natural-pdf 0.1.5__py3-none-any.whl → 0.1.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- docs/finetuning/index.md +176 -0
- docs/ocr/index.md +34 -47
- docs/tutorials/01-loading-and-extraction.ipynb +34 -1536
- docs/tutorials/02-finding-elements.ipynb +42 -42
- docs/tutorials/03-extracting-blocks.ipynb +17 -17
- docs/tutorials/04-table-extraction.ipynb +12 -12
- docs/tutorials/05-excluding-content.ipynb +30 -30
- docs/tutorials/06-document-qa.ipynb +28 -28
- docs/tutorials/07-layout-analysis.ipynb +63 -35
- docs/tutorials/07-working-with-regions.ipynb +55 -51
- docs/tutorials/07-working-with-regions.md +2 -2
- docs/tutorials/08-spatial-navigation.ipynb +60 -60
- docs/tutorials/09-section-extraction.ipynb +113 -113
- docs/tutorials/10-form-field-extraction.ipynb +78 -50
- docs/tutorials/11-enhanced-table-processing.ipynb +6 -6
- docs/tutorials/12-ocr-integration.ipynb +149 -131
- docs/tutorials/12-ocr-integration.md +0 -13
- docs/tutorials/13-semantic-search.ipynb +313 -873
- natural_pdf/__init__.py +21 -22
- natural_pdf/analyzers/layout/gemini.py +280 -0
- natural_pdf/analyzers/layout/layout_manager.py +28 -1
- natural_pdf/analyzers/layout/layout_options.py +11 -0
- natural_pdf/analyzers/layout/yolo.py +6 -2
- natural_pdf/collections/pdf_collection.py +24 -0
- natural_pdf/core/element_manager.py +18 -13
- natural_pdf/core/page.py +174 -36
- natural_pdf/core/pdf.py +156 -42
- natural_pdf/elements/base.py +9 -17
- natural_pdf/elements/collections.py +99 -38
- natural_pdf/elements/region.py +77 -37
- natural_pdf/elements/text.py +5 -0
- natural_pdf/exporters/__init__.py +4 -0
- natural_pdf/exporters/base.py +61 -0
- natural_pdf/exporters/paddleocr.py +345 -0
- natural_pdf/ocr/__init__.py +57 -36
- natural_pdf/ocr/engine.py +160 -49
- natural_pdf/ocr/engine_easyocr.py +178 -157
- natural_pdf/ocr/engine_paddle.py +114 -189
- natural_pdf/ocr/engine_surya.py +87 -144
- natural_pdf/ocr/ocr_factory.py +125 -0
- natural_pdf/ocr/ocr_manager.py +65 -89
- natural_pdf/ocr/ocr_options.py +8 -13
- natural_pdf/ocr/utils.py +113 -0
- natural_pdf/templates/finetune/fine_tune_paddleocr.md +415 -0
- natural_pdf/templates/spa/css/style.css +334 -0
- natural_pdf/templates/spa/index.html +31 -0
- natural_pdf/templates/spa/js/app.js +472 -0
- natural_pdf/templates/spa/words.txt +235976 -0
- natural_pdf/utils/debug.py +34 -0
- natural_pdf/utils/identifiers.py +33 -0
- natural_pdf/utils/packaging.py +485 -0
- natural_pdf/utils/text_extraction.py +44 -64
- natural_pdf/utils/visualization.py +1 -1
- {natural_pdf-0.1.5.dist-info → natural_pdf-0.1.7.dist-info}/METADATA +44 -20
- {natural_pdf-0.1.5.dist-info → natural_pdf-0.1.7.dist-info}/RECORD +58 -47
- {natural_pdf-0.1.5.dist-info → natural_pdf-0.1.7.dist-info}/WHEEL +1 -1
- {natural_pdf-0.1.5.dist-info → natural_pdf-0.1.7.dist-info}/top_level.txt +0 -1
- natural_pdf/templates/ocr_debug.html +0 -517
- tests/test_loading.py +0 -50
- tests/test_optional_deps.py +0 -298
- {natural_pdf-0.1.5.dist-info → natural_pdf-0.1.7.dist-info}/licenses/LICENSE +0 -0
docs/finetuning/index.md
ADDED
@@ -0,0 +1,176 @@
|
|
1
|
+
# OCR Fine-tuning
|
2
|
+
|
3
|
+
While the built-in OCR engines (EasyOCR, PaddleOCR, Surya) offer good general performance, you might encounter situations where their accuracy isn't sufficient for your specific needs. This is often the case with:
|
4
|
+
|
5
|
+
* **Unique Fonts:** Documents using unusual or stylized fonts.
|
6
|
+
* **Specific Languages:** Languages or scripts not perfectly covered by the default models.
|
7
|
+
* **Low Quality Scans:** Noisy or degraded document images.
|
8
|
+
* **Specialized Layouts:** Text within complex tables, forms, or unusual arrangements.
|
9
|
+
|
10
|
+
Fine-tuning allows you to adapt a pre-trained OCR recognition model to your specific data, significantly improving its accuracy on documents similar to those used for training.
|
11
|
+
|
12
|
+
## Why Fine-tune?
|
13
|
+
|
14
|
+
- **Higher Accuracy:** Achieve better text extraction results on your specific document types.
|
15
|
+
- **Adaptability:** Train the model to recognize domain-specific terms, symbols, or layouts.
|
16
|
+
- **Reduced Errors:** Minimize downstream errors in data extraction and processing pipelines.
|
17
|
+
|
18
|
+
## Strategy: Detect + LLM Correct + Export
|
19
|
+
|
20
|
+
Training an OCR model requires accurate ground truth: images of text snippets paired with their correct transcriptions. Manually creating this data is tedious. A powerful alternative leverages the strengths of different models:
|
21
|
+
|
22
|
+
1. **Detect Text Regions:** Use a robust local OCR engine (like Surya or PaddleOCR) primarily for its *detection* capabilities (`detect_only=True`). This identifies the *locations* of text on the page, even if the initial *recognition* isn't perfect. You can combine this with layout analysis or region selections (`.region()`, `.below()`, `.add_exclusion()`) to focus on the specific areas you care about.
|
23
|
+
2. **Correct with LLM:** For each detected text region, send the image snippet to a powerful Large Language Model (LLM) with multimodal capabilities (like GPT-4o, Claude 3.5 Sonnet/Haiku) using the `direct_ocr_llm` utility. The LLM performs high-accuracy OCR on the snippet, providing a "ground truth" transcription.
|
24
|
+
3. **Export for Fine-tuning:** Use the `PaddleOCRRecognitionExporter` to package the original image snippets (from step 1) along with their corresponding LLM-generated text labels (from step 2) into the specific format required by PaddleOCR for fine-tuning its *recognition* model.
|
25
|
+
|
26
|
+
This approach combines the efficient spatial detection of local models with the superior text recognition of large generative models to create a high-quality fine-tuning dataset with minimal manual effort.
|
27
|
+
|
28
|
+
## Example: Fine-tuning for Greek Spreadsheet Text
|
29
|
+
|
30
|
+
Let's walk through an example of preparing data to fine-tune PaddleOCR for text from a scanned Greek spreadsheet, adapting the process described above.
|
31
|
+
|
32
|
+
```python
|
33
|
+
# --- 1. Setup and Load PDF ---
|
34
|
+
from natural_pdf import PDF
|
35
|
+
from natural_pdf.ocr.utils import direct_ocr_llm
|
36
|
+
from natural_pdf.exporters import PaddleOCRRecognitionExporter
|
37
|
+
import openai # Or your preferred LLM client library
|
38
|
+
import os
|
39
|
+
|
40
|
+
# Ensure your LLM API key is set (using environment variables is recommended)
|
41
|
+
# os.environ["OPENAI_API_KEY"] = "sk-..."
|
42
|
+
# os.environ["ANTHROPIC_API_KEY"] = "sk-..."
|
43
|
+
|
44
|
+
# pdf_path = "path/to/your/document.pdf"
|
45
|
+
pdf_path = "pdfs/hidden/the-bad-one.pdf" # Replace with your PDF path
|
46
|
+
pdf = PDF(pdf_path)
|
47
|
+
|
48
|
+
# --- 2. (Optional) Exclude Irrelevant Areas ---
|
49
|
+
# If the document has consistent headers, footers, or margins you want to ignore
|
50
|
+
# Use exclusions *before* detection
|
51
|
+
pdf.add_exclusion(lambda page: page.region(right=45)) # Exclude left margin/line numbers
|
52
|
+
pdf.add_exclusion(lambda page: page.region(left=500)) # Exclude right margin
|
53
|
+
|
54
|
+
# --- 3. Detect Text Regions ---
|
55
|
+
# Use a good detection engine. Surya is often robust for line detection.
|
56
|
+
# We only want the bounding boxes, not the initial (potentially inaccurate) OCR text.
|
57
|
+
print("Detecting text regions...")
|
58
|
+
# Process only a subset of pages for demonstration if needed
|
59
|
+
for page in pdf.pages[:10]:
|
60
|
+
# Use a moderate resolution for detection; higher res used for LLM correction later
|
61
|
+
page.apply_ocr(engine='surya', resolution=120, detect_only=True)
|
62
|
+
print(f"Detection complete for {num_pages_to_process} pages.")
|
63
|
+
|
64
|
+
# (Optional) Visualize detected boxes on a sample page
|
65
|
+
# pdf.pages[9].find_all('text[source=ocr]').show()
|
66
|
+
|
67
|
+
# --- 4. Correct with LLM ---
|
68
|
+
# Configure your LLM client (example using OpenAI client, adaptable for others)
|
69
|
+
# For Anthropic: client = openai.OpenAI(base_url="https://api.anthropic.com/v1/", api_key=os.environ.get("ANTHROPIC_API_KEY"))
|
70
|
+
client = openai.OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
|
71
|
+
|
72
|
+
# Craft a clear prompt for the LLM
|
73
|
+
# Be as specific as possible! If it's in a specific language, what kinds
|
74
|
+
# of characters, etc.
|
75
|
+
prompt = """OCR this image patch. Return only the exact text content visible in the image.
|
76
|
+
Preserve original spelling, capitalization, punctuation, and symbols.
|
77
|
+
Do not add any explanatory text, translations, comments, or quotation marks around the result.
|
78
|
+
The text is likely from a Greek document, potentially a spreadsheet, containing Modern Greek words or numbers."""
|
79
|
+
|
80
|
+
# Define the correction function using direct_ocr_llm
|
81
|
+
def correct_text_region(region):
|
82
|
+
# Use a high resolution for the LLM call for best accuracy
|
83
|
+
return direct_ocr_llm(
|
84
|
+
region,
|
85
|
+
client,
|
86
|
+
prompt=prompt,
|
87
|
+
resolution=300,
|
88
|
+
# model="claude-3-5-sonnet-20240620" # Example Anthropic model
|
89
|
+
model="gpt-4o-mini" # Example OpenAI model
|
90
|
+
)
|
91
|
+
|
92
|
+
# Apply the correction function to the detected text regions
|
93
|
+
print("Applying LLM correction to detected regions...")
|
94
|
+
for page in pdf.pages[:num_pages_to_process]:
|
95
|
+
# This finds elements added by apply_ocr and passes their regions to 'correct_text_region'
|
96
|
+
# The returned text from the LLM replaces the original OCR text for these elements
|
97
|
+
# The source attribute is updated (e.g., to 'ocr-llm-corrected')
|
98
|
+
page.correct_ocr(correct_text_region)
|
99
|
+
print("LLM correction complete.")
|
100
|
+
|
101
|
+
# --- 5. Export for PaddleOCR Fine-tuning ---
|
102
|
+
print("Configuring exporter...")
|
103
|
+
exporter = PaddleOCRRecognitionExporter(
|
104
|
+
# Select all of the non-blank OCR text
|
105
|
+
# Hopefully it's all been LLM-corrected!
|
106
|
+
selector="text[source^=ocr][text!='']",
|
107
|
+
resolution=300, # Resolution for the exported image crops
|
108
|
+
padding=2, # Add slight padding around text boxes
|
109
|
+
split_ratio=0.9, # 90% for training, 10% for validation
|
110
|
+
random_seed=42, # For reproducible train/val split
|
111
|
+
include_guide=True # Include the Colab fine-tuning notebook
|
112
|
+
)
|
113
|
+
|
114
|
+
# Define the output directory
|
115
|
+
output_directory = "./my_paddleocr_finetune_data"
|
116
|
+
print(f"Exporting data to {output_directory}...")
|
117
|
+
|
118
|
+
# Run the export process
|
119
|
+
exporter.export(pdf, output_directory)
|
120
|
+
|
121
|
+
print("Export complete.")
|
122
|
+
print(f"Dataset ready for fine-tuning in: {output_directory}")
|
123
|
+
print(f"Next step: Upload '{os.path.join(output_directory, 'fine_tune_paddleocr.ipynb')}' and the rest of the contents to Google Colab.")
|
124
|
+
|
125
|
+
# --- Cleanup ---
|
126
|
+
pdf.close()
|
127
|
+
```
|
128
|
+
|
129
|
+
## Running the Fine-tuning
|
130
|
+
|
131
|
+
The `PaddleOCRRecognitionExporter` automatically includes a Jupyter Notebook (`fine_tune_paddleocr.ipynb`) in the output directory. This notebook is pre-configured to guide you through the fine-tuning process on Google Colab (which offers free GPU access):
|
132
|
+
|
133
|
+
1. **Upload:** Upload the entire output directory (e.g., `my_paddleocr_finetune_data`) to your Google Drive or directly to your Colab instance.
|
134
|
+
2. **Open Notebook:** Open the `fine_tune_paddleocr.ipynb` notebook in Google Colab.
|
135
|
+
3. **Set Runtime:** Ensure the Colab runtime is set to use a GPU (Runtime -> Change runtime type -> GPU).
|
136
|
+
4. **Run Cells:** Execute the cells in the notebook sequentially. It will:
|
137
|
+
* Install necessary libraries (PaddlePaddle, PaddleOCR).
|
138
|
+
* Point the training configuration to your uploaded dataset (`images/`, `train.txt`, `val.txt`, `dict.txt`).
|
139
|
+
* Download a pre-trained PaddleOCR model (usually a multilingual one).
|
140
|
+
* Start the fine-tuning process using your data.
|
141
|
+
* Save the fine-tuned model checkpoints.
|
142
|
+
* Export the best model into an "inference format" suitable for use with `natural-pdf`.
|
143
|
+
5. **Download Model:** Download the resulting `inference_model` directory from Colab.
|
144
|
+
|
145
|
+
## Using the Fine-tuned Model
|
146
|
+
|
147
|
+
Once you have the `inference_model` directory, you can instruct `natural-pdf` to use it for OCR:
|
148
|
+
|
149
|
+
```python
|
150
|
+
from natural_pdf import PDF
|
151
|
+
from natural_pdf.ocr import PaddleOCROptions
|
152
|
+
|
153
|
+
# Path to the directory you downloaded from Colab
|
154
|
+
finetuned_model_dir = "/path/to/your/downloaded/inference_model"
|
155
|
+
|
156
|
+
# Specify the path in PaddleOCROptions
|
157
|
+
paddle_opts = PaddleOCROptions(
|
158
|
+
rec_model_dir=finetuned_model_dir,
|
159
|
+
rec_char_dict_path=os.path.join(finetuned_model_dir, 'your_dict.txt') # Or wherever your dict is
|
160
|
+
use_gpu=True # If using GPU locally
|
161
|
+
)
|
162
|
+
|
163
|
+
pdf = PDF("another-similar-document.pdf")
|
164
|
+
page = pdf.pages[0]
|
165
|
+
|
166
|
+
# Apply OCR using your fine-tuned model
|
167
|
+
ocr_elements = page.apply_ocr(engine='paddle', options=paddle_opts)
|
168
|
+
|
169
|
+
# Extract text using the improved results
|
170
|
+
text = page.extract_text()
|
171
|
+
print(text)
|
172
|
+
|
173
|
+
pdf.close()
|
174
|
+
```
|
175
|
+
|
176
|
+
By following this process, you can significantly enhance OCR performance on your specific documents using the power of fine-tuning.
|
docs/ocr/index.md
CHANGED
@@ -92,26 +92,6 @@ surya_opts = SuryaOCROptions(
|
|
92
92
|
ocr_elements = page.apply_ocr(engine='surya', options=surya_opts)
|
93
93
|
```
|
94
94
|
|
95
|
-
## Multiple Languages
|
96
|
-
|
97
|
-
OCR supports multiple languages:
|
98
|
-
|
99
|
-
```python
|
100
|
-
# Recognize English and Spanish text
|
101
|
-
pdf = PDF('multilingual.pdf', ocr={
|
102
|
-
'enabled': True,
|
103
|
-
'languages': ['en', 'es']
|
104
|
-
})
|
105
|
-
|
106
|
-
# Multiple languages with PaddleOCR
|
107
|
-
pdf = PDF('multilingual_document.pdf',
|
108
|
-
ocr_engine='paddleocr',
|
109
|
-
ocr={
|
110
|
-
'enabled': True,
|
111
|
-
'languages': ['zh', 'ja', 'ko', 'en'] # Chinese, Japanese, Korean, English
|
112
|
-
})
|
113
|
-
```
|
114
|
-
|
115
95
|
## Applying OCR Directly
|
116
96
|
|
117
97
|
The `page.apply_ocr(...)` and `region.apply_ocr(...)` methods are the primary way to run OCR:
|
@@ -179,39 +159,46 @@ high_conf = page.find_all('text[source=ocr][confidence>=0.8]')
|
|
179
159
|
high_conf.highlight(color="green", label="High Confidence OCR")
|
180
160
|
```
|
181
161
|
|
182
|
-
## OCR
|
162
|
+
## Detect + LLM OCR
|
163
|
+
|
164
|
+
Sometimes you have a difficult piece of content where you need to use a local model to identify the content, then send it off in pieces to be identified by the LLM. You can do this with Natural PDF!
|
165
|
+
|
166
|
+
```python
|
167
|
+
from natural_pdf import PDF
|
168
|
+
from natural_pdf.ocr.utils import direct_ocr_llm
|
169
|
+
import openai
|
170
|
+
|
171
|
+
pdf = PDF("needs-ocr.pdf")
|
172
|
+
page = pdf.pages[0]
|
173
|
+
|
174
|
+
# Detect
|
175
|
+
page.apply_ocr('paddle', resolution=120, detect_only=True)
|
176
|
+
|
177
|
+
# Build the framework
|
178
|
+
client = openai.OpenAI(base_url="https://api.anthropic.com/v1/", api_key='sk-XXXXX')
|
179
|
+
prompt = """OCR this image. Return only the exact text from the image. Include misspellings,
|
180
|
+
punctuation, etc. Do not surround it with quotation marks. Do not include translations or comments.
|
181
|
+
The text is from a Greek spreadsheet, so most likely content is Modern Greek or numeric."""
|
182
|
+
|
183
|
+
# This returns the cleaned-up text
|
184
|
+
def correct(region):
|
185
|
+
return direct_ocr_llm(region, client, prompt=prompt, resolution=300, model="claude-3-5-haiku-20241022")
|
186
|
+
|
187
|
+
# Run 'correct' on each text element
|
188
|
+
page.correct_ocr(correct)
|
189
|
+
|
190
|
+
# You're done!
|
191
|
+
```
|
183
192
|
|
184
|
-
|
193
|
+
## Debugging OCR
|
185
194
|
|
186
195
|
```python
|
187
|
-
|
188
|
-
pdf.debug_ocr("ocr_debug.html")
|
196
|
+
from natural_pdf.utils.packaging import create_correction_task_package
|
189
197
|
|
190
|
-
|
191
|
-
pdf.debug_ocr("ocr_debug.html", pages=[0, 1, 2])
|
198
|
+
create_correction_task_package(pdf, "original.zip", overwrite=True)
|
192
199
|
```
|
193
200
|
|
194
|
-
|
195
|
-
- The original image
|
196
|
-
- Text found with confidence scores
|
197
|
-
- Boxes around each detected word
|
198
|
-
- Options to sort and filter results
|
199
|
-
|
200
|
-
## OCR Parameter Tuning
|
201
|
-
|
202
|
-
### Parameter Recommendation Table
|
203
|
-
|
204
|
-
| Issue | Engine | Parameter | Recommended Value | Effect |
|
205
|
-
|-------|--------|-----------|-------------------|--------|
|
206
|
-
| Missing text | EasyOCR | `text_threshold` | 0.1 - 0.3 (default: 0.7) | Lower values detect more text but may increase false positives |
|
207
|
-
| Missing text | PaddleOCR | `det_db_thresh` | 0.1 - 0.3 (default: 0.3) | Lower values detect more text areas |
|
208
|
-
| Low quality scan | EasyOCR | `contrast_ths` | 0.05 - 0.1 (default: 0.1) | Lower values help with low contrast documents |
|
209
|
-
| Low quality scan | PaddleOCR | `det_limit_side_len` | 1280 - 2560 (default: 960) | Higher values improve detail detection |
|
210
|
-
| Accuracy vs. speed | EasyOCR | `decoder` | "wordbeamsearch" (accuracy)<br>"greedy" (speed) | Word beam search is more accurate but slower |
|
211
|
-
| Accuracy vs. speed | PaddleOCR | `rec_batch_num` | 1 (accuracy)<br>8+ (speed) | Larger batches process faster but use more memory |
|
212
|
-
| Small text | Both | `min_confidence` | 0.3 - 0.4 (default: 0.5) | Lower confidence threshold to capture small/blurry text |
|
213
|
-
| Text orientation | PaddleOCR | `use_angle_cls` | `True` | Enable angle classification for rotated text |
|
214
|
-
| Asian languages | PaddleOCR | `lang` | "ch", "japan", "korea" | Use PaddleOCR for Asian languages |
|
201
|
+
This will at *some point* be official-ized, but for now you can look at `templates/spa` and see the correction package.
|
215
202
|
|
216
203
|
## Next Steps
|
217
204
|
|