be saved to this new folder.
|
|
1421
1436
|
\n\n--The other SaveAs options can be used to save any of the image channels as a .tif.""",
|
|
1422
1437
|
highlight_type=None,
|
|
1423
1438
|
message_position="top_right",
|
|
@@ -1431,9 +1446,9 @@ def setup_file_tutorial(window):
|
|
|
1431
1446
|
|
|
1432
1447
|
# Step 3: Point to Image submenu
|
|
1433
1448
|
tutorial.add_step(
|
|
1434
|
-
MenuHelper.create_submenu_action_rect_getter(window, "File", "Load", "Load
|
|
1449
|
+
MenuHelper.create_submenu_action_rect_getter(window, "File", "Load", "Load Previous Session"),
|
|
1435
1450
|
f"""--Loading occurs from the load menu. Acceptable image types are .tif, .tiff, .nii, .png, .jpeg, and .jpg.
|
|
1436
|
-
\n\n--'Load
|
|
1451
|
+
\n\n--'Load Previous Session' can be used to load in an entire previously saved session, assuming it had been saved with the corresponding 'Save Current Session' method. Navigate your way to the directory the 'Current Session' dumped to. Select it to reload all properties within.
|
|
1437
1452
|
\n\n--Use 'load nodes' to load an image into the nodes channel. Similarly, use load edges to load edges, and either of the load overlays to load the overlays.
|
|
1438
1453
|
\n\n--Use 'load network' to load your saved network data from .csv or .xlsx format. Note this will expect to see the corresponding spreadsheet in the layout that NetTracer3D saves it.
|
|
1439
1454
|
\n\n--'Loading from the excel helper' opens a secondary gui where (mainly node identities) can be reassigned with a set of string keywords. For example, a node with identity 'x' and 'y' can be configured to be loaded as 'identity xy'
|
|
@@ -1638,7 +1653,7 @@ def setup_connectivity_tutorial(window):
|
|
|
1638
1653
|
|
|
1639
1654
|
tutorial.add_step(
|
|
1640
1655
|
MenuHelper.create_widget_getter(tutorial, 'con_dialog', 'labeled_branches'),
|
|
1641
|
-
"The '
|
|
1656
|
+
"The 'Pre-labeled edges' option will allow you to use pre-made edge labels, such as if you had previously labeled the branches of your edges. Instead of just joining nodes together, all edge labels will participate as nodes as well. This can be a way to visualize how branch-like structures in your edges interact with your main node objects.",
|
|
1642
1657
|
highlight_type=None,
|
|
1643
1658
|
message_position="beside",
|
|
1644
1659
|
pre_action=MenuHelper.create_widget_interaction(tutorial, 'con_dialog', 'labeled_branches', 'click()'),
|
|
@@ -1647,7 +1662,7 @@ def setup_connectivity_tutorial(window):
|
|
|
1647
1662
|
|
|
1648
1663
|
tutorial.add_step(
|
|
1649
1664
|
MenuHelper.create_widget_getter(tutorial, 'con_dialog', 'edge_node'),
|
|
1650
|
-
"The '
|
|
1665
|
+
"The 'Convert Edges to Nodes' option will make your edges become nodes. This can be a good way to visualize direct connectivity paths, and is a robust way to mitigate bias in what is or isn't a trunk. However, the network dynamics will be altered by edge inclusion, resulting in much less node clusters in favor of edge-derived hubs. You can also do this from the modify network after the calculation has been done.",
|
|
1651
1666
|
highlight_type=None,
|
|
1652
1667
|
message_position="beside",
|
|
1653
1668
|
pre_action=MenuHelper.create_widget_interaction(tutorial, 'con_dialog', 'edge_node', 'click()'),
|
|
@@ -1677,7 +1692,8 @@ def setup_connectivity_tutorial(window):
|
|
|
1677
1692
|
|
|
1678
1693
|
tutorial.add_step(
|
|
1679
1694
|
MenuHelper.create_widget_getter(tutorial, 'con_dialog', 'fastdil'),
|
|
1680
|
-
"Enable the fast search button to use a slightly alternate algorithm for the node search step that is faster. This algorithm uses a parallelized distance transform to create a binary search region which is a lot faster if you have a lot of CPU cores. It then uses flooding to label the binary search region, which leads to slightly rough labeling where two search regions meet. When disabled, a non-parallel distance transform is used, which can be slower but always has exact labels where two search regions meet. I recommend enabling this for larger images and disabling it for smaller ones.",
|
|
1695
|
+
"Enable the fast search button to use a slightly alternate algorithm for the node search step that is faster. This algorithm uses a parallelized distance transform to create a binary search region which is a lot faster if you have a lot of CPU cores. It then uses flooding to label the binary search region, which leads to slightly rough labeling where two search regions meet. When disabled, a non-parallel distance transform is used, which can be slower but always has exact labels where two search regions meet. I recommend enabling this for larger images and disabling it for smaller ones. If your search region is very large the fast search may be actually slower but there isn't often a practical region to use immense search regions anyway.",
|
|
1696
|
+
highlight_type=None,
|
|
1681
1697
|
message_position="beside",
|
|
1682
1698
|
pre_action=MenuHelper.create_widget_interaction(tutorial, 'con_dialog', 'fastdil', 'click()'),
|
|
1683
1699
|
action=MenuHelper.create_widget_interaction(tutorial, 'con_dialog', 'fastdil', 'toggle()')
|
|
@@ -2191,14 +2207,14 @@ def setup_seg_tutorial(window):
|
|
|
2191
2207
|
)
|
|
2192
2208
|
|
|
2193
2209
|
tutorial.add_step(
|
|
2194
|
-
window.
|
|
2210
|
+
window.graphics_widget,
|
|
2195
2211
|
"You will mark these regions directly on the canvas.",
|
|
2196
2212
|
highlight_type="rect",
|
|
2197
2213
|
message_position="top_left"
|
|
2198
2214
|
)
|
|
2199
2215
|
|
|
2200
2216
|
tutorial.add_step(
|
|
2201
|
-
window.
|
|
2217
|
+
window.graphics_widget,
|
|
2202
2218
|
"The program will use your markings to train itself. When you train a model, it will learn to segment out regions that look like those you marked as foreground, while ignoring regions that you marked as background.",
|
|
2203
2219
|
highlight_type="rect",
|
|
2204
2220
|
message_position="top_left"
|
|
@@ -2259,7 +2275,7 @@ def setup_seg_tutorial(window):
|
|
|
2259
2275
|
|
|
2260
2276
|
tutorial.add_step(
|
|
2261
2277
|
None,
|
|
2262
|
-
"At some point you'll reach some kind of ceiling where additional training data won't really help more. This might take 20
|
|
2278
|
+
"At some point you'll reach some kind of ceiling where additional training data won't really help more. This might take 20 minutes of training or so. So try to end the training session by then, or earlier if it looks satisfactory.",
|
|
2263
2279
|
highlight_type="rect",
|
|
2264
2280
|
message_position="top_left"
|
|
2265
2281
|
)
|
|
@@ -2294,7 +2310,7 @@ def setup_seg_tutorial(window):
|
|
|
2294
2310
|
|
|
2295
2311
|
tutorial.add_step(
|
|
2296
2312
|
None,
|
|
2297
|
-
"Likewise, 'Load Model' can be used to reopen a saved model. You can train
|
|
2313
|
+
"Likewise, 'Load Model' can be used to reopen a saved model. You can train on top of an old model to have it combine all the training data, although note the model might slow down the more you train on it.",
|
|
2298
2314
|
highlight_type="rect",
|
|
2299
2315
|
message_position="top_left"
|
|
2300
2316
|
)
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: nettracer3d
|
|
3
|
-
Version: 1.3.
|
|
3
|
+
Version: 1.3.6
|
|
4
4
|
Summary: Scripts for intializing and analyzing networks from segmentations of three dimensional images.
|
|
5
5
|
Author-email: Liam McLaughlin <liamm@wustl.edu>
|
|
6
6
|
Project-URL: Documentation, https://nettracer3d.readthedocs.io/en/latest/
|
|
@@ -155,9 +155,7 @@ NetTracer3D is freely available for academic and nonprofit use and can obtained
|
|
|
155
155
|
|
|
156
156
|
NetTracer3D was developed by Liam McLaughlin while working under Dr. Sanjay Jain at Washington University School of Medicine.
|
|
157
157
|
|
|
158
|
-
-- Version 1.3.
|
|
158
|
+
-- Version 1.3.6 Updates --
|
|
159
159
|
|
|
160
|
-
*
|
|
161
|
-
*
|
|
162
|
-
* Other minor tweaks and bug fixes
|
|
163
|
-
|
|
160
|
+
* Added more options for styles of network graph renders.
|
|
161
|
+
* Bug fixes
|
|
@@ -0,0 +1,32 @@
|
|
|
1
|
+
nettracer3d/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
2
|
+
nettracer3d/branch_stitcher.py,sha256=rCTeh-28o7yN6ghYwxVSfrn2oc-TiPOm1xB3xJ5RWbw,21216
|
|
3
|
+
nettracer3d/cellpose_manager.py,sha256=NfRqW6Zl7yRU4qHCS_KjmR0R6QANSSgCO0_dr-eivxg,6694
|
|
4
|
+
nettracer3d/community_extractor.py,sha256=sDnPyoaAZfFTBNkKDHmmkpT91D5ZC2ImR6LdEhAb3ww,31778
|
|
5
|
+
nettracer3d/endpoint_joiner.py,sha256=ioR-hM_NxPjaEG1K9yucsv9kFp_-TgqKDQrjp9FYdiQ,9933
|
|
6
|
+
nettracer3d/excelotron.py,sha256=aNof6k-DgMxVyFgsl3ltSCxG4vZW49cuvCBzfzhYhUY,75072
|
|
7
|
+
nettracer3d/filaments.py,sha256=tGuL-KZahVF95AVy75u8i0d7olOjCWB0TtT3EVc-geM,54689
|
|
8
|
+
nettracer3d/histos.py,sha256=gEV3v_H8zl_tZVJHr00xdyuL2hAIfuGiBho4Xj_IlSo,61539
|
|
9
|
+
nettracer3d/modularity.py,sha256=B08ZUw_C_8qqLIk9fHhKslxUgwQKt9pndY82eHtSIf8,19772
|
|
10
|
+
nettracer3d/morphology.py,sha256=eusirbmDFQD__tlhkwZbctd8N4AARXVU0IGowr7M8cA,23297
|
|
11
|
+
nettracer3d/neighborhoods.py,sha256=Zk5NuRYVLORR3fv1u2YRZ1gjBPO9hRrCgod06pqyj1E,53188
|
|
12
|
+
nettracer3d/nettracer.py,sha256=f0ycXvUDG3nfSEUScpAPIK9Z8p2tKCk3YfsmgDpeEqU,298826
|
|
13
|
+
nettracer3d/nettracer_gui.py,sha256=IQ5PCe1HYcTtforu1vQTMSzXisZIXkgPbDm3zJoVqNk,708750
|
|
14
|
+
nettracer3d/network_analysis.py,sha256=UwS5ISZzjKe8SrSltNTqOMaqsj7ZA6x065PC8bCbaTE,46430
|
|
15
|
+
nettracer3d/network_draw.py,sha256=1Dj6VSMtMZbMxmrA7bWGxaLChqvM17xnZo85EUgG2PM,14291
|
|
16
|
+
nettracer3d/network_graph_widget.py,sha256=rUPz4wg2KTy2PRuMxBlUrCT7-X50c32UnROweshYfp4,88551
|
|
17
|
+
nettracer3d/node_draw.py,sha256=Md12OiBtEyQmF2W_enO4qrSPFTRfoV4sOCMeEEdTNz4,10488
|
|
18
|
+
nettracer3d/painting.py,sha256=10XBjDqfOb1nTbGgIicOpoeIKRZZ4al2uFtrv-8MIBE,16760
|
|
19
|
+
nettracer3d/proximity.py,sha256=xvJLt61nTsKMdpJ0aiwJsB5vPriO34KG0LQwDjyfhC8,41410
|
|
20
|
+
nettracer3d/run.py,sha256=xYeaAc8FCx8MuzTGyL3NR3mK7WZzffAYAH23bNRZYO4,127
|
|
21
|
+
nettracer3d/segmenter.py,sha256=UBq4nPJQJfDxMUlOeQAJBpoUIT3xymQ1o40OhfV-dT0,72776
|
|
22
|
+
nettracer3d/segmenter_GPU.py,sha256=ootY0lcfaWj0pIVN7Nh0ElEwQ6xW5QgnuUq2i0G4Qyg,79966
|
|
23
|
+
nettracer3d/simple_network.py,sha256=1InpqSXfae_L-6lmf8lXgV7n_rk7Porg1hc_in9vkHg,10499
|
|
24
|
+
nettracer3d/smart_dilate.py,sha256=1UzLnX5LCj6OuFIy7_gHcZe9OIHkVJdIkZJDuJNqyYc,32009
|
|
25
|
+
nettracer3d/stats.py,sha256=0YwrVLeEvll3PlbL5-0_9dstldr48PvxJrQm-PiC8jY,36607
|
|
26
|
+
nettracer3d/tutorial.py,sha256=cxVbs-YvG3TS-Zi8wfmdP1aCAPqxtPcCeYqn3CJxaDw,155639
|
|
27
|
+
nettracer3d-1.3.6.dist-info/licenses/LICENSE,sha256=_Wg4zyCtT18lXBCXRov17IEop_-7z1OFo6o3JTzQj3g,568
|
|
28
|
+
nettracer3d-1.3.6.dist-info/METADATA,sha256=LG8ufBcsw__XB0oHlSWryMTiB93u6Q-5TEqzGl7IvMw,9439
|
|
29
|
+
nettracer3d-1.3.6.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
|
|
30
|
+
nettracer3d-1.3.6.dist-info/entry_points.txt,sha256=Nx1rr_0QhJXDBHAQg2vcqCzLMKBzSHfwy3xwGkueVyc,53
|
|
31
|
+
nettracer3d-1.3.6.dist-info/top_level.txt,sha256=zsYy9rZwirfCEOubolhee4TyzqBAL5gSUeFMzhFTX8c,12
|
|
32
|
+
nettracer3d-1.3.6.dist-info/RECORD,,
|
|
@@ -1,30 +0,0 @@
|
|
|
1
|
-
nettracer3d/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
2
|
-
nettracer3d/branch_stitcher.py,sha256=rCTeh-28o7yN6ghYwxVSfrn2oc-TiPOm1xB3xJ5RWbw,21216
|
|
3
|
-
nettracer3d/cellpose_manager.py,sha256=NfRqW6Zl7yRU4qHCS_KjmR0R6QANSSgCO0_dr-eivxg,6694
|
|
4
|
-
nettracer3d/community_extractor.py,sha256=rPXXWwMX05mfD_ogULEouLy8CST-aOaoSw45NhloKVg,31754
|
|
5
|
-
nettracer3d/excelotron.py,sha256=aNof6k-DgMxVyFgsl3ltSCxG4vZW49cuvCBzfzhYhUY,75072
|
|
6
|
-
nettracer3d/filaments.py,sha256=liuhikdRoANUmYA_hiPUPtDV-lYtR8wKbgnUVk55Hgs,43952
|
|
7
|
-
nettracer3d/modularity.py,sha256=HgaVQSVjgAX3LAfJeUL1ZZ3P3xGuALJpQHqtYrhgw5c,22762
|
|
8
|
-
nettracer3d/morphology.py,sha256=eusirbmDFQD__tlhkwZbctd8N4AARXVU0IGowr7M8cA,23297
|
|
9
|
-
nettracer3d/neighborhoods.py,sha256=Bje77gWzXRIYyXkDlnFQnbUALnIt8dheLXHVFQsAKuc,53156
|
|
10
|
-
nettracer3d/nettracer.py,sha256=kvatS_orNSLUQXuDZ5zBluP-Yau8nyoIYYWEcZyMzrs,298024
|
|
11
|
-
nettracer3d/nettracer_gui.py,sha256=SIGGetHwyRv8xJShVjwvabhEIgPWtHAOvcKZMleyPVM,732175
|
|
12
|
-
nettracer3d/network_analysis.py,sha256=QYZrzZ0T6Ubifw4hctvpw-V2lATN5jV5QtIF_UpcSpU,46363
|
|
13
|
-
nettracer3d/network_draw.py,sha256=1Dj6VSMtMZbMxmrA7bWGxaLChqvM17xnZo85EUgG2PM,14291
|
|
14
|
-
nettracer3d/network_graph_widget.py,sha256=dVuTRGEdjVOOJ4-DBCtOwQe-QpO3FwXvVYhC-oT3Xpo,80989
|
|
15
|
-
nettracer3d/node_draw.py,sha256=Md12OiBtEyQmF2W_enO4qrSPFTRfoV4sOCMeEEdTNz4,10488
|
|
16
|
-
nettracer3d/painting.py,sha256=10XBjDqfOb1nTbGgIicOpoeIKRZZ4al2uFtrv-8MIBE,16760
|
|
17
|
-
nettracer3d/proximity.py,sha256=xvJLt61nTsKMdpJ0aiwJsB5vPriO34KG0LQwDjyfhC8,41410
|
|
18
|
-
nettracer3d/run.py,sha256=xYeaAc8FCx8MuzTGyL3NR3mK7WZzffAYAH23bNRZYO4,127
|
|
19
|
-
nettracer3d/segmenter.py,sha256=20ch_uLqedV9srwT1eL5eFs88ojkb2gELWJKgtYk2qk,72791
|
|
20
|
-
nettracer3d/segmenter_GPU.py,sha256=FwzevixleTUoRmwVa8jPPzW82RZoC6nL2eEeZ4-2ZR8,80015
|
|
21
|
-
nettracer3d/simple_network.py,sha256=1InpqSXfae_L-6lmf8lXgV7n_rk7Porg1hc_in9vkHg,10499
|
|
22
|
-
nettracer3d/smart_dilate.py,sha256=1UzLnX5LCj6OuFIy7_gHcZe9OIHkVJdIkZJDuJNqyYc,32009
|
|
23
|
-
nettracer3d/stats.py,sha256=0YwrVLeEvll3PlbL5-0_9dstldr48PvxJrQm-PiC8jY,36607
|
|
24
|
-
nettracer3d/tutorial.py,sha256=48__h2pWuERJLxC08_khFRW4XVf5vSXZtWnNUAFyWDY,154591
|
|
25
|
-
nettracer3d-1.3.1.dist-info/licenses/LICENSE,sha256=_Wg4zyCtT18lXBCXRov17IEop_-7z1OFo6o3JTzQj3g,568
|
|
26
|
-
nettracer3d-1.3.1.dist-info/METADATA,sha256=SVbWu_ycx1tghOiGVAA8w3EwlvVsnCKTGae6R9Io-RM,9676
|
|
27
|
-
nettracer3d-1.3.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
28
|
-
nettracer3d-1.3.1.dist-info/entry_points.txt,sha256=Nx1rr_0QhJXDBHAQg2vcqCzLMKBzSHfwy3xwGkueVyc,53
|
|
29
|
-
nettracer3d-1.3.1.dist-info/top_level.txt,sha256=zsYy9rZwirfCEOubolhee4TyzqBAL5gSUeFMzhFTX8c,12
|
|
30
|
-
nettracer3d-1.3.1.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|