napari-tmidas 0.1.8.5__py3-none-any.whl → 0.2.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -11,10 +11,11 @@ Users can make and save changes to the labels, and proceed to the next pair.
11
11
  import os
12
12
  import sys
13
13
 
14
+ import numpy as np
14
15
  from magicgui import magicgui
15
16
  from napari.layers import Labels
16
17
  from napari.viewer import Viewer
17
- from qtpy.QtWidgets import QFileDialog, QPushButton
18
+ from qtpy.QtWidgets import QFileDialog, QMessageBox, QPushButton
18
19
  from skimage.io import imread # , imsave
19
20
 
20
21
  sys.path.append("src/napari_tmidas")
@@ -29,63 +30,105 @@ class LabelInspector:
29
30
  def load_image_label_pairs(self, folder_path: str, label_suffix: str):
30
31
  """
31
32
  Load image-label pairs from a folder.
32
- Finds label files with the given suffix and matches them with their corresponding image files.
33
+ Finds all files with the given suffix and matches them with their corresponding image files.
34
+ Validates that label files are in the correct format.
33
35
  """
36
+ if not os.path.exists(folder_path) or not os.path.isdir(folder_path):
37
+ self.viewer.status = f"Folder path does not exist: {folder_path}"
38
+ return
39
+
34
40
  files = os.listdir(folder_path)
35
- label_files = [file for file in files if file.endswith(label_suffix)]
36
41
 
37
- # Extract the file extension (e.g., .tif)
38
- file_extension = (
39
- os.path.splitext(label_suffix)[-1] if "." in label_suffix else ""
40
- )
42
+ # Find all files that contain the label suffix
43
+ # Using "in" instead of "endswith" for more flexibility
44
+ potential_label_files = [
45
+ file for file in files if label_suffix in file
46
+ ]
47
+
48
+ if not potential_label_files:
49
+ self.viewer.status = f"No files found with suffix '{label_suffix}'"
50
+ QMessageBox.warning(
51
+ None,
52
+ "No Label Files Found",
53
+ f"No files containing '{label_suffix}' were found in {folder_path}.",
54
+ )
55
+ return
41
56
 
42
- # Modified matching logic
57
+ # Process all potential label files
43
58
  self.image_label_pairs = []
44
- for lbl in label_files:
45
- # Remove the label suffix to get the base name
46
- label_prefix = lbl[: -len(label_suffix)]
47
-
48
- # Potential corresponding image file
49
- img = f"{label_prefix}{file_extension}"
50
- img_path = os.path.join(folder_path, img)
51
-
52
- # Check if the image file exists
53
- if os.path.exists(img_path):
54
- self.image_label_pairs.append(
55
- (
56
- img_path,
57
- os.path.join(folder_path, lbl),
58
- )
59
- )
60
- continue
61
-
62
- # If not found, try finding any file that starts with the base name
59
+ skipped_files = []
60
+ format_issues = []
61
+
62
+ for label_file in potential_label_files:
63
+ label_path = os.path.join(folder_path, label_file)
64
+
65
+ # Get file extension
66
+ _, file_extension = os.path.splitext(label_file)
67
+
68
+ # Try to find a matching image file (everything before the label suffix)
69
+ base_name = label_file.split(label_suffix)[0]
70
+
71
+ # Look for potential images matching the base name
63
72
  potential_images = [
64
73
  file
65
74
  for file in files
66
- if file.startswith(label_prefix)
75
+ if file.startswith(base_name)
76
+ and file != label_file
67
77
  and file.endswith(file_extension)
68
- and file != lbl
69
78
  ]
70
79
 
80
+ # If we found at least one potential image
71
81
  if potential_images:
72
- # Use the first matching image
73
- self.image_label_pairs.append(
74
- (
75
- os.path.join(folder_path, potential_images[0]),
76
- os.path.join(folder_path, lbl),
77
- )
78
- )
79
-
80
- if not self.image_label_pairs:
81
- self.viewer.status = "No matching image-label pairs found."
82
- return
83
-
84
- self.viewer.status = (
85
- f"Found {len(self.image_label_pairs)} image-label pairs."
86
- )
87
- self.current_index = 0
88
- self._load_current_pair()
82
+ image_path = os.path.join(folder_path, potential_images[0])
83
+
84
+ # Validate label file format
85
+ try:
86
+ label_data = imread(label_path)
87
+
88
+ # Check if it looks like a label image (integer type)
89
+ if not np.issubdtype(label_data.dtype, np.integer):
90
+ format_issues.append(
91
+ (label_file, "not an integer type")
92
+ )
93
+ continue
94
+
95
+ # Add valid pair
96
+ self.image_label_pairs.append((image_path, label_path))
97
+
98
+ except (
99
+ FileNotFoundError,
100
+ OSError,
101
+ ValueError,
102
+ Exception,
103
+ ) as e:
104
+ skipped_files.append((label_file, str(e)))
105
+ else:
106
+ skipped_files.append((label_file, "no matching image found"))
107
+
108
+ # Report results
109
+ if self.image_label_pairs:
110
+ self.viewer.status = (
111
+ f"Found {len(self.image_label_pairs)} valid image-label pairs."
112
+ )
113
+ self.current_index = 0
114
+ self._load_current_pair()
115
+ else:
116
+ self.viewer.status = "No valid image-label pairs found."
117
+
118
+ # Show detailed report if there were issues
119
+ if skipped_files or format_issues:
120
+ msg = ""
121
+ if skipped_files:
122
+ msg += "Skipped files:\n"
123
+ for file, reason in skipped_files:
124
+ msg += f"- {file}: {reason}\n"
125
+
126
+ if format_issues:
127
+ msg += "\nFormat issues:\n"
128
+ for file, issue in format_issues:
129
+ msg += f"- {file}: {issue}\n"
130
+
131
+ QMessageBox.information(None, "Loading Report", msg)
89
132
 
90
133
  def _load_current_pair(self):
91
134
  """
@@ -110,6 +153,10 @@ class LabelInspector:
110
153
  label_image, name=f"Labels ({os.path.basename(label_path)})"
111
154
  )
112
155
 
156
+ # Show progress
157
+ total = len(self.image_label_pairs)
158
+ self.viewer.status = f"Viewing pair {self.current_index + 1} of {total}: {os.path.basename(image_path)}"
159
+
113
160
  def save_current_labels(self):
114
161
  """
115
162
  Save the current labels back to the original file.
@@ -172,7 +219,7 @@ class LabelInspector:
172
219
  @magicgui(
173
220
  call_button="Start Label Inspection",
174
221
  folder_path={"label": "Folder Path", "widget_type": "LineEdit"},
175
- label_suffix={"label": "Label Suffix (e.g., _otsu_labels.tif)"},
222
+ label_suffix={"label": "Label Suffix (e.g., _labels.tif)"},
176
223
  )
177
224
  def label_inspector(
178
225
  folder_path: str,
napari_tmidas/_version.py CHANGED
@@ -17,5 +17,5 @@ __version__: str
17
17
  __version_tuple__: VERSION_TUPLE
18
18
  version_tuple: VERSION_TUPLE
19
19
 
20
- __version__ = version = '0.1.8.5'
21
- __version_tuple__ = version_tuple = (0, 1, 8, 5)
20
+ __version__ = version = '0.2.0'
21
+ __version_tuple__ = version_tuple = (0, 2, 0)
@@ -100,6 +100,66 @@ def max_z_projection(image: np.ndarray) -> np.ndarray:
100
100
  return (projection * max_val).clip(0, max_val).astype(image.dtype)
101
101
 
102
102
 
103
+ @BatchProcessingRegistry.register(
104
+ name="Max Z Projection (TZYX)",
105
+ suffix="_maxZ_tzyx",
106
+ description="Maximum intensity projection along the Z-axis for TZYX data",
107
+ parameters={}, # No parameters needed - fully automatic
108
+ )
109
+ def max_z_projection_tzyx(image: np.ndarray) -> np.ndarray:
110
+ """
111
+ Memory-efficient maximum intensity projection along the Z-axis for TZYX data.
112
+
113
+ This function intelligently chooses the most memory-efficient approach
114
+ based on the input data size and available system memory.
115
+
116
+ Parameters:
117
+ -----------
118
+ image : numpy.ndarray
119
+ Input 4D image with TZYX dimensions
120
+
121
+ Returns:
122
+ --------
123
+ numpy.ndarray
124
+ 3D image with TYX dimensions after max projection
125
+ """
126
+ # Validate input dimensions
127
+ if image.ndim != 4:
128
+ raise ValueError(f"Expected 4D image (TZYX), got {image.ndim}D image")
129
+
130
+ # Get dimensions
131
+ t_size, z_size, y_size, x_size = image.shape
132
+
133
+ # For Z projection, we only need one Z plane in memory at a time
134
+ # so we can process this plane by plane to minimize memory usage
135
+
136
+ # Create output array with appropriate dimensions and same dtype
137
+ result = np.zeros((t_size, y_size, x_size), dtype=image.dtype)
138
+
139
+ # Process each time point separately to minimize memory usage
140
+ for t in range(t_size):
141
+ # If data type allows direct max, use it
142
+ if np.issubdtype(image.dtype, np.integer) or np.issubdtype(
143
+ image.dtype, np.floating
144
+ ):
145
+ # Process Z planes efficiently
146
+ # Start with the first Z plane
147
+ z_max = image[t, 0].copy()
148
+
149
+ # Compare with each subsequent Z plane
150
+ for z in range(1, z_size):
151
+ # Use numpy's maximum function to update max values in-place
152
+ np.maximum(z_max, image[t, z], out=z_max)
153
+
154
+ # Store result for this time point
155
+ result[t] = z_max
156
+ else:
157
+ # For unusual data types, fall back to numpy's max function
158
+ result[t] = np.max(image[t], axis=0)
159
+
160
+ return result
161
+
162
+
103
163
  @BatchProcessingRegistry.register(
104
164
  name="Split Channels",
105
165
  suffix="_split_channels",
@@ -0,0 +1,111 @@
1
+ """
2
+ processing_functions/sam2_env_manager.py
3
+
4
+ This module manages a dedicated virtual environment for SAM2.
5
+ """
6
+
7
+ import os
8
+ import platform
9
+ import shutil
10
+ import subprocess
11
+ import venv
12
+
13
+ # Define the environment directory in user's home folder
14
+ ENV_DIR = os.path.join(
15
+ os.path.expanduser("~"), ".napari-tmidas", "envs", "sam2-env"
16
+ )
17
+
18
+
19
+ def is_sam2_installed():
20
+ """Check if SAM2 is installed in the current environment."""
21
+ try:
22
+ import importlib.util
23
+
24
+ return importlib.util.find_spec("sam2-env") is not None
25
+ except ImportError:
26
+ return False
27
+
28
+
29
+ def is_env_created():
30
+ """Check if the dedicated environment exists."""
31
+ env_python = get_env_python_path()
32
+ return os.path.exists(env_python)
33
+
34
+
35
+ def get_env_python_path():
36
+ """Get the path to the Python executable in the environment."""
37
+ if platform.system() == "Windows":
38
+ return os.path.join(ENV_DIR, "Scripts", "python.exe")
39
+ else:
40
+ return os.path.join(ENV_DIR, "bin", "python")
41
+
42
+
43
+ def create_sam2_env():
44
+ """Create a dedicated virtual environment for SAM2."""
45
+ # Ensure the environment directory exists
46
+ os.makedirs(os.path.dirname(ENV_DIR), exist_ok=True)
47
+
48
+ # Remove existing environment if it exists
49
+ if os.path.exists(ENV_DIR):
50
+ shutil.rmtree(ENV_DIR)
51
+
52
+ print(f"Creating SAM2 environment at {ENV_DIR}...")
53
+
54
+ # Create a new virtual environment
55
+ venv.create(ENV_DIR, with_pip=True)
56
+
57
+ # Path to the Python executable in the new environment
58
+ env_python = get_env_python_path()
59
+
60
+ # Upgrade pip
61
+ print("Upgrading pip...")
62
+ subprocess.check_call(
63
+ [env_python, "-m", "pip", "install", "--upgrade", "pip"]
64
+ )
65
+
66
+ # Install numpy and torch first for compatibility
67
+ print("Installing torch and torchvision...")
68
+ subprocess.check_call(
69
+ [env_python, "-m", "pip", "install", "torch", "torchvision"]
70
+ )
71
+
72
+ # Install sam2 from GitHub
73
+ print("Installing SAM2 from GitHub...")
74
+ subprocess.check_call(
75
+ [
76
+ env_python,
77
+ "-m",
78
+ "pip",
79
+ "install",
80
+ "git+https://github.com/facebookresearch/sam2.git",
81
+ ]
82
+ )
83
+
84
+ subprocess.run(
85
+ [
86
+ env_python,
87
+ "-c",
88
+ "import torch; import torchvision; print('PyTorch version:', torch.__version__); print('Torchvision version:', torchvision.__version__); print('CUDA is available:', torch.cuda.is_available())",
89
+ ]
90
+ )
91
+
92
+ print("SAM2 environment created successfully.")
93
+ return env_python
94
+
95
+
96
+ def run_sam2_in_env(func_name, args_dict):
97
+ """
98
+ Run SAM2 in a dedicated environment with minimal complexity.
99
+
100
+ Parameters:
101
+ -----------
102
+ func_name : str
103
+ Name of the SAM2 function to run (currently unused)
104
+ args_dict : dict
105
+ Dictionary of arguments for SAM2
106
+
107
+ Returns:
108
+ --------
109
+ numpy.ndarray
110
+ Segmentation masks
111
+ """
@@ -16,6 +16,12 @@ except ImportError:
16
16
  "scikit-image not available, some processing functions will be disabled"
17
17
  )
18
18
 
19
+ import contextlib
20
+ import os
21
+
22
+ import pandas as pd
23
+
24
+ from napari_tmidas._file_selector import ProcessingWorker
19
25
  from napari_tmidas._registry import BatchProcessingRegistry
20
26
 
21
27
  if SKIMAGE_AVAILABLE:
@@ -114,6 +120,293 @@ if SKIMAGE_AVAILABLE:
114
120
  image, min_size=min_size
115
121
  )
116
122
 
123
+ @BatchProcessingRegistry.register(
124
+ name="Invert Image",
125
+ suffix="_inverted",
126
+ description="Invert pixel values in the image using scikit-image's invert function",
127
+ )
128
+ def invert_image(image: np.ndarray) -> np.ndarray:
129
+ """
130
+ Invert the image pixel values.
131
+
132
+ This function inverts the values in an image using scikit-image's invert function,
133
+ which handles different data types appropriately.
134
+
135
+ Parameters:
136
+ -----------
137
+ image : numpy.ndarray
138
+ Input image array
139
+
140
+ Returns:
141
+ --------
142
+ numpy.ndarray
143
+ Inverted image with the same data type as the input
144
+ """
145
+ # Make a copy to avoid modifying the original
146
+ image_copy = image.copy()
147
+
148
+ # Use skimage's invert function which handles all data types properly
149
+ return skimage.util.invert(image_copy)
150
+
151
+ @BatchProcessingRegistry.register(
152
+ name="Semantic to Instance Segmentation",
153
+ suffix="_instance",
154
+ description="Convert semantic segmentation masks to instance segmentation labels using connected components",
155
+ )
156
+ def semantic_to_instance(image: np.ndarray) -> np.ndarray:
157
+ """
158
+ Convert semantic segmentation masks to instance segmentation labels.
159
+
160
+ This function takes a binary or multi-class semantic segmentation mask and
161
+ converts it to an instance segmentation by finding connected components.
162
+ Each connected region receives a unique label.
163
+
164
+ Parameters:
165
+ -----------
166
+ image : numpy.ndarray
167
+ Input semantic segmentation mask
168
+
169
+ Returns:
170
+ --------
171
+ numpy.ndarray
172
+ Instance segmentation with unique labels for each connected component
173
+ """
174
+ # Create a copy to avoid modifying the original
175
+ instance_mask = image.copy()
176
+
177
+ # If the input is multi-class, process each class separately
178
+ if np.max(instance_mask) > 1:
179
+ # Get unique non-zero class values
180
+ class_values = np.unique(instance_mask)
181
+ class_values = class_values[
182
+ class_values > 0
183
+ ] # Remove background (0)
184
+
185
+ # Create an empty output mask
186
+ result = np.zeros_like(instance_mask, dtype=np.uint32)
187
+
188
+ # Process each class
189
+ label_offset = 0
190
+ for class_val in class_values:
191
+ # Create binary mask for this class
192
+ binary_mask = (instance_mask == class_val).astype(np.uint8)
193
+
194
+ # Find connected components
195
+ labeled = skimage.measure.label(binary_mask, connectivity=2)
196
+
197
+ # Skip if no components found
198
+ if np.max(labeled) == 0:
199
+ continue
200
+
201
+ # Add offset to avoid label overlap between classes
202
+ labeled[labeled > 0] += label_offset
203
+
204
+ # Add to result
205
+ result = np.maximum(result, labeled)
206
+
207
+ # Update offset for next class
208
+ label_offset = np.max(result)
209
+ else:
210
+ # For binary masks, just find connected components
211
+ result = skimage.measure.label(instance_mask > 0, connectivity=2)
212
+
213
+ return result.astype(np.uint32)
214
+
215
+ @BatchProcessingRegistry.register(
216
+ name="Extract Region Properties",
217
+ suffix="_props", # Changed to indicate this is for CSV output only
218
+ description="Extract properties of labeled regions and save as CSV (no image output)",
219
+ parameters={
220
+ "properties": {
221
+ "type": str,
222
+ "default": "area,bbox,centroid,eccentricity,euler_number,perimeter",
223
+ "description": "Comma-separated list of properties to extract (e.g., area,perimeter,centroid)",
224
+ },
225
+ "intensity_image": {
226
+ "type": bool,
227
+ "default": False,
228
+ "description": "Use input as intensity image for intensity-based measurements",
229
+ },
230
+ "min_area": {
231
+ "type": int,
232
+ "default": 0,
233
+ "min": 0,
234
+ "max": 100000,
235
+ "description": "Minimum area to include in results (pixels)",
236
+ },
237
+ },
238
+ )
239
+ def extract_region_properties(
240
+ image: np.ndarray,
241
+ properties: str = "area,bbox,centroid,eccentricity,euler_number,perimeter",
242
+ intensity_image: bool = False,
243
+ min_area: int = 0,
244
+ ) -> np.ndarray:
245
+ """
246
+ Extract properties of labeled regions in an image and save results as CSV.
247
+
248
+ This function analyzes all labeled regions in a label image and computes
249
+ various region properties like area, perimeter, centroid, etc. The results
250
+ are saved as a CSV file. The input image is returned unchanged.
251
+
252
+ Parameters:
253
+ -----------
254
+ image : numpy.ndarray
255
+ Input label image (instance segmentation)
256
+ properties : str
257
+ Comma-separated list of properties to extract
258
+ See scikit-image documentation for all available properties:
259
+ https://scikit-image.org/docs/stable/api/skimage.measure.html#skimage.measure.regionprops
260
+ intensity_image : bool
261
+ Whether to use the input image as intensity image for intensity-based measurements
262
+ min_area : int
263
+ Minimum area (in pixels) for regions to include in results
264
+
265
+ Returns:
266
+ --------
267
+ numpy.ndarray
268
+ The original image (unchanged)
269
+ """
270
+ # Check if we have a proper label image
271
+ if image.ndim < 2 or np.max(image) == 0:
272
+ print(
273
+ "Input must be a valid label image with at least one labeled region"
274
+ )
275
+ return image
276
+
277
+ # Convert image to proper format for regionprops
278
+ label_image = image.astype(np.int32)
279
+
280
+ # Parse the properties list
281
+ prop_list = [prop.strip() for prop in properties.split(",")]
282
+
283
+ # Get region properties
284
+ if intensity_image:
285
+ # Use the same image as both label and intensity image
286
+ regions = skimage.measure.regionprops(
287
+ label_image, intensity_image=image
288
+ )
289
+ else:
290
+ regions = skimage.measure.regionprops(label_image)
291
+
292
+ # Collect property data
293
+ data = []
294
+ for region in regions:
295
+ # Skip regions that are too small
296
+ if region.area < min_area:
297
+ continue
298
+
299
+ # Get all requested properties
300
+ region_data = {"label": region.label}
301
+ for prop in prop_list:
302
+ try:
303
+ value = getattr(region, prop)
304
+
305
+ # Handle different types of properties
306
+ if isinstance(value, tuple) or (
307
+ isinstance(value, np.ndarray) and value.ndim > 0
308
+ ):
309
+ # For tuple/array properties like centroid, bbox, etc.
310
+ if isinstance(value, tuple):
311
+ value = np.array(value)
312
+
313
+ # For each element in the tuple/array
314
+ for i, val in enumerate(value):
315
+ region_data[f"{prop}_{i}"] = val
316
+ else:
317
+ # For scalar properties like area, perimeter, etc.
318
+ region_data[prop] = value
319
+ except AttributeError:
320
+ print(f"Property '{prop}' not found, skipping")
321
+ continue
322
+
323
+ data.append(region_data)
324
+
325
+ # Create a DataFrame
326
+ df = pd.DataFrame(data)
327
+
328
+ # Store the DataFrame as an attribute of the function
329
+ extract_region_properties.csv_data = df
330
+ extract_region_properties.save_csv = True
331
+ extract_region_properties.no_image_output = (
332
+ True # Indicate no image output needed
333
+ )
334
+
335
+ print(f"Extracted properties for {len(data)} regions")
336
+ return image
337
+
338
+ # Monkey patch to handle saving CSV files without creating a new image file
339
+ try:
340
+ # Check if ProcessingWorker is imported and available
341
+ original_process_file = ProcessingWorker.process_file
342
+
343
+ # Create a new version that handles saving CSV
344
+ def process_file_with_csv_export(self, filepath):
345
+ """Modified process_file function that saves CSV after processing."""
346
+ result = original_process_file(self, filepath)
347
+
348
+ # Check if there's a result and if we should save CSV
349
+ if isinstance(result, dict) and "processed_file" in result:
350
+ output_path = result["processed_file"]
351
+
352
+ # Check if the processing function had CSV data
353
+ if (
354
+ hasattr(self.processing_func, "save_csv")
355
+ and self.processing_func.save_csv
356
+ and hasattr(self.processing_func, "csv_data")
357
+ ):
358
+
359
+ # Get the CSV data
360
+ df = self.processing_func.csv_data
361
+
362
+ # For functions that don't need an image output, use the original filepath
363
+ # as the base for the CSV filename
364
+ if (
365
+ hasattr(self.processing_func, "no_image_output")
366
+ and self.processing_func.no_image_output
367
+ ):
368
+ # Use the original filepath without creating a new image file
369
+ base_path = os.path.splitext(filepath)[0]
370
+ csv_path = f"{base_path}_regionprops.csv"
371
+
372
+ # Don't save a duplicate image file
373
+ if (
374
+ os.path.exists(output_path)
375
+ and output_path != filepath
376
+ ):
377
+ contextlib.suppress(OSError)
378
+ else:
379
+ # Create CSV filename from the output image path
380
+ csv_path = (
381
+ os.path.splitext(output_path)[0]
382
+ + "_regionprops.csv"
383
+ )
384
+
385
+ # Save the CSV file
386
+ df.to_csv(csv_path, index=False)
387
+ print(f"Saved region properties to {csv_path}")
388
+
389
+ # Add the CSV file to the result
390
+ result["secondary_files"] = [csv_path]
391
+
392
+ # If we don't need an image output, update the result to just point to the CSV
393
+ if (
394
+ hasattr(self.processing_func, "no_image_output")
395
+ and self.processing_func.no_image_output
396
+ ):
397
+ result["processed_file"] = csv_path
398
+
399
+ return result
400
+
401
+ # Apply the monkey patch
402
+ ProcessingWorker.process_file = process_file_with_csv_export
403
+
404
+ except (NameError, AttributeError) as e:
405
+ print(f"Warning: Could not apply CSV export patch: {e}")
406
+ print(
407
+ "Region properties will be extracted but CSV files may not be saved"
408
+ )
409
+
117
410
 
118
411
  # binary to labels
119
412
  @BatchProcessingRegistry.register(
@@ -1,7 +1,7 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: napari-tmidas
3
- Version: 0.1.8.5
4
- Summary: A plugin for batch processing of confocal microscopy images
3
+ Version: 0.2.0
4
+ Summary: A plugin for batch processing of confocal and whole-slide microscopy images of biological tissues
5
5
  Author: Marco Meer
6
6
  Author-email: marco.meer@pm.me
7
7
  License:
@@ -83,42 +83,14 @@ Dynamic: license-file
83
83
  [![tests](https://github.com/macromeer/napari-tmidas/workflows/tests/badge.svg)](https://github.com/macromeer/napari-tmidas/actions)
84
84
  [![napari hub](https://img.shields.io/endpoint?url=https://api.napari-hub.org/shields/napari-tmidas)](https://napari-hub.org/plugins/napari-tmidas)
85
85
  <!-- [![codecov](https://codecov.io/gh/macromeer/napari-tmidas/branch/main/graph/badge.svg)](https://codecov.io/gh/macromeer/napari-tmidas) -->
86
- The `napari-tmidas` plugin consists of a growing collection of pipelines for fast batch processing of microscopy images. This is a WIP and based on the CLI version of [T-MIDAS](https://github.com/MercaderLabAnatomy/T-MIDAS).
87
-
88
- ## Feature Overview
89
-
90
- 1. **Image Processing**
91
- - Process image folders with:
92
- - Gamma correction & histogram equalization
93
- - Z-projection and channel splitting
94
- - Gaussian & median filters
95
- - Thresholding (Otsu/manual)
96
- - Label cleaning & binary conversion
97
- - RGB to labels conversion
98
- - Cellpose 3.0 automated segmentation
99
- - File compression (Zstandard)
100
-
101
- 2. **Label Inspection**
102
- - Review and edit label images with auto-save
103
-
104
- 3. **Microscopy Image Conversion**
105
- - Convert .nd2/.lif/.ndpi/.czi/acquifer → .tif/.zarr with metadata preservation
106
-
107
- 4. **Crop Anything**
108
- - Interactive ROI selection via click interface
109
-
110
- 5. **ROI Colocalization**
111
- - Count colocalized labels across multiple channels
112
-
113
-
114
-
115
- ### Coming Soon
116
- New features arriving April 2025
86
+ The `napari-tmidas` plugin consists of a growing collection of pipelines for fast batch processing of confocal and whole slide microscopy images of biological tissues. This is a WIP and based on the CLI version of [T-MIDAS](https://github.com/MercaderLabAnatomy/T-MIDAS).
117
87
 
88
+ ## Features
89
+ Currently, napari-tmidas provides pipelines as widgets for batch image conversion / cropping / processing, ROI colocalization and label inspection (cf. [Usage](#usage) below).
118
90
 
119
91
  ## Installation
120
92
 
121
- First install Napari in a virtual environment:
93
+ First, install Napari in a virtual environment:
122
94
 
123
95
  mamba create -y -n napari-tmidas -c conda-forge python=3.11 tqdm
124
96
  mamba activate napari-tmidas
@@ -156,16 +128,15 @@ To use the plugin, start napari in the activated virtual environment with this t
156
128
 
157
129
  mamba run -n napari-tmidas napari
158
130
 
159
- You can find the installed plugin here:
160
-
161
- ![image](https://github.com/user-attachments/assets/504db09a-d66e-49eb-90cd-3237024d9d7a)
162
-
131
+ You can then find the installed plugin in the Plugins tab.
163
132
 
164
133
  ### Microscopy Image Conversion
165
134
 
166
135
  You can start this pipeline via `Plugins > T-MIDAS > Batch Microscopy Image Conversion`. Currently, this pipeline supports the conversion of `.nd2, .lif, .ndpi, .czi` and acquifer data. After scanning a folder of your choice for microscopy image data, select a file in the first column of the table and preview and export any image data it contains.
167
136
 
168
- ![image](https://github.com/user-attachments/assets/e377ca71-2f30-447d-825e-d2feebf7061b)
137
+
138
+ <img src="https://github.com/user-attachments/assets/e377ca71-2f30-447d-825e-d2feebf7061b" alt="Microscopy Image Conversion Widget" style="width:75%; height:auto;">
139
+
169
140
 
170
141
  ### Image Processing
171
142
 
@@ -173,7 +144,7 @@ You can start this pipeline via `Plugins > T-MIDAS > Batch Microscopy Image Conv
173
144
 
174
145
  ![image](https://github.com/user-attachments/assets/41ecb689-9abe-4371-83b5-9c5eb37069f9)
175
146
 
176
- 2. As a result, a table appears with the found images.
147
+ 2. As a result, a table appears with the found images. You can click on them to inspect them in the viewer.
177
148
 
178
149
  ![image](https://github.com/user-attachments/assets/8360942a-be8f-49ec-bc25-385ee43bd601)
179
150
 
@@ -182,26 +153,28 @@ You can start this pipeline via `Plugins > T-MIDAS > Batch Microscopy Image Conv
182
153
  ![image](https://github.com/user-attachments/assets/05929660-6672-4f76-89da-4f17749ccfad)
183
154
 
184
155
  4. You can click on the images in the table to show them in the viewer. For example first click on one of the `Original Files`, and then the corresponding `Processed File` to see an overlay.
156
+
157
+ <img src="https://github.com/user-attachments/assets/cfe84828-c1cc-4196-9a53-5dfb82d5bfce" alt="Image Processing Widget" style="width:75%; height:auto;">
185
158
 
186
- ![image](https://github.com/user-attachments/assets/cfe84828-c1cc-4196-9a53-5dfb82d5bfce)
187
159
 
188
160
  Note that whenever you click on an `Original File` or `Processed File` in the table, it will replace the one that is currently shown in the viewer. So naturally, you'd first select the original image, and then the processed image to correctly see the image pair that you want to inspect.
189
161
 
190
162
  ### Batch Label Inspection
191
163
  If you have already segmented a folder full of images and now you want to maybe inspect and edit each label image, you can use the `Plugins > T-MIDAS > Batch Label Inspection`, which automatically saves your changes to the existing label image once you click the `Save Changes and Continue` button (bottom right).
192
164
 
193
- ![image](https://github.com/user-attachments/assets/0bf8c6ae-4212-449d-8183-e91b23ba740e)
165
+ <img src="https://github.com/user-attachments/assets/0bf8c6ae-4212-449d-8183-e91b23ba740e" alt="Batch Label Inspection Widget" style="width:75%; height:auto;">
166
+
194
167
 
195
168
  ### Crop Anything
196
169
  This pipeline combines the Segment Anything Model (SAM) for automatic object detection with an interactive interface for selecting and cropping multiple objects from images. To launch the widget, open `Plugins > T-MIDAS > Batch Crop Anything`. Click the image below to see a video demo.
197
170
 
198
- [![image](https://github.com/user-attachments/assets/6d72c2a2-1064-4a27-b398-a9b86fcbc443)](https://youtu.be/xPh0dRD_FbE)
171
+ <img src="https://github.com/user-attachments/assets/6d72c2a2-1064-4a27-b398-a9b86fcbc443" alt="Crop Anything Widget" style="width:75%; height:auto;">
172
+
199
173
 
200
174
  ### ROI Colocalization
201
175
  This pipeline quantifies colocalization between labeled regions of interest (ROIs) across multiple image channels. It determines the extent of overlap between ROIs in a reference channel and those in one or two other channels. The output is a table of colocalization counts. Optionally, the size of reference channel ROIs, as well as the total or median size of colocalizing ROIs in the other channels, can be included. Colocalization is determined using Boolean masking. The number of colocalizing instances is determined by counting unique label IDs within the overlapping regions. Typically, the reference channel contains larger structures, while other channels contain smaller, potentially nested, structures. For example, the reference channel might contain cell bodies, with the second and third channels containing nuclei and sub-nuclear objects, respectively.
202
176
 
203
- ![napari-tmidas_coloc_pipeline](https://github.com/user-attachments/assets/2f9022a0-7b88-4588-a448-250f07a634d7)
204
-
177
+ <img src="https://github.com/user-attachments/assets/2f9022a0-7b88-4588-a448-250f07a634d7" alt="ROI Colocalization Widget" style="width:75%; height:auto;">
205
178
 
206
179
  ## Contributing
207
180
 
@@ -2,12 +2,12 @@ napari_tmidas/__init__.py,sha256=YNBLESwk8jr_TlDdkSC1CwH0tf0CKHF1i2_efzLjdpk,589
2
2
  napari_tmidas/_crop_anything.py,sha256=NItpE6uzfeKujh8a53TDDkFN2thpKC5NGiXMpAmSnnM,45446
3
3
  napari_tmidas/_file_conversion.py,sha256=V6evJmggUwOFzJO203Y5ltboHXEWNJQckZPedGRkrLI,72203
4
4
  napari_tmidas/_file_selector.py,sha256=sZOY0QNwyAgugsEzG5pqZLfrVeCHwjPEW2C_BHndzyI,39595
5
- napari_tmidas/_label_inspection.py,sha256=hCxKE0zYk-qBh4ohqiZcEGLXa-3lL8p88y45p2WnE1g,7329
5
+ napari_tmidas/_label_inspection.py,sha256=74V36y5EnGs0vWK1FC7Kui4CPLBW_SIg885PSKeZsJ4,9184
6
6
  napari_tmidas/_reader.py,sha256=A9_hdDxtVkVGmbOsbqgnARCSvpEh7GGPo7ylzmbnu8o,2485
7
7
  napari_tmidas/_registry.py,sha256=Oz9HFJh41MKRLeKxRuc7x7yzc-OrmoTdRFnfngFU_XE,2007
8
8
  napari_tmidas/_roi_colocalization.py,sha256=OVjdHvtFN07DgrtTX8uqbrxZL6jVwl2L3klorgW2C9k,43196
9
9
  napari_tmidas/_sample_data.py,sha256=khuv1jemz_fCjqNwEKMFf83Ju0EN4S89IKydsUMmUxw,645
10
- napari_tmidas/_version.py,sha256=c4rCUXy1zrstQ6YUlnpyulFDT5n9rZNVdxW9dQYyGe0,516
10
+ napari_tmidas/_version.py,sha256=iB5DfB5V6YB5Wo4JmvS-txT42QtmGaWcWp3udRT7zCI,511
11
11
  napari_tmidas/_widget.py,sha256=u9uf9WILAwZg_InhFyjWInY4ej1TV1a59dR8Fe3vNF8,4794
12
12
  napari_tmidas/_writer.py,sha256=wbVfHFjjHdybSg37VR4lVmL-kdCkDZsUPDJ66AVLaFQ,1941
13
13
  napari_tmidas/napari.yaml,sha256=1Am1dA0-ZtCXk6veIT6jrMz3zwQ7dF8_p9tZTFx_vTg,2641
@@ -17,16 +17,17 @@ napari_tmidas/_tests/test_sample_data.py,sha256=D1HU_C3hWpO3mlSW_7Z94xaYHDtxz0XU
17
17
  napari_tmidas/_tests/test_widget.py,sha256=I_d-Cra_CTcS0QdMItg_HMphvhj0XCx81JnFyCHk9lg,2204
18
18
  napari_tmidas/_tests/test_writer.py,sha256=4_MlZM9a5So74J16_4tIOJc6pwTOw9R0-oAE_YioIx4,122
19
19
  napari_tmidas/processing_functions/__init__.py,sha256=osXY9jSgDsrwFaS6ShPHP0wGRxMuX1mHRN9EDa9l41g,1891
20
- napari_tmidas/processing_functions/basic.py,sha256=TJFvJ9AfUp7MBseUAgryLJXdqj0gSLSKqlEPxE3s1n0,6694
20
+ napari_tmidas/processing_functions/basic.py,sha256=kQcuA0_yPh6MwzkopcsBghcf3wMSR7uA1QDksS5SG2o,8761
21
21
  napari_tmidas/processing_functions/cellpose_env_manager.py,sha256=zngS5eborsJUimFn_g1Lm_YOZk2ZNIKxceWNxOjpxEg,4885
22
22
  napari_tmidas/processing_functions/cellpose_segmentation.py,sha256=7BCHj_QA1QJEl1NrsuoIFAJ040_SCWw0U-U_xjCyk18,16187
23
23
  napari_tmidas/processing_functions/colocalization.py,sha256=AiTTVAcVhKuuHZhrj5IHwbzns7-GE6ewvFqhYy1L-do,7657
24
24
  napari_tmidas/processing_functions/file_compression.py,sha256=mxR-yqBdc-T1XI3StIXpW8h5xGdCOtLQjt8uoRFpDSY,6859
25
+ napari_tmidas/processing_functions/sam2_env_manager.py,sha256=WzKOLFeu1KZRRBryKdWkDm6QJolhs3rCj-KD6Q-z9dE,2897
25
26
  napari_tmidas/processing_functions/scipy_filters.py,sha256=kKpDAlQQ0ZNbkt77QUWi-Bwolk6MMDvtG_bZJV3MjOo,1612
26
- napari_tmidas/processing_functions/skimage_filters.py,sha256=6wSROKH71zwSFBOZ22zgp-4Nrq79GNd7znOitiH3Z3c,4030
27
- napari_tmidas-0.1.8.5.dist-info/licenses/LICENSE,sha256=tSjiOqj57exmEIfP2YVPCEeQf0cH49S6HheQR8IiY3g,1485
28
- napari_tmidas-0.1.8.5.dist-info/METADATA,sha256=bo5HfzWOBpQME6b-kkw7wkg71oQUjbU2hhN2D9lWwbA,11812
29
- napari_tmidas-0.1.8.5.dist-info/WHEEL,sha256=SmOxYU7pzNKBqASvQJ7DjX3XGUF92lrGhMb3R6_iiqI,91
30
- napari_tmidas-0.1.8.5.dist-info/entry_points.txt,sha256=fbVjzbJTm4aDMIBtel1Lyqvq-CwXY7wmCOo_zJ-jtRY,60
31
- napari_tmidas-0.1.8.5.dist-info/top_level.txt,sha256=63ybdxCZ4SeT13f_Ou4TsivGV_2Gtm_pJOXToAt30_E,14
32
- napari_tmidas-0.1.8.5.dist-info/RECORD,,
27
+ napari_tmidas/processing_functions/skimage_filters.py,sha256=8UiXp5Wi7V-5prPZO-NgfkVi_kEYs7RUyINiCMxqTl0,15306
28
+ napari_tmidas-0.2.0.dist-info/licenses/LICENSE,sha256=tSjiOqj57exmEIfP2YVPCEeQf0cH49S6HheQR8IiY3g,1485
29
+ napari_tmidas-0.2.0.dist-info/METADATA,sha256=yUMPnhgtxQ3nN_uHvazNs8k7iEc9zUZxhTxCuF2Q9Jg,11560
30
+ napari_tmidas-0.2.0.dist-info/WHEEL,sha256=0CuiUZ_p9E4cD6NyLD6UG80LBXYyiSYZOKDm5lp32xk,91
31
+ napari_tmidas-0.2.0.dist-info/entry_points.txt,sha256=fbVjzbJTm4aDMIBtel1Lyqvq-CwXY7wmCOo_zJ-jtRY,60
32
+ napari_tmidas-0.2.0.dist-info/top_level.txt,sha256=63ybdxCZ4SeT13f_Ou4TsivGV_2Gtm_pJOXToAt30_E,14
33
+ napari_tmidas-0.2.0.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (79.0.1)
2
+ Generator: setuptools (80.3.1)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5