napari-tmidas 0.2.2__py3-none-any.whl → 0.2.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- napari_tmidas/__init__.py +35 -5
- napari_tmidas/_crop_anything.py +1520 -609
- napari_tmidas/_env_manager.py +76 -0
- napari_tmidas/_file_conversion.py +1646 -1131
- napari_tmidas/_file_selector.py +1455 -216
- napari_tmidas/_label_inspection.py +83 -8
- napari_tmidas/_processing_worker.py +309 -0
- napari_tmidas/_reader.py +6 -10
- napari_tmidas/_registry.py +2 -2
- napari_tmidas/_roi_colocalization.py +1221 -84
- napari_tmidas/_tests/test_crop_anything.py +123 -0
- napari_tmidas/_tests/test_env_manager.py +89 -0
- napari_tmidas/_tests/test_grid_view_overlay.py +193 -0
- napari_tmidas/_tests/test_init.py +98 -0
- napari_tmidas/_tests/test_intensity_label_filter.py +222 -0
- napari_tmidas/_tests/test_label_inspection.py +86 -0
- napari_tmidas/_tests/test_processing_basic.py +500 -0
- napari_tmidas/_tests/test_processing_worker.py +142 -0
- napari_tmidas/_tests/test_regionprops_analysis.py +547 -0
- napari_tmidas/_tests/test_registry.py +70 -2
- napari_tmidas/_tests/test_scipy_filters.py +168 -0
- napari_tmidas/_tests/test_skimage_filters.py +259 -0
- napari_tmidas/_tests/test_split_channels.py +217 -0
- napari_tmidas/_tests/test_spotiflow.py +87 -0
- napari_tmidas/_tests/test_tyx_display_fix.py +142 -0
- napari_tmidas/_tests/test_ui_utils.py +68 -0
- napari_tmidas/_tests/test_widget.py +30 -0
- napari_tmidas/_tests/test_windows_basic.py +66 -0
- napari_tmidas/_ui_utils.py +57 -0
- napari_tmidas/_version.py +16 -3
- napari_tmidas/_widget.py +41 -4
- napari_tmidas/processing_functions/basic.py +557 -20
- napari_tmidas/processing_functions/careamics_env_manager.py +72 -99
- napari_tmidas/processing_functions/cellpose_env_manager.py +415 -112
- napari_tmidas/processing_functions/cellpose_segmentation.py +132 -191
- napari_tmidas/processing_functions/colocalization.py +513 -56
- napari_tmidas/processing_functions/grid_view_overlay.py +703 -0
- napari_tmidas/processing_functions/intensity_label_filter.py +422 -0
- napari_tmidas/processing_functions/regionprops_analysis.py +1280 -0
- napari_tmidas/processing_functions/sam2_env_manager.py +53 -69
- napari_tmidas/processing_functions/sam2_mp4.py +274 -195
- napari_tmidas/processing_functions/scipy_filters.py +403 -8
- napari_tmidas/processing_functions/skimage_filters.py +424 -212
- napari_tmidas/processing_functions/spotiflow_detection.py +949 -0
- napari_tmidas/processing_functions/spotiflow_env_manager.py +591 -0
- napari_tmidas/processing_functions/timepoint_merger.py +334 -86
- {napari_tmidas-0.2.2.dist-info → napari_tmidas-0.2.4.dist-info}/METADATA +70 -30
- napari_tmidas-0.2.4.dist-info/RECORD +63 -0
- napari_tmidas/_tests/__init__.py +0 -0
- napari_tmidas-0.2.2.dist-info/RECORD +0 -40
- {napari_tmidas-0.2.2.dist-info → napari_tmidas-0.2.4.dist-info}/WHEEL +0 -0
- {napari_tmidas-0.2.2.dist-info → napari_tmidas-0.2.4.dist-info}/entry_points.txt +0 -0
- {napari_tmidas-0.2.2.dist-info → napari_tmidas-0.2.4.dist-info}/licenses/LICENSE +0 -0
- {napari_tmidas-0.2.2.dist-info → napari_tmidas-0.2.4.dist-info}/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: napari-tmidas
|
|
3
|
-
Version: 0.2.
|
|
3
|
+
Version: 0.2.4
|
|
4
4
|
Summary: A plugin for batch processing of confocal and whole-slide microscopy images of biological tissues
|
|
5
5
|
Author: Marco Meer
|
|
6
6
|
Author-email: marco.meer@pm.me
|
|
@@ -41,46 +41,53 @@ Classifier: Development Status :: 2 - Pre-Alpha
|
|
|
41
41
|
Classifier: Framework :: napari
|
|
42
42
|
Classifier: Intended Audience :: Developers
|
|
43
43
|
Classifier: License :: OSI Approved :: BSD License
|
|
44
|
-
Classifier: Operating System ::
|
|
44
|
+
Classifier: Operating System :: MacOS
|
|
45
|
+
Classifier: Operating System :: POSIX :: Linux
|
|
45
46
|
Classifier: Programming Language :: Python
|
|
46
47
|
Classifier: Programming Language :: Python :: 3
|
|
47
48
|
Classifier: Programming Language :: Python :: 3 :: Only
|
|
48
|
-
Classifier: Programming Language :: Python :: 3.9
|
|
49
49
|
Classifier: Programming Language :: Python :: 3.10
|
|
50
50
|
Classifier: Programming Language :: Python :: 3.11
|
|
51
51
|
Classifier: Topic :: Scientific/Engineering :: Image Processing
|
|
52
|
-
Requires-Python: >=3.
|
|
52
|
+
Requires-Python: >=3.10
|
|
53
53
|
Description-Content-Type: text/markdown
|
|
54
54
|
License-File: LICENSE
|
|
55
|
-
Requires-Dist: numpy
|
|
55
|
+
Requires-Dist: numpy<2.0,>=1.23.0
|
|
56
56
|
Requires-Dist: magicgui
|
|
57
57
|
Requires-Dist: tqdm
|
|
58
58
|
Requires-Dist: qtpy
|
|
59
|
-
Requires-Dist: scikit-image
|
|
59
|
+
Requires-Dist: scikit-image>=0.19.0
|
|
60
|
+
Requires-Dist: scikit-learn-extra>=0.3.0
|
|
60
61
|
Requires-Dist: pyqt5
|
|
61
|
-
Requires-Dist:
|
|
62
|
-
Requires-Dist: scikit-image
|
|
62
|
+
Requires-Dist: zarr
|
|
63
63
|
Requires-Dist: ome-zarr
|
|
64
64
|
Requires-Dist: napari-ome-zarr
|
|
65
|
-
Requires-Dist: torch
|
|
66
|
-
Requires-Dist: torchvision
|
|
67
|
-
Requires-Dist: timm
|
|
68
|
-
Requires-Dist: opencv-python
|
|
69
|
-
Requires-Dist: cmake
|
|
70
65
|
Requires-Dist: nd2
|
|
71
66
|
Requires-Dist: pylibCZIrw
|
|
72
67
|
Requires-Dist: readlif
|
|
73
68
|
Requires-Dist: tiffslide
|
|
74
|
-
Requires-Dist: hydra-core
|
|
75
|
-
Requires-Dist: eva-decord
|
|
76
69
|
Requires-Dist: acquifer-napari
|
|
77
70
|
Provides-Extra: testing
|
|
78
71
|
Requires-Dist: tox; extra == "testing"
|
|
79
|
-
Requires-Dist: pytest; extra == "testing"
|
|
72
|
+
Requires-Dist: pytest>=7.0.0; extra == "testing"
|
|
80
73
|
Requires-Dist: pytest-cov; extra == "testing"
|
|
81
74
|
Requires-Dist: pytest-qt; extra == "testing"
|
|
75
|
+
Requires-Dist: pytest-timeout; extra == "testing"
|
|
82
76
|
Requires-Dist: napari; extra == "testing"
|
|
83
77
|
Requires-Dist: pyqt5; extra == "testing"
|
|
78
|
+
Requires-Dist: psygnal>=0.8.0; extra == "testing"
|
|
79
|
+
Provides-Extra: clustering
|
|
80
|
+
Requires-Dist: scikit-learn-extra>=0.3.0; extra == "clustering"
|
|
81
|
+
Provides-Extra: deep-learning
|
|
82
|
+
Requires-Dist: torch>=1.12.0; extra == "deep-learning"
|
|
83
|
+
Requires-Dist: torchvision>=0.13.0; extra == "deep-learning"
|
|
84
|
+
Requires-Dist: timm; extra == "deep-learning"
|
|
85
|
+
Requires-Dist: opencv-python; extra == "deep-learning"
|
|
86
|
+
Requires-Dist: cmake; extra == "deep-learning"
|
|
87
|
+
Requires-Dist: hydra-core; extra == "deep-learning"
|
|
88
|
+
Requires-Dist: eva-decord; extra == "deep-learning"
|
|
89
|
+
Provides-Extra: all
|
|
90
|
+
Requires-Dist: napari-tmidas[clustering,deep-learning,testing]; extra == "all"
|
|
84
91
|
Dynamic: license-file
|
|
85
92
|
|
|
86
93
|
# napari-tmidas
|
|
@@ -88,13 +95,13 @@ Dynamic: license-file
|
|
|
88
95
|
[](https://github.com/macromeer/napari-tmidas/raw/main/LICENSE)
|
|
89
96
|
[](https://pypi.org/project/napari-tmidas)
|
|
90
97
|
[](https://python.org)
|
|
98
|
+
[](https://pepy.tech/project/napari-tmidas)
|
|
91
99
|
[](https://github.com/macromeer/napari-tmidas/actions)
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
The `napari-tmidas` plugin consists of a growing collection of pipelines for fast batch processing of confocal and whole slide microscopy images of biological tissues. This is a WIP and based on the CLI version of [T-MIDAS](https://github.com/MercaderLabAnatomy/T-MIDAS).
|
|
100
|
+
|
|
101
|
+
This napari plugin consists of a growing collection of pipelines for fast batch processing of confocal and whole slide microscopy images of biological tissues. This is a WIP and based on the [T-MIDAS terminal](https://github.com/MercaderLabAnatomy/T-MIDAS).
|
|
95
102
|
|
|
96
103
|
## Features
|
|
97
|
-
Currently, napari-tmidas provides pipelines as widgets for batch image conversion
|
|
104
|
+
Currently, **napari-tmidas** provides pipelines as widgets for batch image conversion and processing, object cropping, label image inspection and ROI colocalization (cf. [usage](#usage) below). You can request new batch image processing features in [issues](https://github.com/MercaderLabAnatomy/napari-tmidas/issues).
|
|
98
105
|
|
|
99
106
|
## Installation
|
|
100
107
|
|
|
@@ -110,11 +117,21 @@ Now you can install `napari-tmidas` via [pip]:
|
|
|
110
117
|
|
|
111
118
|
pip install napari-tmidas
|
|
112
119
|
|
|
120
|
+
**For deep learning features** (Batch Crop Anything with SAM2, Spotiflow, Careamics, Trackastra), also install:
|
|
121
|
+
|
|
122
|
+
pip install 'napari-tmidas[deep-learning]'
|
|
123
|
+
|
|
124
|
+
Or install everything at once:
|
|
125
|
+
|
|
126
|
+
pip install 'napari-tmidas[all]'
|
|
127
|
+
|
|
113
128
|
It is recommended though to install the **latest development version**. Please also execute this command from time to time in the activated environment to benefit from newly added features:
|
|
114
129
|
|
|
115
|
-
pip install git+https://github.com/
|
|
130
|
+
pip install git+https://github.com/MercaderLabAnatomy/napari-tmidas.git
|
|
116
131
|
|
|
117
|
-
|
|
132
|
+
### Additional Setup for Batch Crop Anything
|
|
133
|
+
|
|
134
|
+
To use the Batch Crop Anything pipeline with SAM2, you need to install SAM2 separately:
|
|
118
135
|
|
|
119
136
|
cd /opt # if the folder does not exist: mkdir /opt && cd /opt
|
|
120
137
|
git clone https://github.com/facebookresearch/sam2.git && cd sam2
|
|
@@ -126,12 +143,10 @@ If you want to batch compress image data using [Zstandard](https://github.com/fa
|
|
|
126
143
|
|
|
127
144
|
~~sudo apt-get install zstd~~ # Pre-installed on Linux :man_shrugging:
|
|
128
145
|
|
|
129
|
-
brew install zstd # for macOS (requires
|
|
146
|
+
brew install zstd # for macOS (requires Homebrew)
|
|
130
147
|
pip install zstandard # Windows with Python >= 3.7
|
|
131
148
|
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
And you are done!
|
|
149
|
+
And you are done!
|
|
135
150
|
|
|
136
151
|
## Usage
|
|
137
152
|
|
|
@@ -143,19 +158,22 @@ You can then find the installed plugin in the Plugins tab.
|
|
|
143
158
|
|
|
144
159
|
### Microscopy Image Conversion
|
|
145
160
|
|
|
146
|
-
|
|
161
|
+
Converts `.lif, .nd2, .czi, .ndpi` and Acquifer data to TIF or OME-Zarr formats. Scan a folder, select files, and export with preserved spatial metadata.
|
|
147
162
|
|
|
163
|
+
**Supported Formats:**
|
|
164
|
+
- **TIF** - Standard format for compatibility
|
|
165
|
+
- **OME-Zarr** - Recommended for large datasets, [spec v0.5](https://ngff.openmicroscopy.org/latest/) compliant with automatic physical metadata extraction (voxel sizes, spacing)
|
|
148
166
|
|
|
149
167
|
<img src="https://github.com/user-attachments/assets/e377ca71-2f30-447d-825e-d2feebf7061b" alt="Microscopy Image Conversion Widget" style="width:75%; height:auto;">
|
|
150
168
|
|
|
151
169
|
|
|
152
170
|
### Image Processing
|
|
153
171
|
|
|
154
|
-
1.
|
|
172
|
+
1. You start with entering the path to the folder containing the images to be processed (currently supports TIF, later also ZARR) and optionally a filter for filename suffix
|
|
155
173
|
|
|
156
174
|

|
|
157
175
|
|
|
158
|
-
2.
|
|
176
|
+
2. After indexing the files, a table appears with the found images. You can click on them to inspect them in the viewer.
|
|
159
177
|
|
|
160
178
|

|
|
161
179
|
|
|
@@ -176,7 +194,27 @@ Note that whenever you click on an `Original File` or `Processed File` in the ta
|
|
|
176
194
|
The image processing capabilities are powered by several excellent open-source tools:
|
|
177
195
|
- [Cellpose 4](https://github.com/MouseLand/cellpose): Advanced cell segmentation
|
|
178
196
|
- [Trackastra](https://github.com/weigertlab/trackastra): Cell tracking and analysis
|
|
197
|
+
- [VisCy](https://github.com/mehta-lab/VisCy): Virtual staining using deep learning
|
|
179
198
|
- [CAREamics](https://github.com/CAREamics/careamics): Content-aware image restoration and enhancement
|
|
199
|
+
- [Spotiflow](https://github.com/weigertlab/spotiflow): Accurate and efficient spot detection for fluorescence microscopy
|
|
200
|
+
|
|
201
|
+
#### Processing Function Documentation
|
|
202
|
+
|
|
203
|
+
Detailed documentation for specific processing functions:
|
|
204
|
+
|
|
205
|
+
**Core Processing**
|
|
206
|
+
- [Basic Processing Functions](docs/basic_processing.md) - Label and intensity operations, channel splitting/merging, time series
|
|
207
|
+
- [Cellpose Segmentation](docs/cellpose_segmentation.md) - Deep learning cell/nucleus segmentation
|
|
208
|
+
- [TrackAstra Tracking](docs/trackastra_tracking.md) - Cell tracking across time-lapse data
|
|
209
|
+
- [VisCy Virtual Staining](docs/viscy_virtual_staining.md) - Virtual staining of phase/DIC images using deep learning
|
|
210
|
+
|
|
211
|
+
**Analysis and Quality Control**
|
|
212
|
+
- [Grid View: Intensity + Labels Overlay](docs/grid_view_overlay.md) - Visual QC for segmentation results
|
|
213
|
+
- [Intensity-Based Label Filtering](docs/intensity_label_filter.md) - Filter labels by signal intensity
|
|
214
|
+
- [Regionprops Analysis](docs/regionprops_analysis.md) - Extract quantitative properties from labels
|
|
215
|
+
|
|
216
|
+
**Advanced Processing**
|
|
217
|
+
- [Advanced Processing Functions](docs/advanced_processing.md) - Denoising (CAREamics), spot detection (Spotiflow), SciPy/scikit-image filters, compression, colocalization
|
|
180
218
|
|
|
181
219
|
### Batch Label Inspection
|
|
182
220
|
If you have already segmented a folder full of images and now you want to maybe inspect and edit each label image, you can use the `Plugins > T-MIDAS > Batch Label Inspection`, which automatically saves your changes to the existing label image once you click the `Save Changes and Continue` button (bottom right).
|
|
@@ -184,7 +222,8 @@ If you have already segmented a folder full of images and now you want to maybe
|
|
|
184
222
|
<img src="https://github.com/user-attachments/assets/0bf8c6ae-4212-449d-8183-e91b23ba740e" alt="Batch Label Inspection Widget" style="width:75%; height:auto;">
|
|
185
223
|
|
|
186
224
|
### Crop Anything
|
|
187
|
-
|
|
225
|
+
|
|
226
|
+
This pipeline combines the Segment Anything Model (SAM2; supports YX, ZYX and TYX data) for automatic object detection with an interactive interface for selecting and cropping multiple objects from images. To launch the widget, open `Plugins > T-MIDAS > Batch Crop Anything`. Cropping works like this: Enter 2D view and go to the first z slice where the object to be cropped is appearing. Activate/select the points layer and click on the object. Terminal shows progress. You can then proceed to select another object (always do this in 2D mode)
|
|
188
227
|
|
|
189
228
|
<img src="https://github.com/user-attachments/assets/6d72c2a2-1064-4a27-b398-a9b86fcbc443" alt="Crop Anything Widget" style="width:75%; height:auto;">
|
|
190
229
|
|
|
@@ -192,6 +231,7 @@ This pipeline combines the Segment Anything Model (SAM) for automatic object det
|
|
|
192
231
|
|
|
193
232
|
|
|
194
233
|
### ROI Colocalization
|
|
234
|
+
|
|
195
235
|
This pipeline quantifies colocalization between labeled regions of interest (ROIs) across multiple image channels. It determines the extent of overlap between ROIs in a reference channel and those in one or two other channels. The output is a table of colocalization counts. Optionally, the size of reference channel ROIs, as well as the total or median size of colocalizing ROIs in the other channels, can be included. Colocalization is determined using Boolean masking. The number of colocalizing instances is determined by counting unique label IDs within the overlapping regions. Typically, the reference channel contains larger structures, while other channels contain smaller, potentially nested, structures. For example, the reference channel might contain cell bodies, with the second and third channels containing nuclei and sub-nuclear objects, respectively.
|
|
196
236
|
|
|
197
237
|
<img src="https://github.com/user-attachments/assets/2f9022a0-7b88-4588-a448-250f07a634d7" alt="ROI Colocalization Widget" style="width:75%; height:auto;">
|
|
@@ -0,0 +1,63 @@
|
|
|
1
|
+
napari_tmidas/__init__.py,sha256=48HQJ_uxFKXuVl-ZU0AspiS9E6L0ONo5Tullsu3n-x4,1216
|
|
2
|
+
napari_tmidas/_crop_anything.py,sha256=aNrwZiIu9RIyo1wq_R0V24nCEgCFLFPLj0rvwqB6TZw,140754
|
|
3
|
+
napari_tmidas/_env_manager.py,sha256=q318BZXA337a2bCs2-ZDTy10VWMuncj9TJHQtWgs2q4,2463
|
|
4
|
+
napari_tmidas/_file_conversion.py,sha256=lSgPJdLU0nTyIUKaOF4h6exceSGWsAa06pwWdBsz53o,90816
|
|
5
|
+
napari_tmidas/_file_selector.py,sha256=XPrgiz3F5EsZwoemIAmys5MAzeMxdotFqs7BWl8ZMVQ,93448
|
|
6
|
+
napari_tmidas/_label_inspection.py,sha256=tAw9HwcMNG6yWnoyAMRvLBvCcOf5YVA9zDm8LHYom9E,11377
|
|
7
|
+
napari_tmidas/_processing_worker.py,sha256=vkaxjte4YJxlSCTCAtKJe85EeftVaBW7ym9OUQVZ_xU,10654
|
|
8
|
+
napari_tmidas/_reader.py,sha256=RvFjAW0bdQWbUQ3wXxDAIH0GnLrh6cw2m3gkEvkEhOc,2225
|
|
9
|
+
napari_tmidas/_registry.py,sha256=yunbEoDe1JZREMab4BeP7wka17IwK1toV5g1imju30c,2148
|
|
10
|
+
napari_tmidas/_roi_colocalization.py,sha256=0ZSs7JlJKPhGibnETf6Rj746T3YV4AUgynWmZbmNjHw,92257
|
|
11
|
+
napari_tmidas/_sample_data.py,sha256=khuv1jemz_fCjqNwEKMFf83Ju0EN4S89IKydsUMmUxw,645
|
|
12
|
+
napari_tmidas/_ui_utils.py,sha256=wBmaR-3wdgizb234atsjUU2DElsM5-tf4TIsxGLaHzI,1499
|
|
13
|
+
napari_tmidas/_version.py,sha256=NRw4Jle4n9v_DD2wtplRqflGCvX8OU5eAjycYY0vY3Y,704
|
|
14
|
+
napari_tmidas/_widget.py,sha256=Uab5WuJK2fgdlGga6iNnHsiZjRMUq2KM3u0N5JJW8DA,5495
|
|
15
|
+
napari_tmidas/_writer.py,sha256=wbVfHFjjHdybSg37VR4lVmL-kdCkDZsUPDJ66AVLaFQ,1941
|
|
16
|
+
napari_tmidas/napari.yaml,sha256=1Am1dA0-ZtCXk6veIT6jrMz3zwQ7dF8_p9tZTFx_vTg,2641
|
|
17
|
+
napari_tmidas/_tests/test_crop_anything.py,sha256=vUgO8ue-BtWvQvIoHjeD5-UUnlnJYV0478GQRgsGtAY,4763
|
|
18
|
+
napari_tmidas/_tests/test_env_manager.py,sha256=IQDhdGBRV_YJrYAK6U8cXbDZyvmG9YNWA8prjCWCdsM,2927
|
|
19
|
+
napari_tmidas/_tests/test_file_selector.py,sha256=Sbu0BCXTaQAeUJLtOVjIC87AUARbi8J0bXBlMJe53ew,2687
|
|
20
|
+
napari_tmidas/_tests/test_grid_view_overlay.py,sha256=11-l7qqA6Tfi5Pf1VKRTPDg3dG61zrZPxG2SV3mM0Rg,6367
|
|
21
|
+
napari_tmidas/_tests/test_init.py,sha256=xGic9AQn-VtEOloUWIrH1P6_KvJp61nILk35Y09FHTA,3424
|
|
22
|
+
napari_tmidas/_tests/test_intensity_label_filter.py,sha256=PB2aWx48A4qpJ52uR0wIdE9LaFwRKdNwpOVfkiguB0s,7694
|
|
23
|
+
napari_tmidas/_tests/test_label_inspection.py,sha256=oUW4aJoM3ePEckZmPZNEwfDfob8brUsPGbfrHRnSL8c,2891
|
|
24
|
+
napari_tmidas/_tests/test_processing_basic.py,sha256=Ua_7VSQ--D_cIT6ptupRsW6rN37BTyipT5mp4GX3BYI,19652
|
|
25
|
+
napari_tmidas/_tests/test_processing_worker.py,sha256=X6F3Z2LH-7jd442wj1eerL8U1NS-BORV6SHTib7NsD4,4534
|
|
26
|
+
napari_tmidas/_tests/test_reader.py,sha256=gN_2StATLZYUL56X27ImJTVru_qSoFiY4vtgajcx3H0,975
|
|
27
|
+
napari_tmidas/_tests/test_regionprops_analysis.py,sha256=IGAEtdg83R9aH8wsINR8VCvNBgpYk6g3lH0S1IyBMLk,17030
|
|
28
|
+
napari_tmidas/_tests/test_registry.py,sha256=Kf2G-8Y0mMRECDR-V_qpj-OMgQReBkFWyTHkGx6CRGQ,4504
|
|
29
|
+
napari_tmidas/_tests/test_sample_data.py,sha256=D1HU_C3hWpO3mlSW_7Z94xaYHDtxz0XUrMjQoYop9Ag,104
|
|
30
|
+
napari_tmidas/_tests/test_scipy_filters.py,sha256=SUcgyFh2IY4YVJvVO6_J1JdgkCsYdW36RgpHLkkp2vg,6268
|
|
31
|
+
napari_tmidas/_tests/test_skimage_filters.py,sha256=TgvwcE_1kpdRzg5Hex9z9IoJc5Mt7IJjbpsdmZFiOGc,9869
|
|
32
|
+
napari_tmidas/_tests/test_split_channels.py,sha256=aMvjppoHlPAuwWLGYa1UcfBM_fvu0zM7Elam5JWaAQw,7448
|
|
33
|
+
napari_tmidas/_tests/test_spotiflow.py,sha256=BLSaD8z8r2zbkYEGmfQ3JkSgw5OkvEORnSzpbkIIz4Y,2578
|
|
34
|
+
napari_tmidas/_tests/test_tyx_display_fix.py,sha256=rhKbmM1rkPAAUeV3x3VuJkzXwEoqgi3Gtrxi1PP4ijs,4804
|
|
35
|
+
napari_tmidas/_tests/test_ui_utils.py,sha256=jRHma8i_kWkZD8uvu98Z8Fw5NorocRvA_gjap93nb48,2464
|
|
36
|
+
napari_tmidas/_tests/test_widget.py,sha256=0qKDzyfqGnKKY6smqYiruZEWBQjW5fU98ZHeSE5Ei2Q,3263
|
|
37
|
+
napari_tmidas/_tests/test_windows_basic.py,sha256=nELpwQErf5m1mStIns5jZ4l5BD-_J9XG8IP_CrhSGWw,2311
|
|
38
|
+
napari_tmidas/_tests/test_writer.py,sha256=4_MlZM9a5So74J16_4tIOJc6pwTOw9R0-oAE_YioIx4,122
|
|
39
|
+
napari_tmidas/processing_functions/__init__.py,sha256=osXY9jSgDsrwFaS6ShPHP0wGRxMuX1mHRN9EDa9l41g,1891
|
|
40
|
+
napari_tmidas/processing_functions/basic.py,sha256=3kA7GwCJDkkPyIRMZL5hFDSbz-8jjehMlWsQtjdOlro,44500
|
|
41
|
+
napari_tmidas/processing_functions/careamics_denoising.py,sha256=DFE_6lefeqckAvx-1EqwzJSU3iR3g3ujBGRnF_fnpoM,11638
|
|
42
|
+
napari_tmidas/processing_functions/careamics_env_manager.py,sha256=ca3e4a8s5mMZdgbYLtk21sXDyhIAulgvH1x5k__wDjw,10342
|
|
43
|
+
napari_tmidas/processing_functions/cellpose_env_manager.py,sha256=0HFlHZVbXs2nEead6-VUrHjPhkFkcujP-a0-5Ys_mvA,16718
|
|
44
|
+
napari_tmidas/processing_functions/cellpose_segmentation.py,sha256=qChVwyvGL5nqXjeS0pD0XOxgkyojdiHVXghvdMzdpWI,12280
|
|
45
|
+
napari_tmidas/processing_functions/colocalization.py,sha256=_QZu1rI_Mt4lnME0YhaAg0RP9Wjof0smpbJoqXoGXR8,25518
|
|
46
|
+
napari_tmidas/processing_functions/file_compression.py,sha256=mxR-yqBdc-T1XI3StIXpW8h5xGdCOtLQjt8uoRFpDSY,6859
|
|
47
|
+
napari_tmidas/processing_functions/grid_view_overlay.py,sha256=pZ-5CsHx2tvvW_3QCz5d1-UpleHPES9pj40ZhAf4rrQ,22991
|
|
48
|
+
napari_tmidas/processing_functions/intensity_label_filter.py,sha256=BymvHtFmiqh_eSuix6RtsfjJV7s0fD54OJuIt82sf8Q,13722
|
|
49
|
+
napari_tmidas/processing_functions/regionprops_analysis.py,sha256=ySmzlY_F8uXWQIoSXJFge30jkWFg6G8HhjDVbk4v2rU,45828
|
|
50
|
+
napari_tmidas/processing_functions/sam2_env_manager.py,sha256=w-X493XdHWAE8UhyHhEEVJ3uvLi2VdS-UFU7yPqnagg,2569
|
|
51
|
+
napari_tmidas/processing_functions/sam2_mp4.py,sha256=lEdrqQP36_kw2g3soyu81CCRXCkI5DdSExfq5Bc5kig,11523
|
|
52
|
+
napari_tmidas/processing_functions/scipy_filters.py,sha256=1Y69F5Pe-MEJPwQEs_6Ci3ncFuTKiRAuKRvDxmOQUPw,17871
|
|
53
|
+
napari_tmidas/processing_functions/skimage_filters.py,sha256=Nhv6E8_YcRZ2s1FMkzDJNHr64fpMbUSHpUIY7nuvMHs,25192
|
|
54
|
+
napari_tmidas/processing_functions/spotiflow_detection.py,sha256=2FLnDNXLc0eNj8vhp_XBv_bukX5pJOEhuiyXbUzzcyU,32811
|
|
55
|
+
napari_tmidas/processing_functions/spotiflow_env_manager.py,sha256=07J_tYADMvIVIr_afniSNt8uEduecqpNblSWEj9aH7Q,20323
|
|
56
|
+
napari_tmidas/processing_functions/timepoint_merger.py,sha256=7pXyfcI2rXZz6_TP3v_WejmMFivNVyUzkzBmifMiFKA,27424
|
|
57
|
+
napari_tmidas/processing_functions/trackastra_tracking.py,sha256=IkFk5HoEZmKdcu5jXri4WMhHN1KTADDMxSpeYfPgSbo,9976
|
|
58
|
+
napari_tmidas-0.2.4.dist-info/licenses/LICENSE,sha256=tSjiOqj57exmEIfP2YVPCEeQf0cH49S6HheQR8IiY3g,1485
|
|
59
|
+
napari_tmidas-0.2.4.dist-info/METADATA,sha256=NBJTIL9QGfMkrLPVq4G-Xr-HNeZ7G2zWOlbAAM0F0uo,14856
|
|
60
|
+
napari_tmidas-0.2.4.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
61
|
+
napari_tmidas-0.2.4.dist-info/entry_points.txt,sha256=fbVjzbJTm4aDMIBtel1Lyqvq-CwXY7wmCOo_zJ-jtRY,60
|
|
62
|
+
napari_tmidas-0.2.4.dist-info/top_level.txt,sha256=63ybdxCZ4SeT13f_Ou4TsivGV_2Gtm_pJOXToAt30_E,14
|
|
63
|
+
napari_tmidas-0.2.4.dist-info/RECORD,,
|
napari_tmidas/_tests/__init__.py
DELETED
|
File without changes
|
|
@@ -1,40 +0,0 @@
|
|
|
1
|
-
napari_tmidas/__init__.py,sha256=YNBLESwk8jr_TlDdkSC1CwH0tf0CKHF1i2_efzLjdpk,589
|
|
2
|
-
napari_tmidas/_crop_anything.py,sha256=2UMUddQ6mdX96FiJPKpQnG1P1atFrxlz41JYWM3933k,103088
|
|
3
|
-
napari_tmidas/_file_conversion.py,sha256=V6evJmggUwOFzJO203Y5ltboHXEWNJQckZPedGRkrLI,72203
|
|
4
|
-
napari_tmidas/_file_selector.py,sha256=tuWxfmHuvILp70cGl6bsEyhRxKNum45GKD6-st-1hnM,43056
|
|
5
|
-
napari_tmidas/_label_inspection.py,sha256=74V36y5EnGs0vWK1FC7Kui4CPLBW_SIg885PSKeZsJ4,9184
|
|
6
|
-
napari_tmidas/_reader.py,sha256=A9_hdDxtVkVGmbOsbqgnARCSvpEh7GGPo7ylzmbnu8o,2485
|
|
7
|
-
napari_tmidas/_registry.py,sha256=fxBPLFCvXtjSHfcVIRb6KI9DkqIWRUpPPg_3pD8sXns,2110
|
|
8
|
-
napari_tmidas/_roi_colocalization.py,sha256=OVjdHvtFN07DgrtTX8uqbrxZL6jVwl2L3klorgW2C9k,43196
|
|
9
|
-
napari_tmidas/_sample_data.py,sha256=khuv1jemz_fCjqNwEKMFf83Ju0EN4S89IKydsUMmUxw,645
|
|
10
|
-
napari_tmidas/_version.py,sha256=OjGGK5TcHVG44Y62aAqeJH4CskkZoY9ydbHOtCDew50,511
|
|
11
|
-
napari_tmidas/_widget.py,sha256=u9uf9WILAwZg_InhFyjWInY4ej1TV1a59dR8Fe3vNF8,4794
|
|
12
|
-
napari_tmidas/_writer.py,sha256=wbVfHFjjHdybSg37VR4lVmL-kdCkDZsUPDJ66AVLaFQ,1941
|
|
13
|
-
napari_tmidas/napari.yaml,sha256=1Am1dA0-ZtCXk6veIT6jrMz3zwQ7dF8_p9tZTFx_vTg,2641
|
|
14
|
-
napari_tmidas/_tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
15
|
-
napari_tmidas/_tests/test_file_selector.py,sha256=Sbu0BCXTaQAeUJLtOVjIC87AUARbi8J0bXBlMJe53ew,2687
|
|
16
|
-
napari_tmidas/_tests/test_reader.py,sha256=gN_2StATLZYUL56X27ImJTVru_qSoFiY4vtgajcx3H0,975
|
|
17
|
-
napari_tmidas/_tests/test_registry.py,sha256=DSI6NdmuIS1sYAa3LrVge0rOS5Ycb3TXFXxol3vDyRA,2061
|
|
18
|
-
napari_tmidas/_tests/test_sample_data.py,sha256=D1HU_C3hWpO3mlSW_7Z94xaYHDtxz0XUrMjQoYop9Ag,104
|
|
19
|
-
napari_tmidas/_tests/test_widget.py,sha256=I_d-Cra_CTcS0QdMItg_HMphvhj0XCx81JnFyCHk9lg,2204
|
|
20
|
-
napari_tmidas/_tests/test_writer.py,sha256=4_MlZM9a5So74J16_4tIOJc6pwTOw9R0-oAE_YioIx4,122
|
|
21
|
-
napari_tmidas/processing_functions/__init__.py,sha256=osXY9jSgDsrwFaS6ShPHP0wGRxMuX1mHRN9EDa9l41g,1891
|
|
22
|
-
napari_tmidas/processing_functions/basic.py,sha256=NJj7pjVPGZwH2H8lnDtxxK-p3JLpcayAqfmTduuPFDw,26777
|
|
23
|
-
napari_tmidas/processing_functions/careamics_denoising.py,sha256=DFE_6lefeqckAvx-1EqwzJSU3iR3g3ujBGRnF_fnpoM,11638
|
|
24
|
-
napari_tmidas/processing_functions/careamics_env_manager.py,sha256=QfmhY5CaeFboUGTxeDlQDPi9WSfeBWp56Zz_qc2luew,11219
|
|
25
|
-
napari_tmidas/processing_functions/cellpose_env_manager.py,sha256=EWNuHuY0PPw8_mL61ElZ58M0-DTduPKuWUdvsrmKV8I,6191
|
|
26
|
-
napari_tmidas/processing_functions/cellpose_segmentation.py,sha256=miRPIsrkv0jL1jNdUFwlTkmr6-m9g7U7k9ijyeatUY0,13410
|
|
27
|
-
napari_tmidas/processing_functions/colocalization.py,sha256=AiTTVAcVhKuuHZhrj5IHwbzns7-GE6ewvFqhYy1L-do,7657
|
|
28
|
-
napari_tmidas/processing_functions/file_compression.py,sha256=mxR-yqBdc-T1XI3StIXpW8h5xGdCOtLQjt8uoRFpDSY,6859
|
|
29
|
-
napari_tmidas/processing_functions/sam2_env_manager.py,sha256=WzKOLFeu1KZRRBryKdWkDm6QJolhs3rCj-KD6Q-z9dE,2897
|
|
30
|
-
napari_tmidas/processing_functions/sam2_mp4.py,sha256=NF0dWar2uyP_yQWxC8e08J6198C2qxEIzQccSI_5g40,10352
|
|
31
|
-
napari_tmidas/processing_functions/scipy_filters.py,sha256=kKpDAlQQ0ZNbkt77QUWi-Bwolk6MMDvtG_bZJV3MjOo,1612
|
|
32
|
-
napari_tmidas/processing_functions/skimage_filters.py,sha256=tSBx0nal88ixxVbu5o7ojTn90HgsUTt-aA_T6XLvmyY,16320
|
|
33
|
-
napari_tmidas/processing_functions/timepoint_merger.py,sha256=DwL5vZBSplXt9dBBrKtMm9aH_NvT3mY7cdbeGg2OU_Y,16567
|
|
34
|
-
napari_tmidas/processing_functions/trackastra_tracking.py,sha256=IkFk5HoEZmKdcu5jXri4WMhHN1KTADDMxSpeYfPgSbo,9976
|
|
35
|
-
napari_tmidas-0.2.2.dist-info/licenses/LICENSE,sha256=tSjiOqj57exmEIfP2YVPCEeQf0cH49S6HheQR8IiY3g,1485
|
|
36
|
-
napari_tmidas-0.2.2.dist-info/METADATA,sha256=cY8vgH2bnjC9elLZ0uxIBVJeTckVbg7UxnV2L5u4wTc,12742
|
|
37
|
-
napari_tmidas-0.2.2.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
38
|
-
napari_tmidas-0.2.2.dist-info/entry_points.txt,sha256=fbVjzbJTm4aDMIBtel1Lyqvq-CwXY7wmCOo_zJ-jtRY,60
|
|
39
|
-
napari_tmidas-0.2.2.dist-info/top_level.txt,sha256=63ybdxCZ4SeT13f_Ou4TsivGV_2Gtm_pJOXToAt30_E,14
|
|
40
|
-
napari_tmidas-0.2.2.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|