netra-sdk 0.1.30__py3-none-any.whl → 0.1.31__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of netra-sdk might be problematic. Click here for more details.
- netra/instrumentation/__init__.py +24 -0
- netra/instrumentation/instruments.py +2 -0
- netra/instrumentation/litellm/__init__.py +161 -0
- netra/instrumentation/litellm/version.py +1 -0
- netra/instrumentation/litellm/wrappers.py +557 -0
- netra/version.py +1 -1
- {netra_sdk-0.1.30.dist-info → netra_sdk-0.1.31.dist-info}/METADATA +2 -1
- {netra_sdk-0.1.30.dist-info → netra_sdk-0.1.31.dist-info}/RECORD +10 -7
- {netra_sdk-0.1.30.dist-info → netra_sdk-0.1.31.dist-info}/LICENCE +0 -0
- {netra_sdk-0.1.30.dist-info → netra_sdk-0.1.31.dist-info}/WHEEL +0 -0
|
@@ -93,6 +93,10 @@ def init_instrumentations(
|
|
|
93
93
|
if CustomInstruments.MISTRALAI in netra_custom_instruments:
|
|
94
94
|
init_mistral_instrumentor()
|
|
95
95
|
|
|
96
|
+
# Initialize LiteLLM instrumentation.
|
|
97
|
+
if CustomInstruments.LITELLM in netra_custom_instruments:
|
|
98
|
+
init_litellm_instrumentation()
|
|
99
|
+
|
|
96
100
|
# Initialize OpenAI instrumentation.
|
|
97
101
|
if CustomInstruments.OPENAI in netra_custom_instruments:
|
|
98
102
|
init_openai_instrumentation()
|
|
@@ -435,6 +439,26 @@ def init_mistral_instrumentor() -> bool:
|
|
|
435
439
|
return False
|
|
436
440
|
|
|
437
441
|
|
|
442
|
+
def init_litellm_instrumentation() -> bool:
|
|
443
|
+
"""Initialize LiteLLM instrumentation.
|
|
444
|
+
|
|
445
|
+
Returns:
|
|
446
|
+
bool: True if initialization was successful, False otherwise.
|
|
447
|
+
"""
|
|
448
|
+
try:
|
|
449
|
+
if is_package_installed("litellm"):
|
|
450
|
+
from netra.instrumentation.litellm import LiteLLMInstrumentor
|
|
451
|
+
|
|
452
|
+
instrumentor = LiteLLMInstrumentor()
|
|
453
|
+
if not instrumentor.is_instrumented_by_opentelemetry:
|
|
454
|
+
instrumentor.instrument()
|
|
455
|
+
return True
|
|
456
|
+
except Exception as e:
|
|
457
|
+
logging.error(f"Error initializing LiteLLM instrumentor: {e}")
|
|
458
|
+
Telemetry().log_exception(e)
|
|
459
|
+
return False
|
|
460
|
+
|
|
461
|
+
|
|
438
462
|
def init_openai_instrumentation() -> bool:
|
|
439
463
|
"""Initialize OpenAI instrumentation.
|
|
440
464
|
|
|
@@ -8,6 +8,7 @@ class CustomInstruments(Enum):
|
|
|
8
8
|
AIOHTTP = "aiohttp"
|
|
9
9
|
COHEREAI = "cohere_ai"
|
|
10
10
|
HTTPX = "httpx"
|
|
11
|
+
LITELLM = "litellm"
|
|
11
12
|
MISTRALAI = "mistral_ai"
|
|
12
13
|
OPENAI = "openai"
|
|
13
14
|
PYDANTIC_AI = "pydantic_ai"
|
|
@@ -127,6 +128,7 @@ class InstrumentSet(Enum):
|
|
|
127
128
|
KAFKA_PYTHON = "kafka_python"
|
|
128
129
|
LANCEDB = "lancedb"
|
|
129
130
|
LANGCHAIN = "langchain"
|
|
131
|
+
LITELLM = "litellm"
|
|
130
132
|
LLAMA_INDEX = "llama_index"
|
|
131
133
|
LOGGING = "logging"
|
|
132
134
|
MARQO = "marqo"
|
|
@@ -0,0 +1,161 @@
|
|
|
1
|
+
import logging
|
|
2
|
+
import time
|
|
3
|
+
from typing import Any, Collection, Dict, Optional
|
|
4
|
+
|
|
5
|
+
from opentelemetry import context as context_api
|
|
6
|
+
from opentelemetry.instrumentation.instrumentor import BaseInstrumentor
|
|
7
|
+
from opentelemetry.instrumentation.utils import _SUPPRESS_INSTRUMENTATION_KEY, unwrap
|
|
8
|
+
from opentelemetry.trace import SpanKind, Tracer, get_tracer
|
|
9
|
+
from opentelemetry.trace.status import Status, StatusCode
|
|
10
|
+
from wrapt import wrap_function_wrapper
|
|
11
|
+
|
|
12
|
+
from netra.instrumentation.litellm.version import __version__
|
|
13
|
+
from netra.instrumentation.litellm.wrappers import (
|
|
14
|
+
acompletion_wrapper,
|
|
15
|
+
aembedding_wrapper,
|
|
16
|
+
aimage_generation_wrapper,
|
|
17
|
+
completion_wrapper,
|
|
18
|
+
embedding_wrapper,
|
|
19
|
+
image_generation_wrapper,
|
|
20
|
+
)
|
|
21
|
+
|
|
22
|
+
logger = logging.getLogger(__name__)
|
|
23
|
+
|
|
24
|
+
_instruments = ("litellm >= 1.0.0",)
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
class LiteLLMInstrumentor(BaseInstrumentor): # type: ignore[misc]
|
|
28
|
+
"""
|
|
29
|
+
Custom LiteLLM instrumentor for Netra SDK with enhanced support for:
|
|
30
|
+
- completion() and acompletion() methods
|
|
31
|
+
- embedding() and aembedding() methods
|
|
32
|
+
- image_generation() and aimage_generation() methods
|
|
33
|
+
- Proper streaming/non-streaming span handling
|
|
34
|
+
- Integration with Netra tracing
|
|
35
|
+
"""
|
|
36
|
+
|
|
37
|
+
def instrumentation_dependencies(self) -> Collection[str]:
|
|
38
|
+
return _instruments
|
|
39
|
+
|
|
40
|
+
def _instrument(self, **kwargs): # type: ignore[no-untyped-def]
|
|
41
|
+
"""Instrument LiteLLM methods"""
|
|
42
|
+
tracer_provider = kwargs.get("tracer_provider")
|
|
43
|
+
tracer = get_tracer(__name__, __version__, tracer_provider)
|
|
44
|
+
|
|
45
|
+
logger.debug("Starting LiteLLM instrumentation...")
|
|
46
|
+
|
|
47
|
+
# Force import litellm to ensure it's available for wrapping
|
|
48
|
+
try:
|
|
49
|
+
import litellm
|
|
50
|
+
except ImportError as e:
|
|
51
|
+
logger.error(f"Failed to import litellm: {e}")
|
|
52
|
+
return
|
|
53
|
+
|
|
54
|
+
# Store original functions for uninstrumentation
|
|
55
|
+
self._original_completion = getattr(litellm, "completion", None)
|
|
56
|
+
self._original_acompletion = getattr(litellm, "acompletion", None)
|
|
57
|
+
self._original_embedding = getattr(litellm, "embedding", None)
|
|
58
|
+
self._original_aembedding = getattr(litellm, "aembedding", None)
|
|
59
|
+
self._original_image_generation = getattr(litellm, "image_generation", None)
|
|
60
|
+
self._original_aimage_generation = getattr(litellm, "aimage_generation", None)
|
|
61
|
+
|
|
62
|
+
# Chat completions - use direct monkey patching with proper function wrapping
|
|
63
|
+
if self._original_completion:
|
|
64
|
+
try:
|
|
65
|
+
|
|
66
|
+
def instrumented_completion(*args, **kwargs): # type: ignore[no-untyped-def]
|
|
67
|
+
wrapper = completion_wrapper(tracer)
|
|
68
|
+
return wrapper(self._original_completion, None, args, kwargs)
|
|
69
|
+
|
|
70
|
+
litellm.completion = instrumented_completion
|
|
71
|
+
except Exception as e:
|
|
72
|
+
logger.error(f"Failed to monkey-patch litellm.completion: {e}")
|
|
73
|
+
|
|
74
|
+
if self._original_acompletion:
|
|
75
|
+
try:
|
|
76
|
+
|
|
77
|
+
async def instrumented_acompletion(*args, **kwargs): # type: ignore[no-untyped-def]
|
|
78
|
+
wrapper = acompletion_wrapper(tracer)
|
|
79
|
+
return await wrapper(self._original_acompletion, None, args, kwargs)
|
|
80
|
+
|
|
81
|
+
litellm.acompletion = instrumented_acompletion
|
|
82
|
+
except Exception as e:
|
|
83
|
+
logger.error(f"Failed to monkey-patch litellm.acompletion: {e}")
|
|
84
|
+
|
|
85
|
+
# Embeddings
|
|
86
|
+
if self._original_embedding:
|
|
87
|
+
try:
|
|
88
|
+
|
|
89
|
+
def instrumented_embedding(*args, **kwargs): # type: ignore[no-untyped-def]
|
|
90
|
+
wrapper = embedding_wrapper(tracer)
|
|
91
|
+
return wrapper(self._original_embedding, None, args, kwargs)
|
|
92
|
+
|
|
93
|
+
litellm.embedding = instrumented_embedding
|
|
94
|
+
except Exception as e:
|
|
95
|
+
logger.error(f"Failed to monkey-patch litellm.embedding: {e}")
|
|
96
|
+
|
|
97
|
+
if self._original_aembedding:
|
|
98
|
+
try:
|
|
99
|
+
|
|
100
|
+
async def instrumented_aembedding(*args, **kwargs): # type: ignore[no-untyped-def]
|
|
101
|
+
wrapper = aembedding_wrapper(tracer)
|
|
102
|
+
return await wrapper(self._original_aembedding, None, args, kwargs)
|
|
103
|
+
|
|
104
|
+
litellm.aembedding = instrumented_aembedding
|
|
105
|
+
except Exception as e:
|
|
106
|
+
logger.error(f"Failed to monkey-patch litellm.aembedding: {e}")
|
|
107
|
+
|
|
108
|
+
# Image generation
|
|
109
|
+
if self._original_image_generation:
|
|
110
|
+
try:
|
|
111
|
+
|
|
112
|
+
def instrumented_image_generation(*args, **kwargs): # type: ignore[no-untyped-def]
|
|
113
|
+
wrapper = image_generation_wrapper(tracer)
|
|
114
|
+
return wrapper(self._original_image_generation, None, args, kwargs)
|
|
115
|
+
|
|
116
|
+
litellm.image_generation = instrumented_image_generation
|
|
117
|
+
except Exception as e:
|
|
118
|
+
logger.error(f"Failed to monkey-patch litellm.image_generation: {e}")
|
|
119
|
+
|
|
120
|
+
if self._original_aimage_generation:
|
|
121
|
+
try:
|
|
122
|
+
|
|
123
|
+
async def instrumented_aimage_generation(*args, **kwargs): # type: ignore[no-untyped-def]
|
|
124
|
+
wrapper = aimage_generation_wrapper(tracer)
|
|
125
|
+
return await wrapper(self._original_aimage_generation, None, args, kwargs)
|
|
126
|
+
|
|
127
|
+
litellm.aimage_generation = instrumented_aimage_generation
|
|
128
|
+
except Exception as e:
|
|
129
|
+
logger.error(f"Failed to monkey-patch litellm.aimage_generation: {e}")
|
|
130
|
+
|
|
131
|
+
def _uninstrument(self, **kwargs): # type: ignore[no-untyped-def]
|
|
132
|
+
"""Uninstrument LiteLLM methods"""
|
|
133
|
+
try:
|
|
134
|
+
import litellm
|
|
135
|
+
|
|
136
|
+
# Restore original functions
|
|
137
|
+
if hasattr(self, "_original_completion") and self._original_completion:
|
|
138
|
+
litellm.completion = self._original_completion
|
|
139
|
+
|
|
140
|
+
if hasattr(self, "_original_acompletion") and self._original_acompletion:
|
|
141
|
+
litellm.acompletion = self._original_acompletion
|
|
142
|
+
|
|
143
|
+
if hasattr(self, "_original_embedding") and self._original_embedding:
|
|
144
|
+
litellm.embedding = self._original_embedding
|
|
145
|
+
|
|
146
|
+
if hasattr(self, "_original_aembedding") and self._original_aembedding:
|
|
147
|
+
litellm.aembedding = self._original_aembedding
|
|
148
|
+
|
|
149
|
+
if hasattr(self, "_original_image_generation") and self._original_image_generation:
|
|
150
|
+
litellm.image_generation = self._original_image_generation
|
|
151
|
+
|
|
152
|
+
if hasattr(self, "_original_aimage_generation") and self._original_aimage_generation:
|
|
153
|
+
litellm.aimage_generation = self._original_aimage_generation
|
|
154
|
+
|
|
155
|
+
except ImportError:
|
|
156
|
+
pass
|
|
157
|
+
|
|
158
|
+
|
|
159
|
+
def should_suppress_instrumentation() -> bool:
|
|
160
|
+
"""Check if instrumentation should be suppressed"""
|
|
161
|
+
return context_api.get_value(_SUPPRESS_INSTRUMENTATION_KEY) is True
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
__version__ = "1.0.0"
|
|
@@ -0,0 +1,557 @@
|
|
|
1
|
+
import logging
|
|
2
|
+
import time
|
|
3
|
+
from collections.abc import Awaitable
|
|
4
|
+
from typing import Any, AsyncIterator, Callable, Dict, Iterator, Tuple
|
|
5
|
+
|
|
6
|
+
from opentelemetry import context as context_api
|
|
7
|
+
from opentelemetry.instrumentation.utils import _SUPPRESS_INSTRUMENTATION_KEY
|
|
8
|
+
from opentelemetry.semconv_ai import (
|
|
9
|
+
SpanAttributes,
|
|
10
|
+
)
|
|
11
|
+
from opentelemetry.trace import Span, SpanKind, Tracer
|
|
12
|
+
from opentelemetry.trace.status import Status, StatusCode
|
|
13
|
+
from wrapt import ObjectProxy
|
|
14
|
+
|
|
15
|
+
logger = logging.getLogger(__name__)
|
|
16
|
+
|
|
17
|
+
COMPLETION_SPAN_NAME = "litellm.completion"
|
|
18
|
+
EMBEDDING_SPAN_NAME = "litellm.embedding"
|
|
19
|
+
IMAGE_GENERATION_SPAN_NAME = "litellm.image_generation"
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
def should_suppress_instrumentation() -> bool:
|
|
23
|
+
"""Check if instrumentation should be suppressed"""
|
|
24
|
+
return context_api.get_value(_SUPPRESS_INSTRUMENTATION_KEY) is True
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
def is_streaming_response(response: Any) -> bool:
|
|
28
|
+
"""Check if response is a streaming response"""
|
|
29
|
+
return hasattr(response, "__iter__") and not isinstance(response, (str, bytes, dict))
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
def model_as_dict(obj: Any) -> Dict[str, Any]:
|
|
33
|
+
"""Convert LiteLLM model object to dictionary"""
|
|
34
|
+
if hasattr(obj, "model_dump"):
|
|
35
|
+
result = obj.model_dump()
|
|
36
|
+
return result if isinstance(result, dict) else {}
|
|
37
|
+
elif hasattr(obj, "to_dict"):
|
|
38
|
+
result = obj.to_dict()
|
|
39
|
+
return result if isinstance(result, dict) else {}
|
|
40
|
+
elif isinstance(obj, dict):
|
|
41
|
+
return obj
|
|
42
|
+
else:
|
|
43
|
+
return {}
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
def set_request_attributes(span: Span, kwargs: Dict[str, Any], operation_type: str) -> None:
|
|
47
|
+
"""Set request attributes on span"""
|
|
48
|
+
if not span.is_recording():
|
|
49
|
+
return
|
|
50
|
+
|
|
51
|
+
# Set operation type
|
|
52
|
+
span.set_attribute(f"{SpanAttributes.LLM_REQUEST_TYPE}", operation_type)
|
|
53
|
+
span.set_attribute(f"{SpanAttributes.LLM_SYSTEM}", "LiteLLM")
|
|
54
|
+
|
|
55
|
+
# Common attributes
|
|
56
|
+
if kwargs.get("model"):
|
|
57
|
+
span.set_attribute(f"{SpanAttributes.LLM_REQUEST_MODEL}", kwargs["model"])
|
|
58
|
+
|
|
59
|
+
if kwargs.get("temperature") is not None:
|
|
60
|
+
span.set_attribute(f"{SpanAttributes.LLM_REQUEST_TEMPERATURE}", kwargs["temperature"])
|
|
61
|
+
|
|
62
|
+
if kwargs.get("max_tokens") is not None:
|
|
63
|
+
span.set_attribute(f"{SpanAttributes.LLM_REQUEST_MAX_TOKENS}", kwargs["max_tokens"])
|
|
64
|
+
|
|
65
|
+
if kwargs.get("stream") is not None:
|
|
66
|
+
span.set_attribute("gen_ai.stream", kwargs["stream"])
|
|
67
|
+
|
|
68
|
+
# Chat completion specific attributes
|
|
69
|
+
if operation_type == "chat" and kwargs.get("messages"):
|
|
70
|
+
messages = kwargs["messages"]
|
|
71
|
+
if isinstance(messages, list) and len(messages) > 0:
|
|
72
|
+
for index, message in enumerate(messages):
|
|
73
|
+
if isinstance(message, dict):
|
|
74
|
+
span.set_attribute(f"{SpanAttributes.LLM_PROMPTS}.{index}.role", message.get("role", "user"))
|
|
75
|
+
span.set_attribute(f"{SpanAttributes.LLM_PROMPTS}.{index}.content", str(message.get("content", "")))
|
|
76
|
+
|
|
77
|
+
# Embedding specific attributes
|
|
78
|
+
if operation_type == "embedding" and kwargs.get("input"):
|
|
79
|
+
input_data = kwargs["input"]
|
|
80
|
+
if isinstance(input_data, str):
|
|
81
|
+
span.set_attribute(f"{SpanAttributes.LLM_PROMPTS}.0.content", input_data)
|
|
82
|
+
elif isinstance(input_data, list):
|
|
83
|
+
for index, text in enumerate(input_data):
|
|
84
|
+
if isinstance(text, str):
|
|
85
|
+
span.set_attribute(f"{SpanAttributes.LLM_PROMPTS}.{index}.content", text)
|
|
86
|
+
|
|
87
|
+
# Image generation specific attributes
|
|
88
|
+
if operation_type == "image_generation":
|
|
89
|
+
if kwargs.get("prompt"):
|
|
90
|
+
span.set_attribute("gen_ai.prompt", kwargs["prompt"])
|
|
91
|
+
if kwargs.get("n"):
|
|
92
|
+
span.set_attribute("gen_ai.request.n", kwargs["n"])
|
|
93
|
+
if kwargs.get("size"):
|
|
94
|
+
span.set_attribute("gen_ai.request.size", kwargs["size"])
|
|
95
|
+
if kwargs.get("quality"):
|
|
96
|
+
span.set_attribute("gen_ai.request.quality", kwargs["quality"])
|
|
97
|
+
if kwargs.get("style"):
|
|
98
|
+
span.set_attribute("gen_ai.request.style", kwargs["style"])
|
|
99
|
+
|
|
100
|
+
|
|
101
|
+
def set_response_attributes(span: Span, response_dict: Dict[str, Any], operation_type: str) -> None:
|
|
102
|
+
"""Set response attributes on span"""
|
|
103
|
+
if not span.is_recording():
|
|
104
|
+
return
|
|
105
|
+
|
|
106
|
+
if response_dict.get("model"):
|
|
107
|
+
span.set_attribute(f"{SpanAttributes.LLM_RESPONSE_MODEL}", response_dict["model"])
|
|
108
|
+
|
|
109
|
+
if response_dict.get("id"):
|
|
110
|
+
span.set_attribute("gen_ai.response.id", response_dict["id"])
|
|
111
|
+
|
|
112
|
+
# Usage information
|
|
113
|
+
usage = response_dict.get("usage", {})
|
|
114
|
+
if usage:
|
|
115
|
+
if usage.get("prompt_tokens"):
|
|
116
|
+
span.set_attribute(f"{SpanAttributes.LLM_USAGE_PROMPT_TOKENS}", usage["prompt_tokens"])
|
|
117
|
+
if usage.get("completion_tokens"):
|
|
118
|
+
span.set_attribute(f"{SpanAttributes.LLM_USAGE_COMPLETION_TOKENS}", usage["completion_tokens"])
|
|
119
|
+
if usage.get("cache_read_input_tokens"):
|
|
120
|
+
span.set_attribute(f"{SpanAttributes.LLM_USAGE_CACHE_READ_INPUT_TOKENS}", usage["cache_read_input_tokens"])
|
|
121
|
+
if usage.get("cache_creation_input_tokens"):
|
|
122
|
+
span.set_attribute("gen_ai.usage.cache_creation_input_tokens", usage["cache_creation_input_tokens"])
|
|
123
|
+
if usage.get("total_tokens"):
|
|
124
|
+
span.set_attribute(f"{SpanAttributes.LLM_USAGE_TOTAL_TOKENS}", usage["total_tokens"])
|
|
125
|
+
|
|
126
|
+
# Chat completion response content
|
|
127
|
+
if operation_type == "chat":
|
|
128
|
+
choices = response_dict.get("choices", [])
|
|
129
|
+
for index, choice in enumerate(choices):
|
|
130
|
+
if choice.get("message", {}).get("role"):
|
|
131
|
+
span.set_attribute(f"{SpanAttributes.LLM_COMPLETIONS}.{index}.role", choice["message"]["role"])
|
|
132
|
+
if choice.get("message", {}).get("content"):
|
|
133
|
+
span.set_attribute(f"{SpanAttributes.LLM_COMPLETIONS}.{index}.content", choice["message"]["content"])
|
|
134
|
+
if choice.get("finish_reason"):
|
|
135
|
+
span.set_attribute(f"{SpanAttributes.LLM_COMPLETIONS}.{index}.finish_reason", choice["finish_reason"])
|
|
136
|
+
|
|
137
|
+
# Embedding response content
|
|
138
|
+
elif operation_type == "embedding":
|
|
139
|
+
data = response_dict.get("data", [])
|
|
140
|
+
for index, embedding_data in enumerate(data):
|
|
141
|
+
if embedding_data.get("index") is not None:
|
|
142
|
+
span.set_attribute(f"gen_ai.response.embeddings.{index}.index", embedding_data["index"])
|
|
143
|
+
if embedding_data.get("embedding"):
|
|
144
|
+
# Don't log the actual embedding vector, just its dimensions
|
|
145
|
+
embedding_vector = embedding_data["embedding"]
|
|
146
|
+
if isinstance(embedding_vector, list):
|
|
147
|
+
span.set_attribute(f"gen_ai.response.embeddings.{index}.dimensions", len(embedding_vector))
|
|
148
|
+
|
|
149
|
+
# Image generation response content
|
|
150
|
+
elif operation_type == "image_generation":
|
|
151
|
+
data = response_dict.get("data", [])
|
|
152
|
+
for index, image_data in enumerate(data):
|
|
153
|
+
if image_data.get("url"):
|
|
154
|
+
span.set_attribute(f"gen_ai.response.images.{index}.url", image_data["url"])
|
|
155
|
+
if image_data.get("b64_json"):
|
|
156
|
+
span.set_attribute(f"gen_ai.response.images.{index}.has_b64_json", True)
|
|
157
|
+
if image_data.get("revised_prompt"):
|
|
158
|
+
span.set_attribute(f"gen_ai.response.images.{index}.revised_prompt", image_data["revised_prompt"])
|
|
159
|
+
|
|
160
|
+
|
|
161
|
+
def completion_wrapper(tracer: Tracer) -> Callable[..., Any]:
|
|
162
|
+
"""Wrapper for LiteLLM completion function"""
|
|
163
|
+
|
|
164
|
+
def wrapper(wrapped: Callable[..., Any], instance: Any, args: Tuple[Any, ...], kwargs: Dict[str, Any]) -> Any:
|
|
165
|
+
logger.debug(f"LiteLLM completion wrapper called with model: {kwargs.get('model')}")
|
|
166
|
+
|
|
167
|
+
if should_suppress_instrumentation():
|
|
168
|
+
logger.debug("LiteLLM instrumentation suppressed")
|
|
169
|
+
return wrapped(*args, **kwargs)
|
|
170
|
+
|
|
171
|
+
# Check if streaming
|
|
172
|
+
is_streaming = kwargs.get("stream", False)
|
|
173
|
+
|
|
174
|
+
if is_streaming:
|
|
175
|
+
# Use start_span for streaming - returns span directly
|
|
176
|
+
span = tracer.start_span(
|
|
177
|
+
COMPLETION_SPAN_NAME, kind=SpanKind.CLIENT, attributes={"llm.request.type": "chat"}
|
|
178
|
+
)
|
|
179
|
+
|
|
180
|
+
set_request_attributes(span, kwargs, "chat")
|
|
181
|
+
|
|
182
|
+
try:
|
|
183
|
+
start_time = time.time()
|
|
184
|
+
response = wrapped(*args, **kwargs)
|
|
185
|
+
|
|
186
|
+
return StreamingWrapper(span=span, response=response, start_time=start_time, request_kwargs=kwargs)
|
|
187
|
+
except Exception as e:
|
|
188
|
+
span.set_status(Status(StatusCode.ERROR, str(e)))
|
|
189
|
+
span.record_exception(e)
|
|
190
|
+
span.end()
|
|
191
|
+
raise
|
|
192
|
+
else:
|
|
193
|
+
# Use start_as_current_span for non-streaming - returns context manager
|
|
194
|
+
with tracer.start_as_current_span(
|
|
195
|
+
COMPLETION_SPAN_NAME, kind=SpanKind.CLIENT, attributes={"llm.request.type": "chat"}
|
|
196
|
+
) as span:
|
|
197
|
+
set_request_attributes(span, kwargs, "chat")
|
|
198
|
+
|
|
199
|
+
try:
|
|
200
|
+
start_time = time.time()
|
|
201
|
+
response = wrapped(*args, **kwargs)
|
|
202
|
+
end_time = time.time()
|
|
203
|
+
|
|
204
|
+
response_dict = model_as_dict(response)
|
|
205
|
+
set_response_attributes(span, response_dict, "chat")
|
|
206
|
+
|
|
207
|
+
span.set_attribute("llm.response.duration", end_time - start_time)
|
|
208
|
+
span.set_status(Status(StatusCode.OK))
|
|
209
|
+
|
|
210
|
+
return response
|
|
211
|
+
except Exception as e:
|
|
212
|
+
span.set_status(Status(StatusCode.ERROR, str(e)))
|
|
213
|
+
raise
|
|
214
|
+
|
|
215
|
+
return wrapper
|
|
216
|
+
|
|
217
|
+
|
|
218
|
+
def acompletion_wrapper(tracer: Tracer) -> Callable[..., Awaitable[Any]]:
|
|
219
|
+
"""Async wrapper for LiteLLM acompletion function"""
|
|
220
|
+
|
|
221
|
+
async def wrapper(
|
|
222
|
+
wrapped: Callable[..., Awaitable[Any]], instance: Any, args: Tuple[Any, ...], kwargs: Dict[str, Any]
|
|
223
|
+
) -> Any:
|
|
224
|
+
if should_suppress_instrumentation():
|
|
225
|
+
return await wrapped(*args, **kwargs)
|
|
226
|
+
|
|
227
|
+
# Check if streaming
|
|
228
|
+
is_streaming = kwargs.get("stream", False)
|
|
229
|
+
|
|
230
|
+
if is_streaming:
|
|
231
|
+
# Use start_span for streaming - returns span directly
|
|
232
|
+
span = tracer.start_span(
|
|
233
|
+
COMPLETION_SPAN_NAME, kind=SpanKind.CLIENT, attributes={"llm.request.type": "chat"}
|
|
234
|
+
)
|
|
235
|
+
|
|
236
|
+
set_request_attributes(span, kwargs, "chat")
|
|
237
|
+
|
|
238
|
+
try:
|
|
239
|
+
start_time = time.time()
|
|
240
|
+
response = await wrapped(*args, **kwargs)
|
|
241
|
+
|
|
242
|
+
return AsyncStreamingWrapper(span=span, response=response, start_time=start_time, request_kwargs=kwargs)
|
|
243
|
+
except Exception as e:
|
|
244
|
+
span.set_status(Status(StatusCode.ERROR, str(e)))
|
|
245
|
+
span.record_exception(e)
|
|
246
|
+
span.end()
|
|
247
|
+
raise
|
|
248
|
+
else:
|
|
249
|
+
# Use start_as_current_span for non-streaming - returns context manager
|
|
250
|
+
with tracer.start_as_current_span(
|
|
251
|
+
COMPLETION_SPAN_NAME, kind=SpanKind.CLIENT, attributes={"llm.request.type": "chat"}
|
|
252
|
+
) as span:
|
|
253
|
+
set_request_attributes(span, kwargs, "chat")
|
|
254
|
+
|
|
255
|
+
try:
|
|
256
|
+
start_time = time.time()
|
|
257
|
+
response = await wrapped(*args, **kwargs)
|
|
258
|
+
end_time = time.time()
|
|
259
|
+
|
|
260
|
+
response_dict = model_as_dict(response)
|
|
261
|
+
set_response_attributes(span, response_dict, "chat")
|
|
262
|
+
|
|
263
|
+
span.set_attribute("llm.response.duration", end_time - start_time)
|
|
264
|
+
span.set_status(Status(StatusCode.OK))
|
|
265
|
+
|
|
266
|
+
return response
|
|
267
|
+
except Exception as e:
|
|
268
|
+
span.set_status(Status(StatusCode.ERROR, str(e)))
|
|
269
|
+
raise
|
|
270
|
+
|
|
271
|
+
return wrapper
|
|
272
|
+
|
|
273
|
+
|
|
274
|
+
def embedding_wrapper(tracer: Tracer) -> Callable[..., Any]:
|
|
275
|
+
"""Wrapper for LiteLLM embedding function"""
|
|
276
|
+
|
|
277
|
+
def wrapper(wrapped: Callable[..., Any], instance: Any, args: Tuple[Any, ...], kwargs: Dict[str, Any]) -> Any:
|
|
278
|
+
if should_suppress_instrumentation():
|
|
279
|
+
return wrapped(*args, **kwargs)
|
|
280
|
+
|
|
281
|
+
# Embeddings are never streaming, always use start_as_current_span
|
|
282
|
+
with tracer.start_as_current_span(
|
|
283
|
+
EMBEDDING_SPAN_NAME, kind=SpanKind.CLIENT, attributes={"llm.request.type": "embedding"}
|
|
284
|
+
) as span:
|
|
285
|
+
set_request_attributes(span, kwargs, "embedding")
|
|
286
|
+
|
|
287
|
+
try:
|
|
288
|
+
start_time = time.time()
|
|
289
|
+
response = wrapped(*args, **kwargs)
|
|
290
|
+
end_time = time.time()
|
|
291
|
+
|
|
292
|
+
response_dict = model_as_dict(response)
|
|
293
|
+
set_response_attributes(span, response_dict, "embedding")
|
|
294
|
+
|
|
295
|
+
span.set_attribute("llm.response.duration", end_time - start_time)
|
|
296
|
+
span.set_status(Status(StatusCode.OK))
|
|
297
|
+
|
|
298
|
+
return response
|
|
299
|
+
except Exception as e:
|
|
300
|
+
span.set_status(Status(StatusCode.ERROR, str(e)))
|
|
301
|
+
raise
|
|
302
|
+
|
|
303
|
+
return wrapper
|
|
304
|
+
|
|
305
|
+
|
|
306
|
+
def aembedding_wrapper(tracer: Tracer) -> Callable[..., Awaitable[Any]]:
|
|
307
|
+
"""Async wrapper for LiteLLM aembedding function"""
|
|
308
|
+
|
|
309
|
+
async def wrapper(
|
|
310
|
+
wrapped: Callable[..., Awaitable[Any]], instance: Any, args: Tuple[Any, ...], kwargs: Dict[str, Any]
|
|
311
|
+
) -> Any:
|
|
312
|
+
if should_suppress_instrumentation():
|
|
313
|
+
return await wrapped(*args, **kwargs)
|
|
314
|
+
|
|
315
|
+
# Embeddings are never streaming, always use start_as_current_span
|
|
316
|
+
with tracer.start_as_current_span(
|
|
317
|
+
EMBEDDING_SPAN_NAME, kind=SpanKind.CLIENT, attributes={"llm.request.type": "embedding"}
|
|
318
|
+
) as span:
|
|
319
|
+
set_request_attributes(span, kwargs, "embedding")
|
|
320
|
+
|
|
321
|
+
try:
|
|
322
|
+
start_time = time.time()
|
|
323
|
+
response = await wrapped(*args, **kwargs)
|
|
324
|
+
end_time = time.time()
|
|
325
|
+
|
|
326
|
+
response_dict = model_as_dict(response)
|
|
327
|
+
set_response_attributes(span, response_dict, "embedding")
|
|
328
|
+
|
|
329
|
+
span.set_attribute("llm.response.duration", end_time - start_time)
|
|
330
|
+
span.set_status(Status(StatusCode.OK))
|
|
331
|
+
|
|
332
|
+
return response
|
|
333
|
+
except Exception as e:
|
|
334
|
+
span.set_status(Status(StatusCode.ERROR, str(e)))
|
|
335
|
+
raise
|
|
336
|
+
|
|
337
|
+
return wrapper
|
|
338
|
+
|
|
339
|
+
|
|
340
|
+
def image_generation_wrapper(tracer: Tracer) -> Callable[..., Any]:
|
|
341
|
+
"""Wrapper for LiteLLM image_generation function"""
|
|
342
|
+
|
|
343
|
+
def wrapper(wrapped: Callable[..., Any], instance: Any, args: Tuple[Any, ...], kwargs: Dict[str, Any]) -> Any:
|
|
344
|
+
if should_suppress_instrumentation():
|
|
345
|
+
return wrapped(*args, **kwargs)
|
|
346
|
+
|
|
347
|
+
# Image generation is never streaming, always use start_as_current_span
|
|
348
|
+
with tracer.start_as_current_span(
|
|
349
|
+
IMAGE_GENERATION_SPAN_NAME, kind=SpanKind.CLIENT, attributes={"llm.request.type": "image_generation"}
|
|
350
|
+
) as span:
|
|
351
|
+
set_request_attributes(span, kwargs, "image_generation")
|
|
352
|
+
|
|
353
|
+
try:
|
|
354
|
+
start_time = time.time()
|
|
355
|
+
response = wrapped(*args, **kwargs)
|
|
356
|
+
end_time = time.time()
|
|
357
|
+
|
|
358
|
+
response_dict = model_as_dict(response)
|
|
359
|
+
set_response_attributes(span, response_dict, "image_generation")
|
|
360
|
+
|
|
361
|
+
span.set_attribute("llm.response.duration", end_time - start_time)
|
|
362
|
+
span.set_status(Status(StatusCode.OK))
|
|
363
|
+
|
|
364
|
+
return response
|
|
365
|
+
except Exception as e:
|
|
366
|
+
span.set_status(Status(StatusCode.ERROR, str(e)))
|
|
367
|
+
raise
|
|
368
|
+
|
|
369
|
+
return wrapper
|
|
370
|
+
|
|
371
|
+
|
|
372
|
+
def aimage_generation_wrapper(tracer: Tracer) -> Callable[..., Awaitable[Any]]:
|
|
373
|
+
"""Async wrapper for LiteLLM aimage_generation function"""
|
|
374
|
+
|
|
375
|
+
async def wrapper(
|
|
376
|
+
wrapped: Callable[..., Awaitable[Any]], instance: Any, args: Tuple[Any, ...], kwargs: Dict[str, Any]
|
|
377
|
+
) -> Any:
|
|
378
|
+
if should_suppress_instrumentation():
|
|
379
|
+
return await wrapped(*args, **kwargs)
|
|
380
|
+
|
|
381
|
+
# Image generation is never streaming, always use start_as_current_span
|
|
382
|
+
with tracer.start_as_current_span(
|
|
383
|
+
IMAGE_GENERATION_SPAN_NAME, kind=SpanKind.CLIENT, attributes={"llm.request.type": "image_generation"}
|
|
384
|
+
) as span:
|
|
385
|
+
set_request_attributes(span, kwargs, "image_generation")
|
|
386
|
+
|
|
387
|
+
try:
|
|
388
|
+
start_time = time.time()
|
|
389
|
+
response = await wrapped(*args, **kwargs)
|
|
390
|
+
end_time = time.time()
|
|
391
|
+
|
|
392
|
+
response_dict = model_as_dict(response)
|
|
393
|
+
set_response_attributes(span, response_dict, "image_generation")
|
|
394
|
+
|
|
395
|
+
span.set_attribute("llm.response.duration", end_time - start_time)
|
|
396
|
+
span.set_status(Status(StatusCode.OK))
|
|
397
|
+
|
|
398
|
+
return response
|
|
399
|
+
except Exception as e:
|
|
400
|
+
span.set_status(Status(StatusCode.ERROR, str(e)))
|
|
401
|
+
raise
|
|
402
|
+
|
|
403
|
+
return wrapper
|
|
404
|
+
|
|
405
|
+
|
|
406
|
+
class StreamingWrapper(ObjectProxy): # type: ignore[misc]
|
|
407
|
+
"""Wrapper for streaming responses"""
|
|
408
|
+
|
|
409
|
+
def __init__(self, span: Span, response: Iterator[Any], start_time: float, request_kwargs: Dict[str, Any]) -> None:
|
|
410
|
+
super().__init__(response)
|
|
411
|
+
self._span = span
|
|
412
|
+
self._start_time = start_time
|
|
413
|
+
self._request_kwargs = request_kwargs
|
|
414
|
+
self._complete_response: Dict[str, Any] = {"choices": [], "model": ""}
|
|
415
|
+
self._content_parts: list[str] = []
|
|
416
|
+
|
|
417
|
+
def __iter__(self) -> Iterator[Any]:
|
|
418
|
+
return self
|
|
419
|
+
|
|
420
|
+
def __next__(self) -> Any:
|
|
421
|
+
try:
|
|
422
|
+
chunk = self.__wrapped__.__next__()
|
|
423
|
+
self._process_chunk(chunk)
|
|
424
|
+
return chunk
|
|
425
|
+
except StopIteration:
|
|
426
|
+
self._finalize_span()
|
|
427
|
+
raise
|
|
428
|
+
|
|
429
|
+
def _process_chunk(self, chunk: Any) -> None:
|
|
430
|
+
"""Process streaming chunk"""
|
|
431
|
+
chunk_dict = model_as_dict(chunk)
|
|
432
|
+
|
|
433
|
+
# Accumulate response data
|
|
434
|
+
if chunk_dict.get("model"):
|
|
435
|
+
self._complete_response["model"] = chunk_dict["model"]
|
|
436
|
+
|
|
437
|
+
# Accumulate usage information from chunks
|
|
438
|
+
if chunk_dict.get("usage"):
|
|
439
|
+
self._complete_response["usage"] = chunk_dict["usage"]
|
|
440
|
+
|
|
441
|
+
# Collect content from delta
|
|
442
|
+
choices = chunk_dict.get("choices", [])
|
|
443
|
+
for choice in choices:
|
|
444
|
+
delta = choice.get("delta", {})
|
|
445
|
+
if delta.get("content"):
|
|
446
|
+
self._content_parts.append(delta["content"])
|
|
447
|
+
|
|
448
|
+
# Collect finish_reason from choices
|
|
449
|
+
if choice.get("finish_reason"):
|
|
450
|
+
if "choices" not in self._complete_response:
|
|
451
|
+
self._complete_response["choices"] = []
|
|
452
|
+
# Ensure we have enough choice entries
|
|
453
|
+
while len(self._complete_response["choices"]) <= len(choices) - 1:
|
|
454
|
+
self._complete_response["choices"].append(
|
|
455
|
+
{"message": {"role": "assistant", "content": ""}, "finish_reason": None}
|
|
456
|
+
)
|
|
457
|
+
|
|
458
|
+
choice_index = choice.get("index", 0)
|
|
459
|
+
if choice_index < len(self._complete_response["choices"]):
|
|
460
|
+
self._complete_response["choices"][choice_index]["finish_reason"] = choice["finish_reason"]
|
|
461
|
+
|
|
462
|
+
# Add chunk event
|
|
463
|
+
self._span.add_event("llm.content.completion.chunk")
|
|
464
|
+
|
|
465
|
+
def _finalize_span(self) -> None:
|
|
466
|
+
"""Finalize span when streaming is complete"""
|
|
467
|
+
end_time = time.time()
|
|
468
|
+
duration = end_time - self._start_time
|
|
469
|
+
|
|
470
|
+
# Set accumulated content
|
|
471
|
+
if self._content_parts:
|
|
472
|
+
full_content = "".join(self._content_parts)
|
|
473
|
+
self._span.set_attribute(f"{SpanAttributes.LLM_COMPLETIONS}.0.content", full_content)
|
|
474
|
+
self._span.set_attribute(f"{SpanAttributes.LLM_COMPLETIONS}.0.role", "assistant")
|
|
475
|
+
|
|
476
|
+
set_response_attributes(self._span, self._complete_response, "chat")
|
|
477
|
+
self._span.set_attribute("llm.response.duration", duration)
|
|
478
|
+
self._span.set_status(Status(StatusCode.OK))
|
|
479
|
+
self._span.end()
|
|
480
|
+
|
|
481
|
+
|
|
482
|
+
class AsyncStreamingWrapper(ObjectProxy): # type: ignore[misc]
|
|
483
|
+
"""Async wrapper for streaming responses"""
|
|
484
|
+
|
|
485
|
+
def __init__(
|
|
486
|
+
self, span: Span, response: AsyncIterator[Any], start_time: float, request_kwargs: Dict[str, Any]
|
|
487
|
+
) -> None:
|
|
488
|
+
super().__init__(response)
|
|
489
|
+
self._span = span
|
|
490
|
+
self._start_time = start_time
|
|
491
|
+
self._request_kwargs = request_kwargs
|
|
492
|
+
self._complete_response: Dict[str, Any] = {"choices": [], "model": ""}
|
|
493
|
+
self._content_parts: list[str] = []
|
|
494
|
+
|
|
495
|
+
def __aiter__(self) -> AsyncIterator[Any]:
|
|
496
|
+
return self
|
|
497
|
+
|
|
498
|
+
async def __anext__(self) -> Any:
|
|
499
|
+
try:
|
|
500
|
+
chunk = await self.__wrapped__.__anext__()
|
|
501
|
+
self._process_chunk(chunk)
|
|
502
|
+
return chunk
|
|
503
|
+
except StopAsyncIteration:
|
|
504
|
+
self._finalize_span()
|
|
505
|
+
raise
|
|
506
|
+
|
|
507
|
+
def _process_chunk(self, chunk: Any) -> None:
|
|
508
|
+
"""Process streaming chunk"""
|
|
509
|
+
chunk_dict = model_as_dict(chunk)
|
|
510
|
+
|
|
511
|
+
# Accumulate response data
|
|
512
|
+
if chunk_dict.get("model"):
|
|
513
|
+
self._complete_response["model"] = chunk_dict["model"]
|
|
514
|
+
|
|
515
|
+
# Accumulate usage information from chunks
|
|
516
|
+
if chunk_dict.get("usage"):
|
|
517
|
+
self._complete_response["usage"] = chunk_dict["usage"]
|
|
518
|
+
|
|
519
|
+
# Collect content from delta
|
|
520
|
+
choices = chunk_dict.get("choices", [])
|
|
521
|
+
for choice in choices:
|
|
522
|
+
delta = choice.get("delta", {})
|
|
523
|
+
if delta.get("content"):
|
|
524
|
+
self._content_parts.append(delta["content"])
|
|
525
|
+
|
|
526
|
+
# Collect finish_reason from choices
|
|
527
|
+
if choice.get("finish_reason"):
|
|
528
|
+
if "choices" not in self._complete_response:
|
|
529
|
+
self._complete_response["choices"] = []
|
|
530
|
+
# Ensure we have enough choice entries
|
|
531
|
+
while len(self._complete_response["choices"]) <= len(choices) - 1:
|
|
532
|
+
self._complete_response["choices"].append(
|
|
533
|
+
{"message": {"role": "assistant", "content": ""}, "finish_reason": None}
|
|
534
|
+
)
|
|
535
|
+
|
|
536
|
+
choice_index = choice.get("index", 0)
|
|
537
|
+
if choice_index < len(self._complete_response["choices"]):
|
|
538
|
+
self._complete_response["choices"][choice_index]["finish_reason"] = choice["finish_reason"]
|
|
539
|
+
|
|
540
|
+
# Add chunk event
|
|
541
|
+
self._span.add_event("llm.content.completion.chunk")
|
|
542
|
+
|
|
543
|
+
def _finalize_span(self) -> None:
|
|
544
|
+
"""Finalize span when streaming is complete"""
|
|
545
|
+
end_time = time.time()
|
|
546
|
+
duration = end_time - self._start_time
|
|
547
|
+
|
|
548
|
+
# Set accumulated content
|
|
549
|
+
if self._content_parts:
|
|
550
|
+
full_content = "".join(self._content_parts)
|
|
551
|
+
self._span.set_attribute(f"{SpanAttributes.LLM_COMPLETIONS}.0.content", full_content)
|
|
552
|
+
self._span.set_attribute(f"{SpanAttributes.LLM_COMPLETIONS}.0.role", "assistant")
|
|
553
|
+
|
|
554
|
+
set_response_attributes(self._span, self._complete_response, "chat")
|
|
555
|
+
self._span.set_attribute("llm.response.duration", duration)
|
|
556
|
+
self._span.set_status(Status(StatusCode.OK))
|
|
557
|
+
self._span.end()
|
netra/version.py
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
__version__ = "0.1.
|
|
1
|
+
__version__ = "0.1.31"
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.3
|
|
2
2
|
Name: netra-sdk
|
|
3
|
-
Version: 0.1.
|
|
3
|
+
Version: 0.1.31
|
|
4
4
|
Summary: A Python SDK for AI application observability that provides OpenTelemetry-based monitoring, tracing, and PII protection for LLM and vector database applications. Enables easy instrumentation, session tracking, and privacy-focused data collection for AI systems in production environments.
|
|
5
5
|
License: Apache-2.0
|
|
6
6
|
Keywords: netra,tracing,observability,sdk,ai,llm,vector,database
|
|
@@ -303,6 +303,7 @@ async def async_span(data):
|
|
|
303
303
|
- **CrewAI** - Multi-agent AI systems
|
|
304
304
|
- **Pydantic AI** - AI model communication standard
|
|
305
305
|
- **MCP (Model Context Protocol)** - AI model communication standard
|
|
306
|
+
- **LiteLLM** - LLM provider agnostic client
|
|
306
307
|
|
|
307
308
|
## 🛡️ Privacy Protection & Security
|
|
308
309
|
|
|
@@ -9,7 +9,7 @@ netra/exceptions/__init__.py,sha256=uDgcBxmC4WhdS7HRYQk_TtJyxH1s1o6wZmcsnSHLAcM,
|
|
|
9
9
|
netra/exceptions/injection.py,sha256=ke4eUXRYUFJkMZgdSyPPkPt5PdxToTI6xLEBI0hTWUQ,1332
|
|
10
10
|
netra/exceptions/pii.py,sha256=MT4p_x-zH3VtYudTSxw1Z9qQZADJDspq64WrYqSWlZc,2438
|
|
11
11
|
netra/input_scanner.py,sha256=At6N9gNY8cR0O6S8x3K6swWBV3P1a_9O-XBNM_pcKz4,5348
|
|
12
|
-
netra/instrumentation/__init__.py,sha256=
|
|
12
|
+
netra/instrumentation/__init__.py,sha256=HdG3n5TxPRUNlOxsqjlvwDmBcnm3UtYx1OecLhnLeQM,41578
|
|
13
13
|
netra/instrumentation/aiohttp/__init__.py,sha256=M1kuF0R3gKY5rlbhEC1AR13UWHelmfokluL2yFysKWc,14398
|
|
14
14
|
netra/instrumentation/aiohttp/version.py,sha256=Zy-0Aukx-HS_Mo3NKPWg-hlUoWKDzS0w58gLoVtJec8,24
|
|
15
15
|
netra/instrumentation/cohere/__init__.py,sha256=3XwmCAZwZiMkHdNN3YvcBOLsNCx80ymbU31TyMzv1IY,17685
|
|
@@ -22,7 +22,10 @@ netra/instrumentation/google_genai/utils.py,sha256=2OeSN5jUaMKF4x5zWiW65R1LB_a44
|
|
|
22
22
|
netra/instrumentation/google_genai/version.py,sha256=Hww1duZrC8kYK7ThBSQVyz0HNOb0ys_o8Pln-wVQ1hI,23
|
|
23
23
|
netra/instrumentation/httpx/__init__.py,sha256=w1su_eQP_w5ZJHq0Lf-4miF5zM4OOW0ItmRp0wi85Ew,19388
|
|
24
24
|
netra/instrumentation/httpx/version.py,sha256=ZRQKbgDaGz_yuLk-cUKuk6ZBKCSRKZC8nQd041NRNXk,23
|
|
25
|
-
netra/instrumentation/instruments.py,sha256=
|
|
25
|
+
netra/instrumentation/instruments.py,sha256=O6MI_BO-5EBkVqI-dr5eqhYnk8mP5QEpI0RWJ7Fe3FQ,4349
|
|
26
|
+
netra/instrumentation/litellm/__init__.py,sha256=H9FsdEq-CL39zbl_dLm8D43-D1vAjoNqFTBpbmZsVXs,6740
|
|
27
|
+
netra/instrumentation/litellm/version.py,sha256=J-j-u0itpEFT6irdmWmixQqYMadNl1X91TxUmoiLHMI,22
|
|
28
|
+
netra/instrumentation/litellm/wrappers.py,sha256=H_UG0et6PUmj6CQagvNzbs_WodNTMruzzGOHhedmTko,22840
|
|
26
29
|
netra/instrumentation/mistralai/__init__.py,sha256=RE0b-rS6iXdoynJMFKHL9s97eYo5HghrJa013fR4ZhI,18910
|
|
27
30
|
netra/instrumentation/mistralai/config.py,sha256=XCyo3mk30qkvqyCqeTrKwROahu0gcOEwmbDLOo53J5k,121
|
|
28
31
|
netra/instrumentation/mistralai/utils.py,sha256=nhdIer5gJFxuGwg8FCT222hggDHeMQDhJctnDSwLqcc,894
|
|
@@ -44,8 +47,8 @@ netra/scanner.py,sha256=kyDpeZiscCPb6pjuhS-sfsVj-dviBFRepdUWh0sLoEY,11554
|
|
|
44
47
|
netra/session_manager.py,sha256=AoQa-k4dFcq7PeOD8G8DNzhLzL1JrHUW6b_y8mRyTQo,10255
|
|
45
48
|
netra/span_wrapper.py,sha256=lGuV1F4Q5I_swIoIof5myzOQCFmGFdtrpgfQt7dTTus,8105
|
|
46
49
|
netra/tracer.py,sha256=YiuijB_5DBOLVgE39Lj3thWVmUqHLcqbdFVB0HGovW0,3543
|
|
47
|
-
netra/version.py,sha256=
|
|
48
|
-
netra_sdk-0.1.
|
|
49
|
-
netra_sdk-0.1.
|
|
50
|
-
netra_sdk-0.1.
|
|
51
|
-
netra_sdk-0.1.
|
|
50
|
+
netra/version.py,sha256=i-fDEsQ0iAiPKXFaj9eERDqcxl3BqNnavaCEqpNxmVI,23
|
|
51
|
+
netra_sdk-0.1.31.dist-info/LICENCE,sha256=8B_UoZ-BAl0AqiHAHUETCgd3I2B9yYJ1WEQtVb_qFMA,11359
|
|
52
|
+
netra_sdk-0.1.31.dist-info/METADATA,sha256=VvltGCy_nbt-TRB91KiH_hu6YC4CceY_uQW-UYXT7NE,28196
|
|
53
|
+
netra_sdk-0.1.31.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
|
|
54
|
+
netra_sdk-0.1.31.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|