natural-pdf 0.1.7__py3-none-any.whl → 0.1.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- docs/categorizing-documents/index.md +168 -0
- docs/data-extraction/index.md +87 -0
- docs/element-selection/index.ipynb +218 -164
- docs/element-selection/index.md +20 -0
- docs/index.md +19 -0
- docs/ocr/index.md +63 -16
- docs/tutorials/01-loading-and-extraction.ipynb +1713 -34
- docs/tutorials/02-finding-elements.ipynb +123 -46
- docs/tutorials/03-extracting-blocks.ipynb +24 -19
- docs/tutorials/04-table-extraction.ipynb +17 -12
- docs/tutorials/05-excluding-content.ipynb +37 -32
- docs/tutorials/06-document-qa.ipynb +36 -31
- docs/tutorials/07-layout-analysis.ipynb +45 -40
- docs/tutorials/07-working-with-regions.ipynb +61 -60
- docs/tutorials/08-spatial-navigation.ipynb +76 -71
- docs/tutorials/09-section-extraction.ipynb +160 -155
- docs/tutorials/10-form-field-extraction.ipynb +71 -66
- docs/tutorials/11-enhanced-table-processing.ipynb +11 -6
- docs/tutorials/12-ocr-integration.ipynb +3420 -312
- docs/tutorials/12-ocr-integration.md +68 -106
- docs/tutorials/13-semantic-search.ipynb +641 -251
- natural_pdf/__init__.py +2 -0
- natural_pdf/classification/manager.py +343 -0
- natural_pdf/classification/mixin.py +149 -0
- natural_pdf/classification/results.py +62 -0
- natural_pdf/collections/mixins.py +63 -0
- natural_pdf/collections/pdf_collection.py +321 -15
- natural_pdf/core/element_manager.py +67 -0
- natural_pdf/core/page.py +227 -64
- natural_pdf/core/pdf.py +387 -378
- natural_pdf/elements/collections.py +272 -41
- natural_pdf/elements/region.py +99 -15
- natural_pdf/elements/text.py +5 -2
- natural_pdf/exporters/paddleocr.py +1 -1
- natural_pdf/extraction/manager.py +134 -0
- natural_pdf/extraction/mixin.py +246 -0
- natural_pdf/extraction/result.py +37 -0
- natural_pdf/ocr/engine_easyocr.py +6 -3
- natural_pdf/ocr/ocr_manager.py +85 -25
- natural_pdf/ocr/ocr_options.py +33 -10
- natural_pdf/ocr/utils.py +14 -3
- natural_pdf/qa/document_qa.py +0 -4
- natural_pdf/selectors/parser.py +363 -238
- natural_pdf/templates/finetune/fine_tune_paddleocr.md +10 -5
- natural_pdf/utils/locks.py +8 -0
- natural_pdf/utils/text_extraction.py +52 -1
- natural_pdf/utils/tqdm_utils.py +43 -0
- {natural_pdf-0.1.7.dist-info → natural_pdf-0.1.8.dist-info}/METADATA +6 -1
- {natural_pdf-0.1.7.dist-info → natural_pdf-0.1.8.dist-info}/RECORD +52 -41
- {natural_pdf-0.1.7.dist-info → natural_pdf-0.1.8.dist-info}/WHEEL +1 -1
- {natural_pdf-0.1.7.dist-info → natural_pdf-0.1.8.dist-info}/licenses/LICENSE +0 -0
- {natural_pdf-0.1.7.dist-info → natural_pdf-0.1.8.dist-info}/top_level.txt +0 -0
@@ -2,7 +2,7 @@
|
|
2
2
|
"cells": [
|
3
3
|
{
|
4
4
|
"cell_type": "markdown",
|
5
|
-
"id": "
|
5
|
+
"id": "96325b7e",
|
6
6
|
"metadata": {},
|
7
7
|
"source": [
|
8
8
|
"# OCR Integration for Scanned Documents\n",
|
@@ -13,13 +13,13 @@
|
|
13
13
|
{
|
14
14
|
"cell_type": "code",
|
15
15
|
"execution_count": 1,
|
16
|
-
"id": "
|
16
|
+
"id": "34cb9f5e",
|
17
17
|
"metadata": {
|
18
18
|
"execution": {
|
19
|
-
"iopub.execute_input": "2025-04-
|
20
|
-
"iopub.status.busy": "2025-04-
|
21
|
-
"iopub.status.idle": "2025-04-
|
22
|
-
"shell.execute_reply": "2025-04-
|
19
|
+
"iopub.execute_input": "2025-04-27T16:33:38.508832Z",
|
20
|
+
"iopub.status.busy": "2025-04-27T16:33:38.508415Z",
|
21
|
+
"iopub.status.idle": "2025-04-27T16:33:38.515643Z",
|
22
|
+
"shell.execute_reply": "2025-04-27T16:33:38.514609Z"
|
23
23
|
}
|
24
24
|
},
|
25
25
|
"outputs": [],
|
@@ -30,13 +30,13 @@
|
|
30
30
|
{
|
31
31
|
"cell_type": "code",
|
32
32
|
"execution_count": 2,
|
33
|
-
"id": "
|
33
|
+
"id": "44287df0",
|
34
34
|
"metadata": {
|
35
35
|
"execution": {
|
36
|
-
"iopub.execute_input": "2025-04-
|
37
|
-
"iopub.status.busy": "2025-04-
|
38
|
-
"iopub.status.idle": "2025-04-
|
39
|
-
"shell.execute_reply": "2025-04-
|
36
|
+
"iopub.execute_input": "2025-04-27T16:33:38.518656Z",
|
37
|
+
"iopub.status.busy": "2025-04-27T16:33:38.518160Z",
|
38
|
+
"iopub.status.idle": "2025-04-27T16:33:44.450143Z",
|
39
|
+
"shell.execute_reply": "2025-04-27T16:33:44.449510Z"
|
40
40
|
}
|
41
41
|
},
|
42
42
|
"outputs": [
|
@@ -65,458 +65,652 @@
|
|
65
65
|
},
|
66
66
|
{
|
67
67
|
"cell_type": "markdown",
|
68
|
-
"id": "
|
68
|
+
"id": "6db0cfaf",
|
69
69
|
"metadata": {},
|
70
70
|
"source": [
|
71
|
-
"##
|
71
|
+
"## Applying OCR and Finding Elements\n",
|
72
|
+
"\n",
|
73
|
+
"The core method is `page.apply_ocr()`. This runs the OCR process and adds `TextElement` objects to the page. You can specify the engine and languages.\n",
|
74
|
+
"\n",
|
75
|
+
"**Note:** Re-applying OCR to the same page or region will automatically remove any previously generated OCR elements for that area before adding the new ones."
|
72
76
|
]
|
73
77
|
},
|
74
78
|
{
|
75
79
|
"cell_type": "code",
|
76
80
|
"execution_count": 3,
|
77
|
-
"id": "
|
81
|
+
"id": "129d2d88",
|
78
82
|
"metadata": {
|
79
83
|
"execution": {
|
80
|
-
"iopub.execute_input": "2025-04-
|
81
|
-
"iopub.status.busy": "2025-04-
|
82
|
-
"iopub.status.idle": "2025-04-
|
83
|
-
"shell.execute_reply": "2025-04-
|
84
|
+
"iopub.execute_input": "2025-04-27T16:33:44.453600Z",
|
85
|
+
"iopub.status.busy": "2025-04-27T16:33:44.452871Z",
|
86
|
+
"iopub.status.idle": "2025-04-27T16:34:08.411433Z",
|
87
|
+
"shell.execute_reply": "2025-04-27T16:34:08.411148Z"
|
84
88
|
}
|
85
89
|
},
|
86
90
|
"outputs": [
|
91
|
+
{
|
92
|
+
"data": {
|
93
|
+
"application/vnd.jupyter.widget-view+json": {
|
94
|
+
"model_id": "cfbf78084dd04ad0b51e62e5b1bd0e14",
|
95
|
+
"version_major": 2,
|
96
|
+
"version_minor": 0
|
97
|
+
},
|
98
|
+
"text/plain": [
|
99
|
+
"Rendering pages: 0%| | 0/1 [00:00<?, ?it/s]"
|
100
|
+
]
|
101
|
+
},
|
102
|
+
"metadata": {},
|
103
|
+
"output_type": "display_data"
|
104
|
+
},
|
87
105
|
{
|
88
106
|
"name": "stderr",
|
89
107
|
"output_type": "stream",
|
90
108
|
"text": [
|
91
|
-
"\u001b[2m2025-04-
|
109
|
+
"\u001b[2m2025-04-27T16:33:44.559124Z\u001b[0m [\u001b[33m\u001b[1mwarning \u001b[0m] \u001b[1mUsing CPU. Note: This module is much faster with a GPU.\u001b[0m \u001b[36mlineno\u001b[0m=\u001b[35m71\u001b[0m \u001b[36mmodule\u001b[0m=\u001b[35measyocr.easyocr\u001b[0m\n"
|
92
110
|
]
|
93
111
|
},
|
94
112
|
{
|
95
113
|
"name": "stderr",
|
96
114
|
"output_type": "stream",
|
97
115
|
"text": [
|
98
|
-
"[2025-04-
|
116
|
+
"[2025-04-27 12:33:44,559] [ WARNING] easyocr.py:71 - Using CPU. Note: This module is much faster with a GPU.\n"
|
99
117
|
]
|
100
118
|
},
|
101
119
|
{
|
102
|
-
"
|
103
|
-
|
104
|
-
|
105
|
-
|
106
|
-
|
107
|
-
|
108
|
-
"metadata": {},
|
109
|
-
"output_type": "execute_result"
|
110
|
-
}
|
111
|
-
],
|
112
|
-
"source": [
|
113
|
-
"# Convert text-as-image to text elements\n",
|
114
|
-
"page.apply_ocr()\n",
|
115
|
-
"\n",
|
116
|
-
"# Select all text pieces on the page\n",
|
117
|
-
"text_elements = page.find_all('text')\n",
|
118
|
-
"f\"Found {len(text_elements)} text elements\"\n",
|
119
|
-
"\n",
|
120
|
-
"# Visualize the elements\n",
|
121
|
-
"text_elements.highlight()"
|
122
|
-
]
|
123
|
-
},
|
124
|
-
{
|
125
|
-
"cell_type": "markdown",
|
126
|
-
"id": "36051d57",
|
127
|
-
"metadata": {},
|
128
|
-
"source": [
|
129
|
-
"## OCR Configuration Options"
|
130
|
-
]
|
131
|
-
},
|
132
|
-
{
|
133
|
-
"cell_type": "code",
|
134
|
-
"execution_count": 4,
|
135
|
-
"id": "d4461746",
|
136
|
-
"metadata": {
|
137
|
-
"execution": {
|
138
|
-
"iopub.execute_input": "2025-04-21T21:32:28.418763Z",
|
139
|
-
"iopub.status.busy": "2025-04-21T21:32:28.418565Z",
|
140
|
-
"iopub.status.idle": "2025-04-21T21:32:28.423024Z",
|
141
|
-
"shell.execute_reply": "2025-04-21T21:32:28.422671Z"
|
142
|
-
}
|
143
|
-
},
|
144
|
-
"outputs": [
|
120
|
+
"name": "stdout",
|
121
|
+
"output_type": "stream",
|
122
|
+
"text": [
|
123
|
+
"Found 47 text elements using default OCR\n"
|
124
|
+
]
|
125
|
+
},
|
145
126
|
{
|
146
127
|
"data": {
|
128
|
+
"application/vnd.jupyter.widget-view+json": {
|
129
|
+
"model_id": "2610164fb3f7466985a46215b5b2bfa8",
|
130
|
+
"version_major": 2,
|
131
|
+
"version_minor": 0
|
132
|
+
},
|
147
133
|
"text/plain": [
|
148
|
-
"
|
134
|
+
"Rendering pages: 0%| | 0/1 [00:00<?, ?it/s]"
|
149
135
|
]
|
150
136
|
},
|
151
|
-
"execution_count": 4,
|
152
137
|
"metadata": {},
|
153
|
-
"output_type": "
|
154
|
-
}
|
155
|
-
|
156
|
-
|
157
|
-
|
158
|
-
|
159
|
-
|
160
|
-
|
161
|
-
|
162
|
-
"\n",
|
163
|
-
"# Extract text with the improved configuration\n",
|
164
|
-
"improved_text = page.extract_text()\n",
|
165
|
-
"\n",
|
166
|
-
"# Preview the text\n",
|
167
|
-
"improved_text[:200] + \"...\" if len(improved_text) > 200 else improved_text"
|
168
|
-
]
|
169
|
-
},
|
170
|
-
{
|
171
|
-
"cell_type": "markdown",
|
172
|
-
"id": "d5a96ac7",
|
173
|
-
"metadata": {},
|
174
|
-
"source": [
|
175
|
-
"## Working with Multi-language Documents"
|
176
|
-
]
|
177
|
-
},
|
178
|
-
{
|
179
|
-
"cell_type": "code",
|
180
|
-
"execution_count": 5,
|
181
|
-
"id": "9fa156f5",
|
182
|
-
"metadata": {
|
183
|
-
"execution": {
|
184
|
-
"iopub.execute_input": "2025-04-21T21:32:28.424374Z",
|
185
|
-
"iopub.status.busy": "2025-04-21T21:32:28.424235Z",
|
186
|
-
"iopub.status.idle": "2025-04-21T21:32:28.428114Z",
|
187
|
-
"shell.execute_reply": "2025-04-21T21:32:28.427816Z"
|
188
|
-
}
|
189
|
-
},
|
190
|
-
"outputs": [
|
138
|
+
"output_type": "display_data"
|
139
|
+
},
|
140
|
+
{
|
141
|
+
"name": "stdout",
|
142
|
+
"output_type": "stream",
|
143
|
+
"text": [
|
144
|
+
"[2025/04/27 12:33:56] ppocr WARNING: Since the angle classifier is not initialized, it will not be used during the forward process\n"
|
145
|
+
]
|
146
|
+
},
|
191
147
|
{
|
192
148
|
"data": {
|
149
|
+
"application/vnd.jupyter.widget-view+json": {
|
150
|
+
"model_id": "5e40bef048f3441c99ae91260a13f545",
|
151
|
+
"version_major": 2,
|
152
|
+
"version_minor": 0
|
153
|
+
},
|
193
154
|
"text/plain": [
|
194
|
-
"
|
155
|
+
"Rendering pages: 0%| | 0/1 [00:00<?, ?it/s]"
|
195
156
|
]
|
196
157
|
},
|
197
|
-
"execution_count": 5,
|
198
158
|
"metadata": {},
|
199
|
-
"output_type": "
|
200
|
-
}
|
201
|
-
],
|
202
|
-
"source": [
|
203
|
-
"# Configure for multiple languages\n",
|
204
|
-
"page.ocr_config = {\n",
|
205
|
-
" 'language': 'eng+fra+deu', # English, French, German\n",
|
206
|
-
" 'dpi': 300\n",
|
207
|
-
"}\n",
|
208
|
-
"\n",
|
209
|
-
"# Extract text with multi-language support\n",
|
210
|
-
"multilang_text = page.extract_text()\n",
|
211
|
-
"multilang_text[:200]"
|
212
|
-
]
|
213
|
-
},
|
214
|
-
{
|
215
|
-
"cell_type": "markdown",
|
216
|
-
"id": "d3ccf43f",
|
217
|
-
"metadata": {},
|
218
|
-
"source": [
|
219
|
-
"## Extracting Tables from Scanned Documents"
|
220
|
-
]
|
221
|
-
},
|
222
|
-
{
|
223
|
-
"cell_type": "code",
|
224
|
-
"execution_count": 6,
|
225
|
-
"id": "ee7a7e7d",
|
226
|
-
"metadata": {
|
227
|
-
"execution": {
|
228
|
-
"iopub.execute_input": "2025-04-21T21:32:28.429414Z",
|
229
|
-
"iopub.status.busy": "2025-04-21T21:32:28.429283Z",
|
230
|
-
"iopub.status.idle": "2025-04-21T21:32:30.754086Z",
|
231
|
-
"shell.execute_reply": "2025-04-21T21:32:30.753700Z"
|
232
|
-
}
|
233
|
-
},
|
234
|
-
"outputs": [
|
159
|
+
"output_type": "display_data"
|
160
|
+
},
|
235
161
|
{
|
236
|
-
"name": "
|
162
|
+
"name": "stdout",
|
237
163
|
"output_type": "stream",
|
238
164
|
"text": [
|
239
|
-
"
|
165
|
+
"Loaded detection model s3://text_detection/2025_02_18 on device mps with dtype torch.float16\n"
|
240
166
|
]
|
241
167
|
},
|
242
168
|
{
|
243
|
-
"name": "
|
169
|
+
"name": "stdout",
|
244
170
|
"output_type": "stream",
|
245
171
|
"text": [
|
246
|
-
"
|
172
|
+
"Loaded recognition model s3://text_recognition/2025_02_18 on device mps with dtype torch.float16\n"
|
247
173
|
]
|
248
174
|
},
|
175
|
+
{
|
176
|
+
"data": {
|
177
|
+
"text/html": [
|
178
|
+
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"color: #800000; text-decoration-color: #800000\">╭─────────────────────────────── </span><span style=\"color: #800000; text-decoration-color: #800000; font-weight: bold\">Traceback </span><span style=\"color: #bf7f7f; text-decoration-color: #bf7f7f; font-weight: bold\">(most recent call last)</span><span style=\"color: #800000; text-decoration-color: #800000\"> ────────────────────────────────╮</span>\n",
|
179
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #bfbf7f; text-decoration-color: #bfbf7f\">/Users/soma/Development/natural-pdf/natural_pdf/ocr/</span><span style=\"color: #808000; text-decoration-color: #808000; font-weight: bold\">ocr_manager.py</span>:<span style=\"color: #0000ff; text-decoration-color: #0000ff\">195</span> in <span style=\"color: #00ff00; text-decoration-color: #00ff00\">apply_ocr</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
180
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
181
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">192 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ │ </span>logger.debug(<span style=\"color: #808000; text-decoration-color: #808000\">f\"[{</span>thread_id<span style=\"color: #808000; text-decoration-color: #808000\">}] Acquired inference lock for {</span>selected_engin <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
182
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">193 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ │ </span>inference_start_time = time.monotonic() <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
183
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">194 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ │ </span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
184
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">❱ </span>195 <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ │ </span>results = engine_instance.process_image( <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
185
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">196 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ │ │ </span>images=images, <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
186
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">197 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ │ │ </span>languages=languages, <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
187
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">198 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ │ │ </span>min_confidence=min_confidence, <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
188
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
189
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">╭─────────────────────────────────────────── locals ───────────────────────────────────────────╮</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
190
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> detect_only = <span style=\"color: #0000ff; text-decoration-color: #0000ff\">False</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
191
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> device = <span style=\"color: #0000ff; text-decoration-color: #0000ff\">None</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
192
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> e = <span style=\"color: #800080; text-decoration-color: #800080; font-weight: bold\">AssertionError</span><span style=\"font-weight: bold\">(</span><span style=\"color: #808000; text-decoration-color: #808000\">'You need to pass in one list of languages for each</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
193
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">image'</span><span style=\"font-weight: bold\">)</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
194
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> engine = <span style=\"color: #808000; text-decoration-color: #808000\">'surya'</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
195
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> engine_instance = <span style=\"font-weight: bold\"><</span><span style=\"color: #ff00ff; text-decoration-color: #ff00ff; font-weight: bold\">natural_pdf.ocr.engine_surya.SuryaOCREngine</span><span style=\"color: #000000; text-decoration-color: #000000\"> object at </span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
196
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #0000ff; text-decoration-color: #0000ff\">0x35512cfd0</span><span style=\"font-weight: bold\">></span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
197
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> final_options = <span style=\"color: #0000ff; text-decoration-color: #0000ff\">None</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
198
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> image_dims = <span style=\"font-weight: bold\">[</span><span style=\"color: #808000; text-decoration-color: #808000\">'1275x1651'</span><span style=\"font-weight: bold\">]</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
199
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> images = <span style=\"font-weight: bold\">[<</span><span style=\"color: #ff00ff; text-decoration-color: #ff00ff; font-weight: bold\">PIL.Image.Image</span><span style=\"color: #000000; text-decoration-color: #000000\"> image </span><span style=\"color: #808000; text-decoration-color: #808000\">mode</span><span style=\"color: #000000; text-decoration-color: #000000\">=</span><span style=\"color: #800080; text-decoration-color: #800080\">RGB</span><span style=\"color: #000000; text-decoration-color: #000000\"> </span><span style=\"color: #808000; text-decoration-color: #808000\">size</span><span style=\"color: #000000; text-decoration-color: #000000\">=</span><span style=\"color: #800080; text-decoration-color: #800080\">1275x1651</span><span style=\"color: #000000; text-decoration-color: #000000\"> at </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">0x35512CCD0</span><span style=\"font-weight: bold\">>]</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
200
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> inference_acquired_time = <span style=\"color: #0000ff; text-decoration-color: #0000ff\">272326.616208958</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
201
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> inference_lock = <span style=\"font-weight: bold\"><</span><span style=\"color: #ff00ff; text-decoration-color: #ff00ff; font-weight: bold\">unlocked</span><span style=\"color: #000000; text-decoration-color: #000000\"> _thread.lock object at </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">0x35511eec0</span><span style=\"font-weight: bold\">></span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
202
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> inference_start_time = <span style=\"color: #0000ff; text-decoration-color: #0000ff\">272326.616209666</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
203
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> inference_wait_start = <span style=\"color: #0000ff; text-decoration-color: #0000ff\">272326.616208708</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
204
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> is_batch = <span style=\"color: #0000ff; text-decoration-color: #0000ff\">True</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
205
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> languages = <span style=\"font-weight: bold\">[</span><span style=\"color: #808000; text-decoration-color: #808000\">'en'</span>, <span style=\"color: #808000; text-decoration-color: #808000\">'de'</span><span style=\"font-weight: bold\">]</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
206
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> min_confidence = <span style=\"color: #0000ff; text-decoration-color: #0000ff\">None</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
207
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> options = <span style=\"color: #0000ff; text-decoration-color: #0000ff\">None</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
208
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> processing_mode = <span style=\"color: #808000; text-decoration-color: #808000\">'batch'</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
209
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> selected_engine_name = <span style=\"color: #808000; text-decoration-color: #808000\">'surya'</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
210
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> self = <span style=\"font-weight: bold\"><</span><span style=\"color: #ff00ff; text-decoration-color: #ff00ff; font-weight: bold\">natural_pdf.ocr.ocr_manager.OCRManager</span><span style=\"color: #000000; text-decoration-color: #000000\"> object at </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">0x104beb580</span><span style=\"font-weight: bold\">></span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
211
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> thread_id = <span style=\"color: #808000; text-decoration-color: #808000\">'MainThread'</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
212
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">╰──────────────────────────────────────────────────────────────────────────────────────────────╯</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
213
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
214
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #bfbf7f; text-decoration-color: #bfbf7f\">/Users/soma/Development/natural-pdf/natural_pdf/ocr/</span><span style=\"color: #808000; text-decoration-color: #808000; font-weight: bold\">engine.py</span>:<span style=\"color: #0000ff; text-decoration-color: #0000ff\">117</span> in <span style=\"color: #00ff00; text-decoration-color: #00ff00\">process_image</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
215
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
216
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">114 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ </span>processed_img = <span style=\"color: #00ffff; text-decoration-color: #00ffff\">self</span>._preprocess_image(img) <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
217
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">115 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ </span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
218
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">116 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\"># Process the image with the engine-specific implementation</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
219
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">❱ </span>117 <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ </span>raw_results = <span style=\"color: #00ffff; text-decoration-color: #00ffff\">self</span>._process_single_image(processed_img, detect_only, options <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
220
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">118 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ </span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
221
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">119 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\"># Convert results to standardized format</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
222
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">120 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ </span>text_regions = <span style=\"color: #00ffff; text-decoration-color: #00ffff\">self</span>._standardize_results(raw_results, effective_confidence, <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
223
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
224
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">╭────────────────────────────────────────── locals ──────────────────────────────────────────╮</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
225
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> detect_only = <span style=\"color: #0000ff; text-decoration-color: #0000ff\">False</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
226
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> device = <span style=\"color: #0000ff; text-decoration-color: #0000ff\">None</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
227
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> effective_confidence = <span style=\"color: #0000ff; text-decoration-color: #0000ff\">0.2</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
228
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> effective_device = <span style=\"color: #808000; text-decoration-color: #808000\">'cpu'</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
229
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> effective_languages = <span style=\"font-weight: bold\">[</span><span style=\"color: #808000; text-decoration-color: #808000\">'en'</span>, <span style=\"color: #808000; text-decoration-color: #808000\">'de'</span><span style=\"font-weight: bold\">]</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
230
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> image_batch = <span style=\"font-weight: bold\">[<</span><span style=\"color: #ff00ff; text-decoration-color: #ff00ff; font-weight: bold\">PIL.Image.Image</span><span style=\"color: #000000; text-decoration-color: #000000\"> image </span><span style=\"color: #808000; text-decoration-color: #808000\">mode</span><span style=\"color: #000000; text-decoration-color: #000000\">=</span><span style=\"color: #800080; text-decoration-color: #800080\">RGB</span><span style=\"color: #000000; text-decoration-color: #000000\"> </span><span style=\"color: #808000; text-decoration-color: #808000\">size</span><span style=\"color: #000000; text-decoration-color: #000000\">=</span><span style=\"color: #800080; text-decoration-color: #800080\">1275x1651</span><span style=\"color: #000000; text-decoration-color: #000000\"> at </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">0x35512CCD0</span><span style=\"font-weight: bold\">>]</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
231
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> images = <span style=\"font-weight: bold\">[<</span><span style=\"color: #ff00ff; text-decoration-color: #ff00ff; font-weight: bold\">PIL.Image.Image</span><span style=\"color: #000000; text-decoration-color: #000000\"> image </span><span style=\"color: #808000; text-decoration-color: #808000\">mode</span><span style=\"color: #000000; text-decoration-color: #000000\">=</span><span style=\"color: #800080; text-decoration-color: #800080\">RGB</span><span style=\"color: #000000; text-decoration-color: #000000\"> </span><span style=\"color: #808000; text-decoration-color: #808000\">size</span><span style=\"color: #000000; text-decoration-color: #000000\">=</span><span style=\"color: #800080; text-decoration-color: #800080\">1275x1651</span><span style=\"color: #000000; text-decoration-color: #000000\"> at </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">0x35512CCD0</span><span style=\"font-weight: bold\">>]</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
232
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> img = <span style=\"font-weight: bold\"><</span><span style=\"color: #ff00ff; text-decoration-color: #ff00ff; font-weight: bold\">PIL.Image.Image</span><span style=\"color: #000000; text-decoration-color: #000000\"> image </span><span style=\"color: #808000; text-decoration-color: #808000\">mode</span><span style=\"color: #000000; text-decoration-color: #000000\">=</span><span style=\"color: #800080; text-decoration-color: #800080\">RGB</span><span style=\"color: #000000; text-decoration-color: #000000\"> </span><span style=\"color: #808000; text-decoration-color: #808000\">size</span><span style=\"color: #000000; text-decoration-color: #000000\">=</span><span style=\"color: #800080; text-decoration-color: #800080\">1275x1651</span><span style=\"color: #000000; text-decoration-color: #000000\"> at </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">0x35512CCD0</span><span style=\"font-weight: bold\">></span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
233
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> languages = <span style=\"font-weight: bold\">[</span><span style=\"color: #808000; text-decoration-color: #808000\">'en'</span>, <span style=\"color: #808000; text-decoration-color: #808000\">'de'</span><span style=\"font-weight: bold\">]</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
234
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> min_confidence = <span style=\"color: #0000ff; text-decoration-color: #0000ff\">None</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
235
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> options = <span style=\"color: #0000ff; text-decoration-color: #0000ff\">None</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
236
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> processed_img = <span style=\"font-weight: bold\"><</span><span style=\"color: #ff00ff; text-decoration-color: #ff00ff; font-weight: bold\">PIL.Image.Image</span><span style=\"color: #000000; text-decoration-color: #000000\"> image </span><span style=\"color: #808000; text-decoration-color: #808000\">mode</span><span style=\"color: #000000; text-decoration-color: #000000\">=</span><span style=\"color: #800080; text-decoration-color: #800080\">RGB</span><span style=\"color: #000000; text-decoration-color: #000000\"> </span><span style=\"color: #808000; text-decoration-color: #808000\">size</span><span style=\"color: #000000; text-decoration-color: #000000\">=</span><span style=\"color: #800080; text-decoration-color: #800080\">1275x1651</span><span style=\"color: #000000; text-decoration-color: #000000\"> at </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">0x35512CCD0</span><span style=\"font-weight: bold\">></span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
237
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> results = <span style=\"font-weight: bold\">[]</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
238
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> self = <span style=\"font-weight: bold\"><</span><span style=\"color: #ff00ff; text-decoration-color: #ff00ff; font-weight: bold\">natural_pdf.ocr.engine_surya.SuryaOCREngine</span><span style=\"color: #000000; text-decoration-color: #000000\"> object at </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">0x35512cfd0</span><span style=\"font-weight: bold\">></span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
239
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> single_image = <span style=\"color: #0000ff; text-decoration-color: #0000ff\">False</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
240
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">╰────────────────────────────────────────────────────────────────────────────────────────────╯</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
241
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
242
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #bfbf7f; text-decoration-color: #bfbf7f\">/Users/soma/Development/natural-pdf/natural_pdf/ocr/</span><span style=\"color: #808000; text-decoration-color: #808000; font-weight: bold\">engine_surya.py</span>:<span style=\"color: #0000ff; text-decoration-color: #0000ff\">71</span> in <span style=\"color: #00ff00; text-decoration-color: #00ff00\">_process_single_image</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
243
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
244
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\"> 68 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">if</span> detect_only: <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
245
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\"> 69 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ </span>results = <span style=\"color: #00ffff; text-decoration-color: #00ffff\">self</span>._detection_predictor(images=[image]) <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
246
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\"> 70 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">else</span>: <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
247
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">❱ </span> 71 <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ </span>results = <span style=\"color: #00ffff; text-decoration-color: #00ffff\">self</span>._recognition_predictor( <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
248
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\"> 72 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ │ </span>images=[image], <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
249
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\"> 73 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ │ </span>langs=langs, <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\"># Use the languages set during initialization</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
250
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\"> 74 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ │ </span>det_predictor=<span style=\"color: #00ffff; text-decoration-color: #00ffff\">self</span>._detection_predictor, <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
251
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
252
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">╭───────────────────────────────────── locals ──────────────────────────────────────╮</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
253
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> detect_only = <span style=\"color: #0000ff; text-decoration-color: #0000ff\">False</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
254
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> image = <span style=\"font-weight: bold\"><</span><span style=\"color: #ff00ff; text-decoration-color: #ff00ff; font-weight: bold\">PIL.Image.Image</span><span style=\"color: #000000; text-decoration-color: #000000\"> image </span><span style=\"color: #808000; text-decoration-color: #808000\">mode</span><span style=\"color: #000000; text-decoration-color: #000000\">=</span><span style=\"color: #800080; text-decoration-color: #800080\">RGB</span><span style=\"color: #000000; text-decoration-color: #000000\"> </span><span style=\"color: #808000; text-decoration-color: #808000\">size</span><span style=\"color: #000000; text-decoration-color: #000000\">=</span><span style=\"color: #800080; text-decoration-color: #800080\">1275x1651</span><span style=\"color: #000000; text-decoration-color: #000000\"> at </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">0x35512CCD0</span><span style=\"font-weight: bold\">></span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
255
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> langs = <span style=\"font-weight: bold\">[[</span><span style=\"color: #808000; text-decoration-color: #808000\">'en'</span><span style=\"font-weight: bold\">]</span>, <span style=\"font-weight: bold\">[</span><span style=\"color: #808000; text-decoration-color: #808000\">'de'</span><span style=\"font-weight: bold\">]]</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
256
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> options = <span style=\"color: #0000ff; text-decoration-color: #0000ff\">None</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
257
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> self = <span style=\"font-weight: bold\"><</span><span style=\"color: #ff00ff; text-decoration-color: #ff00ff; font-weight: bold\">natural_pdf.ocr.engine_surya.SuryaOCREngine</span><span style=\"color: #000000; text-decoration-color: #000000\"> object at </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">0x35512cfd0</span><span style=\"font-weight: bold\">></span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
258
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">╰───────────────────────────────────────────────────────────────────────────────────╯</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
259
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
260
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #bfbf7f; text-decoration-color: #bfbf7f\">/Users/soma/.pyenv/versions/3.10.13/lib/python3.10/site-packages/surya/recognition/</span><span style=\"color: #808000; text-decoration-color: #808000; font-weight: bold\">__init__.py</span>:<span style=\"color: #0000ff; text-decoration-color: #0000ff\">4</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
261
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #0000ff; text-decoration-color: #0000ff\">4</span> in <span style=\"color: #00ff00; text-decoration-color: #00ff00\">__call__</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
262
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
263
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\"> 41 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ </span>polygons: List[List[List[List[<span style=\"color: #00ffff; text-decoration-color: #00ffff\">int</span>]]]] | <span style=\"color: #0000ff; text-decoration-color: #0000ff\">None</span> = <span style=\"color: #0000ff; text-decoration-color: #0000ff\">None</span>, <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
264
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\"> 42 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ </span>sort_lines: <span style=\"color: #00ffff; text-decoration-color: #00ffff\">bool</span> = <span style=\"color: #0000ff; text-decoration-color: #0000ff\">True</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
265
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\"> 43 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ </span>) -> List[OCRResult]: <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
266
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">❱ </span> 44 <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">assert</span> <span style=\"color: #00ffff; text-decoration-color: #00ffff\">len</span>(images) == <span style=\"color: #00ffff; text-decoration-color: #00ffff\">len</span>(langs), <span style=\"color: #808000; text-decoration-color: #808000\">\"You need to pass in one list of languages</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
267
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\"> 45 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ </span>images = convert_if_not_rgb(images) <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
268
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\"> 46 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">if</span> highres_images <span style=\"color: #ff00ff; text-decoration-color: #ff00ff\">is</span> <span style=\"color: #ff00ff; text-decoration-color: #ff00ff\">not</span> <span style=\"color: #0000ff; text-decoration-color: #0000ff\">None</span>: <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
269
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\"> 47 </span><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">│ │ │ │ </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">assert</span> <span style=\"color: #00ffff; text-decoration-color: #00ffff\">len</span>(images) == <span style=\"color: #00ffff; text-decoration-color: #00ffff\">len</span>(highres_images), <span style=\"color: #808000; text-decoration-color: #808000\">\"You need to pass in one high</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
270
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
271
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">╭───────────────────────────────────────── locals ──────────────────────────────────────────╮</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
272
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> bboxes = <span style=\"color: #0000ff; text-decoration-color: #0000ff\">None</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
273
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> det_predictor = <span style=\"font-weight: bold\"><</span><span style=\"color: #ff00ff; text-decoration-color: #ff00ff; font-weight: bold\">surya.detection.DetectionPredictor</span><span style=\"color: #000000; text-decoration-color: #000000\"> object at </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">0x3550b5390</span><span style=\"font-weight: bold\">></span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
274
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> detection_batch_size = <span style=\"color: #0000ff; text-decoration-color: #0000ff\">None</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
275
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> highres_images = <span style=\"color: #0000ff; text-decoration-color: #0000ff\">None</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
276
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> images = <span style=\"font-weight: bold\">[<</span><span style=\"color: #ff00ff; text-decoration-color: #ff00ff; font-weight: bold\">PIL.Image.Image</span><span style=\"color: #000000; text-decoration-color: #000000\"> image </span><span style=\"color: #808000; text-decoration-color: #808000\">mode</span><span style=\"color: #000000; text-decoration-color: #000000\">=</span><span style=\"color: #800080; text-decoration-color: #800080\">RGB</span><span style=\"color: #000000; text-decoration-color: #000000\"> </span><span style=\"color: #808000; text-decoration-color: #808000\">size</span><span style=\"color: #000000; text-decoration-color: #000000\">=</span><span style=\"color: #800080; text-decoration-color: #800080\">1275x1651</span><span style=\"color: #000000; text-decoration-color: #000000\"> at </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">0x35512CCD0</span><span style=\"font-weight: bold\">>]</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
277
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> langs = <span style=\"font-weight: bold\">[[</span><span style=\"color: #808000; text-decoration-color: #808000\">'en'</span><span style=\"font-weight: bold\">]</span>, <span style=\"font-weight: bold\">[</span><span style=\"color: #808000; text-decoration-color: #808000\">'de'</span><span style=\"font-weight: bold\">]]</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
278
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> polygons = <span style=\"color: #0000ff; text-decoration-color: #0000ff\">None</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
279
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> recognition_batch_size = <span style=\"color: #0000ff; text-decoration-color: #0000ff\">None</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
280
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> self = <span style=\"font-weight: bold\"><</span><span style=\"color: #ff00ff; text-decoration-color: #ff00ff; font-weight: bold\">surya.recognition.RecognitionPredictor</span><span style=\"color: #000000; text-decoration-color: #000000\"> object at </span><span style=\"color: #0000ff; text-decoration-color: #0000ff\">0x35512c5b0</span><span style=\"font-weight: bold\">></span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
281
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> sort_lines = <span style=\"color: #0000ff; text-decoration-color: #0000ff\">True</span> <span style=\"color: #808000; text-decoration-color: #808000\">│</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
282
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">│</span> <span style=\"color: #808000; text-decoration-color: #808000\">╰───────────────────────────────────────────────────────────────────────────────────────────╯</span> <span style=\"color: #800000; text-decoration-color: #800000\">│</span>\n",
|
283
|
+
"<span style=\"color: #800000; text-decoration-color: #800000\">╰──────────────────────────────────────────────────────────────────────────────────────────────────╯</span>\n",
|
284
|
+
"<span style=\"color: #ff0000; text-decoration-color: #ff0000; font-weight: bold\">AssertionError: </span>You need to pass in one list of languages for each image\n",
|
285
|
+
"</pre>\n"
|
286
|
+
],
|
287
|
+
"text/plain": [
|
288
|
+
"\u001b[31m╭─\u001b[0m\u001b[31m──────────────────────────────\u001b[0m\u001b[31m \u001b[0m\u001b[1;31mTraceback \u001b[0m\u001b[1;2;31m(most recent call last)\u001b[0m\u001b[31m \u001b[0m\u001b[31m───────────────────────────────\u001b[0m\u001b[31m─╮\u001b[0m\n",
|
289
|
+
"\u001b[31m│\u001b[0m \u001b[2;33m/Users/soma/Development/natural-pdf/natural_pdf/ocr/\u001b[0m\u001b[1;33mocr_manager.py\u001b[0m:\u001b[94m195\u001b[0m in \u001b[92mapply_ocr\u001b[0m \u001b[31m│\u001b[0m\n",
|
290
|
+
"\u001b[31m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
291
|
+
"\u001b[31m│\u001b[0m \u001b[2m192 \u001b[0m\u001b[2m│ │ │ │ \u001b[0mlogger.debug(\u001b[33mf\u001b[0m\u001b[33m\"\u001b[0m\u001b[33m[\u001b[0m\u001b[33m{\u001b[0mthread_id\u001b[33m}\u001b[0m\u001b[33m] Acquired inference lock for \u001b[0m\u001b[33m{\u001b[0mselected_engin \u001b[31m│\u001b[0m\n",
|
292
|
+
"\u001b[31m│\u001b[0m \u001b[2m193 \u001b[0m\u001b[2m│ │ │ │ \u001b[0minference_start_time = time.monotonic() \u001b[31m│\u001b[0m\n",
|
293
|
+
"\u001b[31m│\u001b[0m \u001b[2m194 \u001b[0m\u001b[2m│ │ │ │ \u001b[0m \u001b[31m│\u001b[0m\n",
|
294
|
+
"\u001b[31m│\u001b[0m \u001b[31m❱ \u001b[0m195 \u001b[2m│ │ │ │ \u001b[0mresults = engine_instance.process_image( \u001b[31m│\u001b[0m\n",
|
295
|
+
"\u001b[31m│\u001b[0m \u001b[2m196 \u001b[0m\u001b[2m│ │ │ │ │ \u001b[0mimages=images, \u001b[31m│\u001b[0m\n",
|
296
|
+
"\u001b[31m│\u001b[0m \u001b[2m197 \u001b[0m\u001b[2m│ │ │ │ │ \u001b[0mlanguages=languages, \u001b[31m│\u001b[0m\n",
|
297
|
+
"\u001b[31m│\u001b[0m \u001b[2m198 \u001b[0m\u001b[2m│ │ │ │ │ \u001b[0mmin_confidence=min_confidence, \u001b[31m│\u001b[0m\n",
|
298
|
+
"\u001b[31m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
299
|
+
"\u001b[31m│\u001b[0m \u001b[33m╭─\u001b[0m\u001b[33m──────────────────────────────────────────\u001b[0m\u001b[33m locals \u001b[0m\u001b[33m──────────────────────────────────────────\u001b[0m\u001b[33m─╮\u001b[0m \u001b[31m│\u001b[0m\n",
|
300
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m detect_only = \u001b[94mFalse\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
301
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m device = \u001b[94mNone\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
302
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m e = \u001b[1;35mAssertionError\u001b[0m\u001b[1m(\u001b[0m\u001b[33m'You need to pass in one list of languages for each\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
303
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m \u001b[33mimage'\u001b[0m\u001b[1m)\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
304
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m engine = \u001b[33m'surya'\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
305
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m engine_instance = \u001b[1m<\u001b[0m\u001b[1;95mnatural_pdf.ocr.engine_surya.SuryaOCREngine\u001b[0m\u001b[39m object at \u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
306
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m \u001b[94m0x35512cfd0\u001b[0m\u001b[1m>\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
307
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m final_options = \u001b[94mNone\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
308
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m image_dims = \u001b[1m[\u001b[0m\u001b[33m'1275x1651'\u001b[0m\u001b[1m]\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
309
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m images = \u001b[1m[\u001b[0m\u001b[1m<\u001b[0m\u001b[1;95mPIL.Image.Image\u001b[0m\u001b[39m image \u001b[0m\u001b[33mmode\u001b[0m\u001b[39m=\u001b[0m\u001b[35mRGB\u001b[0m\u001b[39m \u001b[0m\u001b[33msize\u001b[0m\u001b[39m=\u001b[0m\u001b[35m1275x1651\u001b[0m\u001b[39m at \u001b[0m\u001b[94m0x35512CCD0\u001b[0m\u001b[1m>\u001b[0m\u001b[1m]\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
310
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m inference_acquired_time = \u001b[94m272326.616208958\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
311
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m inference_lock = \u001b[1m<\u001b[0m\u001b[1;95munlocked\u001b[0m\u001b[39m _thread.lock object at \u001b[0m\u001b[94m0x35511eec0\u001b[0m\u001b[1m>\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
312
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m inference_start_time = \u001b[94m272326.616209666\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
313
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m inference_wait_start = \u001b[94m272326.616208708\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
314
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m is_batch = \u001b[94mTrue\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
315
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m languages = \u001b[1m[\u001b[0m\u001b[33m'en'\u001b[0m, \u001b[33m'de'\u001b[0m\u001b[1m]\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
316
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m min_confidence = \u001b[94mNone\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
317
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m options = \u001b[94mNone\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
318
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m processing_mode = \u001b[33m'batch'\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
319
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m selected_engine_name = \u001b[33m'surya'\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
320
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m self = \u001b[1m<\u001b[0m\u001b[1;95mnatural_pdf.ocr.ocr_manager.OCRManager\u001b[0m\u001b[39m object at \u001b[0m\u001b[94m0x104beb580\u001b[0m\u001b[1m>\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
321
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m thread_id = \u001b[33m'MainThread'\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
322
|
+
"\u001b[31m│\u001b[0m \u001b[33m╰──────────────────────────────────────────────────────────────────────────────────────────────╯\u001b[0m \u001b[31m│\u001b[0m\n",
|
323
|
+
"\u001b[31m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
324
|
+
"\u001b[31m│\u001b[0m \u001b[2;33m/Users/soma/Development/natural-pdf/natural_pdf/ocr/\u001b[0m\u001b[1;33mengine.py\u001b[0m:\u001b[94m117\u001b[0m in \u001b[92mprocess_image\u001b[0m \u001b[31m│\u001b[0m\n",
|
325
|
+
"\u001b[31m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
326
|
+
"\u001b[31m│\u001b[0m \u001b[2m114 \u001b[0m\u001b[2m│ │ │ \u001b[0mprocessed_img = \u001b[96mself\u001b[0m._preprocess_image(img) \u001b[31m│\u001b[0m\n",
|
327
|
+
"\u001b[31m│\u001b[0m \u001b[2m115 \u001b[0m\u001b[2m│ │ │ \u001b[0m \u001b[31m│\u001b[0m\n",
|
328
|
+
"\u001b[31m│\u001b[0m \u001b[2m116 \u001b[0m\u001b[2m│ │ │ \u001b[0m\u001b[2m# Process the image with the engine-specific implementation\u001b[0m \u001b[31m│\u001b[0m\n",
|
329
|
+
"\u001b[31m│\u001b[0m \u001b[31m❱ \u001b[0m117 \u001b[2m│ │ │ \u001b[0mraw_results = \u001b[96mself\u001b[0m._process_single_image(processed_img, detect_only, options \u001b[31m│\u001b[0m\n",
|
330
|
+
"\u001b[31m│\u001b[0m \u001b[2m118 \u001b[0m\u001b[2m│ │ │ \u001b[0m \u001b[31m│\u001b[0m\n",
|
331
|
+
"\u001b[31m│\u001b[0m \u001b[2m119 \u001b[0m\u001b[2m│ │ │ \u001b[0m\u001b[2m# Convert results to standardized format\u001b[0m \u001b[31m│\u001b[0m\n",
|
332
|
+
"\u001b[31m│\u001b[0m \u001b[2m120 \u001b[0m\u001b[2m│ │ │ \u001b[0mtext_regions = \u001b[96mself\u001b[0m._standardize_results(raw_results, effective_confidence, \u001b[31m│\u001b[0m\n",
|
333
|
+
"\u001b[31m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
334
|
+
"\u001b[31m│\u001b[0m \u001b[33m╭─\u001b[0m\u001b[33m─────────────────────────────────────────\u001b[0m\u001b[33m locals \u001b[0m\u001b[33m─────────────────────────────────────────\u001b[0m\u001b[33m─╮\u001b[0m \u001b[31m│\u001b[0m\n",
|
335
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m detect_only = \u001b[94mFalse\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
336
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m device = \u001b[94mNone\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
337
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m effective_confidence = \u001b[94m0.2\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
338
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m effective_device = \u001b[33m'cpu'\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
339
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m effective_languages = \u001b[1m[\u001b[0m\u001b[33m'en'\u001b[0m, \u001b[33m'de'\u001b[0m\u001b[1m]\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
340
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m image_batch = \u001b[1m[\u001b[0m\u001b[1m<\u001b[0m\u001b[1;95mPIL.Image.Image\u001b[0m\u001b[39m image \u001b[0m\u001b[33mmode\u001b[0m\u001b[39m=\u001b[0m\u001b[35mRGB\u001b[0m\u001b[39m \u001b[0m\u001b[33msize\u001b[0m\u001b[39m=\u001b[0m\u001b[35m1275x1651\u001b[0m\u001b[39m at \u001b[0m\u001b[94m0x35512CCD0\u001b[0m\u001b[1m>\u001b[0m\u001b[1m]\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
341
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m images = \u001b[1m[\u001b[0m\u001b[1m<\u001b[0m\u001b[1;95mPIL.Image.Image\u001b[0m\u001b[39m image \u001b[0m\u001b[33mmode\u001b[0m\u001b[39m=\u001b[0m\u001b[35mRGB\u001b[0m\u001b[39m \u001b[0m\u001b[33msize\u001b[0m\u001b[39m=\u001b[0m\u001b[35m1275x1651\u001b[0m\u001b[39m at \u001b[0m\u001b[94m0x35512CCD0\u001b[0m\u001b[1m>\u001b[0m\u001b[1m]\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
342
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m img = \u001b[1m<\u001b[0m\u001b[1;95mPIL.Image.Image\u001b[0m\u001b[39m image \u001b[0m\u001b[33mmode\u001b[0m\u001b[39m=\u001b[0m\u001b[35mRGB\u001b[0m\u001b[39m \u001b[0m\u001b[33msize\u001b[0m\u001b[39m=\u001b[0m\u001b[35m1275x1651\u001b[0m\u001b[39m at \u001b[0m\u001b[94m0x35512CCD0\u001b[0m\u001b[1m>\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
343
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m languages = \u001b[1m[\u001b[0m\u001b[33m'en'\u001b[0m, \u001b[33m'de'\u001b[0m\u001b[1m]\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
344
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m min_confidence = \u001b[94mNone\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
345
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m options = \u001b[94mNone\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
346
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m processed_img = \u001b[1m<\u001b[0m\u001b[1;95mPIL.Image.Image\u001b[0m\u001b[39m image \u001b[0m\u001b[33mmode\u001b[0m\u001b[39m=\u001b[0m\u001b[35mRGB\u001b[0m\u001b[39m \u001b[0m\u001b[33msize\u001b[0m\u001b[39m=\u001b[0m\u001b[35m1275x1651\u001b[0m\u001b[39m at \u001b[0m\u001b[94m0x35512CCD0\u001b[0m\u001b[1m>\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
347
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m results = \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
348
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m self = \u001b[1m<\u001b[0m\u001b[1;95mnatural_pdf.ocr.engine_surya.SuryaOCREngine\u001b[0m\u001b[39m object at \u001b[0m\u001b[94m0x35512cfd0\u001b[0m\u001b[1m>\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
349
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m single_image = \u001b[94mFalse\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
350
|
+
"\u001b[31m│\u001b[0m \u001b[33m╰────────────────────────────────────────────────────────────────────────────────────────────╯\u001b[0m \u001b[31m│\u001b[0m\n",
|
351
|
+
"\u001b[31m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
352
|
+
"\u001b[31m│\u001b[0m \u001b[2;33m/Users/soma/Development/natural-pdf/natural_pdf/ocr/\u001b[0m\u001b[1;33mengine_surya.py\u001b[0m:\u001b[94m71\u001b[0m in \u001b[92m_process_single_image\u001b[0m \u001b[31m│\u001b[0m\n",
|
353
|
+
"\u001b[31m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
354
|
+
"\u001b[31m│\u001b[0m \u001b[2m 68 \u001b[0m\u001b[2m│ │ \u001b[0m\u001b[94mif\u001b[0m detect_only: \u001b[31m│\u001b[0m\n",
|
355
|
+
"\u001b[31m│\u001b[0m \u001b[2m 69 \u001b[0m\u001b[2m│ │ │ \u001b[0mresults = \u001b[96mself\u001b[0m._detection_predictor(images=[image]) \u001b[31m│\u001b[0m\n",
|
356
|
+
"\u001b[31m│\u001b[0m \u001b[2m 70 \u001b[0m\u001b[2m│ │ \u001b[0m\u001b[94melse\u001b[0m: \u001b[31m│\u001b[0m\n",
|
357
|
+
"\u001b[31m│\u001b[0m \u001b[31m❱ \u001b[0m 71 \u001b[2m│ │ │ \u001b[0mresults = \u001b[96mself\u001b[0m._recognition_predictor( \u001b[31m│\u001b[0m\n",
|
358
|
+
"\u001b[31m│\u001b[0m \u001b[2m 72 \u001b[0m\u001b[2m│ │ │ │ \u001b[0mimages=[image], \u001b[31m│\u001b[0m\n",
|
359
|
+
"\u001b[31m│\u001b[0m \u001b[2m 73 \u001b[0m\u001b[2m│ │ │ │ \u001b[0mlangs=langs, \u001b[2m# Use the languages set during initialization\u001b[0m \u001b[31m│\u001b[0m\n",
|
360
|
+
"\u001b[31m│\u001b[0m \u001b[2m 74 \u001b[0m\u001b[2m│ │ │ │ \u001b[0mdet_predictor=\u001b[96mself\u001b[0m._detection_predictor, \u001b[31m│\u001b[0m\n",
|
361
|
+
"\u001b[31m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
362
|
+
"\u001b[31m│\u001b[0m \u001b[33m╭─\u001b[0m\u001b[33m────────────────────────────────────\u001b[0m\u001b[33m locals \u001b[0m\u001b[33m─────────────────────────────────────\u001b[0m\u001b[33m─╮\u001b[0m \u001b[31m│\u001b[0m\n",
|
363
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m detect_only = \u001b[94mFalse\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
364
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m image = \u001b[1m<\u001b[0m\u001b[1;95mPIL.Image.Image\u001b[0m\u001b[39m image \u001b[0m\u001b[33mmode\u001b[0m\u001b[39m=\u001b[0m\u001b[35mRGB\u001b[0m\u001b[39m \u001b[0m\u001b[33msize\u001b[0m\u001b[39m=\u001b[0m\u001b[35m1275x1651\u001b[0m\u001b[39m at \u001b[0m\u001b[94m0x35512CCD0\u001b[0m\u001b[1m>\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
365
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m langs = \u001b[1m[\u001b[0m\u001b[1m[\u001b[0m\u001b[33m'en'\u001b[0m\u001b[1m]\u001b[0m, \u001b[1m[\u001b[0m\u001b[33m'de'\u001b[0m\u001b[1m]\u001b[0m\u001b[1m]\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
366
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m options = \u001b[94mNone\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
367
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m self = \u001b[1m<\u001b[0m\u001b[1;95mnatural_pdf.ocr.engine_surya.SuryaOCREngine\u001b[0m\u001b[39m object at \u001b[0m\u001b[94m0x35512cfd0\u001b[0m\u001b[1m>\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
368
|
+
"\u001b[31m│\u001b[0m \u001b[33m╰───────────────────────────────────────────────────────────────────────────────────╯\u001b[0m \u001b[31m│\u001b[0m\n",
|
369
|
+
"\u001b[31m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
370
|
+
"\u001b[31m│\u001b[0m \u001b[2;33m/Users/soma/.pyenv/versions/3.10.13/lib/python3.10/site-packages/surya/recognition/\u001b[0m\u001b[1;33m__init__.py\u001b[0m:\u001b[94m4\u001b[0m \u001b[31m│\u001b[0m\n",
|
371
|
+
"\u001b[31m│\u001b[0m \u001b[94m4\u001b[0m in \u001b[92m__call__\u001b[0m \u001b[31m│\u001b[0m\n",
|
372
|
+
"\u001b[31m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
373
|
+
"\u001b[31m│\u001b[0m \u001b[2m 41 \u001b[0m\u001b[2m│ │ │ \u001b[0mpolygons: List[List[List[List[\u001b[96mint\u001b[0m]]]] | \u001b[94mNone\u001b[0m = \u001b[94mNone\u001b[0m, \u001b[31m│\u001b[0m\n",
|
374
|
+
"\u001b[31m│\u001b[0m \u001b[2m 42 \u001b[0m\u001b[2m│ │ │ \u001b[0msort_lines: \u001b[96mbool\u001b[0m = \u001b[94mTrue\u001b[0m \u001b[31m│\u001b[0m\n",
|
375
|
+
"\u001b[31m│\u001b[0m \u001b[2m 43 \u001b[0m\u001b[2m│ \u001b[0m) -> List[OCRResult]: \u001b[31m│\u001b[0m\n",
|
376
|
+
"\u001b[31m│\u001b[0m \u001b[31m❱ \u001b[0m 44 \u001b[2m│ │ │ \u001b[0m\u001b[94massert\u001b[0m \u001b[96mlen\u001b[0m(images) == \u001b[96mlen\u001b[0m(langs), \u001b[33m\"\u001b[0m\u001b[33mYou need to pass in one list of languages\u001b[0m \u001b[31m│\u001b[0m\n",
|
377
|
+
"\u001b[31m│\u001b[0m \u001b[2m 45 \u001b[0m\u001b[2m│ │ │ \u001b[0mimages = convert_if_not_rgb(images) \u001b[31m│\u001b[0m\n",
|
378
|
+
"\u001b[31m│\u001b[0m \u001b[2m 46 \u001b[0m\u001b[2m│ │ │ \u001b[0m\u001b[94mif\u001b[0m highres_images \u001b[95mis\u001b[0m \u001b[95mnot\u001b[0m \u001b[94mNone\u001b[0m: \u001b[31m│\u001b[0m\n",
|
379
|
+
"\u001b[31m│\u001b[0m \u001b[2m 47 \u001b[0m\u001b[2m│ │ │ │ \u001b[0m\u001b[94massert\u001b[0m \u001b[96mlen\u001b[0m(images) == \u001b[96mlen\u001b[0m(highres_images), \u001b[33m\"\u001b[0m\u001b[33mYou need to pass in one high\u001b[0m \u001b[31m│\u001b[0m\n",
|
380
|
+
"\u001b[31m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
381
|
+
"\u001b[31m│\u001b[0m \u001b[33m╭─\u001b[0m\u001b[33m────────────────────────────────────────\u001b[0m\u001b[33m locals \u001b[0m\u001b[33m─────────────────────────────────────────\u001b[0m\u001b[33m─╮\u001b[0m \u001b[31m│\u001b[0m\n",
|
382
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m bboxes = \u001b[94mNone\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
383
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m det_predictor = \u001b[1m<\u001b[0m\u001b[1;95msurya.detection.DetectionPredictor\u001b[0m\u001b[39m object at \u001b[0m\u001b[94m0x3550b5390\u001b[0m\u001b[1m>\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
384
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m detection_batch_size = \u001b[94mNone\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
385
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m highres_images = \u001b[94mNone\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
386
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m images = \u001b[1m[\u001b[0m\u001b[1m<\u001b[0m\u001b[1;95mPIL.Image.Image\u001b[0m\u001b[39m image \u001b[0m\u001b[33mmode\u001b[0m\u001b[39m=\u001b[0m\u001b[35mRGB\u001b[0m\u001b[39m \u001b[0m\u001b[33msize\u001b[0m\u001b[39m=\u001b[0m\u001b[35m1275x1651\u001b[0m\u001b[39m at \u001b[0m\u001b[94m0x35512CCD0\u001b[0m\u001b[1m>\u001b[0m\u001b[1m]\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
387
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m langs = \u001b[1m[\u001b[0m\u001b[1m[\u001b[0m\u001b[33m'en'\u001b[0m\u001b[1m]\u001b[0m, \u001b[1m[\u001b[0m\u001b[33m'de'\u001b[0m\u001b[1m]\u001b[0m\u001b[1m]\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
388
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m polygons = \u001b[94mNone\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
389
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m recognition_batch_size = \u001b[94mNone\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
390
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m self = \u001b[1m<\u001b[0m\u001b[1;95msurya.recognition.RecognitionPredictor\u001b[0m\u001b[39m object at \u001b[0m\u001b[94m0x35512c5b0\u001b[0m\u001b[1m>\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
391
|
+
"\u001b[31m│\u001b[0m \u001b[33m│\u001b[0m sort_lines = \u001b[94mTrue\u001b[0m \u001b[33m│\u001b[0m \u001b[31m│\u001b[0m\n",
|
392
|
+
"\u001b[31m│\u001b[0m \u001b[33m╰───────────────────────────────────────────────────────────────────────────────────────────╯\u001b[0m \u001b[31m│\u001b[0m\n",
|
393
|
+
"\u001b[31m╰──────────────────────────────────────────────────────────────────────────────────────────────────╯\u001b[0m\n",
|
394
|
+
"\u001b[1;91mAssertionError: \u001b[0mYou need to pass in one list of languages for each image\n"
|
395
|
+
]
|
396
|
+
},
|
397
|
+
"metadata": {},
|
398
|
+
"output_type": "display_data"
|
399
|
+
},
|
249
400
|
{
|
250
401
|
"name": "stderr",
|
251
402
|
"output_type": "stream",
|
252
403
|
"text": [
|
253
|
-
"\u001b[2m2025-04-
|
404
|
+
"\u001b[2m2025-04-27T16:34:08.337905Z\u001b[0m [\u001b[31m\u001b[1merror \u001b[0m] \u001b[1mAn unexpected error occurred during OCR processing: You need to pass in one list of languages for each image\u001b[0m \u001b[36mlineno\u001b[0m=\u001b[35m236\u001b[0m \u001b[36mmodule\u001b[0m=\u001b[35mnatural_pdf.ocr.ocr_manager\u001b[0m\n",
|
405
|
+
"\n"
|
254
406
|
]
|
255
407
|
},
|
256
408
|
{
|
257
409
|
"name": "stderr",
|
258
410
|
"output_type": "stream",
|
259
411
|
"text": [
|
260
|
-
"[2025-04-
|
412
|
+
"[2025-04-27 12:34:08,337] [ ERROR] ocr_manager.py:236 - An unexpected error occurred during OCR processing: You need to pass in one list of languages for each image\n",
|
413
|
+
"Traceback (most recent call last):\n",
|
414
|
+
" File \"/Users/soma/Development/natural-pdf/natural_pdf/ocr/ocr_manager.py\", line 195, in apply_ocr\n",
|
415
|
+
" results = engine_instance.process_image(\n",
|
416
|
+
" File \"/Users/soma/Development/natural-pdf/natural_pdf/ocr/engine.py\", line 117, in process_image\n",
|
417
|
+
" raw_results = self._process_single_image(processed_img, detect_only, options)\n",
|
418
|
+
" File \"/Users/soma/Development/natural-pdf/natural_pdf/ocr/engine_surya.py\", line 71, in _process_single_image\n",
|
419
|
+
" results = self._recognition_predictor(\n",
|
420
|
+
" File \"/Users/soma/.pyenv/versions/3.10.13/lib/python3.10/site-packages/surya/recognition/__init__.py\", line 44, in __call__\n",
|
421
|
+
" assert len(images) == len(langs), \"You need to pass in one list of languages for each image\"\n",
|
422
|
+
"AssertionError: You need to pass in one list of languages for each image\n"
|
261
423
|
]
|
262
424
|
},
|
263
425
|
{
|
264
|
-
"name": "
|
426
|
+
"name": "stderr",
|
265
427
|
"output_type": "stream",
|
266
428
|
"text": [
|
267
|
-
"\n"
|
429
|
+
"\u001b[2m2025-04-27T16:34:08.409507Z\u001b[0m [\u001b[31m\u001b[1merror \u001b[0m] \u001b[1mBatch OCR processing failed: You need to pass in one list of languages for each image\u001b[0m \u001b[36mlineno\u001b[0m=\u001b[35m366\u001b[0m \u001b[36mmodule\u001b[0m=\u001b[35mnatural_pdf.core.pdf\u001b[0m\n"
|
268
430
|
]
|
269
431
|
},
|
270
432
|
{
|
271
|
-
"name": "
|
433
|
+
"name": "stderr",
|
272
434
|
"output_type": "stream",
|
273
435
|
"text": [
|
274
|
-
"
|
436
|
+
"[2025-04-27 12:34:08,409] [ ERROR] pdf.py:366 - Batch OCR processing failed: You need to pass in one list of languages for each image\n"
|
275
437
|
]
|
276
438
|
},
|
277
439
|
{
|
278
440
|
"name": "stdout",
|
279
441
|
"output_type": "stream",
|
280
442
|
"text": [
|
281
|
-
"
|
443
|
+
"\n",
|
444
|
+
"Extracted text after OCR:\n",
|
445
|
+
"...\n"
|
282
446
|
]
|
283
447
|
}
|
284
448
|
],
|
285
449
|
"source": [
|
286
|
-
"#
|
287
|
-
"page.
|
288
|
-
"
|
289
|
-
"\n",
|
290
|
-
"
|
291
|
-
"
|
292
|
-
"\n",
|
293
|
-
"# Visualize
|
294
|
-
"
|
295
|
-
"\n",
|
296
|
-
"#
|
297
|
-
"
|
298
|
-
"
|
299
|
-
"
|
300
|
-
"
|
301
|
-
"
|
450
|
+
"# Apply OCR using the default engine (EasyOCR) for English\n",
|
451
|
+
"page.apply_ocr(languages=['en'])\n",
|
452
|
+
"\n",
|
453
|
+
"# Select all text pieces found by OCR\n",
|
454
|
+
"text_elements = page.find_all('text[source=ocr]')\n",
|
455
|
+
"print(f\"Found {len(text_elements)} text elements using default OCR\")\n",
|
456
|
+
"\n",
|
457
|
+
"# Visualize the elements\n",
|
458
|
+
"text_elements.highlight()\n",
|
459
|
+
"\n",
|
460
|
+
"# Apply OCR using PaddleOCR for English and Chinese\n",
|
461
|
+
"page.apply_ocr(engine='paddle', languages=['en', 'ch_sim'])\n",
|
462
|
+
"\n",
|
463
|
+
"# Apply OCR using SuryaOCR for English and German\n",
|
464
|
+
"page.apply_ocr(engine='surya', languages=['en', 'de'])\n",
|
465
|
+
"\n",
|
466
|
+
"text_with_ocr = page.extract_text()\n",
|
467
|
+
"print(f\"\\nExtracted text after OCR:\\n{text_with_ocr[:150]}...\")"
|
302
468
|
]
|
303
469
|
},
|
304
470
|
{
|
305
471
|
"cell_type": "markdown",
|
306
|
-
"id": "
|
472
|
+
"id": "95099bf7",
|
307
473
|
"metadata": {},
|
308
474
|
"source": [
|
309
|
-
"##
|
475
|
+
"## Advanced OCR Configuration\n",
|
476
|
+
"\n",
|
477
|
+
"For more control, import and use the specific `Options` class for your chosen engine within the `apply_ocr` call."
|
310
478
|
]
|
311
479
|
},
|
312
480
|
{
|
313
481
|
"cell_type": "code",
|
314
|
-
"execution_count":
|
315
|
-
"id": "
|
482
|
+
"execution_count": 4,
|
483
|
+
"id": "d2808068",
|
316
484
|
"metadata": {
|
317
485
|
"execution": {
|
318
|
-
"iopub.execute_input": "2025-04-
|
319
|
-
"iopub.status.busy": "2025-04-
|
320
|
-
"iopub.status.idle": "2025-04-
|
321
|
-
"shell.execute_reply": "2025-04-
|
486
|
+
"iopub.execute_input": "2025-04-27T16:34:08.412785Z",
|
487
|
+
"iopub.status.busy": "2025-04-27T16:34:08.412688Z",
|
488
|
+
"iopub.status.idle": "2025-04-27T16:34:26.977343Z",
|
489
|
+
"shell.execute_reply": "2025-04-27T16:34:26.977013Z"
|
322
490
|
}
|
323
491
|
},
|
324
492
|
"outputs": [
|
325
493
|
{
|
326
494
|
"data": {
|
495
|
+
"application/vnd.jupyter.widget-view+json": {
|
496
|
+
"model_id": "2604f98986f34efab6df0e7dbf9ed4f5",
|
497
|
+
"version_major": 2,
|
498
|
+
"version_minor": 0
|
499
|
+
},
|
327
500
|
"text/plain": [
|
328
|
-
"
|
329
|
-
" 'Date: February 3, 1905': \"Jungle Health and Satety Inspection Service\\n INS-UPONSINCLAIR \\n \\nSite: Durham's Meatpacking Chicago, IIl.\\n \\n \\n \\nSummary: Worst of any, however; were the fertilizer men, and those who served in the cooking rooms\\nThese people could not be shown to the visitor for the odor of a fertilizer man would scare any\\nvisitor at a hundred yards, and as for the other men, who worked in tank rooms full of steam, and in\\nsome of which there were open vats near the level of the floor; their peculiar trouble was that they fell\\ninlo the vats; and when they were fished out; there was never enough of them left to be worth\\ntheywould be overlooked for days, till all but the bones of them had gone out\\nto thc world as Durham's Purc Lcaf Lard!\\n \\n \\n \\n \\n \\n \\n \\n \\n \\nDescription \\n \\nUnsanitary Working Conditions\\nInadequate Protective Equipment:\\nIneffective Injury Prevention _\\n \\nFailure to Properly Storc Hazardous Materials_\\nLack of AdequateFireSafety Measures_\\nInadequate Ventilation Systems\\n \\nInsufficient Employee Training for Safe Work Practices\\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\nJungle Health and Salety Irspection Service\",\n",
|
330
|
-
" 'Violation Count': \"Site: Durham's Meatpacking Chicago, IIl.\\nDate: February 3, 1905 \\n \\n \\nSummary: Worst of any, however; were the fertilizer men, and those who served in the cooking rooms\\nThese people could not be shown to the visitor for the odor of a fertilizer man would scare any\\nvisitor at a hundred yards, and as for the other men, who worked in tank rooms full of steam, and in\\nsome of which there were open vats near the level of the floor; their peculiar trouble was that they fell\\ninlo the vats; and when they were fished out; there was never enough of them left to be worth\\nsometimestheywould be overlooked for days, till all but the bones of them had gone out\\nto thc world as Durham's Purc Lcaf Lard!\\n \\n \\n \\n \\n \\n \\n \\n \\n \\nDescription \\n \\nUnsanitary Working Conditions\\nInadequate Protective Equipment:\\nIneffective Injury Prevention _\\n \\nFailure to Properly Storc Hazardous Materials_\\nLack of AdequateFireSafety Measures_\\nInadequate Ventilation Systems\\n \\nInsufficient Employee Training for Safe Work Practices\\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\nJungle Health and Salety Irspection Service\",\n",
|
331
|
-
" 'Summary: Worst of any, however; were the fertilizer men, and those who served in the cooking rooms': 'Red (ZGB tuple] \\n \\nJungle Health and Satety Inspection Service\\n \\n \\n \\n \\n \\n \\n \\nordinary \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\nRepeat?',\n",
|
332
|
-
" 'Inadequate Protective Equipment': 'Jungle Health and Satety Inspection Service\\nINS-UPONSINCLAIR \\n \\n \\n \\n \\n \\nSummary: Worst of any, however; were the fertilizer men, and those who served in the cooking rooms\\nThese people could not be shown to the visitor for the odor of a fertilizer man would scare anyordinary\\nvisitor at a hundred yards, and as for the other men, who worked in tank rooms full of steam, and in\\nsome of which there were open vats near the level of the floor; their peculiar trouble was that they fell\\ninlo the vats; and when they were fished out; there was never enough of them left to be worth\\nwould be overlooked for days, till all but the bones of them had gone out\\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\nLevel \\nCritical \\nSerious \\n \\nSerious \\nFailure to Properly Storc Hazardous Materials_ Critical\\nSafety Measures_ Serious \\nSerious \\n \\nInsufficient Employee Training for Safe Work Practices Serious\\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\n \\nJungle Health and Salety Irspection Service'}"
|
501
|
+
"Rendering pages: 0%| | 0/1 [00:00<?, ?it/s]"
|
333
502
|
]
|
334
503
|
},
|
335
|
-
"execution_count": 7,
|
336
504
|
"metadata": {},
|
337
|
-
"output_type": "
|
338
|
-
}
|
339
|
-
],
|
340
|
-
"source": [
|
341
|
-
"# Look for potential form labels (containing a colon)\n",
|
342
|
-
"labels = page.find_all('text:contains(\":\")') \n",
|
343
|
-
"\n",
|
344
|
-
"# Visualize the labels\n",
|
345
|
-
"labels.highlight()\n",
|
346
|
-
"\n",
|
347
|
-
"# Extract form data by looking to the right of each label\n",
|
348
|
-
"form_data = {}\n",
|
349
|
-
"for label in labels:\n",
|
350
|
-
" # Clean the label text\n",
|
351
|
-
" field_name = label.text.strip().rstrip(':')\n",
|
352
|
-
" \n",
|
353
|
-
" # Find the value to the right\n",
|
354
|
-
" value_element = label.right(width=200)\n",
|
355
|
-
" value = value_element.extract_text().strip()\n",
|
356
|
-
" \n",
|
357
|
-
" # Add to our dictionary\n",
|
358
|
-
" form_data[field_name] = value\n",
|
359
|
-
"\n",
|
360
|
-
"# Display the extracted data\n",
|
361
|
-
"form_data"
|
362
|
-
]
|
363
|
-
},
|
364
|
-
{
|
365
|
-
"cell_type": "markdown",
|
366
|
-
"id": "5495e93c",
|
367
|
-
"metadata": {},
|
368
|
-
"source": [
|
369
|
-
"## Combining OCR with Layout Analysis"
|
370
|
-
]
|
371
|
-
},
|
372
|
-
{
|
373
|
-
"cell_type": "code",
|
374
|
-
"execution_count": 8,
|
375
|
-
"id": "20b489df",
|
376
|
-
"metadata": {
|
377
|
-
"execution": {
|
378
|
-
"iopub.execute_input": "2025-04-21T21:32:30.764203Z",
|
379
|
-
"iopub.status.busy": "2025-04-21T21:32:30.764045Z",
|
380
|
-
"iopub.status.idle": "2025-04-21T21:32:32.790129Z",
|
381
|
-
"shell.execute_reply": "2025-04-21T21:32:32.789771Z"
|
382
|
-
}
|
383
|
-
},
|
384
|
-
"outputs": [
|
385
|
-
{
|
386
|
-
"name": "stderr",
|
387
|
-
"output_type": "stream",
|
388
|
-
"text": [
|
389
|
-
"\u001b[2m2025-04-21T21:32:30.782293Z\u001b[0m [\u001b[33m\u001b[1mwarning \u001b[0m] \u001b[1mGOOGLE_API_KEY environment variable not set. Gemini detector (via OpenAI lib) will not be available.\u001b[0m \u001b[36mlineno\u001b[0m=\u001b[35m72\u001b[0m \u001b[36mmodule\u001b[0m=\u001b[35mnatural_pdf.analyzers.layout.gemini\u001b[0m\n"
|
390
|
-
]
|
505
|
+
"output_type": "display_data"
|
391
506
|
},
|
392
507
|
{
|
393
|
-
"
|
394
|
-
|
395
|
-
|
396
|
-
|
397
|
-
|
508
|
+
"data": {
|
509
|
+
"application/vnd.jupyter.widget-view+json": {
|
510
|
+
"model_id": "eec78714154b4bf6aca4b7ccb3c157d1",
|
511
|
+
"version_major": 2,
|
512
|
+
"version_minor": 0
|
513
|
+
},
|
514
|
+
"text/plain": [
|
515
|
+
"Rendering pages: 0%| | 0/1 [00:00<?, ?it/s]"
|
516
|
+
]
|
517
|
+
},
|
518
|
+
"metadata": {},
|
519
|
+
"output_type": "display_data"
|
398
520
|
},
|
399
521
|
{
|
400
|
-
"
|
401
|
-
|
402
|
-
|
403
|
-
|
404
|
-
|
522
|
+
"data": {
|
523
|
+
"application/vnd.jupyter.widget-view+json": {
|
524
|
+
"model_id": "ea2ea03faf7c431eaed13f8e9de9b088",
|
525
|
+
"version_major": 2,
|
526
|
+
"version_minor": 0
|
527
|
+
},
|
528
|
+
"text/plain": [
|
529
|
+
"Rendering pages: 0%| | 0/1 [00:00<?, ?it/s]"
|
530
|
+
]
|
531
|
+
},
|
532
|
+
"metadata": {},
|
533
|
+
"output_type": "display_data"
|
405
534
|
},
|
406
535
|
{
|
407
536
|
"name": "stderr",
|
408
537
|
"output_type": "stream",
|
409
538
|
"text": [
|
410
|
-
"
|
539
|
+
"\r",
|
540
|
+
"Detecting bboxes: 0%| | 0/1 [00:00<?, ?it/s]"
|
411
541
|
]
|
412
542
|
},
|
413
543
|
{
|
414
|
-
"name": "
|
544
|
+
"name": "stderr",
|
415
545
|
"output_type": "stream",
|
416
546
|
"text": [
|
417
|
-
"\
|
547
|
+
"\r",
|
548
|
+
"Detecting bboxes: 100%|███████████████████████████████████████████████████| 1/1 [00:00<00:00, 1.74it/s]"
|
418
549
|
]
|
419
550
|
},
|
420
551
|
{
|
421
|
-
"name": "
|
552
|
+
"name": "stderr",
|
422
553
|
"output_type": "stream",
|
423
554
|
"text": [
|
424
|
-
"
|
555
|
+
"\r",
|
556
|
+
"Detecting bboxes: 100%|███████████████████████████████████████████████████| 1/1 [00:00<00:00, 1.73it/s]"
|
425
557
|
]
|
426
558
|
},
|
427
559
|
{
|
428
|
-
"name": "
|
560
|
+
"name": "stderr",
|
429
561
|
"output_type": "stream",
|
430
562
|
"text": [
|
431
|
-
"
|
563
|
+
"\n"
|
432
564
|
]
|
433
565
|
},
|
434
566
|
{
|
435
567
|
"data": {
|
436
568
|
"text/plain": [
|
437
|
-
"
|
569
|
+
"<Page number=1 index=0>"
|
438
570
|
]
|
439
571
|
},
|
440
|
-
"execution_count":
|
572
|
+
"execution_count": 4,
|
441
573
|
"metadata": {},
|
442
574
|
"output_type": "execute_result"
|
443
575
|
}
|
444
576
|
],
|
445
577
|
"source": [
|
446
|
-
"
|
447
|
-
"
|
448
|
-
"
|
578
|
+
"from natural_pdf.ocr import PaddleOCROptions, EasyOCROptions, SuryaOCROptions\n",
|
579
|
+
"\n",
|
580
|
+
"# Re-apply OCR using EasyOCR with specific options\n",
|
581
|
+
"easy_opts = EasyOCROptions(\n",
|
582
|
+
" paragraph=False,\n",
|
583
|
+
")\n",
|
584
|
+
"page.apply_ocr(engine='easyocr', languages=['en'], min_confidence=0.1, options=easy_opts)\n",
|
449
585
|
"\n",
|
450
|
-
"
|
451
|
-
"
|
452
|
-
"
|
586
|
+
"paddle_opts = PaddleOCROptions(\n",
|
587
|
+
" use_angle_cls=False,\n",
|
588
|
+
" det_db_thresh=0.3,\n",
|
589
|
+
")\n",
|
590
|
+
"page.apply_ocr(engine='paddle', languages=['en'], options=paddle_opts)\n",
|
591
|
+
"\n",
|
592
|
+
"surya_opts = SuryaOCROptions()\n",
|
593
|
+
"page.apply_ocr(engine='surya', languages=['en'], min_confidence=0.5, detect_only=True, options=surya_opts)"
|
594
|
+
]
|
595
|
+
},
|
596
|
+
{
|
597
|
+
"cell_type": "markdown",
|
598
|
+
"id": "18499b9e",
|
599
|
+
"metadata": {},
|
600
|
+
"source": [
|
601
|
+
"## Interactive OCR Correction / Debugging\n",
|
453
602
|
"\n",
|
454
|
-
"
|
455
|
-
"headings.highlight(color=\"red\", label=\"Headings\")\n",
|
456
|
-
"paragraphs.highlight(color=\"blue\", label=\"Paragraphs\")\n",
|
603
|
+
"If OCR results aren't perfect, you can use the bundled interactive web application (SPA) to review and correct them.\n",
|
457
604
|
"\n",
|
458
|
-
"
|
459
|
-
"
|
460
|
-
"for heading in headings:\n",
|
461
|
-
" heading_text = heading.extract_text()\n",
|
462
|
-
" document_outline.append(heading_text)\n",
|
605
|
+
"1. **Package the data:**\n",
|
606
|
+
" After running `apply_ocr` (or `apply_layout`), use `create_correction_task_package` to create a zip file containing the PDF images and detected elements.\n",
|
463
607
|
"\n",
|
464
|
-
"
|
608
|
+
" ```python\n",
|
609
|
+
" from natural_pdf.utils.packaging import create_correction_task_package\n",
|
610
|
+
"\n",
|
611
|
+
" page.apply_ocr()\n",
|
612
|
+
"\n",
|
613
|
+
" create_correction_task_package(pdf, \"correction_package.zip\", overwrite=True)\n",
|
614
|
+
" ```\n",
|
615
|
+
"\n",
|
616
|
+
"2. **Run the SPA:**\n",
|
617
|
+
" Navigate to the SPA directory within the installed `natural_pdf` library in your terminal and start a simple web server.\n",
|
618
|
+
"\n",
|
619
|
+
"3. **Use the SPA:**\n",
|
620
|
+
" Open `http://localhost:8000` in your browser. Drag the `correction_package.zip` file onto the page to load the document. You can then click on text elements to correct the OCR results."
|
465
621
|
]
|
466
622
|
},
|
467
623
|
{
|
468
624
|
"cell_type": "markdown",
|
469
|
-
"id": "
|
625
|
+
"id": "b2ec255f",
|
470
626
|
"metadata": {},
|
471
627
|
"source": [
|
472
|
-
"## Working with Multiple Pages"
|
628
|
+
"## Working with Multiple Pages\n",
|
629
|
+
"\n",
|
630
|
+
"Apply OCR or layout analysis to all pages using the `PDF` object."
|
473
631
|
]
|
474
632
|
},
|
475
633
|
{
|
476
634
|
"cell_type": "code",
|
477
|
-
"execution_count":
|
478
|
-
"id": "
|
635
|
+
"execution_count": 5,
|
636
|
+
"id": "5d6b1ed1",
|
479
637
|
"metadata": {
|
480
638
|
"execution": {
|
481
|
-
"iopub.execute_input": "2025-04-
|
482
|
-
"iopub.status.busy": "2025-04-
|
483
|
-
"iopub.status.idle": "2025-04-
|
484
|
-
"shell.execute_reply": "2025-04-
|
639
|
+
"iopub.execute_input": "2025-04-27T16:34:26.978820Z",
|
640
|
+
"iopub.status.busy": "2025-04-27T16:34:26.978712Z",
|
641
|
+
"iopub.status.idle": "2025-04-27T16:34:36.843139Z",
|
642
|
+
"shell.execute_reply": "2025-04-27T16:34:36.842881Z"
|
485
643
|
}
|
486
644
|
},
|
487
645
|
"outputs": [
|
488
646
|
{
|
489
647
|
"data": {
|
648
|
+
"application/vnd.jupyter.widget-view+json": {
|
649
|
+
"model_id": "eee280b518cb4bd7b9ee15666753bb55",
|
650
|
+
"version_major": 2,
|
651
|
+
"version_minor": 0
|
652
|
+
},
|
490
653
|
"text/plain": [
|
491
|
-
"
|
654
|
+
"Rendering pages: 0%| | 0/1 [00:00<?, ?it/s]"
|
492
655
|
]
|
493
656
|
},
|
494
|
-
"execution_count": 9,
|
495
657
|
"metadata": {},
|
496
|
-
"output_type": "
|
658
|
+
"output_type": "display_data"
|
659
|
+
},
|
660
|
+
{
|
661
|
+
"name": "stderr",
|
662
|
+
"output_type": "stream",
|
663
|
+
"text": [
|
664
|
+
"\u001b[2m2025-04-27T16:34:36.840807Z\u001b[0m [\u001b[33m\u001b[1mwarning \u001b[0m] \u001b[1mIgnoring unsupported layout keyword argument: 'page_separator'\u001b[0m \u001b[36mlineno\u001b[0m=\u001b[35m57\u001b[0m \u001b[36mmodule\u001b[0m=\u001b[35mnatural_pdf.utils.text_extraction\u001b[0m\n"
|
665
|
+
]
|
666
|
+
},
|
667
|
+
{
|
668
|
+
"name": "stderr",
|
669
|
+
"output_type": "stream",
|
670
|
+
"text": [
|
671
|
+
"[2025-04-27 12:34:36,840] [ WARNING] text_extraction.py:57 - Ignoring unsupported layout keyword argument: 'page_separator'\n"
|
672
|
+
]
|
673
|
+
},
|
674
|
+
{
|
675
|
+
"name": "stdout",
|
676
|
+
"output_type": "stream",
|
677
|
+
"text": [
|
678
|
+
"Applied OCR to 1 pages.\n",
|
679
|
+
"\n",
|
680
|
+
"Combined text from all pages:\n",
|
681
|
+
"Red (ZGB tuple]\n",
|
682
|
+
"Jungle Health and Satety Inspection Service\n",
|
683
|
+
"INS-UPONSINCLAIR\n",
|
684
|
+
"Site: Durham's Meatpacking Chicago, IIl.\n",
|
685
|
+
"Date: February 3, 1905\n",
|
686
|
+
"Violation Count:\n",
|
687
|
+
"Summary: Worst of any, however; were the fertilizer men, and those who served in the cooking rooms\n",
|
688
|
+
"These people could not be shown to the visitorfor the odor of a fertilizer man would scare anyordinary\n",
|
689
|
+
"visitor at a hundred yards, and as for the other men, who worked in tank rooms full of steam, and in\n",
|
690
|
+
"some of which there were open vats near...\n"
|
691
|
+
]
|
497
692
|
}
|
498
693
|
],
|
499
694
|
"source": [
|
500
695
|
"# Process all pages in the document\n",
|
501
|
-
"
|
502
|
-
"\n",
|
503
|
-
"
|
504
|
-
"
|
505
|
-
"
|
506
|
-
"
|
507
|
-
"
|
508
|
-
"
|
509
|
-
"
|
510
|
-
"
|
511
|
-
"
|
512
|
-
"\n",
|
513
|
-
"
|
514
|
-
"all_text"
|
696
|
+
"\n",
|
697
|
+
"# Apply OCR to all pages (example using EasyOCR)\n",
|
698
|
+
"pdf.apply_ocr(engine='easyocr', languages=['en'])\n",
|
699
|
+
"print(f\"Applied OCR to {len(pdf.pages)} pages.\")\n",
|
700
|
+
"\n",
|
701
|
+
"# Or apply layout analysis to all pages (example using Paddle)\n",
|
702
|
+
"# pdf.apply_layout(engine='paddle')\n",
|
703
|
+
"# print(f\"Applied Layout Analysis to {len(pdf.pages)} pages.\")\n",
|
704
|
+
"\n",
|
705
|
+
"# Extract text from all pages (uses OCR results if available)\n",
|
706
|
+
"all_text_content = pdf.extract_text(page_separator=\"\\\\n\\\\n---\\\\n\\\\n\")\n",
|
707
|
+
"\n",
|
708
|
+
"print(f\"\\nCombined text from all pages:\\n{all_text_content[:500]}...\")"
|
515
709
|
]
|
516
710
|
},
|
517
711
|
{
|
518
712
|
"cell_type": "markdown",
|
519
|
-
"id": "
|
713
|
+
"id": "7d91a33b",
|
520
714
|
"metadata": {},
|
521
715
|
"source": [
|
522
716
|
"## Saving PDFs with Searchable Text\n",
|
@@ -528,29 +722,50 @@
|
|
528
722
|
},
|
529
723
|
{
|
530
724
|
"cell_type": "code",
|
531
|
-
"execution_count":
|
532
|
-
"id": "
|
725
|
+
"execution_count": 6,
|
726
|
+
"id": "76ed7fd9",
|
533
727
|
"metadata": {
|
534
728
|
"execution": {
|
535
|
-
"iopub.execute_input": "2025-04-
|
536
|
-
"iopub.status.busy": "2025-04-
|
537
|
-
"iopub.status.idle": "2025-04-
|
538
|
-
"shell.execute_reply": "2025-04-
|
729
|
+
"iopub.execute_input": "2025-04-27T16:34:36.844528Z",
|
730
|
+
"iopub.status.busy": "2025-04-27T16:34:36.844403Z",
|
731
|
+
"iopub.status.idle": "2025-04-27T16:34:50.582612Z",
|
732
|
+
"shell.execute_reply": "2025-04-27T16:34:50.582308Z"
|
539
733
|
}
|
540
734
|
},
|
541
735
|
"outputs": [
|
736
|
+
{
|
737
|
+
"data": {
|
738
|
+
"application/vnd.jupyter.widget-view+json": {
|
739
|
+
"model_id": "b32b0f4b5d9147bda684486bdba0dc0d",
|
740
|
+
"version_major": 2,
|
741
|
+
"version_minor": 0
|
742
|
+
},
|
743
|
+
"text/plain": [
|
744
|
+
"Rendering pages: 0%| | 0/1 [00:00<?, ?it/s]"
|
745
|
+
]
|
746
|
+
},
|
747
|
+
"metadata": {},
|
748
|
+
"output_type": "display_data"
|
749
|
+
},
|
542
750
|
{
|
543
751
|
"name": "stderr",
|
544
752
|
"output_type": "stream",
|
545
753
|
"text": [
|
546
|
-
"\u001b[2m2025-04-
|
754
|
+
"\u001b[2m2025-04-27T16:34:37.509530Z\u001b[0m [\u001b[33m\u001b[1mwarning \u001b[0m] \u001b[1mUsing CPU. Note: This module is much faster with a GPU.\u001b[0m \u001b[36mlineno\u001b[0m=\u001b[35m71\u001b[0m \u001b[36mmodule\u001b[0m=\u001b[35measyocr.easyocr\u001b[0m\n"
|
547
755
|
]
|
548
756
|
},
|
549
757
|
{
|
550
758
|
"name": "stderr",
|
551
759
|
"output_type": "stream",
|
552
760
|
"text": [
|
553
|
-
"[2025-04-
|
761
|
+
"[2025-04-27 12:34:37,509] [ WARNING] easyocr.py:71 - Using CPU. Note: This module is much faster with a GPU.\n"
|
762
|
+
]
|
763
|
+
},
|
764
|
+
{
|
765
|
+
"name": "stdout",
|
766
|
+
"output_type": "stream",
|
767
|
+
"text": [
|
768
|
+
"Saved searchable PDF to needs-ocr-searchable.pdf\n"
|
554
769
|
]
|
555
770
|
}
|
556
771
|
],
|
@@ -560,14 +775,18 @@
|
|
560
775
|
"input_pdf_path = \"https://github.com/jsoma/natural-pdf/raw/refs/heads/main/pdfs/needs-ocr.pdf\"\n",
|
561
776
|
"\n",
|
562
777
|
"pdf = PDF(input_pdf_path)\n",
|
563
|
-
"
|
778
|
+
"# Apply OCR to all pages before saving\n",
|
779
|
+
"# Use desired engine and options\n",
|
780
|
+
"pdf.apply_ocr(engine='easyocr', languages=['en'])\n",
|
781
|
+
"\n",
|
782
|
+
"pdf.save_searchable(\"needs-ocr-searchable.pdf\")\n",
|
564
783
|
"\n",
|
565
|
-
"
|
784
|
+
"print(\"Saved searchable PDF to needs-ocr-searchable.pdf\")"
|
566
785
|
]
|
567
786
|
},
|
568
787
|
{
|
569
788
|
"cell_type": "markdown",
|
570
|
-
"id": "
|
789
|
+
"id": "db718c49",
|
571
790
|
"metadata": {},
|
572
791
|
"source": [
|
573
792
|
"This creates `needs-ocr-searchable.pdf`, which looks identical to the original but now has a text layer corresponding to the OCR results. You can adjust the rendering resolution used during saving with the `dpi` parameter (default is 300).\n",
|
@@ -580,11 +799,12 @@
|
|
580
799
|
"jupytext": {
|
581
800
|
"cell_metadata_filter": "-all",
|
582
801
|
"main_language": "python",
|
583
|
-
"notebook_metadata_filter": "-all"
|
584
|
-
|
585
|
-
|
586
|
-
|
587
|
-
|
802
|
+
"notebook_metadata_filter": "-all"
|
803
|
+
},
|
804
|
+
"kernelspec": {
|
805
|
+
"display_name": "Python (natural-pdf)",
|
806
|
+
"language": "python",
|
807
|
+
"name": "natural-pdf"
|
588
808
|
},
|
589
809
|
"language_info": {
|
590
810
|
"codemirror_mode": {
|
@@ -597,6 +817,2894 @@
|
|
597
817
|
"nbconvert_exporter": "python",
|
598
818
|
"pygments_lexer": "ipython3",
|
599
819
|
"version": "3.10.13"
|
820
|
+
},
|
821
|
+
"widgets": {
|
822
|
+
"application/vnd.jupyter.widget-state+json": {
|
823
|
+
"state": {
|
824
|
+
"022a289a001e4e499b5d629364ec3cf2": {
|
825
|
+
"model_module": "@jupyter-widgets/base",
|
826
|
+
"model_module_version": "2.0.0",
|
827
|
+
"model_name": "LayoutModel",
|
828
|
+
"state": {
|
829
|
+
"_model_module": "@jupyter-widgets/base",
|
830
|
+
"_model_module_version": "2.0.0",
|
831
|
+
"_model_name": "LayoutModel",
|
832
|
+
"_view_count": null,
|
833
|
+
"_view_module": "@jupyter-widgets/base",
|
834
|
+
"_view_module_version": "2.0.0",
|
835
|
+
"_view_name": "LayoutView",
|
836
|
+
"align_content": null,
|
837
|
+
"align_items": null,
|
838
|
+
"align_self": null,
|
839
|
+
"border_bottom": null,
|
840
|
+
"border_left": null,
|
841
|
+
"border_right": null,
|
842
|
+
"border_top": null,
|
843
|
+
"bottom": null,
|
844
|
+
"display": null,
|
845
|
+
"flex": null,
|
846
|
+
"flex_flow": null,
|
847
|
+
"grid_area": null,
|
848
|
+
"grid_auto_columns": null,
|
849
|
+
"grid_auto_flow": null,
|
850
|
+
"grid_auto_rows": null,
|
851
|
+
"grid_column": null,
|
852
|
+
"grid_gap": null,
|
853
|
+
"grid_row": null,
|
854
|
+
"grid_template_areas": null,
|
855
|
+
"grid_template_columns": null,
|
856
|
+
"grid_template_rows": null,
|
857
|
+
"height": null,
|
858
|
+
"justify_content": null,
|
859
|
+
"justify_items": null,
|
860
|
+
"left": null,
|
861
|
+
"margin": null,
|
862
|
+
"max_height": null,
|
863
|
+
"max_width": null,
|
864
|
+
"min_height": null,
|
865
|
+
"min_width": null,
|
866
|
+
"object_fit": null,
|
867
|
+
"object_position": null,
|
868
|
+
"order": null,
|
869
|
+
"overflow": null,
|
870
|
+
"padding": null,
|
871
|
+
"right": null,
|
872
|
+
"top": null,
|
873
|
+
"visibility": null,
|
874
|
+
"width": null
|
875
|
+
}
|
876
|
+
},
|
877
|
+
"0447a8e29e7a42548b340e4ce078e56d": {
|
878
|
+
"model_module": "@jupyter-widgets/base",
|
879
|
+
"model_module_version": "2.0.0",
|
880
|
+
"model_name": "LayoutModel",
|
881
|
+
"state": {
|
882
|
+
"_model_module": "@jupyter-widgets/base",
|
883
|
+
"_model_module_version": "2.0.0",
|
884
|
+
"_model_name": "LayoutModel",
|
885
|
+
"_view_count": null,
|
886
|
+
"_view_module": "@jupyter-widgets/base",
|
887
|
+
"_view_module_version": "2.0.0",
|
888
|
+
"_view_name": "LayoutView",
|
889
|
+
"align_content": null,
|
890
|
+
"align_items": null,
|
891
|
+
"align_self": null,
|
892
|
+
"border_bottom": null,
|
893
|
+
"border_left": null,
|
894
|
+
"border_right": null,
|
895
|
+
"border_top": null,
|
896
|
+
"bottom": null,
|
897
|
+
"display": null,
|
898
|
+
"flex": null,
|
899
|
+
"flex_flow": null,
|
900
|
+
"grid_area": null,
|
901
|
+
"grid_auto_columns": null,
|
902
|
+
"grid_auto_flow": null,
|
903
|
+
"grid_auto_rows": null,
|
904
|
+
"grid_column": null,
|
905
|
+
"grid_gap": null,
|
906
|
+
"grid_row": null,
|
907
|
+
"grid_template_areas": null,
|
908
|
+
"grid_template_columns": null,
|
909
|
+
"grid_template_rows": null,
|
910
|
+
"height": null,
|
911
|
+
"justify_content": null,
|
912
|
+
"justify_items": null,
|
913
|
+
"left": null,
|
914
|
+
"margin": null,
|
915
|
+
"max_height": null,
|
916
|
+
"max_width": null,
|
917
|
+
"min_height": null,
|
918
|
+
"min_width": null,
|
919
|
+
"object_fit": null,
|
920
|
+
"object_position": null,
|
921
|
+
"order": null,
|
922
|
+
"overflow": null,
|
923
|
+
"padding": null,
|
924
|
+
"right": null,
|
925
|
+
"top": null,
|
926
|
+
"visibility": "hidden",
|
927
|
+
"width": null
|
928
|
+
}
|
929
|
+
},
|
930
|
+
"0a9ffb62a42d49ccbb896041f568e18c": {
|
931
|
+
"model_module": "@jupyter-widgets/controls",
|
932
|
+
"model_module_version": "2.0.0",
|
933
|
+
"model_name": "HTMLStyleModel",
|
934
|
+
"state": {
|
935
|
+
"_model_module": "@jupyter-widgets/controls",
|
936
|
+
"_model_module_version": "2.0.0",
|
937
|
+
"_model_name": "HTMLStyleModel",
|
938
|
+
"_view_count": null,
|
939
|
+
"_view_module": "@jupyter-widgets/base",
|
940
|
+
"_view_module_version": "2.0.0",
|
941
|
+
"_view_name": "StyleView",
|
942
|
+
"background": null,
|
943
|
+
"description_width": "",
|
944
|
+
"font_size": null,
|
945
|
+
"text_color": null
|
946
|
+
}
|
947
|
+
},
|
948
|
+
"0e449b943f2d48eb9c9ed2d6bdfdb557": {
|
949
|
+
"model_module": "@jupyter-widgets/base",
|
950
|
+
"model_module_version": "2.0.0",
|
951
|
+
"model_name": "LayoutModel",
|
952
|
+
"state": {
|
953
|
+
"_model_module": "@jupyter-widgets/base",
|
954
|
+
"_model_module_version": "2.0.0",
|
955
|
+
"_model_name": "LayoutModel",
|
956
|
+
"_view_count": null,
|
957
|
+
"_view_module": "@jupyter-widgets/base",
|
958
|
+
"_view_module_version": "2.0.0",
|
959
|
+
"_view_name": "LayoutView",
|
960
|
+
"align_content": null,
|
961
|
+
"align_items": null,
|
962
|
+
"align_self": null,
|
963
|
+
"border_bottom": null,
|
964
|
+
"border_left": null,
|
965
|
+
"border_right": null,
|
966
|
+
"border_top": null,
|
967
|
+
"bottom": null,
|
968
|
+
"display": null,
|
969
|
+
"flex": null,
|
970
|
+
"flex_flow": null,
|
971
|
+
"grid_area": null,
|
972
|
+
"grid_auto_columns": null,
|
973
|
+
"grid_auto_flow": null,
|
974
|
+
"grid_auto_rows": null,
|
975
|
+
"grid_column": null,
|
976
|
+
"grid_gap": null,
|
977
|
+
"grid_row": null,
|
978
|
+
"grid_template_areas": null,
|
979
|
+
"grid_template_columns": null,
|
980
|
+
"grid_template_rows": null,
|
981
|
+
"height": null,
|
982
|
+
"justify_content": null,
|
983
|
+
"justify_items": null,
|
984
|
+
"left": null,
|
985
|
+
"margin": null,
|
986
|
+
"max_height": null,
|
987
|
+
"max_width": null,
|
988
|
+
"min_height": null,
|
989
|
+
"min_width": null,
|
990
|
+
"object_fit": null,
|
991
|
+
"object_position": null,
|
992
|
+
"order": null,
|
993
|
+
"overflow": null,
|
994
|
+
"padding": null,
|
995
|
+
"right": null,
|
996
|
+
"top": null,
|
997
|
+
"visibility": null,
|
998
|
+
"width": null
|
999
|
+
}
|
1000
|
+
},
|
1001
|
+
"1c18d689ebb846d4908b0ad1e05838e5": {
|
1002
|
+
"model_module": "@jupyter-widgets/controls",
|
1003
|
+
"model_module_version": "2.0.0",
|
1004
|
+
"model_name": "FloatProgressModel",
|
1005
|
+
"state": {
|
1006
|
+
"_dom_classes": [],
|
1007
|
+
"_model_module": "@jupyter-widgets/controls",
|
1008
|
+
"_model_module_version": "2.0.0",
|
1009
|
+
"_model_name": "FloatProgressModel",
|
1010
|
+
"_view_count": null,
|
1011
|
+
"_view_module": "@jupyter-widgets/controls",
|
1012
|
+
"_view_module_version": "2.0.0",
|
1013
|
+
"_view_name": "ProgressView",
|
1014
|
+
"bar_style": "",
|
1015
|
+
"description": "",
|
1016
|
+
"description_allow_html": false,
|
1017
|
+
"layout": "IPY_MODEL_e637d6c0df174f33917c5a207172fa2b",
|
1018
|
+
"max": 1.0,
|
1019
|
+
"min": 0.0,
|
1020
|
+
"orientation": "horizontal",
|
1021
|
+
"style": "IPY_MODEL_9dabb33d83a94026b0643537203a019b",
|
1022
|
+
"tabbable": null,
|
1023
|
+
"tooltip": null,
|
1024
|
+
"value": 1.0
|
1025
|
+
}
|
1026
|
+
},
|
1027
|
+
"2604f98986f34efab6df0e7dbf9ed4f5": {
|
1028
|
+
"model_module": "@jupyter-widgets/controls",
|
1029
|
+
"model_module_version": "2.0.0",
|
1030
|
+
"model_name": "HBoxModel",
|
1031
|
+
"state": {
|
1032
|
+
"_dom_classes": [],
|
1033
|
+
"_model_module": "@jupyter-widgets/controls",
|
1034
|
+
"_model_module_version": "2.0.0",
|
1035
|
+
"_model_name": "HBoxModel",
|
1036
|
+
"_view_count": null,
|
1037
|
+
"_view_module": "@jupyter-widgets/controls",
|
1038
|
+
"_view_module_version": "2.0.0",
|
1039
|
+
"_view_name": "HBoxView",
|
1040
|
+
"box_style": "",
|
1041
|
+
"children": [
|
1042
|
+
"IPY_MODEL_99d50723f6b9434f8f6eed613f243556",
|
1043
|
+
"IPY_MODEL_38fb7515d640425e8fc8562d780237f5",
|
1044
|
+
"IPY_MODEL_d8adc464cd1c4e29b0b5c729c9c4b2d8"
|
1045
|
+
],
|
1046
|
+
"layout": "IPY_MODEL_0447a8e29e7a42548b340e4ce078e56d",
|
1047
|
+
"tabbable": null,
|
1048
|
+
"tooltip": null
|
1049
|
+
}
|
1050
|
+
},
|
1051
|
+
"2610164fb3f7466985a46215b5b2bfa8": {
|
1052
|
+
"model_module": "@jupyter-widgets/controls",
|
1053
|
+
"model_module_version": "2.0.0",
|
1054
|
+
"model_name": "HBoxModel",
|
1055
|
+
"state": {
|
1056
|
+
"_dom_classes": [],
|
1057
|
+
"_model_module": "@jupyter-widgets/controls",
|
1058
|
+
"_model_module_version": "2.0.0",
|
1059
|
+
"_model_name": "HBoxModel",
|
1060
|
+
"_view_count": null,
|
1061
|
+
"_view_module": "@jupyter-widgets/controls",
|
1062
|
+
"_view_module_version": "2.0.0",
|
1063
|
+
"_view_name": "HBoxView",
|
1064
|
+
"box_style": "",
|
1065
|
+
"children": [
|
1066
|
+
"IPY_MODEL_c084e0a81dc0489e907da2ee73c66d1d",
|
1067
|
+
"IPY_MODEL_44e0e5f920824c0f889a80271bebc85a",
|
1068
|
+
"IPY_MODEL_7ebc9803f2534971995c7ed7eaa4e0b9"
|
1069
|
+
],
|
1070
|
+
"layout": "IPY_MODEL_fc795c53429c43328aceb24e9478dbf6",
|
1071
|
+
"tabbable": null,
|
1072
|
+
"tooltip": null
|
1073
|
+
}
|
1074
|
+
},
|
1075
|
+
"273e9468cce1450ca0d9a42967a799f8": {
|
1076
|
+
"model_module": "@jupyter-widgets/base",
|
1077
|
+
"model_module_version": "2.0.0",
|
1078
|
+
"model_name": "LayoutModel",
|
1079
|
+
"state": {
|
1080
|
+
"_model_module": "@jupyter-widgets/base",
|
1081
|
+
"_model_module_version": "2.0.0",
|
1082
|
+
"_model_name": "LayoutModel",
|
1083
|
+
"_view_count": null,
|
1084
|
+
"_view_module": "@jupyter-widgets/base",
|
1085
|
+
"_view_module_version": "2.0.0",
|
1086
|
+
"_view_name": "LayoutView",
|
1087
|
+
"align_content": null,
|
1088
|
+
"align_items": null,
|
1089
|
+
"align_self": null,
|
1090
|
+
"border_bottom": null,
|
1091
|
+
"border_left": null,
|
1092
|
+
"border_right": null,
|
1093
|
+
"border_top": null,
|
1094
|
+
"bottom": null,
|
1095
|
+
"display": null,
|
1096
|
+
"flex": null,
|
1097
|
+
"flex_flow": null,
|
1098
|
+
"grid_area": null,
|
1099
|
+
"grid_auto_columns": null,
|
1100
|
+
"grid_auto_flow": null,
|
1101
|
+
"grid_auto_rows": null,
|
1102
|
+
"grid_column": null,
|
1103
|
+
"grid_gap": null,
|
1104
|
+
"grid_row": null,
|
1105
|
+
"grid_template_areas": null,
|
1106
|
+
"grid_template_columns": null,
|
1107
|
+
"grid_template_rows": null,
|
1108
|
+
"height": null,
|
1109
|
+
"justify_content": null,
|
1110
|
+
"justify_items": null,
|
1111
|
+
"left": null,
|
1112
|
+
"margin": null,
|
1113
|
+
"max_height": null,
|
1114
|
+
"max_width": null,
|
1115
|
+
"min_height": null,
|
1116
|
+
"min_width": null,
|
1117
|
+
"object_fit": null,
|
1118
|
+
"object_position": null,
|
1119
|
+
"order": null,
|
1120
|
+
"overflow": null,
|
1121
|
+
"padding": null,
|
1122
|
+
"right": null,
|
1123
|
+
"top": null,
|
1124
|
+
"visibility": null,
|
1125
|
+
"width": null
|
1126
|
+
}
|
1127
|
+
},
|
1128
|
+
"2d77ac4edf924b9d88b97929227b2497": {
|
1129
|
+
"model_module": "@jupyter-widgets/controls",
|
1130
|
+
"model_module_version": "2.0.0",
|
1131
|
+
"model_name": "ProgressStyleModel",
|
1132
|
+
"state": {
|
1133
|
+
"_model_module": "@jupyter-widgets/controls",
|
1134
|
+
"_model_module_version": "2.0.0",
|
1135
|
+
"_model_name": "ProgressStyleModel",
|
1136
|
+
"_view_count": null,
|
1137
|
+
"_view_module": "@jupyter-widgets/base",
|
1138
|
+
"_view_module_version": "2.0.0",
|
1139
|
+
"_view_name": "StyleView",
|
1140
|
+
"bar_color": null,
|
1141
|
+
"description_width": ""
|
1142
|
+
}
|
1143
|
+
},
|
1144
|
+
"2e8dbacbfbbc4381b0bbd0c0427ee370": {
|
1145
|
+
"model_module": "@jupyter-widgets/base",
|
1146
|
+
"model_module_version": "2.0.0",
|
1147
|
+
"model_name": "LayoutModel",
|
1148
|
+
"state": {
|
1149
|
+
"_model_module": "@jupyter-widgets/base",
|
1150
|
+
"_model_module_version": "2.0.0",
|
1151
|
+
"_model_name": "LayoutModel",
|
1152
|
+
"_view_count": null,
|
1153
|
+
"_view_module": "@jupyter-widgets/base",
|
1154
|
+
"_view_module_version": "2.0.0",
|
1155
|
+
"_view_name": "LayoutView",
|
1156
|
+
"align_content": null,
|
1157
|
+
"align_items": null,
|
1158
|
+
"align_self": null,
|
1159
|
+
"border_bottom": null,
|
1160
|
+
"border_left": null,
|
1161
|
+
"border_right": null,
|
1162
|
+
"border_top": null,
|
1163
|
+
"bottom": null,
|
1164
|
+
"display": null,
|
1165
|
+
"flex": null,
|
1166
|
+
"flex_flow": null,
|
1167
|
+
"grid_area": null,
|
1168
|
+
"grid_auto_columns": null,
|
1169
|
+
"grid_auto_flow": null,
|
1170
|
+
"grid_auto_rows": null,
|
1171
|
+
"grid_column": null,
|
1172
|
+
"grid_gap": null,
|
1173
|
+
"grid_row": null,
|
1174
|
+
"grid_template_areas": null,
|
1175
|
+
"grid_template_columns": null,
|
1176
|
+
"grid_template_rows": null,
|
1177
|
+
"height": null,
|
1178
|
+
"justify_content": null,
|
1179
|
+
"justify_items": null,
|
1180
|
+
"left": null,
|
1181
|
+
"margin": null,
|
1182
|
+
"max_height": null,
|
1183
|
+
"max_width": null,
|
1184
|
+
"min_height": null,
|
1185
|
+
"min_width": null,
|
1186
|
+
"object_fit": null,
|
1187
|
+
"object_position": null,
|
1188
|
+
"order": null,
|
1189
|
+
"overflow": null,
|
1190
|
+
"padding": null,
|
1191
|
+
"right": null,
|
1192
|
+
"top": null,
|
1193
|
+
"visibility": null,
|
1194
|
+
"width": null
|
1195
|
+
}
|
1196
|
+
},
|
1197
|
+
"3571a316fa3d401a9abd519a9bef510c": {
|
1198
|
+
"model_module": "@jupyter-widgets/controls",
|
1199
|
+
"model_module_version": "2.0.0",
|
1200
|
+
"model_name": "HTMLModel",
|
1201
|
+
"state": {
|
1202
|
+
"_dom_classes": [],
|
1203
|
+
"_model_module": "@jupyter-widgets/controls",
|
1204
|
+
"_model_module_version": "2.0.0",
|
1205
|
+
"_model_name": "HTMLModel",
|
1206
|
+
"_view_count": null,
|
1207
|
+
"_view_module": "@jupyter-widgets/controls",
|
1208
|
+
"_view_module_version": "2.0.0",
|
1209
|
+
"_view_name": "HTMLView",
|
1210
|
+
"description": "",
|
1211
|
+
"description_allow_html": false,
|
1212
|
+
"layout": "IPY_MODEL_273e9468cce1450ca0d9a42967a799f8",
|
1213
|
+
"placeholder": "",
|
1214
|
+
"style": "IPY_MODEL_e092a03a328f4899b2b43c5b4e3695af",
|
1215
|
+
"tabbable": null,
|
1216
|
+
"tooltip": null,
|
1217
|
+
"value": " 0/1 [00:00<?, ?it/s]"
|
1218
|
+
}
|
1219
|
+
},
|
1220
|
+
"381d045b3faa4d34b4395a11a55cc20d": {
|
1221
|
+
"model_module": "@jupyter-widgets/base",
|
1222
|
+
"model_module_version": "2.0.0",
|
1223
|
+
"model_name": "LayoutModel",
|
1224
|
+
"state": {
|
1225
|
+
"_model_module": "@jupyter-widgets/base",
|
1226
|
+
"_model_module_version": "2.0.0",
|
1227
|
+
"_model_name": "LayoutModel",
|
1228
|
+
"_view_count": null,
|
1229
|
+
"_view_module": "@jupyter-widgets/base",
|
1230
|
+
"_view_module_version": "2.0.0",
|
1231
|
+
"_view_name": "LayoutView",
|
1232
|
+
"align_content": null,
|
1233
|
+
"align_items": null,
|
1234
|
+
"align_self": null,
|
1235
|
+
"border_bottom": null,
|
1236
|
+
"border_left": null,
|
1237
|
+
"border_right": null,
|
1238
|
+
"border_top": null,
|
1239
|
+
"bottom": null,
|
1240
|
+
"display": null,
|
1241
|
+
"flex": null,
|
1242
|
+
"flex_flow": null,
|
1243
|
+
"grid_area": null,
|
1244
|
+
"grid_auto_columns": null,
|
1245
|
+
"grid_auto_flow": null,
|
1246
|
+
"grid_auto_rows": null,
|
1247
|
+
"grid_column": null,
|
1248
|
+
"grid_gap": null,
|
1249
|
+
"grid_row": null,
|
1250
|
+
"grid_template_areas": null,
|
1251
|
+
"grid_template_columns": null,
|
1252
|
+
"grid_template_rows": null,
|
1253
|
+
"height": null,
|
1254
|
+
"justify_content": null,
|
1255
|
+
"justify_items": null,
|
1256
|
+
"left": null,
|
1257
|
+
"margin": null,
|
1258
|
+
"max_height": null,
|
1259
|
+
"max_width": null,
|
1260
|
+
"min_height": null,
|
1261
|
+
"min_width": null,
|
1262
|
+
"object_fit": null,
|
1263
|
+
"object_position": null,
|
1264
|
+
"order": null,
|
1265
|
+
"overflow": null,
|
1266
|
+
"padding": null,
|
1267
|
+
"right": null,
|
1268
|
+
"top": null,
|
1269
|
+
"visibility": null,
|
1270
|
+
"width": null
|
1271
|
+
}
|
1272
|
+
},
|
1273
|
+
"38c1448b20af44e29a486c39171a00e0": {
|
1274
|
+
"model_module": "@jupyter-widgets/controls",
|
1275
|
+
"model_module_version": "2.0.0",
|
1276
|
+
"model_name": "ProgressStyleModel",
|
1277
|
+
"state": {
|
1278
|
+
"_model_module": "@jupyter-widgets/controls",
|
1279
|
+
"_model_module_version": "2.0.0",
|
1280
|
+
"_model_name": "ProgressStyleModel",
|
1281
|
+
"_view_count": null,
|
1282
|
+
"_view_module": "@jupyter-widgets/base",
|
1283
|
+
"_view_module_version": "2.0.0",
|
1284
|
+
"_view_name": "StyleView",
|
1285
|
+
"bar_color": null,
|
1286
|
+
"description_width": ""
|
1287
|
+
}
|
1288
|
+
},
|
1289
|
+
"38fb7515d640425e8fc8562d780237f5": {
|
1290
|
+
"model_module": "@jupyter-widgets/controls",
|
1291
|
+
"model_module_version": "2.0.0",
|
1292
|
+
"model_name": "FloatProgressModel",
|
1293
|
+
"state": {
|
1294
|
+
"_dom_classes": [],
|
1295
|
+
"_model_module": "@jupyter-widgets/controls",
|
1296
|
+
"_model_module_version": "2.0.0",
|
1297
|
+
"_model_name": "FloatProgressModel",
|
1298
|
+
"_view_count": null,
|
1299
|
+
"_view_module": "@jupyter-widgets/controls",
|
1300
|
+
"_view_module_version": "2.0.0",
|
1301
|
+
"_view_name": "ProgressView",
|
1302
|
+
"bar_style": "",
|
1303
|
+
"description": "",
|
1304
|
+
"description_allow_html": false,
|
1305
|
+
"layout": "IPY_MODEL_6c32dab276b147dc9ed4eeaf49f8637f",
|
1306
|
+
"max": 1.0,
|
1307
|
+
"min": 0.0,
|
1308
|
+
"orientation": "horizontal",
|
1309
|
+
"style": "IPY_MODEL_b35dccbf46ae4fd8a7e0cadfbfbfd626",
|
1310
|
+
"tabbable": null,
|
1311
|
+
"tooltip": null,
|
1312
|
+
"value": 1.0
|
1313
|
+
}
|
1314
|
+
},
|
1315
|
+
"44dbb66e4ff14e97bd956c995d2d8e16": {
|
1316
|
+
"model_module": "@jupyter-widgets/controls",
|
1317
|
+
"model_module_version": "2.0.0",
|
1318
|
+
"model_name": "HTMLStyleModel",
|
1319
|
+
"state": {
|
1320
|
+
"_model_module": "@jupyter-widgets/controls",
|
1321
|
+
"_model_module_version": "2.0.0",
|
1322
|
+
"_model_name": "HTMLStyleModel",
|
1323
|
+
"_view_count": null,
|
1324
|
+
"_view_module": "@jupyter-widgets/base",
|
1325
|
+
"_view_module_version": "2.0.0",
|
1326
|
+
"_view_name": "StyleView",
|
1327
|
+
"background": null,
|
1328
|
+
"description_width": "",
|
1329
|
+
"font_size": null,
|
1330
|
+
"text_color": null
|
1331
|
+
}
|
1332
|
+
},
|
1333
|
+
"44e0e5f920824c0f889a80271bebc85a": {
|
1334
|
+
"model_module": "@jupyter-widgets/controls",
|
1335
|
+
"model_module_version": "2.0.0",
|
1336
|
+
"model_name": "FloatProgressModel",
|
1337
|
+
"state": {
|
1338
|
+
"_dom_classes": [],
|
1339
|
+
"_model_module": "@jupyter-widgets/controls",
|
1340
|
+
"_model_module_version": "2.0.0",
|
1341
|
+
"_model_name": "FloatProgressModel",
|
1342
|
+
"_view_count": null,
|
1343
|
+
"_view_module": "@jupyter-widgets/controls",
|
1344
|
+
"_view_module_version": "2.0.0",
|
1345
|
+
"_view_name": "ProgressView",
|
1346
|
+
"bar_style": "",
|
1347
|
+
"description": "",
|
1348
|
+
"description_allow_html": false,
|
1349
|
+
"layout": "IPY_MODEL_e985937b7e3b4e6196ebb516634b6d3f",
|
1350
|
+
"max": 1.0,
|
1351
|
+
"min": 0.0,
|
1352
|
+
"orientation": "horizontal",
|
1353
|
+
"style": "IPY_MODEL_38c1448b20af44e29a486c39171a00e0",
|
1354
|
+
"tabbable": null,
|
1355
|
+
"tooltip": null,
|
1356
|
+
"value": 1.0
|
1357
|
+
}
|
1358
|
+
},
|
1359
|
+
"4b113c9d48ef40338ee8c3154d85ad6b": {
|
1360
|
+
"model_module": "@jupyter-widgets/controls",
|
1361
|
+
"model_module_version": "2.0.0",
|
1362
|
+
"model_name": "ProgressStyleModel",
|
1363
|
+
"state": {
|
1364
|
+
"_model_module": "@jupyter-widgets/controls",
|
1365
|
+
"_model_module_version": "2.0.0",
|
1366
|
+
"_model_name": "ProgressStyleModel",
|
1367
|
+
"_view_count": null,
|
1368
|
+
"_view_module": "@jupyter-widgets/base",
|
1369
|
+
"_view_module_version": "2.0.0",
|
1370
|
+
"_view_name": "StyleView",
|
1371
|
+
"bar_color": null,
|
1372
|
+
"description_width": ""
|
1373
|
+
}
|
1374
|
+
},
|
1375
|
+
"4b46ab41557547e8b1afacd9d4a4b370": {
|
1376
|
+
"model_module": "@jupyter-widgets/controls",
|
1377
|
+
"model_module_version": "2.0.0",
|
1378
|
+
"model_name": "FloatProgressModel",
|
1379
|
+
"state": {
|
1380
|
+
"_dom_classes": [],
|
1381
|
+
"_model_module": "@jupyter-widgets/controls",
|
1382
|
+
"_model_module_version": "2.0.0",
|
1383
|
+
"_model_name": "FloatProgressModel",
|
1384
|
+
"_view_count": null,
|
1385
|
+
"_view_module": "@jupyter-widgets/controls",
|
1386
|
+
"_view_module_version": "2.0.0",
|
1387
|
+
"_view_name": "ProgressView",
|
1388
|
+
"bar_style": "",
|
1389
|
+
"description": "",
|
1390
|
+
"description_allow_html": false,
|
1391
|
+
"layout": "IPY_MODEL_55a0608b33ed41e59e3769c5ca572640",
|
1392
|
+
"max": 1.0,
|
1393
|
+
"min": 0.0,
|
1394
|
+
"orientation": "horizontal",
|
1395
|
+
"style": "IPY_MODEL_8dadb7c8de2c4d098037f3a10cb18482",
|
1396
|
+
"tabbable": null,
|
1397
|
+
"tooltip": null,
|
1398
|
+
"value": 1.0
|
1399
|
+
}
|
1400
|
+
},
|
1401
|
+
"4c923325c4174be587eb87fa69fb9d34": {
|
1402
|
+
"model_module": "@jupyter-widgets/controls",
|
1403
|
+
"model_module_version": "2.0.0",
|
1404
|
+
"model_name": "HTMLStyleModel",
|
1405
|
+
"state": {
|
1406
|
+
"_model_module": "@jupyter-widgets/controls",
|
1407
|
+
"_model_module_version": "2.0.0",
|
1408
|
+
"_model_name": "HTMLStyleModel",
|
1409
|
+
"_view_count": null,
|
1410
|
+
"_view_module": "@jupyter-widgets/base",
|
1411
|
+
"_view_module_version": "2.0.0",
|
1412
|
+
"_view_name": "StyleView",
|
1413
|
+
"background": null,
|
1414
|
+
"description_width": "",
|
1415
|
+
"font_size": null,
|
1416
|
+
"text_color": null
|
1417
|
+
}
|
1418
|
+
},
|
1419
|
+
"4e25f956fccc4b1b969fbaa7f290492a": {
|
1420
|
+
"model_module": "@jupyter-widgets/controls",
|
1421
|
+
"model_module_version": "2.0.0",
|
1422
|
+
"model_name": "HTMLModel",
|
1423
|
+
"state": {
|
1424
|
+
"_dom_classes": [],
|
1425
|
+
"_model_module": "@jupyter-widgets/controls",
|
1426
|
+
"_model_module_version": "2.0.0",
|
1427
|
+
"_model_name": "HTMLModel",
|
1428
|
+
"_view_count": null,
|
1429
|
+
"_view_module": "@jupyter-widgets/controls",
|
1430
|
+
"_view_module_version": "2.0.0",
|
1431
|
+
"_view_name": "HTMLView",
|
1432
|
+
"description": "",
|
1433
|
+
"description_allow_html": false,
|
1434
|
+
"layout": "IPY_MODEL_52ce23907cd741a3a637e58e9649be7e",
|
1435
|
+
"placeholder": "",
|
1436
|
+
"style": "IPY_MODEL_4c923325c4174be587eb87fa69fb9d34",
|
1437
|
+
"tabbable": null,
|
1438
|
+
"tooltip": null,
|
1439
|
+
"value": " 0/1 [00:00<?, ?it/s]"
|
1440
|
+
}
|
1441
|
+
},
|
1442
|
+
"51463ffe39094a4c86e60da0f11cdbdd": {
|
1443
|
+
"model_module": "@jupyter-widgets/controls",
|
1444
|
+
"model_module_version": "2.0.0",
|
1445
|
+
"model_name": "HTMLStyleModel",
|
1446
|
+
"state": {
|
1447
|
+
"_model_module": "@jupyter-widgets/controls",
|
1448
|
+
"_model_module_version": "2.0.0",
|
1449
|
+
"_model_name": "HTMLStyleModel",
|
1450
|
+
"_view_count": null,
|
1451
|
+
"_view_module": "@jupyter-widgets/base",
|
1452
|
+
"_view_module_version": "2.0.0",
|
1453
|
+
"_view_name": "StyleView",
|
1454
|
+
"background": null,
|
1455
|
+
"description_width": "",
|
1456
|
+
"font_size": null,
|
1457
|
+
"text_color": null
|
1458
|
+
}
|
1459
|
+
},
|
1460
|
+
"52ce23907cd741a3a637e58e9649be7e": {
|
1461
|
+
"model_module": "@jupyter-widgets/base",
|
1462
|
+
"model_module_version": "2.0.0",
|
1463
|
+
"model_name": "LayoutModel",
|
1464
|
+
"state": {
|
1465
|
+
"_model_module": "@jupyter-widgets/base",
|
1466
|
+
"_model_module_version": "2.0.0",
|
1467
|
+
"_model_name": "LayoutModel",
|
1468
|
+
"_view_count": null,
|
1469
|
+
"_view_module": "@jupyter-widgets/base",
|
1470
|
+
"_view_module_version": "2.0.0",
|
1471
|
+
"_view_name": "LayoutView",
|
1472
|
+
"align_content": null,
|
1473
|
+
"align_items": null,
|
1474
|
+
"align_self": null,
|
1475
|
+
"border_bottom": null,
|
1476
|
+
"border_left": null,
|
1477
|
+
"border_right": null,
|
1478
|
+
"border_top": null,
|
1479
|
+
"bottom": null,
|
1480
|
+
"display": null,
|
1481
|
+
"flex": null,
|
1482
|
+
"flex_flow": null,
|
1483
|
+
"grid_area": null,
|
1484
|
+
"grid_auto_columns": null,
|
1485
|
+
"grid_auto_flow": null,
|
1486
|
+
"grid_auto_rows": null,
|
1487
|
+
"grid_column": null,
|
1488
|
+
"grid_gap": null,
|
1489
|
+
"grid_row": null,
|
1490
|
+
"grid_template_areas": null,
|
1491
|
+
"grid_template_columns": null,
|
1492
|
+
"grid_template_rows": null,
|
1493
|
+
"height": null,
|
1494
|
+
"justify_content": null,
|
1495
|
+
"justify_items": null,
|
1496
|
+
"left": null,
|
1497
|
+
"margin": null,
|
1498
|
+
"max_height": null,
|
1499
|
+
"max_width": null,
|
1500
|
+
"min_height": null,
|
1501
|
+
"min_width": null,
|
1502
|
+
"object_fit": null,
|
1503
|
+
"object_position": null,
|
1504
|
+
"order": null,
|
1505
|
+
"overflow": null,
|
1506
|
+
"padding": null,
|
1507
|
+
"right": null,
|
1508
|
+
"top": null,
|
1509
|
+
"visibility": null,
|
1510
|
+
"width": null
|
1511
|
+
}
|
1512
|
+
},
|
1513
|
+
"55a0608b33ed41e59e3769c5ca572640": {
|
1514
|
+
"model_module": "@jupyter-widgets/base",
|
1515
|
+
"model_module_version": "2.0.0",
|
1516
|
+
"model_name": "LayoutModel",
|
1517
|
+
"state": {
|
1518
|
+
"_model_module": "@jupyter-widgets/base",
|
1519
|
+
"_model_module_version": "2.0.0",
|
1520
|
+
"_model_name": "LayoutModel",
|
1521
|
+
"_view_count": null,
|
1522
|
+
"_view_module": "@jupyter-widgets/base",
|
1523
|
+
"_view_module_version": "2.0.0",
|
1524
|
+
"_view_name": "LayoutView",
|
1525
|
+
"align_content": null,
|
1526
|
+
"align_items": null,
|
1527
|
+
"align_self": null,
|
1528
|
+
"border_bottom": null,
|
1529
|
+
"border_left": null,
|
1530
|
+
"border_right": null,
|
1531
|
+
"border_top": null,
|
1532
|
+
"bottom": null,
|
1533
|
+
"display": null,
|
1534
|
+
"flex": null,
|
1535
|
+
"flex_flow": null,
|
1536
|
+
"grid_area": null,
|
1537
|
+
"grid_auto_columns": null,
|
1538
|
+
"grid_auto_flow": null,
|
1539
|
+
"grid_auto_rows": null,
|
1540
|
+
"grid_column": null,
|
1541
|
+
"grid_gap": null,
|
1542
|
+
"grid_row": null,
|
1543
|
+
"grid_template_areas": null,
|
1544
|
+
"grid_template_columns": null,
|
1545
|
+
"grid_template_rows": null,
|
1546
|
+
"height": null,
|
1547
|
+
"justify_content": null,
|
1548
|
+
"justify_items": null,
|
1549
|
+
"left": null,
|
1550
|
+
"margin": null,
|
1551
|
+
"max_height": null,
|
1552
|
+
"max_width": null,
|
1553
|
+
"min_height": null,
|
1554
|
+
"min_width": null,
|
1555
|
+
"object_fit": null,
|
1556
|
+
"object_position": null,
|
1557
|
+
"order": null,
|
1558
|
+
"overflow": null,
|
1559
|
+
"padding": null,
|
1560
|
+
"right": null,
|
1561
|
+
"top": null,
|
1562
|
+
"visibility": null,
|
1563
|
+
"width": null
|
1564
|
+
}
|
1565
|
+
},
|
1566
|
+
"560328fa0add43ac9de66469923fe4c5": {
|
1567
|
+
"model_module": "@jupyter-widgets/controls",
|
1568
|
+
"model_module_version": "2.0.0",
|
1569
|
+
"model_name": "HTMLStyleModel",
|
1570
|
+
"state": {
|
1571
|
+
"_model_module": "@jupyter-widgets/controls",
|
1572
|
+
"_model_module_version": "2.0.0",
|
1573
|
+
"_model_name": "HTMLStyleModel",
|
1574
|
+
"_view_count": null,
|
1575
|
+
"_view_module": "@jupyter-widgets/base",
|
1576
|
+
"_view_module_version": "2.0.0",
|
1577
|
+
"_view_name": "StyleView",
|
1578
|
+
"background": null,
|
1579
|
+
"description_width": "",
|
1580
|
+
"font_size": null,
|
1581
|
+
"text_color": null
|
1582
|
+
}
|
1583
|
+
},
|
1584
|
+
"577ee67e9cee48bd87b596e7659103f9": {
|
1585
|
+
"model_module": "@jupyter-widgets/base",
|
1586
|
+
"model_module_version": "2.0.0",
|
1587
|
+
"model_name": "LayoutModel",
|
1588
|
+
"state": {
|
1589
|
+
"_model_module": "@jupyter-widgets/base",
|
1590
|
+
"_model_module_version": "2.0.0",
|
1591
|
+
"_model_name": "LayoutModel",
|
1592
|
+
"_view_count": null,
|
1593
|
+
"_view_module": "@jupyter-widgets/base",
|
1594
|
+
"_view_module_version": "2.0.0",
|
1595
|
+
"_view_name": "LayoutView",
|
1596
|
+
"align_content": null,
|
1597
|
+
"align_items": null,
|
1598
|
+
"align_self": null,
|
1599
|
+
"border_bottom": null,
|
1600
|
+
"border_left": null,
|
1601
|
+
"border_right": null,
|
1602
|
+
"border_top": null,
|
1603
|
+
"bottom": null,
|
1604
|
+
"display": null,
|
1605
|
+
"flex": null,
|
1606
|
+
"flex_flow": null,
|
1607
|
+
"grid_area": null,
|
1608
|
+
"grid_auto_columns": null,
|
1609
|
+
"grid_auto_flow": null,
|
1610
|
+
"grid_auto_rows": null,
|
1611
|
+
"grid_column": null,
|
1612
|
+
"grid_gap": null,
|
1613
|
+
"grid_row": null,
|
1614
|
+
"grid_template_areas": null,
|
1615
|
+
"grid_template_columns": null,
|
1616
|
+
"grid_template_rows": null,
|
1617
|
+
"height": null,
|
1618
|
+
"justify_content": null,
|
1619
|
+
"justify_items": null,
|
1620
|
+
"left": null,
|
1621
|
+
"margin": null,
|
1622
|
+
"max_height": null,
|
1623
|
+
"max_width": null,
|
1624
|
+
"min_height": null,
|
1625
|
+
"min_width": null,
|
1626
|
+
"object_fit": null,
|
1627
|
+
"object_position": null,
|
1628
|
+
"order": null,
|
1629
|
+
"overflow": null,
|
1630
|
+
"padding": null,
|
1631
|
+
"right": null,
|
1632
|
+
"top": null,
|
1633
|
+
"visibility": "hidden",
|
1634
|
+
"width": null
|
1635
|
+
}
|
1636
|
+
},
|
1637
|
+
"5c4525f9c8664981bd3680eed1cf154d": {
|
1638
|
+
"model_module": "@jupyter-widgets/controls",
|
1639
|
+
"model_module_version": "2.0.0",
|
1640
|
+
"model_name": "ProgressStyleModel",
|
1641
|
+
"state": {
|
1642
|
+
"_model_module": "@jupyter-widgets/controls",
|
1643
|
+
"_model_module_version": "2.0.0",
|
1644
|
+
"_model_name": "ProgressStyleModel",
|
1645
|
+
"_view_count": null,
|
1646
|
+
"_view_module": "@jupyter-widgets/base",
|
1647
|
+
"_view_module_version": "2.0.0",
|
1648
|
+
"_view_name": "StyleView",
|
1649
|
+
"bar_color": null,
|
1650
|
+
"description_width": ""
|
1651
|
+
}
|
1652
|
+
},
|
1653
|
+
"5e0e050cf7bc45219d785a3ab1f10bec": {
|
1654
|
+
"model_module": "@jupyter-widgets/base",
|
1655
|
+
"model_module_version": "2.0.0",
|
1656
|
+
"model_name": "LayoutModel",
|
1657
|
+
"state": {
|
1658
|
+
"_model_module": "@jupyter-widgets/base",
|
1659
|
+
"_model_module_version": "2.0.0",
|
1660
|
+
"_model_name": "LayoutModel",
|
1661
|
+
"_view_count": null,
|
1662
|
+
"_view_module": "@jupyter-widgets/base",
|
1663
|
+
"_view_module_version": "2.0.0",
|
1664
|
+
"_view_name": "LayoutView",
|
1665
|
+
"align_content": null,
|
1666
|
+
"align_items": null,
|
1667
|
+
"align_self": null,
|
1668
|
+
"border_bottom": null,
|
1669
|
+
"border_left": null,
|
1670
|
+
"border_right": null,
|
1671
|
+
"border_top": null,
|
1672
|
+
"bottom": null,
|
1673
|
+
"display": null,
|
1674
|
+
"flex": null,
|
1675
|
+
"flex_flow": null,
|
1676
|
+
"grid_area": null,
|
1677
|
+
"grid_auto_columns": null,
|
1678
|
+
"grid_auto_flow": null,
|
1679
|
+
"grid_auto_rows": null,
|
1680
|
+
"grid_column": null,
|
1681
|
+
"grid_gap": null,
|
1682
|
+
"grid_row": null,
|
1683
|
+
"grid_template_areas": null,
|
1684
|
+
"grid_template_columns": null,
|
1685
|
+
"grid_template_rows": null,
|
1686
|
+
"height": null,
|
1687
|
+
"justify_content": null,
|
1688
|
+
"justify_items": null,
|
1689
|
+
"left": null,
|
1690
|
+
"margin": null,
|
1691
|
+
"max_height": null,
|
1692
|
+
"max_width": null,
|
1693
|
+
"min_height": null,
|
1694
|
+
"min_width": null,
|
1695
|
+
"object_fit": null,
|
1696
|
+
"object_position": null,
|
1697
|
+
"order": null,
|
1698
|
+
"overflow": null,
|
1699
|
+
"padding": null,
|
1700
|
+
"right": null,
|
1701
|
+
"top": null,
|
1702
|
+
"visibility": null,
|
1703
|
+
"width": null
|
1704
|
+
}
|
1705
|
+
},
|
1706
|
+
"5e40bef048f3441c99ae91260a13f545": {
|
1707
|
+
"model_module": "@jupyter-widgets/controls",
|
1708
|
+
"model_module_version": "2.0.0",
|
1709
|
+
"model_name": "HBoxModel",
|
1710
|
+
"state": {
|
1711
|
+
"_dom_classes": [],
|
1712
|
+
"_model_module": "@jupyter-widgets/controls",
|
1713
|
+
"_model_module_version": "2.0.0",
|
1714
|
+
"_model_name": "HBoxModel",
|
1715
|
+
"_view_count": null,
|
1716
|
+
"_view_module": "@jupyter-widgets/controls",
|
1717
|
+
"_view_module_version": "2.0.0",
|
1718
|
+
"_view_name": "HBoxView",
|
1719
|
+
"box_style": "",
|
1720
|
+
"children": [
|
1721
|
+
"IPY_MODEL_ef1cff32aed04ed89901e962c397b3ef",
|
1722
|
+
"IPY_MODEL_4b46ab41557547e8b1afacd9d4a4b370",
|
1723
|
+
"IPY_MODEL_3571a316fa3d401a9abd519a9bef510c"
|
1724
|
+
],
|
1725
|
+
"layout": "IPY_MODEL_577ee67e9cee48bd87b596e7659103f9",
|
1726
|
+
"tabbable": null,
|
1727
|
+
"tooltip": null
|
1728
|
+
}
|
1729
|
+
},
|
1730
|
+
"6096733735134f0f8af21b42caf09301": {
|
1731
|
+
"model_module": "@jupyter-widgets/controls",
|
1732
|
+
"model_module_version": "2.0.0",
|
1733
|
+
"model_name": "HTMLStyleModel",
|
1734
|
+
"state": {
|
1735
|
+
"_model_module": "@jupyter-widgets/controls",
|
1736
|
+
"_model_module_version": "2.0.0",
|
1737
|
+
"_model_name": "HTMLStyleModel",
|
1738
|
+
"_view_count": null,
|
1739
|
+
"_view_module": "@jupyter-widgets/base",
|
1740
|
+
"_view_module_version": "2.0.0",
|
1741
|
+
"_view_name": "StyleView",
|
1742
|
+
"background": null,
|
1743
|
+
"description_width": "",
|
1744
|
+
"font_size": null,
|
1745
|
+
"text_color": null
|
1746
|
+
}
|
1747
|
+
},
|
1748
|
+
"6475f425e96b4974a7f1fd4dc7445314": {
|
1749
|
+
"model_module": "@jupyter-widgets/base",
|
1750
|
+
"model_module_version": "2.0.0",
|
1751
|
+
"model_name": "LayoutModel",
|
1752
|
+
"state": {
|
1753
|
+
"_model_module": "@jupyter-widgets/base",
|
1754
|
+
"_model_module_version": "2.0.0",
|
1755
|
+
"_model_name": "LayoutModel",
|
1756
|
+
"_view_count": null,
|
1757
|
+
"_view_module": "@jupyter-widgets/base",
|
1758
|
+
"_view_module_version": "2.0.0",
|
1759
|
+
"_view_name": "LayoutView",
|
1760
|
+
"align_content": null,
|
1761
|
+
"align_items": null,
|
1762
|
+
"align_self": null,
|
1763
|
+
"border_bottom": null,
|
1764
|
+
"border_left": null,
|
1765
|
+
"border_right": null,
|
1766
|
+
"border_top": null,
|
1767
|
+
"bottom": null,
|
1768
|
+
"display": null,
|
1769
|
+
"flex": null,
|
1770
|
+
"flex_flow": null,
|
1771
|
+
"grid_area": null,
|
1772
|
+
"grid_auto_columns": null,
|
1773
|
+
"grid_auto_flow": null,
|
1774
|
+
"grid_auto_rows": null,
|
1775
|
+
"grid_column": null,
|
1776
|
+
"grid_gap": null,
|
1777
|
+
"grid_row": null,
|
1778
|
+
"grid_template_areas": null,
|
1779
|
+
"grid_template_columns": null,
|
1780
|
+
"grid_template_rows": null,
|
1781
|
+
"height": null,
|
1782
|
+
"justify_content": null,
|
1783
|
+
"justify_items": null,
|
1784
|
+
"left": null,
|
1785
|
+
"margin": null,
|
1786
|
+
"max_height": null,
|
1787
|
+
"max_width": null,
|
1788
|
+
"min_height": null,
|
1789
|
+
"min_width": null,
|
1790
|
+
"object_fit": null,
|
1791
|
+
"object_position": null,
|
1792
|
+
"order": null,
|
1793
|
+
"overflow": null,
|
1794
|
+
"padding": null,
|
1795
|
+
"right": null,
|
1796
|
+
"top": null,
|
1797
|
+
"visibility": "hidden",
|
1798
|
+
"width": null
|
1799
|
+
}
|
1800
|
+
},
|
1801
|
+
"6c32dab276b147dc9ed4eeaf49f8637f": {
|
1802
|
+
"model_module": "@jupyter-widgets/base",
|
1803
|
+
"model_module_version": "2.0.0",
|
1804
|
+
"model_name": "LayoutModel",
|
1805
|
+
"state": {
|
1806
|
+
"_model_module": "@jupyter-widgets/base",
|
1807
|
+
"_model_module_version": "2.0.0",
|
1808
|
+
"_model_name": "LayoutModel",
|
1809
|
+
"_view_count": null,
|
1810
|
+
"_view_module": "@jupyter-widgets/base",
|
1811
|
+
"_view_module_version": "2.0.0",
|
1812
|
+
"_view_name": "LayoutView",
|
1813
|
+
"align_content": null,
|
1814
|
+
"align_items": null,
|
1815
|
+
"align_self": null,
|
1816
|
+
"border_bottom": null,
|
1817
|
+
"border_left": null,
|
1818
|
+
"border_right": null,
|
1819
|
+
"border_top": null,
|
1820
|
+
"bottom": null,
|
1821
|
+
"display": null,
|
1822
|
+
"flex": null,
|
1823
|
+
"flex_flow": null,
|
1824
|
+
"grid_area": null,
|
1825
|
+
"grid_auto_columns": null,
|
1826
|
+
"grid_auto_flow": null,
|
1827
|
+
"grid_auto_rows": null,
|
1828
|
+
"grid_column": null,
|
1829
|
+
"grid_gap": null,
|
1830
|
+
"grid_row": null,
|
1831
|
+
"grid_template_areas": null,
|
1832
|
+
"grid_template_columns": null,
|
1833
|
+
"grid_template_rows": null,
|
1834
|
+
"height": null,
|
1835
|
+
"justify_content": null,
|
1836
|
+
"justify_items": null,
|
1837
|
+
"left": null,
|
1838
|
+
"margin": null,
|
1839
|
+
"max_height": null,
|
1840
|
+
"max_width": null,
|
1841
|
+
"min_height": null,
|
1842
|
+
"min_width": null,
|
1843
|
+
"object_fit": null,
|
1844
|
+
"object_position": null,
|
1845
|
+
"order": null,
|
1846
|
+
"overflow": null,
|
1847
|
+
"padding": null,
|
1848
|
+
"right": null,
|
1849
|
+
"top": null,
|
1850
|
+
"visibility": null,
|
1851
|
+
"width": null
|
1852
|
+
}
|
1853
|
+
},
|
1854
|
+
"6f810f1c862f4d388328c29487bef3b7": {
|
1855
|
+
"model_module": "@jupyter-widgets/controls",
|
1856
|
+
"model_module_version": "2.0.0",
|
1857
|
+
"model_name": "HTMLStyleModel",
|
1858
|
+
"state": {
|
1859
|
+
"_model_module": "@jupyter-widgets/controls",
|
1860
|
+
"_model_module_version": "2.0.0",
|
1861
|
+
"_model_name": "HTMLStyleModel",
|
1862
|
+
"_view_count": null,
|
1863
|
+
"_view_module": "@jupyter-widgets/base",
|
1864
|
+
"_view_module_version": "2.0.0",
|
1865
|
+
"_view_name": "StyleView",
|
1866
|
+
"background": null,
|
1867
|
+
"description_width": "",
|
1868
|
+
"font_size": null,
|
1869
|
+
"text_color": null
|
1870
|
+
}
|
1871
|
+
},
|
1872
|
+
"6fb12657e4a94a6482078b9217db42cd": {
|
1873
|
+
"model_module": "@jupyter-widgets/controls",
|
1874
|
+
"model_module_version": "2.0.0",
|
1875
|
+
"model_name": "HTMLModel",
|
1876
|
+
"state": {
|
1877
|
+
"_dom_classes": [],
|
1878
|
+
"_model_module": "@jupyter-widgets/controls",
|
1879
|
+
"_model_module_version": "2.0.0",
|
1880
|
+
"_model_name": "HTMLModel",
|
1881
|
+
"_view_count": null,
|
1882
|
+
"_view_module": "@jupyter-widgets/controls",
|
1883
|
+
"_view_module_version": "2.0.0",
|
1884
|
+
"_view_name": "HTMLView",
|
1885
|
+
"description": "",
|
1886
|
+
"description_allow_html": false,
|
1887
|
+
"layout": "IPY_MODEL_381d045b3faa4d34b4395a11a55cc20d",
|
1888
|
+
"placeholder": "",
|
1889
|
+
"style": "IPY_MODEL_8339b596fd0b41bd97798504156c16e3",
|
1890
|
+
"tabbable": null,
|
1891
|
+
"tooltip": null,
|
1892
|
+
"value": " 0/1 [00:00<?, ?it/s]"
|
1893
|
+
}
|
1894
|
+
},
|
1895
|
+
"7274fe84ea2f47438bf993ba8df90729": {
|
1896
|
+
"model_module": "@jupyter-widgets/base",
|
1897
|
+
"model_module_version": "2.0.0",
|
1898
|
+
"model_name": "LayoutModel",
|
1899
|
+
"state": {
|
1900
|
+
"_model_module": "@jupyter-widgets/base",
|
1901
|
+
"_model_module_version": "2.0.0",
|
1902
|
+
"_model_name": "LayoutModel",
|
1903
|
+
"_view_count": null,
|
1904
|
+
"_view_module": "@jupyter-widgets/base",
|
1905
|
+
"_view_module_version": "2.0.0",
|
1906
|
+
"_view_name": "LayoutView",
|
1907
|
+
"align_content": null,
|
1908
|
+
"align_items": null,
|
1909
|
+
"align_self": null,
|
1910
|
+
"border_bottom": null,
|
1911
|
+
"border_left": null,
|
1912
|
+
"border_right": null,
|
1913
|
+
"border_top": null,
|
1914
|
+
"bottom": null,
|
1915
|
+
"display": null,
|
1916
|
+
"flex": null,
|
1917
|
+
"flex_flow": null,
|
1918
|
+
"grid_area": null,
|
1919
|
+
"grid_auto_columns": null,
|
1920
|
+
"grid_auto_flow": null,
|
1921
|
+
"grid_auto_rows": null,
|
1922
|
+
"grid_column": null,
|
1923
|
+
"grid_gap": null,
|
1924
|
+
"grid_row": null,
|
1925
|
+
"grid_template_areas": null,
|
1926
|
+
"grid_template_columns": null,
|
1927
|
+
"grid_template_rows": null,
|
1928
|
+
"height": null,
|
1929
|
+
"justify_content": null,
|
1930
|
+
"justify_items": null,
|
1931
|
+
"left": null,
|
1932
|
+
"margin": null,
|
1933
|
+
"max_height": null,
|
1934
|
+
"max_width": null,
|
1935
|
+
"min_height": null,
|
1936
|
+
"min_width": null,
|
1937
|
+
"object_fit": null,
|
1938
|
+
"object_position": null,
|
1939
|
+
"order": null,
|
1940
|
+
"overflow": null,
|
1941
|
+
"padding": null,
|
1942
|
+
"right": null,
|
1943
|
+
"top": null,
|
1944
|
+
"visibility": null,
|
1945
|
+
"width": null
|
1946
|
+
}
|
1947
|
+
},
|
1948
|
+
"727f3c07cd8347d88bc17e8eee157568": {
|
1949
|
+
"model_module": "@jupyter-widgets/controls",
|
1950
|
+
"model_module_version": "2.0.0",
|
1951
|
+
"model_name": "HTMLStyleModel",
|
1952
|
+
"state": {
|
1953
|
+
"_model_module": "@jupyter-widgets/controls",
|
1954
|
+
"_model_module_version": "2.0.0",
|
1955
|
+
"_model_name": "HTMLStyleModel",
|
1956
|
+
"_view_count": null,
|
1957
|
+
"_view_module": "@jupyter-widgets/base",
|
1958
|
+
"_view_module_version": "2.0.0",
|
1959
|
+
"_view_name": "StyleView",
|
1960
|
+
"background": null,
|
1961
|
+
"description_width": "",
|
1962
|
+
"font_size": null,
|
1963
|
+
"text_color": null
|
1964
|
+
}
|
1965
|
+
},
|
1966
|
+
"7768a9c4e5cf45e8a288512dce113d05": {
|
1967
|
+
"model_module": "@jupyter-widgets/controls",
|
1968
|
+
"model_module_version": "2.0.0",
|
1969
|
+
"model_name": "HTMLModel",
|
1970
|
+
"state": {
|
1971
|
+
"_dom_classes": [],
|
1972
|
+
"_model_module": "@jupyter-widgets/controls",
|
1973
|
+
"_model_module_version": "2.0.0",
|
1974
|
+
"_model_name": "HTMLModel",
|
1975
|
+
"_view_count": null,
|
1976
|
+
"_view_module": "@jupyter-widgets/controls",
|
1977
|
+
"_view_module_version": "2.0.0",
|
1978
|
+
"_view_name": "HTMLView",
|
1979
|
+
"description": "",
|
1980
|
+
"description_allow_html": false,
|
1981
|
+
"layout": "IPY_MODEL_e20906988def4763b0bc42f36bd8c8f5",
|
1982
|
+
"placeholder": "",
|
1983
|
+
"style": "IPY_MODEL_44dbb66e4ff14e97bd956c995d2d8e16",
|
1984
|
+
"tabbable": null,
|
1985
|
+
"tooltip": null,
|
1986
|
+
"value": "Rendering pages: 0%"
|
1987
|
+
}
|
1988
|
+
},
|
1989
|
+
"7ebc9803f2534971995c7ed7eaa4e0b9": {
|
1990
|
+
"model_module": "@jupyter-widgets/controls",
|
1991
|
+
"model_module_version": "2.0.0",
|
1992
|
+
"model_name": "HTMLModel",
|
1993
|
+
"state": {
|
1994
|
+
"_dom_classes": [],
|
1995
|
+
"_model_module": "@jupyter-widgets/controls",
|
1996
|
+
"_model_module_version": "2.0.0",
|
1997
|
+
"_model_name": "HTMLModel",
|
1998
|
+
"_view_count": null,
|
1999
|
+
"_view_module": "@jupyter-widgets/controls",
|
2000
|
+
"_view_module_version": "2.0.0",
|
2001
|
+
"_view_name": "HTMLView",
|
2002
|
+
"description": "",
|
2003
|
+
"description_allow_html": false,
|
2004
|
+
"layout": "IPY_MODEL_efb700ee085d4521a9eaef1cb53a09da",
|
2005
|
+
"placeholder": "",
|
2006
|
+
"style": "IPY_MODEL_f549175a52894eee944104536eac6fbb",
|
2007
|
+
"tabbable": null,
|
2008
|
+
"tooltip": null,
|
2009
|
+
"value": " 0/1 [00:00<?, ?it/s]"
|
2010
|
+
}
|
2011
|
+
},
|
2012
|
+
"8339b596fd0b41bd97798504156c16e3": {
|
2013
|
+
"model_module": "@jupyter-widgets/controls",
|
2014
|
+
"model_module_version": "2.0.0",
|
2015
|
+
"model_name": "HTMLStyleModel",
|
2016
|
+
"state": {
|
2017
|
+
"_model_module": "@jupyter-widgets/controls",
|
2018
|
+
"_model_module_version": "2.0.0",
|
2019
|
+
"_model_name": "HTMLStyleModel",
|
2020
|
+
"_view_count": null,
|
2021
|
+
"_view_module": "@jupyter-widgets/base",
|
2022
|
+
"_view_module_version": "2.0.0",
|
2023
|
+
"_view_name": "StyleView",
|
2024
|
+
"background": null,
|
2025
|
+
"description_width": "",
|
2026
|
+
"font_size": null,
|
2027
|
+
"text_color": null
|
2028
|
+
}
|
2029
|
+
},
|
2030
|
+
"8dadb7c8de2c4d098037f3a10cb18482": {
|
2031
|
+
"model_module": "@jupyter-widgets/controls",
|
2032
|
+
"model_module_version": "2.0.0",
|
2033
|
+
"model_name": "ProgressStyleModel",
|
2034
|
+
"state": {
|
2035
|
+
"_model_module": "@jupyter-widgets/controls",
|
2036
|
+
"_model_module_version": "2.0.0",
|
2037
|
+
"_model_name": "ProgressStyleModel",
|
2038
|
+
"_view_count": null,
|
2039
|
+
"_view_module": "@jupyter-widgets/base",
|
2040
|
+
"_view_module_version": "2.0.0",
|
2041
|
+
"_view_name": "StyleView",
|
2042
|
+
"bar_color": null,
|
2043
|
+
"description_width": ""
|
2044
|
+
}
|
2045
|
+
},
|
2046
|
+
"909864fb18354f0993ae81cfcd561f0b": {
|
2047
|
+
"model_module": "@jupyter-widgets/base",
|
2048
|
+
"model_module_version": "2.0.0",
|
2049
|
+
"model_name": "LayoutModel",
|
2050
|
+
"state": {
|
2051
|
+
"_model_module": "@jupyter-widgets/base",
|
2052
|
+
"_model_module_version": "2.0.0",
|
2053
|
+
"_model_name": "LayoutModel",
|
2054
|
+
"_view_count": null,
|
2055
|
+
"_view_module": "@jupyter-widgets/base",
|
2056
|
+
"_view_module_version": "2.0.0",
|
2057
|
+
"_view_name": "LayoutView",
|
2058
|
+
"align_content": null,
|
2059
|
+
"align_items": null,
|
2060
|
+
"align_self": null,
|
2061
|
+
"border_bottom": null,
|
2062
|
+
"border_left": null,
|
2063
|
+
"border_right": null,
|
2064
|
+
"border_top": null,
|
2065
|
+
"bottom": null,
|
2066
|
+
"display": null,
|
2067
|
+
"flex": null,
|
2068
|
+
"flex_flow": null,
|
2069
|
+
"grid_area": null,
|
2070
|
+
"grid_auto_columns": null,
|
2071
|
+
"grid_auto_flow": null,
|
2072
|
+
"grid_auto_rows": null,
|
2073
|
+
"grid_column": null,
|
2074
|
+
"grid_gap": null,
|
2075
|
+
"grid_row": null,
|
2076
|
+
"grid_template_areas": null,
|
2077
|
+
"grid_template_columns": null,
|
2078
|
+
"grid_template_rows": null,
|
2079
|
+
"height": null,
|
2080
|
+
"justify_content": null,
|
2081
|
+
"justify_items": null,
|
2082
|
+
"left": null,
|
2083
|
+
"margin": null,
|
2084
|
+
"max_height": null,
|
2085
|
+
"max_width": null,
|
2086
|
+
"min_height": null,
|
2087
|
+
"min_width": null,
|
2088
|
+
"object_fit": null,
|
2089
|
+
"object_position": null,
|
2090
|
+
"order": null,
|
2091
|
+
"overflow": null,
|
2092
|
+
"padding": null,
|
2093
|
+
"right": null,
|
2094
|
+
"top": null,
|
2095
|
+
"visibility": null,
|
2096
|
+
"width": null
|
2097
|
+
}
|
2098
|
+
},
|
2099
|
+
"91e7e315ad134d3a90c4b4a3e4503f6b": {
|
2100
|
+
"model_module": "@jupyter-widgets/controls",
|
2101
|
+
"model_module_version": "2.0.0",
|
2102
|
+
"model_name": "FloatProgressModel",
|
2103
|
+
"state": {
|
2104
|
+
"_dom_classes": [],
|
2105
|
+
"_model_module": "@jupyter-widgets/controls",
|
2106
|
+
"_model_module_version": "2.0.0",
|
2107
|
+
"_model_name": "FloatProgressModel",
|
2108
|
+
"_view_count": null,
|
2109
|
+
"_view_module": "@jupyter-widgets/controls",
|
2110
|
+
"_view_module_version": "2.0.0",
|
2111
|
+
"_view_name": "ProgressView",
|
2112
|
+
"bar_style": "",
|
2113
|
+
"description": "",
|
2114
|
+
"description_allow_html": false,
|
2115
|
+
"layout": "IPY_MODEL_2e8dbacbfbbc4381b0bbd0c0427ee370",
|
2116
|
+
"max": 1.0,
|
2117
|
+
"min": 0.0,
|
2118
|
+
"orientation": "horizontal",
|
2119
|
+
"style": "IPY_MODEL_4b113c9d48ef40338ee8c3154d85ad6b",
|
2120
|
+
"tabbable": null,
|
2121
|
+
"tooltip": null,
|
2122
|
+
"value": 1.0
|
2123
|
+
}
|
2124
|
+
},
|
2125
|
+
"9272a282407941daa65b0af13de9a5cb": {
|
2126
|
+
"model_module": "@jupyter-widgets/base",
|
2127
|
+
"model_module_version": "2.0.0",
|
2128
|
+
"model_name": "LayoutModel",
|
2129
|
+
"state": {
|
2130
|
+
"_model_module": "@jupyter-widgets/base",
|
2131
|
+
"_model_module_version": "2.0.0",
|
2132
|
+
"_model_name": "LayoutModel",
|
2133
|
+
"_view_count": null,
|
2134
|
+
"_view_module": "@jupyter-widgets/base",
|
2135
|
+
"_view_module_version": "2.0.0",
|
2136
|
+
"_view_name": "LayoutView",
|
2137
|
+
"align_content": null,
|
2138
|
+
"align_items": null,
|
2139
|
+
"align_self": null,
|
2140
|
+
"border_bottom": null,
|
2141
|
+
"border_left": null,
|
2142
|
+
"border_right": null,
|
2143
|
+
"border_top": null,
|
2144
|
+
"bottom": null,
|
2145
|
+
"display": null,
|
2146
|
+
"flex": null,
|
2147
|
+
"flex_flow": null,
|
2148
|
+
"grid_area": null,
|
2149
|
+
"grid_auto_columns": null,
|
2150
|
+
"grid_auto_flow": null,
|
2151
|
+
"grid_auto_rows": null,
|
2152
|
+
"grid_column": null,
|
2153
|
+
"grid_gap": null,
|
2154
|
+
"grid_row": null,
|
2155
|
+
"grid_template_areas": null,
|
2156
|
+
"grid_template_columns": null,
|
2157
|
+
"grid_template_rows": null,
|
2158
|
+
"height": null,
|
2159
|
+
"justify_content": null,
|
2160
|
+
"justify_items": null,
|
2161
|
+
"left": null,
|
2162
|
+
"margin": null,
|
2163
|
+
"max_height": null,
|
2164
|
+
"max_width": null,
|
2165
|
+
"min_height": null,
|
2166
|
+
"min_width": null,
|
2167
|
+
"object_fit": null,
|
2168
|
+
"object_position": null,
|
2169
|
+
"order": null,
|
2170
|
+
"overflow": null,
|
2171
|
+
"padding": null,
|
2172
|
+
"right": null,
|
2173
|
+
"top": null,
|
2174
|
+
"visibility": "hidden",
|
2175
|
+
"width": null
|
2176
|
+
}
|
2177
|
+
},
|
2178
|
+
"931980339a8f48ba96beb8eaefd710e2": {
|
2179
|
+
"model_module": "@jupyter-widgets/base",
|
2180
|
+
"model_module_version": "2.0.0",
|
2181
|
+
"model_name": "LayoutModel",
|
2182
|
+
"state": {
|
2183
|
+
"_model_module": "@jupyter-widgets/base",
|
2184
|
+
"_model_module_version": "2.0.0",
|
2185
|
+
"_model_name": "LayoutModel",
|
2186
|
+
"_view_count": null,
|
2187
|
+
"_view_module": "@jupyter-widgets/base",
|
2188
|
+
"_view_module_version": "2.0.0",
|
2189
|
+
"_view_name": "LayoutView",
|
2190
|
+
"align_content": null,
|
2191
|
+
"align_items": null,
|
2192
|
+
"align_self": null,
|
2193
|
+
"border_bottom": null,
|
2194
|
+
"border_left": null,
|
2195
|
+
"border_right": null,
|
2196
|
+
"border_top": null,
|
2197
|
+
"bottom": null,
|
2198
|
+
"display": null,
|
2199
|
+
"flex": null,
|
2200
|
+
"flex_flow": null,
|
2201
|
+
"grid_area": null,
|
2202
|
+
"grid_auto_columns": null,
|
2203
|
+
"grid_auto_flow": null,
|
2204
|
+
"grid_auto_rows": null,
|
2205
|
+
"grid_column": null,
|
2206
|
+
"grid_gap": null,
|
2207
|
+
"grid_row": null,
|
2208
|
+
"grid_template_areas": null,
|
2209
|
+
"grid_template_columns": null,
|
2210
|
+
"grid_template_rows": null,
|
2211
|
+
"height": null,
|
2212
|
+
"justify_content": null,
|
2213
|
+
"justify_items": null,
|
2214
|
+
"left": null,
|
2215
|
+
"margin": null,
|
2216
|
+
"max_height": null,
|
2217
|
+
"max_width": null,
|
2218
|
+
"min_height": null,
|
2219
|
+
"min_width": null,
|
2220
|
+
"object_fit": null,
|
2221
|
+
"object_position": null,
|
2222
|
+
"order": null,
|
2223
|
+
"overflow": null,
|
2224
|
+
"padding": null,
|
2225
|
+
"right": null,
|
2226
|
+
"top": null,
|
2227
|
+
"visibility": null,
|
2228
|
+
"width": null
|
2229
|
+
}
|
2230
|
+
},
|
2231
|
+
"99d50723f6b9434f8f6eed613f243556": {
|
2232
|
+
"model_module": "@jupyter-widgets/controls",
|
2233
|
+
"model_module_version": "2.0.0",
|
2234
|
+
"model_name": "HTMLModel",
|
2235
|
+
"state": {
|
2236
|
+
"_dom_classes": [],
|
2237
|
+
"_model_module": "@jupyter-widgets/controls",
|
2238
|
+
"_model_module_version": "2.0.0",
|
2239
|
+
"_model_name": "HTMLModel",
|
2240
|
+
"_view_count": null,
|
2241
|
+
"_view_module": "@jupyter-widgets/controls",
|
2242
|
+
"_view_module_version": "2.0.0",
|
2243
|
+
"_view_name": "HTMLView",
|
2244
|
+
"description": "",
|
2245
|
+
"description_allow_html": false,
|
2246
|
+
"layout": "IPY_MODEL_909864fb18354f0993ae81cfcd561f0b",
|
2247
|
+
"placeholder": "",
|
2248
|
+
"style": "IPY_MODEL_727f3c07cd8347d88bc17e8eee157568",
|
2249
|
+
"tabbable": null,
|
2250
|
+
"tooltip": null,
|
2251
|
+
"value": "Rendering pages: 0%"
|
2252
|
+
}
|
2253
|
+
},
|
2254
|
+
"9c510bd7f0d540978edbc8661c353210": {
|
2255
|
+
"model_module": "@jupyter-widgets/controls",
|
2256
|
+
"model_module_version": "2.0.0",
|
2257
|
+
"model_name": "FloatProgressModel",
|
2258
|
+
"state": {
|
2259
|
+
"_dom_classes": [],
|
2260
|
+
"_model_module": "@jupyter-widgets/controls",
|
2261
|
+
"_model_module_version": "2.0.0",
|
2262
|
+
"_model_name": "FloatProgressModel",
|
2263
|
+
"_view_count": null,
|
2264
|
+
"_view_module": "@jupyter-widgets/controls",
|
2265
|
+
"_view_module_version": "2.0.0",
|
2266
|
+
"_view_name": "ProgressView",
|
2267
|
+
"bar_style": "",
|
2268
|
+
"description": "",
|
2269
|
+
"description_allow_html": false,
|
2270
|
+
"layout": "IPY_MODEL_0e449b943f2d48eb9c9ed2d6bdfdb557",
|
2271
|
+
"max": 1.0,
|
2272
|
+
"min": 0.0,
|
2273
|
+
"orientation": "horizontal",
|
2274
|
+
"style": "IPY_MODEL_f161f0e36dd14f4ca732e43e7be3bb1d",
|
2275
|
+
"tabbable": null,
|
2276
|
+
"tooltip": null,
|
2277
|
+
"value": 1.0
|
2278
|
+
}
|
2279
|
+
},
|
2280
|
+
"9dabb33d83a94026b0643537203a019b": {
|
2281
|
+
"model_module": "@jupyter-widgets/controls",
|
2282
|
+
"model_module_version": "2.0.0",
|
2283
|
+
"model_name": "ProgressStyleModel",
|
2284
|
+
"state": {
|
2285
|
+
"_model_module": "@jupyter-widgets/controls",
|
2286
|
+
"_model_module_version": "2.0.0",
|
2287
|
+
"_model_name": "ProgressStyleModel",
|
2288
|
+
"_view_count": null,
|
2289
|
+
"_view_module": "@jupyter-widgets/base",
|
2290
|
+
"_view_module_version": "2.0.0",
|
2291
|
+
"_view_name": "StyleView",
|
2292
|
+
"bar_color": null,
|
2293
|
+
"description_width": ""
|
2294
|
+
}
|
2295
|
+
},
|
2296
|
+
"9f0ce84473764eb499e243e45f6c5c82": {
|
2297
|
+
"model_module": "@jupyter-widgets/base",
|
2298
|
+
"model_module_version": "2.0.0",
|
2299
|
+
"model_name": "LayoutModel",
|
2300
|
+
"state": {
|
2301
|
+
"_model_module": "@jupyter-widgets/base",
|
2302
|
+
"_model_module_version": "2.0.0",
|
2303
|
+
"_model_name": "LayoutModel",
|
2304
|
+
"_view_count": null,
|
2305
|
+
"_view_module": "@jupyter-widgets/base",
|
2306
|
+
"_view_module_version": "2.0.0",
|
2307
|
+
"_view_name": "LayoutView",
|
2308
|
+
"align_content": null,
|
2309
|
+
"align_items": null,
|
2310
|
+
"align_self": null,
|
2311
|
+
"border_bottom": null,
|
2312
|
+
"border_left": null,
|
2313
|
+
"border_right": null,
|
2314
|
+
"border_top": null,
|
2315
|
+
"bottom": null,
|
2316
|
+
"display": null,
|
2317
|
+
"flex": null,
|
2318
|
+
"flex_flow": null,
|
2319
|
+
"grid_area": null,
|
2320
|
+
"grid_auto_columns": null,
|
2321
|
+
"grid_auto_flow": null,
|
2322
|
+
"grid_auto_rows": null,
|
2323
|
+
"grid_column": null,
|
2324
|
+
"grid_gap": null,
|
2325
|
+
"grid_row": null,
|
2326
|
+
"grid_template_areas": null,
|
2327
|
+
"grid_template_columns": null,
|
2328
|
+
"grid_template_rows": null,
|
2329
|
+
"height": null,
|
2330
|
+
"justify_content": null,
|
2331
|
+
"justify_items": null,
|
2332
|
+
"left": null,
|
2333
|
+
"margin": null,
|
2334
|
+
"max_height": null,
|
2335
|
+
"max_width": null,
|
2336
|
+
"min_height": null,
|
2337
|
+
"min_width": null,
|
2338
|
+
"object_fit": null,
|
2339
|
+
"object_position": null,
|
2340
|
+
"order": null,
|
2341
|
+
"overflow": null,
|
2342
|
+
"padding": null,
|
2343
|
+
"right": null,
|
2344
|
+
"top": null,
|
2345
|
+
"visibility": null,
|
2346
|
+
"width": null
|
2347
|
+
}
|
2348
|
+
},
|
2349
|
+
"b32b0f4b5d9147bda684486bdba0dc0d": {
|
2350
|
+
"model_module": "@jupyter-widgets/controls",
|
2351
|
+
"model_module_version": "2.0.0",
|
2352
|
+
"model_name": "HBoxModel",
|
2353
|
+
"state": {
|
2354
|
+
"_dom_classes": [],
|
2355
|
+
"_model_module": "@jupyter-widgets/controls",
|
2356
|
+
"_model_module_version": "2.0.0",
|
2357
|
+
"_model_name": "HBoxModel",
|
2358
|
+
"_view_count": null,
|
2359
|
+
"_view_module": "@jupyter-widgets/controls",
|
2360
|
+
"_view_module_version": "2.0.0",
|
2361
|
+
"_view_name": "HBoxView",
|
2362
|
+
"box_style": "",
|
2363
|
+
"children": [
|
2364
|
+
"IPY_MODEL_dffd4f26c2fc498b9dc5d7810fa659b8",
|
2365
|
+
"IPY_MODEL_d397e370fdbf4a1c824cb369dbc79c3e",
|
2366
|
+
"IPY_MODEL_fde4c9c9bb6a423cb21eac39810c63d4"
|
2367
|
+
],
|
2368
|
+
"layout": "IPY_MODEL_9272a282407941daa65b0af13de9a5cb",
|
2369
|
+
"tabbable": null,
|
2370
|
+
"tooltip": null
|
2371
|
+
}
|
2372
|
+
},
|
2373
|
+
"b35dccbf46ae4fd8a7e0cadfbfbfd626": {
|
2374
|
+
"model_module": "@jupyter-widgets/controls",
|
2375
|
+
"model_module_version": "2.0.0",
|
2376
|
+
"model_name": "ProgressStyleModel",
|
2377
|
+
"state": {
|
2378
|
+
"_model_module": "@jupyter-widgets/controls",
|
2379
|
+
"_model_module_version": "2.0.0",
|
2380
|
+
"_model_name": "ProgressStyleModel",
|
2381
|
+
"_view_count": null,
|
2382
|
+
"_view_module": "@jupyter-widgets/base",
|
2383
|
+
"_view_module_version": "2.0.0",
|
2384
|
+
"_view_name": "StyleView",
|
2385
|
+
"bar_color": null,
|
2386
|
+
"description_width": ""
|
2387
|
+
}
|
2388
|
+
},
|
2389
|
+
"b3df63c262144182b094f3c1cc3ccf2c": {
|
2390
|
+
"model_module": "@jupyter-widgets/base",
|
2391
|
+
"model_module_version": "2.0.0",
|
2392
|
+
"model_name": "LayoutModel",
|
2393
|
+
"state": {
|
2394
|
+
"_model_module": "@jupyter-widgets/base",
|
2395
|
+
"_model_module_version": "2.0.0",
|
2396
|
+
"_model_name": "LayoutModel",
|
2397
|
+
"_view_count": null,
|
2398
|
+
"_view_module": "@jupyter-widgets/base",
|
2399
|
+
"_view_module_version": "2.0.0",
|
2400
|
+
"_view_name": "LayoutView",
|
2401
|
+
"align_content": null,
|
2402
|
+
"align_items": null,
|
2403
|
+
"align_self": null,
|
2404
|
+
"border_bottom": null,
|
2405
|
+
"border_left": null,
|
2406
|
+
"border_right": null,
|
2407
|
+
"border_top": null,
|
2408
|
+
"bottom": null,
|
2409
|
+
"display": null,
|
2410
|
+
"flex": null,
|
2411
|
+
"flex_flow": null,
|
2412
|
+
"grid_area": null,
|
2413
|
+
"grid_auto_columns": null,
|
2414
|
+
"grid_auto_flow": null,
|
2415
|
+
"grid_auto_rows": null,
|
2416
|
+
"grid_column": null,
|
2417
|
+
"grid_gap": null,
|
2418
|
+
"grid_row": null,
|
2419
|
+
"grid_template_areas": null,
|
2420
|
+
"grid_template_columns": null,
|
2421
|
+
"grid_template_rows": null,
|
2422
|
+
"height": null,
|
2423
|
+
"justify_content": null,
|
2424
|
+
"justify_items": null,
|
2425
|
+
"left": null,
|
2426
|
+
"margin": null,
|
2427
|
+
"max_height": null,
|
2428
|
+
"max_width": null,
|
2429
|
+
"min_height": null,
|
2430
|
+
"min_width": null,
|
2431
|
+
"object_fit": null,
|
2432
|
+
"object_position": null,
|
2433
|
+
"order": null,
|
2434
|
+
"overflow": null,
|
2435
|
+
"padding": null,
|
2436
|
+
"right": null,
|
2437
|
+
"top": null,
|
2438
|
+
"visibility": "hidden",
|
2439
|
+
"width": null
|
2440
|
+
}
|
2441
|
+
},
|
2442
|
+
"b4d9791457264b7cb43659168e0cc56b": {
|
2443
|
+
"model_module": "@jupyter-widgets/controls",
|
2444
|
+
"model_module_version": "2.0.0",
|
2445
|
+
"model_name": "HTMLModel",
|
2446
|
+
"state": {
|
2447
|
+
"_dom_classes": [],
|
2448
|
+
"_model_module": "@jupyter-widgets/controls",
|
2449
|
+
"_model_module_version": "2.0.0",
|
2450
|
+
"_model_name": "HTMLModel",
|
2451
|
+
"_view_count": null,
|
2452
|
+
"_view_module": "@jupyter-widgets/controls",
|
2453
|
+
"_view_module_version": "2.0.0",
|
2454
|
+
"_view_name": "HTMLView",
|
2455
|
+
"description": "",
|
2456
|
+
"description_allow_html": false,
|
2457
|
+
"layout": "IPY_MODEL_d0defeb9757a449d8c8e16805610aa5a",
|
2458
|
+
"placeholder": "",
|
2459
|
+
"style": "IPY_MODEL_d35c4148ceaa4af9b247beb26b5a5203",
|
2460
|
+
"tabbable": null,
|
2461
|
+
"tooltip": null,
|
2462
|
+
"value": " 0/1 [00:00<?, ?it/s]"
|
2463
|
+
}
|
2464
|
+
},
|
2465
|
+
"c084e0a81dc0489e907da2ee73c66d1d": {
|
2466
|
+
"model_module": "@jupyter-widgets/controls",
|
2467
|
+
"model_module_version": "2.0.0",
|
2468
|
+
"model_name": "HTMLModel",
|
2469
|
+
"state": {
|
2470
|
+
"_dom_classes": [],
|
2471
|
+
"_model_module": "@jupyter-widgets/controls",
|
2472
|
+
"_model_module_version": "2.0.0",
|
2473
|
+
"_model_name": "HTMLModel",
|
2474
|
+
"_view_count": null,
|
2475
|
+
"_view_module": "@jupyter-widgets/controls",
|
2476
|
+
"_view_module_version": "2.0.0",
|
2477
|
+
"_view_name": "HTMLView",
|
2478
|
+
"description": "",
|
2479
|
+
"description_allow_html": false,
|
2480
|
+
"layout": "IPY_MODEL_d6eaf6e1b1144c87bf8eeddac2b5d289",
|
2481
|
+
"placeholder": "",
|
2482
|
+
"style": "IPY_MODEL_0a9ffb62a42d49ccbb896041f568e18c",
|
2483
|
+
"tabbable": null,
|
2484
|
+
"tooltip": null,
|
2485
|
+
"value": "Rendering pages: 0%"
|
2486
|
+
}
|
2487
|
+
},
|
2488
|
+
"cb0ee18881d6417da77d80b8fdc760e6": {
|
2489
|
+
"model_module": "@jupyter-widgets/controls",
|
2490
|
+
"model_module_version": "2.0.0",
|
2491
|
+
"model_name": "HTMLStyleModel",
|
2492
|
+
"state": {
|
2493
|
+
"_model_module": "@jupyter-widgets/controls",
|
2494
|
+
"_model_module_version": "2.0.0",
|
2495
|
+
"_model_name": "HTMLStyleModel",
|
2496
|
+
"_view_count": null,
|
2497
|
+
"_view_module": "@jupyter-widgets/base",
|
2498
|
+
"_view_module_version": "2.0.0",
|
2499
|
+
"_view_name": "StyleView",
|
2500
|
+
"background": null,
|
2501
|
+
"description_width": "",
|
2502
|
+
"font_size": null,
|
2503
|
+
"text_color": null
|
2504
|
+
}
|
2505
|
+
},
|
2506
|
+
"cfbf78084dd04ad0b51e62e5b1bd0e14": {
|
2507
|
+
"model_module": "@jupyter-widgets/controls",
|
2508
|
+
"model_module_version": "2.0.0",
|
2509
|
+
"model_name": "HBoxModel",
|
2510
|
+
"state": {
|
2511
|
+
"_dom_classes": [],
|
2512
|
+
"_model_module": "@jupyter-widgets/controls",
|
2513
|
+
"_model_module_version": "2.0.0",
|
2514
|
+
"_model_name": "HBoxModel",
|
2515
|
+
"_view_count": null,
|
2516
|
+
"_view_module": "@jupyter-widgets/controls",
|
2517
|
+
"_view_module_version": "2.0.0",
|
2518
|
+
"_view_name": "HBoxView",
|
2519
|
+
"box_style": "",
|
2520
|
+
"children": [
|
2521
|
+
"IPY_MODEL_7768a9c4e5cf45e8a288512dce113d05",
|
2522
|
+
"IPY_MODEL_9c510bd7f0d540978edbc8661c353210",
|
2523
|
+
"IPY_MODEL_6fb12657e4a94a6482078b9217db42cd"
|
2524
|
+
],
|
2525
|
+
"layout": "IPY_MODEL_d4bfe18022b94934a5c9ad87d5734e1b",
|
2526
|
+
"tabbable": null,
|
2527
|
+
"tooltip": null
|
2528
|
+
}
|
2529
|
+
},
|
2530
|
+
"d014137ed4b64afb85291d1ff72422b7": {
|
2531
|
+
"model_module": "@jupyter-widgets/controls",
|
2532
|
+
"model_module_version": "2.0.0",
|
2533
|
+
"model_name": "HTMLModel",
|
2534
|
+
"state": {
|
2535
|
+
"_dom_classes": [],
|
2536
|
+
"_model_module": "@jupyter-widgets/controls",
|
2537
|
+
"_model_module_version": "2.0.0",
|
2538
|
+
"_model_name": "HTMLModel",
|
2539
|
+
"_view_count": null,
|
2540
|
+
"_view_module": "@jupyter-widgets/controls",
|
2541
|
+
"_view_module_version": "2.0.0",
|
2542
|
+
"_view_name": "HTMLView",
|
2543
|
+
"description": "",
|
2544
|
+
"description_allow_html": false,
|
2545
|
+
"layout": "IPY_MODEL_d566d9e945e947de87ae4230db490af4",
|
2546
|
+
"placeholder": "",
|
2547
|
+
"style": "IPY_MODEL_560328fa0add43ac9de66469923fe4c5",
|
2548
|
+
"tabbable": null,
|
2549
|
+
"tooltip": null,
|
2550
|
+
"value": "Rendering pages: 0%"
|
2551
|
+
}
|
2552
|
+
},
|
2553
|
+
"d0defeb9757a449d8c8e16805610aa5a": {
|
2554
|
+
"model_module": "@jupyter-widgets/base",
|
2555
|
+
"model_module_version": "2.0.0",
|
2556
|
+
"model_name": "LayoutModel",
|
2557
|
+
"state": {
|
2558
|
+
"_model_module": "@jupyter-widgets/base",
|
2559
|
+
"_model_module_version": "2.0.0",
|
2560
|
+
"_model_name": "LayoutModel",
|
2561
|
+
"_view_count": null,
|
2562
|
+
"_view_module": "@jupyter-widgets/base",
|
2563
|
+
"_view_module_version": "2.0.0",
|
2564
|
+
"_view_name": "LayoutView",
|
2565
|
+
"align_content": null,
|
2566
|
+
"align_items": null,
|
2567
|
+
"align_self": null,
|
2568
|
+
"border_bottom": null,
|
2569
|
+
"border_left": null,
|
2570
|
+
"border_right": null,
|
2571
|
+
"border_top": null,
|
2572
|
+
"bottom": null,
|
2573
|
+
"display": null,
|
2574
|
+
"flex": null,
|
2575
|
+
"flex_flow": null,
|
2576
|
+
"grid_area": null,
|
2577
|
+
"grid_auto_columns": null,
|
2578
|
+
"grid_auto_flow": null,
|
2579
|
+
"grid_auto_rows": null,
|
2580
|
+
"grid_column": null,
|
2581
|
+
"grid_gap": null,
|
2582
|
+
"grid_row": null,
|
2583
|
+
"grid_template_areas": null,
|
2584
|
+
"grid_template_columns": null,
|
2585
|
+
"grid_template_rows": null,
|
2586
|
+
"height": null,
|
2587
|
+
"justify_content": null,
|
2588
|
+
"justify_items": null,
|
2589
|
+
"left": null,
|
2590
|
+
"margin": null,
|
2591
|
+
"max_height": null,
|
2592
|
+
"max_width": null,
|
2593
|
+
"min_height": null,
|
2594
|
+
"min_width": null,
|
2595
|
+
"object_fit": null,
|
2596
|
+
"object_position": null,
|
2597
|
+
"order": null,
|
2598
|
+
"overflow": null,
|
2599
|
+
"padding": null,
|
2600
|
+
"right": null,
|
2601
|
+
"top": null,
|
2602
|
+
"visibility": null,
|
2603
|
+
"width": null
|
2604
|
+
}
|
2605
|
+
},
|
2606
|
+
"d2110f1f50234e218c6650fb9855d71e": {
|
2607
|
+
"model_module": "@jupyter-widgets/base",
|
2608
|
+
"model_module_version": "2.0.0",
|
2609
|
+
"model_name": "LayoutModel",
|
2610
|
+
"state": {
|
2611
|
+
"_model_module": "@jupyter-widgets/base",
|
2612
|
+
"_model_module_version": "2.0.0",
|
2613
|
+
"_model_name": "LayoutModel",
|
2614
|
+
"_view_count": null,
|
2615
|
+
"_view_module": "@jupyter-widgets/base",
|
2616
|
+
"_view_module_version": "2.0.0",
|
2617
|
+
"_view_name": "LayoutView",
|
2618
|
+
"align_content": null,
|
2619
|
+
"align_items": null,
|
2620
|
+
"align_self": null,
|
2621
|
+
"border_bottom": null,
|
2622
|
+
"border_left": null,
|
2623
|
+
"border_right": null,
|
2624
|
+
"border_top": null,
|
2625
|
+
"bottom": null,
|
2626
|
+
"display": null,
|
2627
|
+
"flex": null,
|
2628
|
+
"flex_flow": null,
|
2629
|
+
"grid_area": null,
|
2630
|
+
"grid_auto_columns": null,
|
2631
|
+
"grid_auto_flow": null,
|
2632
|
+
"grid_auto_rows": null,
|
2633
|
+
"grid_column": null,
|
2634
|
+
"grid_gap": null,
|
2635
|
+
"grid_row": null,
|
2636
|
+
"grid_template_areas": null,
|
2637
|
+
"grid_template_columns": null,
|
2638
|
+
"grid_template_rows": null,
|
2639
|
+
"height": null,
|
2640
|
+
"justify_content": null,
|
2641
|
+
"justify_items": null,
|
2642
|
+
"left": null,
|
2643
|
+
"margin": null,
|
2644
|
+
"max_height": null,
|
2645
|
+
"max_width": null,
|
2646
|
+
"min_height": null,
|
2647
|
+
"min_width": null,
|
2648
|
+
"object_fit": null,
|
2649
|
+
"object_position": null,
|
2650
|
+
"order": null,
|
2651
|
+
"overflow": null,
|
2652
|
+
"padding": null,
|
2653
|
+
"right": null,
|
2654
|
+
"top": null,
|
2655
|
+
"visibility": null,
|
2656
|
+
"width": null
|
2657
|
+
}
|
2658
|
+
},
|
2659
|
+
"d21cbf7b9387402dbd7554e8d5e0c076": {
|
2660
|
+
"model_module": "@jupyter-widgets/controls",
|
2661
|
+
"model_module_version": "2.0.0",
|
2662
|
+
"model_name": "HTMLStyleModel",
|
2663
|
+
"state": {
|
2664
|
+
"_model_module": "@jupyter-widgets/controls",
|
2665
|
+
"_model_module_version": "2.0.0",
|
2666
|
+
"_model_name": "HTMLStyleModel",
|
2667
|
+
"_view_count": null,
|
2668
|
+
"_view_module": "@jupyter-widgets/base",
|
2669
|
+
"_view_module_version": "2.0.0",
|
2670
|
+
"_view_name": "StyleView",
|
2671
|
+
"background": null,
|
2672
|
+
"description_width": "",
|
2673
|
+
"font_size": null,
|
2674
|
+
"text_color": null
|
2675
|
+
}
|
2676
|
+
},
|
2677
|
+
"d24ba4f60b62452d971a7eac3bac2a10": {
|
2678
|
+
"model_module": "@jupyter-widgets/base",
|
2679
|
+
"model_module_version": "2.0.0",
|
2680
|
+
"model_name": "LayoutModel",
|
2681
|
+
"state": {
|
2682
|
+
"_model_module": "@jupyter-widgets/base",
|
2683
|
+
"_model_module_version": "2.0.0",
|
2684
|
+
"_model_name": "LayoutModel",
|
2685
|
+
"_view_count": null,
|
2686
|
+
"_view_module": "@jupyter-widgets/base",
|
2687
|
+
"_view_module_version": "2.0.0",
|
2688
|
+
"_view_name": "LayoutView",
|
2689
|
+
"align_content": null,
|
2690
|
+
"align_items": null,
|
2691
|
+
"align_self": null,
|
2692
|
+
"border_bottom": null,
|
2693
|
+
"border_left": null,
|
2694
|
+
"border_right": null,
|
2695
|
+
"border_top": null,
|
2696
|
+
"bottom": null,
|
2697
|
+
"display": null,
|
2698
|
+
"flex": null,
|
2699
|
+
"flex_flow": null,
|
2700
|
+
"grid_area": null,
|
2701
|
+
"grid_auto_columns": null,
|
2702
|
+
"grid_auto_flow": null,
|
2703
|
+
"grid_auto_rows": null,
|
2704
|
+
"grid_column": null,
|
2705
|
+
"grid_gap": null,
|
2706
|
+
"grid_row": null,
|
2707
|
+
"grid_template_areas": null,
|
2708
|
+
"grid_template_columns": null,
|
2709
|
+
"grid_template_rows": null,
|
2710
|
+
"height": null,
|
2711
|
+
"justify_content": null,
|
2712
|
+
"justify_items": null,
|
2713
|
+
"left": null,
|
2714
|
+
"margin": null,
|
2715
|
+
"max_height": null,
|
2716
|
+
"max_width": null,
|
2717
|
+
"min_height": null,
|
2718
|
+
"min_width": null,
|
2719
|
+
"object_fit": null,
|
2720
|
+
"object_position": null,
|
2721
|
+
"order": null,
|
2722
|
+
"overflow": null,
|
2723
|
+
"padding": null,
|
2724
|
+
"right": null,
|
2725
|
+
"top": null,
|
2726
|
+
"visibility": null,
|
2727
|
+
"width": null
|
2728
|
+
}
|
2729
|
+
},
|
2730
|
+
"d35c4148ceaa4af9b247beb26b5a5203": {
|
2731
|
+
"model_module": "@jupyter-widgets/controls",
|
2732
|
+
"model_module_version": "2.0.0",
|
2733
|
+
"model_name": "HTMLStyleModel",
|
2734
|
+
"state": {
|
2735
|
+
"_model_module": "@jupyter-widgets/controls",
|
2736
|
+
"_model_module_version": "2.0.0",
|
2737
|
+
"_model_name": "HTMLStyleModel",
|
2738
|
+
"_view_count": null,
|
2739
|
+
"_view_module": "@jupyter-widgets/base",
|
2740
|
+
"_view_module_version": "2.0.0",
|
2741
|
+
"_view_name": "StyleView",
|
2742
|
+
"background": null,
|
2743
|
+
"description_width": "",
|
2744
|
+
"font_size": null,
|
2745
|
+
"text_color": null
|
2746
|
+
}
|
2747
|
+
},
|
2748
|
+
"d397e370fdbf4a1c824cb369dbc79c3e": {
|
2749
|
+
"model_module": "@jupyter-widgets/controls",
|
2750
|
+
"model_module_version": "2.0.0",
|
2751
|
+
"model_name": "FloatProgressModel",
|
2752
|
+
"state": {
|
2753
|
+
"_dom_classes": [],
|
2754
|
+
"_model_module": "@jupyter-widgets/controls",
|
2755
|
+
"_model_module_version": "2.0.0",
|
2756
|
+
"_model_name": "FloatProgressModel",
|
2757
|
+
"_view_count": null,
|
2758
|
+
"_view_module": "@jupyter-widgets/controls",
|
2759
|
+
"_view_module_version": "2.0.0",
|
2760
|
+
"_view_name": "ProgressView",
|
2761
|
+
"bar_style": "",
|
2762
|
+
"description": "",
|
2763
|
+
"description_allow_html": false,
|
2764
|
+
"layout": "IPY_MODEL_9f0ce84473764eb499e243e45f6c5c82",
|
2765
|
+
"max": 1.0,
|
2766
|
+
"min": 0.0,
|
2767
|
+
"orientation": "horizontal",
|
2768
|
+
"style": "IPY_MODEL_5c4525f9c8664981bd3680eed1cf154d",
|
2769
|
+
"tabbable": null,
|
2770
|
+
"tooltip": null,
|
2771
|
+
"value": 1.0
|
2772
|
+
}
|
2773
|
+
},
|
2774
|
+
"d4bfe18022b94934a5c9ad87d5734e1b": {
|
2775
|
+
"model_module": "@jupyter-widgets/base",
|
2776
|
+
"model_module_version": "2.0.0",
|
2777
|
+
"model_name": "LayoutModel",
|
2778
|
+
"state": {
|
2779
|
+
"_model_module": "@jupyter-widgets/base",
|
2780
|
+
"_model_module_version": "2.0.0",
|
2781
|
+
"_model_name": "LayoutModel",
|
2782
|
+
"_view_count": null,
|
2783
|
+
"_view_module": "@jupyter-widgets/base",
|
2784
|
+
"_view_module_version": "2.0.0",
|
2785
|
+
"_view_name": "LayoutView",
|
2786
|
+
"align_content": null,
|
2787
|
+
"align_items": null,
|
2788
|
+
"align_self": null,
|
2789
|
+
"border_bottom": null,
|
2790
|
+
"border_left": null,
|
2791
|
+
"border_right": null,
|
2792
|
+
"border_top": null,
|
2793
|
+
"bottom": null,
|
2794
|
+
"display": null,
|
2795
|
+
"flex": null,
|
2796
|
+
"flex_flow": null,
|
2797
|
+
"grid_area": null,
|
2798
|
+
"grid_auto_columns": null,
|
2799
|
+
"grid_auto_flow": null,
|
2800
|
+
"grid_auto_rows": null,
|
2801
|
+
"grid_column": null,
|
2802
|
+
"grid_gap": null,
|
2803
|
+
"grid_row": null,
|
2804
|
+
"grid_template_areas": null,
|
2805
|
+
"grid_template_columns": null,
|
2806
|
+
"grid_template_rows": null,
|
2807
|
+
"height": null,
|
2808
|
+
"justify_content": null,
|
2809
|
+
"justify_items": null,
|
2810
|
+
"left": null,
|
2811
|
+
"margin": null,
|
2812
|
+
"max_height": null,
|
2813
|
+
"max_width": null,
|
2814
|
+
"min_height": null,
|
2815
|
+
"min_width": null,
|
2816
|
+
"object_fit": null,
|
2817
|
+
"object_position": null,
|
2818
|
+
"order": null,
|
2819
|
+
"overflow": null,
|
2820
|
+
"padding": null,
|
2821
|
+
"right": null,
|
2822
|
+
"top": null,
|
2823
|
+
"visibility": "hidden",
|
2824
|
+
"width": null
|
2825
|
+
}
|
2826
|
+
},
|
2827
|
+
"d566d9e945e947de87ae4230db490af4": {
|
2828
|
+
"model_module": "@jupyter-widgets/base",
|
2829
|
+
"model_module_version": "2.0.0",
|
2830
|
+
"model_name": "LayoutModel",
|
2831
|
+
"state": {
|
2832
|
+
"_model_module": "@jupyter-widgets/base",
|
2833
|
+
"_model_module_version": "2.0.0",
|
2834
|
+
"_model_name": "LayoutModel",
|
2835
|
+
"_view_count": null,
|
2836
|
+
"_view_module": "@jupyter-widgets/base",
|
2837
|
+
"_view_module_version": "2.0.0",
|
2838
|
+
"_view_name": "LayoutView",
|
2839
|
+
"align_content": null,
|
2840
|
+
"align_items": null,
|
2841
|
+
"align_self": null,
|
2842
|
+
"border_bottom": null,
|
2843
|
+
"border_left": null,
|
2844
|
+
"border_right": null,
|
2845
|
+
"border_top": null,
|
2846
|
+
"bottom": null,
|
2847
|
+
"display": null,
|
2848
|
+
"flex": null,
|
2849
|
+
"flex_flow": null,
|
2850
|
+
"grid_area": null,
|
2851
|
+
"grid_auto_columns": null,
|
2852
|
+
"grid_auto_flow": null,
|
2853
|
+
"grid_auto_rows": null,
|
2854
|
+
"grid_column": null,
|
2855
|
+
"grid_gap": null,
|
2856
|
+
"grid_row": null,
|
2857
|
+
"grid_template_areas": null,
|
2858
|
+
"grid_template_columns": null,
|
2859
|
+
"grid_template_rows": null,
|
2860
|
+
"height": null,
|
2861
|
+
"justify_content": null,
|
2862
|
+
"justify_items": null,
|
2863
|
+
"left": null,
|
2864
|
+
"margin": null,
|
2865
|
+
"max_height": null,
|
2866
|
+
"max_width": null,
|
2867
|
+
"min_height": null,
|
2868
|
+
"min_width": null,
|
2869
|
+
"object_fit": null,
|
2870
|
+
"object_position": null,
|
2871
|
+
"order": null,
|
2872
|
+
"overflow": null,
|
2873
|
+
"padding": null,
|
2874
|
+
"right": null,
|
2875
|
+
"top": null,
|
2876
|
+
"visibility": null,
|
2877
|
+
"width": null
|
2878
|
+
}
|
2879
|
+
},
|
2880
|
+
"d5990c7975564d3297f7a3e8fb120269": {
|
2881
|
+
"model_module": "@jupyter-widgets/controls",
|
2882
|
+
"model_module_version": "2.0.0",
|
2883
|
+
"model_name": "HTMLModel",
|
2884
|
+
"state": {
|
2885
|
+
"_dom_classes": [],
|
2886
|
+
"_model_module": "@jupyter-widgets/controls",
|
2887
|
+
"_model_module_version": "2.0.0",
|
2888
|
+
"_model_name": "HTMLModel",
|
2889
|
+
"_view_count": null,
|
2890
|
+
"_view_module": "@jupyter-widgets/controls",
|
2891
|
+
"_view_module_version": "2.0.0",
|
2892
|
+
"_view_name": "HTMLView",
|
2893
|
+
"description": "",
|
2894
|
+
"description_allow_html": false,
|
2895
|
+
"layout": "IPY_MODEL_5e0e050cf7bc45219d785a3ab1f10bec",
|
2896
|
+
"placeholder": "",
|
2897
|
+
"style": "IPY_MODEL_d21cbf7b9387402dbd7554e8d5e0c076",
|
2898
|
+
"tabbable": null,
|
2899
|
+
"tooltip": null,
|
2900
|
+
"value": "Rendering pages: 0%"
|
2901
|
+
}
|
2902
|
+
},
|
2903
|
+
"d6eaf6e1b1144c87bf8eeddac2b5d289": {
|
2904
|
+
"model_module": "@jupyter-widgets/base",
|
2905
|
+
"model_module_version": "2.0.0",
|
2906
|
+
"model_name": "LayoutModel",
|
2907
|
+
"state": {
|
2908
|
+
"_model_module": "@jupyter-widgets/base",
|
2909
|
+
"_model_module_version": "2.0.0",
|
2910
|
+
"_model_name": "LayoutModel",
|
2911
|
+
"_view_count": null,
|
2912
|
+
"_view_module": "@jupyter-widgets/base",
|
2913
|
+
"_view_module_version": "2.0.0",
|
2914
|
+
"_view_name": "LayoutView",
|
2915
|
+
"align_content": null,
|
2916
|
+
"align_items": null,
|
2917
|
+
"align_self": null,
|
2918
|
+
"border_bottom": null,
|
2919
|
+
"border_left": null,
|
2920
|
+
"border_right": null,
|
2921
|
+
"border_top": null,
|
2922
|
+
"bottom": null,
|
2923
|
+
"display": null,
|
2924
|
+
"flex": null,
|
2925
|
+
"flex_flow": null,
|
2926
|
+
"grid_area": null,
|
2927
|
+
"grid_auto_columns": null,
|
2928
|
+
"grid_auto_flow": null,
|
2929
|
+
"grid_auto_rows": null,
|
2930
|
+
"grid_column": null,
|
2931
|
+
"grid_gap": null,
|
2932
|
+
"grid_row": null,
|
2933
|
+
"grid_template_areas": null,
|
2934
|
+
"grid_template_columns": null,
|
2935
|
+
"grid_template_rows": null,
|
2936
|
+
"height": null,
|
2937
|
+
"justify_content": null,
|
2938
|
+
"justify_items": null,
|
2939
|
+
"left": null,
|
2940
|
+
"margin": null,
|
2941
|
+
"max_height": null,
|
2942
|
+
"max_width": null,
|
2943
|
+
"min_height": null,
|
2944
|
+
"min_width": null,
|
2945
|
+
"object_fit": null,
|
2946
|
+
"object_position": null,
|
2947
|
+
"order": null,
|
2948
|
+
"overflow": null,
|
2949
|
+
"padding": null,
|
2950
|
+
"right": null,
|
2951
|
+
"top": null,
|
2952
|
+
"visibility": null,
|
2953
|
+
"width": null
|
2954
|
+
}
|
2955
|
+
},
|
2956
|
+
"d88c24f8b2ae4215b8d77d01ef7f6a02": {
|
2957
|
+
"model_module": "@jupyter-widgets/base",
|
2958
|
+
"model_module_version": "2.0.0",
|
2959
|
+
"model_name": "LayoutModel",
|
2960
|
+
"state": {
|
2961
|
+
"_model_module": "@jupyter-widgets/base",
|
2962
|
+
"_model_module_version": "2.0.0",
|
2963
|
+
"_model_name": "LayoutModel",
|
2964
|
+
"_view_count": null,
|
2965
|
+
"_view_module": "@jupyter-widgets/base",
|
2966
|
+
"_view_module_version": "2.0.0",
|
2967
|
+
"_view_name": "LayoutView",
|
2968
|
+
"align_content": null,
|
2969
|
+
"align_items": null,
|
2970
|
+
"align_self": null,
|
2971
|
+
"border_bottom": null,
|
2972
|
+
"border_left": null,
|
2973
|
+
"border_right": null,
|
2974
|
+
"border_top": null,
|
2975
|
+
"bottom": null,
|
2976
|
+
"display": null,
|
2977
|
+
"flex": null,
|
2978
|
+
"flex_flow": null,
|
2979
|
+
"grid_area": null,
|
2980
|
+
"grid_auto_columns": null,
|
2981
|
+
"grid_auto_flow": null,
|
2982
|
+
"grid_auto_rows": null,
|
2983
|
+
"grid_column": null,
|
2984
|
+
"grid_gap": null,
|
2985
|
+
"grid_row": null,
|
2986
|
+
"grid_template_areas": null,
|
2987
|
+
"grid_template_columns": null,
|
2988
|
+
"grid_template_rows": null,
|
2989
|
+
"height": null,
|
2990
|
+
"justify_content": null,
|
2991
|
+
"justify_items": null,
|
2992
|
+
"left": null,
|
2993
|
+
"margin": null,
|
2994
|
+
"max_height": null,
|
2995
|
+
"max_width": null,
|
2996
|
+
"min_height": null,
|
2997
|
+
"min_width": null,
|
2998
|
+
"object_fit": null,
|
2999
|
+
"object_position": null,
|
3000
|
+
"order": null,
|
3001
|
+
"overflow": null,
|
3002
|
+
"padding": null,
|
3003
|
+
"right": null,
|
3004
|
+
"top": null,
|
3005
|
+
"visibility": null,
|
3006
|
+
"width": null
|
3007
|
+
}
|
3008
|
+
},
|
3009
|
+
"d8adc464cd1c4e29b0b5c729c9c4b2d8": {
|
3010
|
+
"model_module": "@jupyter-widgets/controls",
|
3011
|
+
"model_module_version": "2.0.0",
|
3012
|
+
"model_name": "HTMLModel",
|
3013
|
+
"state": {
|
3014
|
+
"_dom_classes": [],
|
3015
|
+
"_model_module": "@jupyter-widgets/controls",
|
3016
|
+
"_model_module_version": "2.0.0",
|
3017
|
+
"_model_name": "HTMLModel",
|
3018
|
+
"_view_count": null,
|
3019
|
+
"_view_module": "@jupyter-widgets/controls",
|
3020
|
+
"_view_module_version": "2.0.0",
|
3021
|
+
"_view_name": "HTMLView",
|
3022
|
+
"description": "",
|
3023
|
+
"description_allow_html": false,
|
3024
|
+
"layout": "IPY_MODEL_d88c24f8b2ae4215b8d77d01ef7f6a02",
|
3025
|
+
"placeholder": "",
|
3026
|
+
"style": "IPY_MODEL_51463ffe39094a4c86e60da0f11cdbdd",
|
3027
|
+
"tabbable": null,
|
3028
|
+
"tooltip": null,
|
3029
|
+
"value": " 0/1 [00:00<?, ?it/s]"
|
3030
|
+
}
|
3031
|
+
},
|
3032
|
+
"d8eaec32e2ab41eb9fe771d526296e97": {
|
3033
|
+
"model_module": "@jupyter-widgets/controls",
|
3034
|
+
"model_module_version": "2.0.0",
|
3035
|
+
"model_name": "HTMLModel",
|
3036
|
+
"state": {
|
3037
|
+
"_dom_classes": [],
|
3038
|
+
"_model_module": "@jupyter-widgets/controls",
|
3039
|
+
"_model_module_version": "2.0.0",
|
3040
|
+
"_model_name": "HTMLModel",
|
3041
|
+
"_view_count": null,
|
3042
|
+
"_view_module": "@jupyter-widgets/controls",
|
3043
|
+
"_view_module_version": "2.0.0",
|
3044
|
+
"_view_name": "HTMLView",
|
3045
|
+
"description": "",
|
3046
|
+
"description_allow_html": false,
|
3047
|
+
"layout": "IPY_MODEL_d24ba4f60b62452d971a7eac3bac2a10",
|
3048
|
+
"placeholder": "",
|
3049
|
+
"style": "IPY_MODEL_cb0ee18881d6417da77d80b8fdc760e6",
|
3050
|
+
"tabbable": null,
|
3051
|
+
"tooltip": null,
|
3052
|
+
"value": "Rendering pages: 0%"
|
3053
|
+
}
|
3054
|
+
},
|
3055
|
+
"dffd4f26c2fc498b9dc5d7810fa659b8": {
|
3056
|
+
"model_module": "@jupyter-widgets/controls",
|
3057
|
+
"model_module_version": "2.0.0",
|
3058
|
+
"model_name": "HTMLModel",
|
3059
|
+
"state": {
|
3060
|
+
"_dom_classes": [],
|
3061
|
+
"_model_module": "@jupyter-widgets/controls",
|
3062
|
+
"_model_module_version": "2.0.0",
|
3063
|
+
"_model_name": "HTMLModel",
|
3064
|
+
"_view_count": null,
|
3065
|
+
"_view_module": "@jupyter-widgets/controls",
|
3066
|
+
"_view_module_version": "2.0.0",
|
3067
|
+
"_view_name": "HTMLView",
|
3068
|
+
"description": "",
|
3069
|
+
"description_allow_html": false,
|
3070
|
+
"layout": "IPY_MODEL_022a289a001e4e499b5d629364ec3cf2",
|
3071
|
+
"placeholder": "",
|
3072
|
+
"style": "IPY_MODEL_6f810f1c862f4d388328c29487bef3b7",
|
3073
|
+
"tabbable": null,
|
3074
|
+
"tooltip": null,
|
3075
|
+
"value": "Rendering pages: 0%"
|
3076
|
+
}
|
3077
|
+
},
|
3078
|
+
"e092a03a328f4899b2b43c5b4e3695af": {
|
3079
|
+
"model_module": "@jupyter-widgets/controls",
|
3080
|
+
"model_module_version": "2.0.0",
|
3081
|
+
"model_name": "HTMLStyleModel",
|
3082
|
+
"state": {
|
3083
|
+
"_model_module": "@jupyter-widgets/controls",
|
3084
|
+
"_model_module_version": "2.0.0",
|
3085
|
+
"_model_name": "HTMLStyleModel",
|
3086
|
+
"_view_count": null,
|
3087
|
+
"_view_module": "@jupyter-widgets/base",
|
3088
|
+
"_view_module_version": "2.0.0",
|
3089
|
+
"_view_name": "StyleView",
|
3090
|
+
"background": null,
|
3091
|
+
"description_width": "",
|
3092
|
+
"font_size": null,
|
3093
|
+
"text_color": null
|
3094
|
+
}
|
3095
|
+
},
|
3096
|
+
"e20906988def4763b0bc42f36bd8c8f5": {
|
3097
|
+
"model_module": "@jupyter-widgets/base",
|
3098
|
+
"model_module_version": "2.0.0",
|
3099
|
+
"model_name": "LayoutModel",
|
3100
|
+
"state": {
|
3101
|
+
"_model_module": "@jupyter-widgets/base",
|
3102
|
+
"_model_module_version": "2.0.0",
|
3103
|
+
"_model_name": "LayoutModel",
|
3104
|
+
"_view_count": null,
|
3105
|
+
"_view_module": "@jupyter-widgets/base",
|
3106
|
+
"_view_module_version": "2.0.0",
|
3107
|
+
"_view_name": "LayoutView",
|
3108
|
+
"align_content": null,
|
3109
|
+
"align_items": null,
|
3110
|
+
"align_self": null,
|
3111
|
+
"border_bottom": null,
|
3112
|
+
"border_left": null,
|
3113
|
+
"border_right": null,
|
3114
|
+
"border_top": null,
|
3115
|
+
"bottom": null,
|
3116
|
+
"display": null,
|
3117
|
+
"flex": null,
|
3118
|
+
"flex_flow": null,
|
3119
|
+
"grid_area": null,
|
3120
|
+
"grid_auto_columns": null,
|
3121
|
+
"grid_auto_flow": null,
|
3122
|
+
"grid_auto_rows": null,
|
3123
|
+
"grid_column": null,
|
3124
|
+
"grid_gap": null,
|
3125
|
+
"grid_row": null,
|
3126
|
+
"grid_template_areas": null,
|
3127
|
+
"grid_template_columns": null,
|
3128
|
+
"grid_template_rows": null,
|
3129
|
+
"height": null,
|
3130
|
+
"justify_content": null,
|
3131
|
+
"justify_items": null,
|
3132
|
+
"left": null,
|
3133
|
+
"margin": null,
|
3134
|
+
"max_height": null,
|
3135
|
+
"max_width": null,
|
3136
|
+
"min_height": null,
|
3137
|
+
"min_width": null,
|
3138
|
+
"object_fit": null,
|
3139
|
+
"object_position": null,
|
3140
|
+
"order": null,
|
3141
|
+
"overflow": null,
|
3142
|
+
"padding": null,
|
3143
|
+
"right": null,
|
3144
|
+
"top": null,
|
3145
|
+
"visibility": null,
|
3146
|
+
"width": null
|
3147
|
+
}
|
3148
|
+
},
|
3149
|
+
"e637d6c0df174f33917c5a207172fa2b": {
|
3150
|
+
"model_module": "@jupyter-widgets/base",
|
3151
|
+
"model_module_version": "2.0.0",
|
3152
|
+
"model_name": "LayoutModel",
|
3153
|
+
"state": {
|
3154
|
+
"_model_module": "@jupyter-widgets/base",
|
3155
|
+
"_model_module_version": "2.0.0",
|
3156
|
+
"_model_name": "LayoutModel",
|
3157
|
+
"_view_count": null,
|
3158
|
+
"_view_module": "@jupyter-widgets/base",
|
3159
|
+
"_view_module_version": "2.0.0",
|
3160
|
+
"_view_name": "LayoutView",
|
3161
|
+
"align_content": null,
|
3162
|
+
"align_items": null,
|
3163
|
+
"align_self": null,
|
3164
|
+
"border_bottom": null,
|
3165
|
+
"border_left": null,
|
3166
|
+
"border_right": null,
|
3167
|
+
"border_top": null,
|
3168
|
+
"bottom": null,
|
3169
|
+
"display": null,
|
3170
|
+
"flex": null,
|
3171
|
+
"flex_flow": null,
|
3172
|
+
"grid_area": null,
|
3173
|
+
"grid_auto_columns": null,
|
3174
|
+
"grid_auto_flow": null,
|
3175
|
+
"grid_auto_rows": null,
|
3176
|
+
"grid_column": null,
|
3177
|
+
"grid_gap": null,
|
3178
|
+
"grid_row": null,
|
3179
|
+
"grid_template_areas": null,
|
3180
|
+
"grid_template_columns": null,
|
3181
|
+
"grid_template_rows": null,
|
3182
|
+
"height": null,
|
3183
|
+
"justify_content": null,
|
3184
|
+
"justify_items": null,
|
3185
|
+
"left": null,
|
3186
|
+
"margin": null,
|
3187
|
+
"max_height": null,
|
3188
|
+
"max_width": null,
|
3189
|
+
"min_height": null,
|
3190
|
+
"min_width": null,
|
3191
|
+
"object_fit": null,
|
3192
|
+
"object_position": null,
|
3193
|
+
"order": null,
|
3194
|
+
"overflow": null,
|
3195
|
+
"padding": null,
|
3196
|
+
"right": null,
|
3197
|
+
"top": null,
|
3198
|
+
"visibility": null,
|
3199
|
+
"width": null
|
3200
|
+
}
|
3201
|
+
},
|
3202
|
+
"e773fda450244e40b095ec4b21b899ae": {
|
3203
|
+
"model_module": "@jupyter-widgets/controls",
|
3204
|
+
"model_module_version": "2.0.0",
|
3205
|
+
"model_name": "HTMLModel",
|
3206
|
+
"state": {
|
3207
|
+
"_dom_classes": [],
|
3208
|
+
"_model_module": "@jupyter-widgets/controls",
|
3209
|
+
"_model_module_version": "2.0.0",
|
3210
|
+
"_model_name": "HTMLModel",
|
3211
|
+
"_view_count": null,
|
3212
|
+
"_view_module": "@jupyter-widgets/controls",
|
3213
|
+
"_view_module_version": "2.0.0",
|
3214
|
+
"_view_name": "HTMLView",
|
3215
|
+
"description": "",
|
3216
|
+
"description_allow_html": false,
|
3217
|
+
"layout": "IPY_MODEL_f30ded3cd5624dd88aed17301ca327df",
|
3218
|
+
"placeholder": "",
|
3219
|
+
"style": "IPY_MODEL_6096733735134f0f8af21b42caf09301",
|
3220
|
+
"tabbable": null,
|
3221
|
+
"tooltip": null,
|
3222
|
+
"value": " 0/1 [00:00<?, ?it/s]"
|
3223
|
+
}
|
3224
|
+
},
|
3225
|
+
"e87383909abf42d6960724773b6e90f7": {
|
3226
|
+
"model_module": "@jupyter-widgets/controls",
|
3227
|
+
"model_module_version": "2.0.0",
|
3228
|
+
"model_name": "HTMLStyleModel",
|
3229
|
+
"state": {
|
3230
|
+
"_model_module": "@jupyter-widgets/controls",
|
3231
|
+
"_model_module_version": "2.0.0",
|
3232
|
+
"_model_name": "HTMLStyleModel",
|
3233
|
+
"_view_count": null,
|
3234
|
+
"_view_module": "@jupyter-widgets/base",
|
3235
|
+
"_view_module_version": "2.0.0",
|
3236
|
+
"_view_name": "StyleView",
|
3237
|
+
"background": null,
|
3238
|
+
"description_width": "",
|
3239
|
+
"font_size": null,
|
3240
|
+
"text_color": null
|
3241
|
+
}
|
3242
|
+
},
|
3243
|
+
"e985937b7e3b4e6196ebb516634b6d3f": {
|
3244
|
+
"model_module": "@jupyter-widgets/base",
|
3245
|
+
"model_module_version": "2.0.0",
|
3246
|
+
"model_name": "LayoutModel",
|
3247
|
+
"state": {
|
3248
|
+
"_model_module": "@jupyter-widgets/base",
|
3249
|
+
"_model_module_version": "2.0.0",
|
3250
|
+
"_model_name": "LayoutModel",
|
3251
|
+
"_view_count": null,
|
3252
|
+
"_view_module": "@jupyter-widgets/base",
|
3253
|
+
"_view_module_version": "2.0.0",
|
3254
|
+
"_view_name": "LayoutView",
|
3255
|
+
"align_content": null,
|
3256
|
+
"align_items": null,
|
3257
|
+
"align_self": null,
|
3258
|
+
"border_bottom": null,
|
3259
|
+
"border_left": null,
|
3260
|
+
"border_right": null,
|
3261
|
+
"border_top": null,
|
3262
|
+
"bottom": null,
|
3263
|
+
"display": null,
|
3264
|
+
"flex": null,
|
3265
|
+
"flex_flow": null,
|
3266
|
+
"grid_area": null,
|
3267
|
+
"grid_auto_columns": null,
|
3268
|
+
"grid_auto_flow": null,
|
3269
|
+
"grid_auto_rows": null,
|
3270
|
+
"grid_column": null,
|
3271
|
+
"grid_gap": null,
|
3272
|
+
"grid_row": null,
|
3273
|
+
"grid_template_areas": null,
|
3274
|
+
"grid_template_columns": null,
|
3275
|
+
"grid_template_rows": null,
|
3276
|
+
"height": null,
|
3277
|
+
"justify_content": null,
|
3278
|
+
"justify_items": null,
|
3279
|
+
"left": null,
|
3280
|
+
"margin": null,
|
3281
|
+
"max_height": null,
|
3282
|
+
"max_width": null,
|
3283
|
+
"min_height": null,
|
3284
|
+
"min_width": null,
|
3285
|
+
"object_fit": null,
|
3286
|
+
"object_position": null,
|
3287
|
+
"order": null,
|
3288
|
+
"overflow": null,
|
3289
|
+
"padding": null,
|
3290
|
+
"right": null,
|
3291
|
+
"top": null,
|
3292
|
+
"visibility": null,
|
3293
|
+
"width": null
|
3294
|
+
}
|
3295
|
+
},
|
3296
|
+
"ea2ea03faf7c431eaed13f8e9de9b088": {
|
3297
|
+
"model_module": "@jupyter-widgets/controls",
|
3298
|
+
"model_module_version": "2.0.0",
|
3299
|
+
"model_name": "HBoxModel",
|
3300
|
+
"state": {
|
3301
|
+
"_dom_classes": [],
|
3302
|
+
"_model_module": "@jupyter-widgets/controls",
|
3303
|
+
"_model_module_version": "2.0.0",
|
3304
|
+
"_model_name": "HBoxModel",
|
3305
|
+
"_view_count": null,
|
3306
|
+
"_view_module": "@jupyter-widgets/controls",
|
3307
|
+
"_view_module_version": "2.0.0",
|
3308
|
+
"_view_name": "HBoxView",
|
3309
|
+
"box_style": "",
|
3310
|
+
"children": [
|
3311
|
+
"IPY_MODEL_d5990c7975564d3297f7a3e8fb120269",
|
3312
|
+
"IPY_MODEL_fc0447553b6449a7bf9a6a4949152d53",
|
3313
|
+
"IPY_MODEL_e773fda450244e40b095ec4b21b899ae"
|
3314
|
+
],
|
3315
|
+
"layout": "IPY_MODEL_b3df63c262144182b094f3c1cc3ccf2c",
|
3316
|
+
"tabbable": null,
|
3317
|
+
"tooltip": null
|
3318
|
+
}
|
3319
|
+
},
|
3320
|
+
"eec78714154b4bf6aca4b7ccb3c157d1": {
|
3321
|
+
"model_module": "@jupyter-widgets/controls",
|
3322
|
+
"model_module_version": "2.0.0",
|
3323
|
+
"model_name": "HBoxModel",
|
3324
|
+
"state": {
|
3325
|
+
"_dom_classes": [],
|
3326
|
+
"_model_module": "@jupyter-widgets/controls",
|
3327
|
+
"_model_module_version": "2.0.0",
|
3328
|
+
"_model_name": "HBoxModel",
|
3329
|
+
"_view_count": null,
|
3330
|
+
"_view_module": "@jupyter-widgets/controls",
|
3331
|
+
"_view_module_version": "2.0.0",
|
3332
|
+
"_view_name": "HBoxView",
|
3333
|
+
"box_style": "",
|
3334
|
+
"children": [
|
3335
|
+
"IPY_MODEL_d8eaec32e2ab41eb9fe771d526296e97",
|
3336
|
+
"IPY_MODEL_1c18d689ebb846d4908b0ad1e05838e5",
|
3337
|
+
"IPY_MODEL_b4d9791457264b7cb43659168e0cc56b"
|
3338
|
+
],
|
3339
|
+
"layout": "IPY_MODEL_6475f425e96b4974a7f1fd4dc7445314",
|
3340
|
+
"tabbable": null,
|
3341
|
+
"tooltip": null
|
3342
|
+
}
|
3343
|
+
},
|
3344
|
+
"eee280b518cb4bd7b9ee15666753bb55": {
|
3345
|
+
"model_module": "@jupyter-widgets/controls",
|
3346
|
+
"model_module_version": "2.0.0",
|
3347
|
+
"model_name": "HBoxModel",
|
3348
|
+
"state": {
|
3349
|
+
"_dom_classes": [],
|
3350
|
+
"_model_module": "@jupyter-widgets/controls",
|
3351
|
+
"_model_module_version": "2.0.0",
|
3352
|
+
"_model_name": "HBoxModel",
|
3353
|
+
"_view_count": null,
|
3354
|
+
"_view_module": "@jupyter-widgets/controls",
|
3355
|
+
"_view_module_version": "2.0.0",
|
3356
|
+
"_view_name": "HBoxView",
|
3357
|
+
"box_style": "",
|
3358
|
+
"children": [
|
3359
|
+
"IPY_MODEL_d014137ed4b64afb85291d1ff72422b7",
|
3360
|
+
"IPY_MODEL_91e7e315ad134d3a90c4b4a3e4503f6b",
|
3361
|
+
"IPY_MODEL_4e25f956fccc4b1b969fbaa7f290492a"
|
3362
|
+
],
|
3363
|
+
"layout": "IPY_MODEL_f44b616b4083436da47aa948408d7012",
|
3364
|
+
"tabbable": null,
|
3365
|
+
"tooltip": null
|
3366
|
+
}
|
3367
|
+
},
|
3368
|
+
"ef1cff32aed04ed89901e962c397b3ef": {
|
3369
|
+
"model_module": "@jupyter-widgets/controls",
|
3370
|
+
"model_module_version": "2.0.0",
|
3371
|
+
"model_name": "HTMLModel",
|
3372
|
+
"state": {
|
3373
|
+
"_dom_classes": [],
|
3374
|
+
"_model_module": "@jupyter-widgets/controls",
|
3375
|
+
"_model_module_version": "2.0.0",
|
3376
|
+
"_model_name": "HTMLModel",
|
3377
|
+
"_view_count": null,
|
3378
|
+
"_view_module": "@jupyter-widgets/controls",
|
3379
|
+
"_view_module_version": "2.0.0",
|
3380
|
+
"_view_name": "HTMLView",
|
3381
|
+
"description": "",
|
3382
|
+
"description_allow_html": false,
|
3383
|
+
"layout": "IPY_MODEL_7274fe84ea2f47438bf993ba8df90729",
|
3384
|
+
"placeholder": "",
|
3385
|
+
"style": "IPY_MODEL_fa1160b822694815984f5d3a771bcc15",
|
3386
|
+
"tabbable": null,
|
3387
|
+
"tooltip": null,
|
3388
|
+
"value": "Rendering pages: 0%"
|
3389
|
+
}
|
3390
|
+
},
|
3391
|
+
"efb700ee085d4521a9eaef1cb53a09da": {
|
3392
|
+
"model_module": "@jupyter-widgets/base",
|
3393
|
+
"model_module_version": "2.0.0",
|
3394
|
+
"model_name": "LayoutModel",
|
3395
|
+
"state": {
|
3396
|
+
"_model_module": "@jupyter-widgets/base",
|
3397
|
+
"_model_module_version": "2.0.0",
|
3398
|
+
"_model_name": "LayoutModel",
|
3399
|
+
"_view_count": null,
|
3400
|
+
"_view_module": "@jupyter-widgets/base",
|
3401
|
+
"_view_module_version": "2.0.0",
|
3402
|
+
"_view_name": "LayoutView",
|
3403
|
+
"align_content": null,
|
3404
|
+
"align_items": null,
|
3405
|
+
"align_self": null,
|
3406
|
+
"border_bottom": null,
|
3407
|
+
"border_left": null,
|
3408
|
+
"border_right": null,
|
3409
|
+
"border_top": null,
|
3410
|
+
"bottom": null,
|
3411
|
+
"display": null,
|
3412
|
+
"flex": null,
|
3413
|
+
"flex_flow": null,
|
3414
|
+
"grid_area": null,
|
3415
|
+
"grid_auto_columns": null,
|
3416
|
+
"grid_auto_flow": null,
|
3417
|
+
"grid_auto_rows": null,
|
3418
|
+
"grid_column": null,
|
3419
|
+
"grid_gap": null,
|
3420
|
+
"grid_row": null,
|
3421
|
+
"grid_template_areas": null,
|
3422
|
+
"grid_template_columns": null,
|
3423
|
+
"grid_template_rows": null,
|
3424
|
+
"height": null,
|
3425
|
+
"justify_content": null,
|
3426
|
+
"justify_items": null,
|
3427
|
+
"left": null,
|
3428
|
+
"margin": null,
|
3429
|
+
"max_height": null,
|
3430
|
+
"max_width": null,
|
3431
|
+
"min_height": null,
|
3432
|
+
"min_width": null,
|
3433
|
+
"object_fit": null,
|
3434
|
+
"object_position": null,
|
3435
|
+
"order": null,
|
3436
|
+
"overflow": null,
|
3437
|
+
"padding": null,
|
3438
|
+
"right": null,
|
3439
|
+
"top": null,
|
3440
|
+
"visibility": null,
|
3441
|
+
"width": null
|
3442
|
+
}
|
3443
|
+
},
|
3444
|
+
"f161f0e36dd14f4ca732e43e7be3bb1d": {
|
3445
|
+
"model_module": "@jupyter-widgets/controls",
|
3446
|
+
"model_module_version": "2.0.0",
|
3447
|
+
"model_name": "ProgressStyleModel",
|
3448
|
+
"state": {
|
3449
|
+
"_model_module": "@jupyter-widgets/controls",
|
3450
|
+
"_model_module_version": "2.0.0",
|
3451
|
+
"_model_name": "ProgressStyleModel",
|
3452
|
+
"_view_count": null,
|
3453
|
+
"_view_module": "@jupyter-widgets/base",
|
3454
|
+
"_view_module_version": "2.0.0",
|
3455
|
+
"_view_name": "StyleView",
|
3456
|
+
"bar_color": null,
|
3457
|
+
"description_width": ""
|
3458
|
+
}
|
3459
|
+
},
|
3460
|
+
"f30ded3cd5624dd88aed17301ca327df": {
|
3461
|
+
"model_module": "@jupyter-widgets/base",
|
3462
|
+
"model_module_version": "2.0.0",
|
3463
|
+
"model_name": "LayoutModel",
|
3464
|
+
"state": {
|
3465
|
+
"_model_module": "@jupyter-widgets/base",
|
3466
|
+
"_model_module_version": "2.0.0",
|
3467
|
+
"_model_name": "LayoutModel",
|
3468
|
+
"_view_count": null,
|
3469
|
+
"_view_module": "@jupyter-widgets/base",
|
3470
|
+
"_view_module_version": "2.0.0",
|
3471
|
+
"_view_name": "LayoutView",
|
3472
|
+
"align_content": null,
|
3473
|
+
"align_items": null,
|
3474
|
+
"align_self": null,
|
3475
|
+
"border_bottom": null,
|
3476
|
+
"border_left": null,
|
3477
|
+
"border_right": null,
|
3478
|
+
"border_top": null,
|
3479
|
+
"bottom": null,
|
3480
|
+
"display": null,
|
3481
|
+
"flex": null,
|
3482
|
+
"flex_flow": null,
|
3483
|
+
"grid_area": null,
|
3484
|
+
"grid_auto_columns": null,
|
3485
|
+
"grid_auto_flow": null,
|
3486
|
+
"grid_auto_rows": null,
|
3487
|
+
"grid_column": null,
|
3488
|
+
"grid_gap": null,
|
3489
|
+
"grid_row": null,
|
3490
|
+
"grid_template_areas": null,
|
3491
|
+
"grid_template_columns": null,
|
3492
|
+
"grid_template_rows": null,
|
3493
|
+
"height": null,
|
3494
|
+
"justify_content": null,
|
3495
|
+
"justify_items": null,
|
3496
|
+
"left": null,
|
3497
|
+
"margin": null,
|
3498
|
+
"max_height": null,
|
3499
|
+
"max_width": null,
|
3500
|
+
"min_height": null,
|
3501
|
+
"min_width": null,
|
3502
|
+
"object_fit": null,
|
3503
|
+
"object_position": null,
|
3504
|
+
"order": null,
|
3505
|
+
"overflow": null,
|
3506
|
+
"padding": null,
|
3507
|
+
"right": null,
|
3508
|
+
"top": null,
|
3509
|
+
"visibility": null,
|
3510
|
+
"width": null
|
3511
|
+
}
|
3512
|
+
},
|
3513
|
+
"f44b616b4083436da47aa948408d7012": {
|
3514
|
+
"model_module": "@jupyter-widgets/base",
|
3515
|
+
"model_module_version": "2.0.0",
|
3516
|
+
"model_name": "LayoutModel",
|
3517
|
+
"state": {
|
3518
|
+
"_model_module": "@jupyter-widgets/base",
|
3519
|
+
"_model_module_version": "2.0.0",
|
3520
|
+
"_model_name": "LayoutModel",
|
3521
|
+
"_view_count": null,
|
3522
|
+
"_view_module": "@jupyter-widgets/base",
|
3523
|
+
"_view_module_version": "2.0.0",
|
3524
|
+
"_view_name": "LayoutView",
|
3525
|
+
"align_content": null,
|
3526
|
+
"align_items": null,
|
3527
|
+
"align_self": null,
|
3528
|
+
"border_bottom": null,
|
3529
|
+
"border_left": null,
|
3530
|
+
"border_right": null,
|
3531
|
+
"border_top": null,
|
3532
|
+
"bottom": null,
|
3533
|
+
"display": null,
|
3534
|
+
"flex": null,
|
3535
|
+
"flex_flow": null,
|
3536
|
+
"grid_area": null,
|
3537
|
+
"grid_auto_columns": null,
|
3538
|
+
"grid_auto_flow": null,
|
3539
|
+
"grid_auto_rows": null,
|
3540
|
+
"grid_column": null,
|
3541
|
+
"grid_gap": null,
|
3542
|
+
"grid_row": null,
|
3543
|
+
"grid_template_areas": null,
|
3544
|
+
"grid_template_columns": null,
|
3545
|
+
"grid_template_rows": null,
|
3546
|
+
"height": null,
|
3547
|
+
"justify_content": null,
|
3548
|
+
"justify_items": null,
|
3549
|
+
"left": null,
|
3550
|
+
"margin": null,
|
3551
|
+
"max_height": null,
|
3552
|
+
"max_width": null,
|
3553
|
+
"min_height": null,
|
3554
|
+
"min_width": null,
|
3555
|
+
"object_fit": null,
|
3556
|
+
"object_position": null,
|
3557
|
+
"order": null,
|
3558
|
+
"overflow": null,
|
3559
|
+
"padding": null,
|
3560
|
+
"right": null,
|
3561
|
+
"top": null,
|
3562
|
+
"visibility": "hidden",
|
3563
|
+
"width": null
|
3564
|
+
}
|
3565
|
+
},
|
3566
|
+
"f549175a52894eee944104536eac6fbb": {
|
3567
|
+
"model_module": "@jupyter-widgets/controls",
|
3568
|
+
"model_module_version": "2.0.0",
|
3569
|
+
"model_name": "HTMLStyleModel",
|
3570
|
+
"state": {
|
3571
|
+
"_model_module": "@jupyter-widgets/controls",
|
3572
|
+
"_model_module_version": "2.0.0",
|
3573
|
+
"_model_name": "HTMLStyleModel",
|
3574
|
+
"_view_count": null,
|
3575
|
+
"_view_module": "@jupyter-widgets/base",
|
3576
|
+
"_view_module_version": "2.0.0",
|
3577
|
+
"_view_name": "StyleView",
|
3578
|
+
"background": null,
|
3579
|
+
"description_width": "",
|
3580
|
+
"font_size": null,
|
3581
|
+
"text_color": null
|
3582
|
+
}
|
3583
|
+
},
|
3584
|
+
"fa1160b822694815984f5d3a771bcc15": {
|
3585
|
+
"model_module": "@jupyter-widgets/controls",
|
3586
|
+
"model_module_version": "2.0.0",
|
3587
|
+
"model_name": "HTMLStyleModel",
|
3588
|
+
"state": {
|
3589
|
+
"_model_module": "@jupyter-widgets/controls",
|
3590
|
+
"_model_module_version": "2.0.0",
|
3591
|
+
"_model_name": "HTMLStyleModel",
|
3592
|
+
"_view_count": null,
|
3593
|
+
"_view_module": "@jupyter-widgets/base",
|
3594
|
+
"_view_module_version": "2.0.0",
|
3595
|
+
"_view_name": "StyleView",
|
3596
|
+
"background": null,
|
3597
|
+
"description_width": "",
|
3598
|
+
"font_size": null,
|
3599
|
+
"text_color": null
|
3600
|
+
}
|
3601
|
+
},
|
3602
|
+
"fc0447553b6449a7bf9a6a4949152d53": {
|
3603
|
+
"model_module": "@jupyter-widgets/controls",
|
3604
|
+
"model_module_version": "2.0.0",
|
3605
|
+
"model_name": "FloatProgressModel",
|
3606
|
+
"state": {
|
3607
|
+
"_dom_classes": [],
|
3608
|
+
"_model_module": "@jupyter-widgets/controls",
|
3609
|
+
"_model_module_version": "2.0.0",
|
3610
|
+
"_model_name": "FloatProgressModel",
|
3611
|
+
"_view_count": null,
|
3612
|
+
"_view_module": "@jupyter-widgets/controls",
|
3613
|
+
"_view_module_version": "2.0.0",
|
3614
|
+
"_view_name": "ProgressView",
|
3615
|
+
"bar_style": "",
|
3616
|
+
"description": "",
|
3617
|
+
"description_allow_html": false,
|
3618
|
+
"layout": "IPY_MODEL_931980339a8f48ba96beb8eaefd710e2",
|
3619
|
+
"max": 1.0,
|
3620
|
+
"min": 0.0,
|
3621
|
+
"orientation": "horizontal",
|
3622
|
+
"style": "IPY_MODEL_2d77ac4edf924b9d88b97929227b2497",
|
3623
|
+
"tabbable": null,
|
3624
|
+
"tooltip": null,
|
3625
|
+
"value": 1.0
|
3626
|
+
}
|
3627
|
+
},
|
3628
|
+
"fc795c53429c43328aceb24e9478dbf6": {
|
3629
|
+
"model_module": "@jupyter-widgets/base",
|
3630
|
+
"model_module_version": "2.0.0",
|
3631
|
+
"model_name": "LayoutModel",
|
3632
|
+
"state": {
|
3633
|
+
"_model_module": "@jupyter-widgets/base",
|
3634
|
+
"_model_module_version": "2.0.0",
|
3635
|
+
"_model_name": "LayoutModel",
|
3636
|
+
"_view_count": null,
|
3637
|
+
"_view_module": "@jupyter-widgets/base",
|
3638
|
+
"_view_module_version": "2.0.0",
|
3639
|
+
"_view_name": "LayoutView",
|
3640
|
+
"align_content": null,
|
3641
|
+
"align_items": null,
|
3642
|
+
"align_self": null,
|
3643
|
+
"border_bottom": null,
|
3644
|
+
"border_left": null,
|
3645
|
+
"border_right": null,
|
3646
|
+
"border_top": null,
|
3647
|
+
"bottom": null,
|
3648
|
+
"display": null,
|
3649
|
+
"flex": null,
|
3650
|
+
"flex_flow": null,
|
3651
|
+
"grid_area": null,
|
3652
|
+
"grid_auto_columns": null,
|
3653
|
+
"grid_auto_flow": null,
|
3654
|
+
"grid_auto_rows": null,
|
3655
|
+
"grid_column": null,
|
3656
|
+
"grid_gap": null,
|
3657
|
+
"grid_row": null,
|
3658
|
+
"grid_template_areas": null,
|
3659
|
+
"grid_template_columns": null,
|
3660
|
+
"grid_template_rows": null,
|
3661
|
+
"height": null,
|
3662
|
+
"justify_content": null,
|
3663
|
+
"justify_items": null,
|
3664
|
+
"left": null,
|
3665
|
+
"margin": null,
|
3666
|
+
"max_height": null,
|
3667
|
+
"max_width": null,
|
3668
|
+
"min_height": null,
|
3669
|
+
"min_width": null,
|
3670
|
+
"object_fit": null,
|
3671
|
+
"object_position": null,
|
3672
|
+
"order": null,
|
3673
|
+
"overflow": null,
|
3674
|
+
"padding": null,
|
3675
|
+
"right": null,
|
3676
|
+
"top": null,
|
3677
|
+
"visibility": "hidden",
|
3678
|
+
"width": null
|
3679
|
+
}
|
3680
|
+
},
|
3681
|
+
"fde4c9c9bb6a423cb21eac39810c63d4": {
|
3682
|
+
"model_module": "@jupyter-widgets/controls",
|
3683
|
+
"model_module_version": "2.0.0",
|
3684
|
+
"model_name": "HTMLModel",
|
3685
|
+
"state": {
|
3686
|
+
"_dom_classes": [],
|
3687
|
+
"_model_module": "@jupyter-widgets/controls",
|
3688
|
+
"_model_module_version": "2.0.0",
|
3689
|
+
"_model_name": "HTMLModel",
|
3690
|
+
"_view_count": null,
|
3691
|
+
"_view_module": "@jupyter-widgets/controls",
|
3692
|
+
"_view_module_version": "2.0.0",
|
3693
|
+
"_view_name": "HTMLView",
|
3694
|
+
"description": "",
|
3695
|
+
"description_allow_html": false,
|
3696
|
+
"layout": "IPY_MODEL_d2110f1f50234e218c6650fb9855d71e",
|
3697
|
+
"placeholder": "",
|
3698
|
+
"style": "IPY_MODEL_e87383909abf42d6960724773b6e90f7",
|
3699
|
+
"tabbable": null,
|
3700
|
+
"tooltip": null,
|
3701
|
+
"value": " 0/1 [00:00<?, ?it/s]"
|
3702
|
+
}
|
3703
|
+
}
|
3704
|
+
},
|
3705
|
+
"version_major": 2,
|
3706
|
+
"version_minor": 0
|
3707
|
+
}
|
600
3708
|
}
|
601
3709
|
},
|
602
3710
|
"nbformat": 4,
|