napari-tmidas 0.1.8.5__py3-none-any.whl → 0.1.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
napari_tmidas/_version.py CHANGED
@@ -17,5 +17,5 @@ __version__: str
17
17
  __version_tuple__: VERSION_TUPLE
18
18
  version_tuple: VERSION_TUPLE
19
19
 
20
- __version__ = version = '0.1.8.5'
21
- __version_tuple__ = version_tuple = (0, 1, 8, 5)
20
+ __version__ = version = '0.1.9'
21
+ __version_tuple__ = version_tuple = (0, 1, 9)
@@ -1,7 +1,7 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: napari-tmidas
3
- Version: 0.1.8.5
4
- Summary: A plugin for batch processing of confocal microscopy images
3
+ Version: 0.1.9
4
+ Summary: A plugin for batch processing of confocal and whole-slide microscopy images of biological tissues
5
5
  Author: Marco Meer
6
6
  Author-email: marco.meer@pm.me
7
7
  License:
@@ -83,42 +83,14 @@ Dynamic: license-file
83
83
  [![tests](https://github.com/macromeer/napari-tmidas/workflows/tests/badge.svg)](https://github.com/macromeer/napari-tmidas/actions)
84
84
  [![napari hub](https://img.shields.io/endpoint?url=https://api.napari-hub.org/shields/napari-tmidas)](https://napari-hub.org/plugins/napari-tmidas)
85
85
  <!-- [![codecov](https://codecov.io/gh/macromeer/napari-tmidas/branch/main/graph/badge.svg)](https://codecov.io/gh/macromeer/napari-tmidas) -->
86
- The `napari-tmidas` plugin consists of a growing collection of pipelines for fast batch processing of microscopy images. This is a WIP and based on the CLI version of [T-MIDAS](https://github.com/MercaderLabAnatomy/T-MIDAS).
87
-
88
- ## Feature Overview
89
-
90
- 1. **Image Processing**
91
- - Process image folders with:
92
- - Gamma correction & histogram equalization
93
- - Z-projection and channel splitting
94
- - Gaussian & median filters
95
- - Thresholding (Otsu/manual)
96
- - Label cleaning & binary conversion
97
- - RGB to labels conversion
98
- - Cellpose 3.0 automated segmentation
99
- - File compression (Zstandard)
100
-
101
- 2. **Label Inspection**
102
- - Review and edit label images with auto-save
103
-
104
- 3. **Microscopy Image Conversion**
105
- - Convert .nd2/.lif/.ndpi/.czi/acquifer → .tif/.zarr with metadata preservation
106
-
107
- 4. **Crop Anything**
108
- - Interactive ROI selection via click interface
109
-
110
- 5. **ROI Colocalization**
111
- - Count colocalized labels across multiple channels
112
-
113
-
114
-
115
- ### Coming Soon
116
- New features arriving April 2025
86
+ The `napari-tmidas` plugin consists of a growing collection of pipelines for fast batch processing of confocal and whole slide microscopy images of biological tissues. This is a WIP and based on the CLI version of [T-MIDAS](https://github.com/MercaderLabAnatomy/T-MIDAS).
117
87
 
88
+ ## Features
89
+ Currently, napari-tmidas provides pipelines as widgets for batch image conversion / cropping / processing, ROI colocalization and label inspection (cf. [Usage](#usage) below).
118
90
 
119
91
  ## Installation
120
92
 
121
- First install Napari in a virtual environment:
93
+ First, install Napari in a virtual environment:
122
94
 
123
95
  mamba create -y -n napari-tmidas -c conda-forge python=3.11 tqdm
124
96
  mamba activate napari-tmidas
@@ -156,16 +128,15 @@ To use the plugin, start napari in the activated virtual environment with this t
156
128
 
157
129
  mamba run -n napari-tmidas napari
158
130
 
159
- You can find the installed plugin here:
160
-
161
- ![image](https://github.com/user-attachments/assets/504db09a-d66e-49eb-90cd-3237024d9d7a)
162
-
131
+ You can then find the installed plugin in the Plugins tab.
163
132
 
164
133
  ### Microscopy Image Conversion
165
134
 
166
135
  You can start this pipeline via `Plugins > T-MIDAS > Batch Microscopy Image Conversion`. Currently, this pipeline supports the conversion of `.nd2, .lif, .ndpi, .czi` and acquifer data. After scanning a folder of your choice for microscopy image data, select a file in the first column of the table and preview and export any image data it contains.
167
136
 
168
- ![image](https://github.com/user-attachments/assets/e377ca71-2f30-447d-825e-d2feebf7061b)
137
+
138
+ <img src="https://github.com/user-attachments/assets/e377ca71-2f30-447d-825e-d2feebf7061b" alt="Microscopy Image Conversion Widget" style="width:75%; height:auto;">
139
+
169
140
 
170
141
  ### Image Processing
171
142
 
@@ -173,7 +144,7 @@ You can start this pipeline via `Plugins > T-MIDAS > Batch Microscopy Image Conv
173
144
 
174
145
  ![image](https://github.com/user-attachments/assets/41ecb689-9abe-4371-83b5-9c5eb37069f9)
175
146
 
176
- 2. As a result, a table appears with the found images.
147
+ 2. As a result, a table appears with the found images. You can click on them to inspect them in the viewer.
177
148
 
178
149
  ![image](https://github.com/user-attachments/assets/8360942a-be8f-49ec-bc25-385ee43bd601)
179
150
 
@@ -182,26 +153,28 @@ You can start this pipeline via `Plugins > T-MIDAS > Batch Microscopy Image Conv
182
153
  ![image](https://github.com/user-attachments/assets/05929660-6672-4f76-89da-4f17749ccfad)
183
154
 
184
155
  4. You can click on the images in the table to show them in the viewer. For example first click on one of the `Original Files`, and then the corresponding `Processed File` to see an overlay.
156
+
157
+ <img src="https://github.com/user-attachments/assets/cfe84828-c1cc-4196-9a53-5dfb82d5bfce" alt="Image Processing Widget" style="width:75%; height:auto;">
185
158
 
186
- ![image](https://github.com/user-attachments/assets/cfe84828-c1cc-4196-9a53-5dfb82d5bfce)
187
159
 
188
160
  Note that whenever you click on an `Original File` or `Processed File` in the table, it will replace the one that is currently shown in the viewer. So naturally, you'd first select the original image, and then the processed image to correctly see the image pair that you want to inspect.
189
161
 
190
162
  ### Batch Label Inspection
191
163
  If you have already segmented a folder full of images and now you want to maybe inspect and edit each label image, you can use the `Plugins > T-MIDAS > Batch Label Inspection`, which automatically saves your changes to the existing label image once you click the `Save Changes and Continue` button (bottom right).
192
164
 
193
- ![image](https://github.com/user-attachments/assets/0bf8c6ae-4212-449d-8183-e91b23ba740e)
165
+ <img src="https://github.com/user-attachments/assets/0bf8c6ae-4212-449d-8183-e91b23ba740e" alt="Batch Label Inspection Widget" style="width:75%; height:auto;">
166
+
194
167
 
195
168
  ### Crop Anything
196
169
  This pipeline combines the Segment Anything Model (SAM) for automatic object detection with an interactive interface for selecting and cropping multiple objects from images. To launch the widget, open `Plugins > T-MIDAS > Batch Crop Anything`. Click the image below to see a video demo.
197
170
 
198
- [![image](https://github.com/user-attachments/assets/6d72c2a2-1064-4a27-b398-a9b86fcbc443)](https://youtu.be/xPh0dRD_FbE)
171
+ <img src="https://github.com/user-attachments/assets/6d72c2a2-1064-4a27-b398-a9b86fcbc443" alt="Crop Anything Widget" style="width:75%; height:auto;">
172
+
199
173
 
200
174
  ### ROI Colocalization
201
175
  This pipeline quantifies colocalization between labeled regions of interest (ROIs) across multiple image channels. It determines the extent of overlap between ROIs in a reference channel and those in one or two other channels. The output is a table of colocalization counts. Optionally, the size of reference channel ROIs, as well as the total or median size of colocalizing ROIs in the other channels, can be included. Colocalization is determined using Boolean masking. The number of colocalizing instances is determined by counting unique label IDs within the overlapping regions. Typically, the reference channel contains larger structures, while other channels contain smaller, potentially nested, structures. For example, the reference channel might contain cell bodies, with the second and third channels containing nuclei and sub-nuclear objects, respectively.
202
176
 
203
- ![napari-tmidas_coloc_pipeline](https://github.com/user-attachments/assets/2f9022a0-7b88-4588-a448-250f07a634d7)
204
-
177
+ <img src="https://github.com/user-attachments/assets/2f9022a0-7b88-4588-a448-250f07a634d7" alt="ROI Colocalization Widget" style="width:75%; height:auto;">
205
178
 
206
179
  ## Contributing
207
180
 
@@ -7,7 +7,7 @@ napari_tmidas/_reader.py,sha256=A9_hdDxtVkVGmbOsbqgnARCSvpEh7GGPo7ylzmbnu8o,2485
7
7
  napari_tmidas/_registry.py,sha256=Oz9HFJh41MKRLeKxRuc7x7yzc-OrmoTdRFnfngFU_XE,2007
8
8
  napari_tmidas/_roi_colocalization.py,sha256=OVjdHvtFN07DgrtTX8uqbrxZL6jVwl2L3klorgW2C9k,43196
9
9
  napari_tmidas/_sample_data.py,sha256=khuv1jemz_fCjqNwEKMFf83Ju0EN4S89IKydsUMmUxw,645
10
- napari_tmidas/_version.py,sha256=c4rCUXy1zrstQ6YUlnpyulFDT5n9rZNVdxW9dQYyGe0,516
10
+ napari_tmidas/_version.py,sha256=bhntibG3PKk5Ai3XlSNEV8gj-ffItuKloY6vzWn6swo,511
11
11
  napari_tmidas/_widget.py,sha256=u9uf9WILAwZg_InhFyjWInY4ej1TV1a59dR8Fe3vNF8,4794
12
12
  napari_tmidas/_writer.py,sha256=wbVfHFjjHdybSg37VR4lVmL-kdCkDZsUPDJ66AVLaFQ,1941
13
13
  napari_tmidas/napari.yaml,sha256=1Am1dA0-ZtCXk6veIT6jrMz3zwQ7dF8_p9tZTFx_vTg,2641
@@ -24,9 +24,9 @@ napari_tmidas/processing_functions/colocalization.py,sha256=AiTTVAcVhKuuHZhrj5IH
24
24
  napari_tmidas/processing_functions/file_compression.py,sha256=mxR-yqBdc-T1XI3StIXpW8h5xGdCOtLQjt8uoRFpDSY,6859
25
25
  napari_tmidas/processing_functions/scipy_filters.py,sha256=kKpDAlQQ0ZNbkt77QUWi-Bwolk6MMDvtG_bZJV3MjOo,1612
26
26
  napari_tmidas/processing_functions/skimage_filters.py,sha256=6wSROKH71zwSFBOZ22zgp-4Nrq79GNd7znOitiH3Z3c,4030
27
- napari_tmidas-0.1.8.5.dist-info/licenses/LICENSE,sha256=tSjiOqj57exmEIfP2YVPCEeQf0cH49S6HheQR8IiY3g,1485
28
- napari_tmidas-0.1.8.5.dist-info/METADATA,sha256=bo5HfzWOBpQME6b-kkw7wkg71oQUjbU2hhN2D9lWwbA,11812
29
- napari_tmidas-0.1.8.5.dist-info/WHEEL,sha256=SmOxYU7pzNKBqASvQJ7DjX3XGUF92lrGhMb3R6_iiqI,91
30
- napari_tmidas-0.1.8.5.dist-info/entry_points.txt,sha256=fbVjzbJTm4aDMIBtel1Lyqvq-CwXY7wmCOo_zJ-jtRY,60
31
- napari_tmidas-0.1.8.5.dist-info/top_level.txt,sha256=63ybdxCZ4SeT13f_Ou4TsivGV_2Gtm_pJOXToAt30_E,14
32
- napari_tmidas-0.1.8.5.dist-info/RECORD,,
27
+ napari_tmidas-0.1.9.dist-info/licenses/LICENSE,sha256=tSjiOqj57exmEIfP2YVPCEeQf0cH49S6HheQR8IiY3g,1485
28
+ napari_tmidas-0.1.9.dist-info/METADATA,sha256=NwevLeFpp4eNGWdUMohmeiY8OICKpFU7GNjDnOqvTBU,11560
29
+ napari_tmidas-0.1.9.dist-info/WHEEL,sha256=SmOxYU7pzNKBqASvQJ7DjX3XGUF92lrGhMb3R6_iiqI,91
30
+ napari_tmidas-0.1.9.dist-info/entry_points.txt,sha256=fbVjzbJTm4aDMIBtel1Lyqvq-CwXY7wmCOo_zJ-jtRY,60
31
+ napari_tmidas-0.1.9.dist-info/top_level.txt,sha256=63ybdxCZ4SeT13f_Ou4TsivGV_2Gtm_pJOXToAt30_E,14
32
+ napari_tmidas-0.1.9.dist-info/RECORD,,