napari-mlarray 0.0.1__py3-none-any.whl → 0.0.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- napari_mlarray/_reader.py +266 -51
- napari_mlarray/_version.py +2 -2
- napari_mlarray/_writer.py +1 -1
- {napari_mlarray-0.0.1.dist-info → napari_mlarray-0.0.3.dist-info}/METADATA +3 -1
- napari_mlarray-0.0.3.dist-info/RECORD +12 -0
- napari_mlarray-0.0.1.dist-info/RECORD +0 -12
- {napari_mlarray-0.0.1.dist-info → napari_mlarray-0.0.3.dist-info}/WHEEL +0 -0
- {napari_mlarray-0.0.1.dist-info → napari_mlarray-0.0.3.dist-info}/entry_points.txt +0 -0
- {napari_mlarray-0.0.1.dist-info → napari_mlarray-0.0.3.dist-info}/licenses/LICENSE +0 -0
- {napari_mlarray-0.0.1.dist-info → napari_mlarray-0.0.3.dist-info}/top_level.txt +0 -0
napari_mlarray/_reader.py
CHANGED
|
@@ -6,72 +6,287 @@ implement multiple readers or even other plugin contributions. see:
|
|
|
6
6
|
https://napari.org/stable/plugins/building_a_plugin/guides.html#readers
|
|
7
7
|
"""
|
|
8
8
|
from mlarray import MLArray
|
|
9
|
+
from pathlib import Path
|
|
10
|
+
import numpy as np
|
|
11
|
+
|
|
12
|
+
# Ensure napari-bbox registers its custom layer type.
|
|
13
|
+
import napari_bbox # noqa: F401
|
|
9
14
|
|
|
10
15
|
|
|
11
16
|
def napari_get_reader(path):
|
|
12
|
-
"""A basic implementation of a Reader contribution.
|
|
13
|
-
|
|
14
|
-
Parameters
|
|
15
|
-
----------
|
|
16
|
-
path : str or list of str
|
|
17
|
-
Path to file, or list of paths.
|
|
18
|
-
|
|
19
|
-
Returns
|
|
20
|
-
-------
|
|
21
|
-
function or None
|
|
22
|
-
If the path is a recognized format, return a function that accepts the
|
|
23
|
-
same path or list of paths, and returns a list of layer data tuples.
|
|
24
|
-
"""
|
|
17
|
+
"""A basic implementation of a Reader contribution."""
|
|
25
18
|
if isinstance(path, list):
|
|
26
|
-
# reader plugins may be handed single path, or a list of paths.
|
|
27
|
-
# if it is a list, it is assumed to be an image stack...
|
|
28
|
-
# so we are only going to look at the first file.
|
|
29
19
|
path = path[0]
|
|
30
20
|
|
|
31
|
-
# the get_reader function should make as many checks as possible
|
|
32
|
-
# (without loading the full file) to determine if it can read
|
|
33
|
-
# the path. Here, we check the dtype of the array by loading
|
|
34
|
-
# it with memmap, so that we don't actually load the full array into memory.
|
|
35
|
-
# We pretend that this reader can only read integer arrays.
|
|
36
21
|
try:
|
|
37
22
|
if not str(path).endswith(".mla"):
|
|
38
23
|
return None
|
|
39
|
-
# napari_get_reader should never raise an exception, because napari
|
|
40
|
-
# raises its own specific errors depending on what plugins are
|
|
41
|
-
# available for the given path, so we catch
|
|
42
|
-
# the OSError that np.load might raise if the file is malformed
|
|
43
24
|
except OSError:
|
|
44
25
|
return None
|
|
45
26
|
|
|
46
|
-
# otherwise we return the *function* that can read ``path``.
|
|
47
27
|
return reader_function
|
|
48
28
|
|
|
49
29
|
|
|
50
30
|
def reader_function(path):
|
|
51
|
-
"""Take a path or list of paths and return a list of LayerData tuples.
|
|
52
|
-
|
|
53
|
-
Readers are expected to return data as a list of tuples, where each tuple
|
|
54
|
-
is (data, [add_kwargs, [layer_type]]), "add_kwargs" and "layer_type" are
|
|
55
|
-
both optional.
|
|
56
|
-
|
|
57
|
-
Parameters
|
|
58
|
-
----------
|
|
59
|
-
path : str or list of str
|
|
60
|
-
Path to file, or list of paths.
|
|
61
|
-
|
|
62
|
-
Returns
|
|
63
|
-
-------
|
|
64
|
-
layer_data : list of tuples
|
|
65
|
-
A list of LayerData tuples where each tuple in the list contains
|
|
66
|
-
(data, metadata, layer_type), where data is a numpy array, metadata is
|
|
67
|
-
a dict of keyword arguments for the corresponding viewer.add_* method
|
|
68
|
-
in napari, and layer_type is a lower-case string naming the type of
|
|
69
|
-
layer. Both "meta", and "layer_type" are optional. napari will
|
|
70
|
-
default to layer_type=="image" if not provided
|
|
71
|
-
"""
|
|
72
|
-
# handle both a string and a list of strings
|
|
31
|
+
"""Take a path or list of paths and return a list of LayerData tuples."""
|
|
73
32
|
paths = [path] if isinstance(path, str) else path
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
33
|
+
layer_data = []
|
|
34
|
+
for path in paths:
|
|
35
|
+
name = Path(path).stem
|
|
36
|
+
mlarray = MLArray.open(path)
|
|
37
|
+
if mlarray.meta._has_array.has_array == True:
|
|
38
|
+
data = mlarray
|
|
39
|
+
metadata = {"name": f"{name}", "affine": mlarray.affine, "metadata": mlarray.meta.to_mapping()}
|
|
40
|
+
layer_type = "labels" if mlarray.meta.is_seg.is_seg == True else "image"
|
|
41
|
+
layer_data.append((data, metadata, layer_type))
|
|
42
|
+
if mlarray.meta.bbox.bboxes is not None:
|
|
43
|
+
bboxes = np.asarray(mlarray.meta.bbox.bboxes)
|
|
44
|
+
|
|
45
|
+
# MLArray bboxes are always (N, D, 2)
|
|
46
|
+
if bboxes.ndim != 3 or bboxes.shape[2] != 2:
|
|
47
|
+
raise ValueError(f"Unsupported bbox shape: {bboxes.shape}")
|
|
48
|
+
|
|
49
|
+
dims = bboxes.shape[1]
|
|
50
|
+
|
|
51
|
+
# 2D -> keep shapes rectangles (original behavior)
|
|
52
|
+
if dims == 2:
|
|
53
|
+
data = bboxes_minmax_to_napari_rectangles_2d(bboxes)
|
|
54
|
+
edge_color = _napari_bbox_edge_colors(
|
|
55
|
+
data,
|
|
56
|
+
labels=getattr(mlarray.meta.bbox, "labels", None),
|
|
57
|
+
)
|
|
58
|
+
text = _napari_bbox_score_text(
|
|
59
|
+
scores=getattr(mlarray.meta.bbox, "scores", None),
|
|
60
|
+
labels=getattr(mlarray.meta.bbox, "labels", None),
|
|
61
|
+
count=len(data),
|
|
62
|
+
edge_color=edge_color,
|
|
63
|
+
rectangles=data,
|
|
64
|
+
)
|
|
65
|
+
metadata = {
|
|
66
|
+
"name": f"{name} (BBoxes)",
|
|
67
|
+
"shape_type": "rectangle",
|
|
68
|
+
"affine": mlarray.affine,
|
|
69
|
+
"metadata": mlarray.meta.to_mapping(),
|
|
70
|
+
"face_color": "transparent",
|
|
71
|
+
"edge_color": edge_color,
|
|
72
|
+
}
|
|
73
|
+
if text is not None:
|
|
74
|
+
metadata["text"] = text
|
|
75
|
+
layer_type = "shapes"
|
|
76
|
+
layer_data.append((data, metadata, layer_type))
|
|
77
|
+
|
|
78
|
+
# 3D+ -> napari-bbox layer
|
|
79
|
+
elif dims >= 3:
|
|
80
|
+
data = bboxes_minmax_to_napari_bboxes_nd(bboxes)
|
|
81
|
+
edge_color = _napari_bbox_edge_colors_count(
|
|
82
|
+
count=len(data),
|
|
83
|
+
labels=getattr(mlarray.meta.bbox, "labels", None),
|
|
84
|
+
)
|
|
85
|
+
metadata = {
|
|
86
|
+
"name": f"{name} (BBoxes)",
|
|
87
|
+
"affine": mlarray.affine,
|
|
88
|
+
"metadata": mlarray.meta.to_mapping(),
|
|
89
|
+
"face_color": "transparent",
|
|
90
|
+
"edge_color": edge_color,
|
|
91
|
+
# "edge_width": 2,
|
|
92
|
+
}
|
|
93
|
+
layer_type = "boundingboxlayer"
|
|
94
|
+
layer_data.append((data, metadata, layer_type))
|
|
77
95
|
return layer_data
|
|
96
|
+
|
|
97
|
+
|
|
98
|
+
def bboxes_minmax_to_napari_rectangles_2d(
|
|
99
|
+
bboxes,
|
|
100
|
+
*,
|
|
101
|
+
dtype=np.float32,
|
|
102
|
+
validate: bool = True,
|
|
103
|
+
) -> np.ndarray:
|
|
104
|
+
"""Convert 2D axis-aligned bounding boxes from min/max format to napari Shapes rectangles."""
|
|
105
|
+
arr = np.asarray(bboxes)
|
|
106
|
+
|
|
107
|
+
if arr.ndim == 2 and arr.shape[1] == 4:
|
|
108
|
+
arr = np.stack(
|
|
109
|
+
[
|
|
110
|
+
arr[:, [0, 2]],
|
|
111
|
+
arr[:, [1, 3]],
|
|
112
|
+
],
|
|
113
|
+
axis=1,
|
|
114
|
+
)
|
|
115
|
+
elif arr.ndim == 3 and arr.shape[1:] == (2, 2):
|
|
116
|
+
pass
|
|
117
|
+
else:
|
|
118
|
+
raise ValueError(
|
|
119
|
+
f"Expected bboxes of shape (N, 2, 2) or (N, 4). Got {arr.shape}."
|
|
120
|
+
)
|
|
121
|
+
|
|
122
|
+
# MLArray uses (N, D, 2) -> convert to (N, 2, 2)
|
|
123
|
+
if arr.shape == (arr.shape[0], 2, 2):
|
|
124
|
+
arr2 = arr
|
|
125
|
+
else:
|
|
126
|
+
arr2 = np.transpose(arr, (0, 2, 1))
|
|
127
|
+
|
|
128
|
+
N, D, two = arr2.shape
|
|
129
|
+
if D != 2 or two != 2:
|
|
130
|
+
raise ValueError(f"Only 2D bboxes are supported. Got (N, {D}, {two}).")
|
|
131
|
+
|
|
132
|
+
mins = arr2[:, 0, :]
|
|
133
|
+
maxs = arr2[:, 1, :]
|
|
134
|
+
# Ensure proper min/max ordering even if input is flipped
|
|
135
|
+
mins, maxs = np.minimum(mins, maxs), np.maximum(mins, maxs)
|
|
136
|
+
|
|
137
|
+
if validate and np.any(maxs < mins):
|
|
138
|
+
bad = np.argwhere(maxs < mins)
|
|
139
|
+
raise ValueError(
|
|
140
|
+
"Found bbox with max < min at indices (bbox_index, dim): "
|
|
141
|
+
f"{bad[:10].tolist()}" + (" ..." if len(bad) > 10 else "")
|
|
142
|
+
)
|
|
143
|
+
|
|
144
|
+
min0, min1 = mins[:, 0], mins[:, 1]
|
|
145
|
+
max0, max1 = maxs[:, 0], maxs[:, 1]
|
|
146
|
+
|
|
147
|
+
rects = np.stack(
|
|
148
|
+
[
|
|
149
|
+
np.stack([min0, min1], axis=1),
|
|
150
|
+
np.stack([min0, max1], axis=1),
|
|
151
|
+
np.stack([max0, max1], axis=1),
|
|
152
|
+
np.stack([max0, min1], axis=1),
|
|
153
|
+
],
|
|
154
|
+
axis=1,
|
|
155
|
+
).astype(dtype, copy=False)
|
|
156
|
+
|
|
157
|
+
return rects
|
|
158
|
+
|
|
159
|
+
|
|
160
|
+
def bboxes_minmax_to_napari_bboxes_nd(
|
|
161
|
+
bboxes,
|
|
162
|
+
*,
|
|
163
|
+
dtype=np.float32,
|
|
164
|
+
validate: bool = True,
|
|
165
|
+
):
|
|
166
|
+
"""
|
|
167
|
+
Convert N-D axis-aligned bboxes from min/max to napari-bbox format.
|
|
168
|
+
Input (MLArray): (N, D, 2) where [:, :, 0] are mins and [:, :, 1] are maxs.
|
|
169
|
+
Returns:
|
|
170
|
+
- list of (2, D) arrays, one per bbox.
|
|
171
|
+
"""
|
|
172
|
+
arr = np.asarray(bboxes)
|
|
173
|
+
|
|
174
|
+
if arr.ndim != 3 or arr.shape[2] != 2:
|
|
175
|
+
raise ValueError(
|
|
176
|
+
f"Expected bboxes of shape (N, D, 2). Got {arr.shape}."
|
|
177
|
+
)
|
|
178
|
+
|
|
179
|
+
mins = arr[:, :, 0]
|
|
180
|
+
maxs = arr[:, :, 1]
|
|
181
|
+
# Ensure proper min/max ordering even if input is flipped
|
|
182
|
+
mins, maxs = np.minimum(mins, maxs), np.maximum(mins, maxs)
|
|
183
|
+
if validate and np.any(maxs < mins):
|
|
184
|
+
bad = np.argwhere(maxs < mins)
|
|
185
|
+
raise ValueError(
|
|
186
|
+
"Found bbox with max < min at indices (bbox_index, dim): "
|
|
187
|
+
f"{bad[:10].tolist()}" + (" ..." if len(bad) > 10 else "")
|
|
188
|
+
)
|
|
189
|
+
|
|
190
|
+
arr2 = np.stack([mins, maxs], axis=1).astype(dtype, copy=False)
|
|
191
|
+
return [arr2[i] for i in range(arr2.shape[0])]
|
|
192
|
+
|
|
193
|
+
|
|
194
|
+
def _napari_bbox_edge_colors(rectangles, labels):
|
|
195
|
+
"""Return RGBA edge colors for each bbox."""
|
|
196
|
+
count = len(rectangles)
|
|
197
|
+
if count == 0:
|
|
198
|
+
return np.empty((0, 4), dtype=np.float32)
|
|
199
|
+
|
|
200
|
+
if labels is not None and len(labels) == count:
|
|
201
|
+
unique_labels = list(dict.fromkeys(labels))
|
|
202
|
+
label_to_color = {
|
|
203
|
+
label: _palette_rgba(idx) for idx, label in enumerate(unique_labels)
|
|
204
|
+
}
|
|
205
|
+
colors = np.array([label_to_color[label] for label in labels], dtype=np.float32)
|
|
206
|
+
else:
|
|
207
|
+
colors = np.array([_palette_rgba(idx) for idx in range(count)], dtype=np.float32)
|
|
208
|
+
|
|
209
|
+
return colors
|
|
210
|
+
|
|
211
|
+
|
|
212
|
+
def _napari_bbox_edge_colors_count(count, labels=None):
|
|
213
|
+
"""Return RGBA edge colors for each bbox (count-based)."""
|
|
214
|
+
if count == 0:
|
|
215
|
+
return np.empty((0, 4), dtype=np.float32)
|
|
216
|
+
|
|
217
|
+
if labels is not None and len(labels) == count:
|
|
218
|
+
unique_labels = list(dict.fromkeys(labels))
|
|
219
|
+
label_to_color = {
|
|
220
|
+
label: _palette_rgba(idx) for idx, label in enumerate(unique_labels)
|
|
221
|
+
}
|
|
222
|
+
colors = np.array([label_to_color[label] for label in labels], dtype=np.float32)
|
|
223
|
+
else:
|
|
224
|
+
colors = np.array([_palette_rgba(idx) for idx in range(count)], dtype=np.float32)
|
|
225
|
+
|
|
226
|
+
return colors
|
|
227
|
+
|
|
228
|
+
|
|
229
|
+
def _napari_bbox_score_text(scores, labels, count, edge_color, rectangles):
|
|
230
|
+
"""Return napari Shapes text metadata if scores are provided."""
|
|
231
|
+
have_scores = scores is not None and len(scores) == count
|
|
232
|
+
have_labels = labels is not None and len(labels) == count
|
|
233
|
+
if not have_scores and not have_labels:
|
|
234
|
+
return None
|
|
235
|
+
|
|
236
|
+
top_left = rectangles[:, 0, :]
|
|
237
|
+
top_left = np.maximum(top_left - np.array([4.0, 0.0], dtype=top_left.dtype), 0)
|
|
238
|
+
|
|
239
|
+
strings = []
|
|
240
|
+
for idx in range(count):
|
|
241
|
+
parts = []
|
|
242
|
+
if have_labels:
|
|
243
|
+
parts.append(f"Label: {labels[idx]}")
|
|
244
|
+
if have_scores:
|
|
245
|
+
parts.append(f"Score: {scores[idx]:.3f}")
|
|
246
|
+
parts.append("\n")
|
|
247
|
+
strings.append("\n".join(parts))
|
|
248
|
+
|
|
249
|
+
return {
|
|
250
|
+
"string": strings,
|
|
251
|
+
"color": edge_color,
|
|
252
|
+
"size": 12,
|
|
253
|
+
"anchor": "upper_left",
|
|
254
|
+
"position": top_left,
|
|
255
|
+
}
|
|
256
|
+
|
|
257
|
+
|
|
258
|
+
def _palette_rgba(index):
|
|
259
|
+
"""Simple, distinct-ish palette; returns RGBA in 0..1."""
|
|
260
|
+
palette = [
|
|
261
|
+
(0.90, 0.10, 0.12, 1.0),
|
|
262
|
+
(0.00, 0.48, 1.00, 1.0),
|
|
263
|
+
(0.20, 0.80, 0.20, 1.0),
|
|
264
|
+
(0.98, 0.60, 0.00, 1.0),
|
|
265
|
+
(0.60, 0.20, 0.80, 1.0),
|
|
266
|
+
(0.10, 0.75, 0.80, 1.0),
|
|
267
|
+
(0.80, 0.80, 0.00, 1.0),
|
|
268
|
+
(0.95, 0.40, 0.60, 1.0),
|
|
269
|
+
(0.90, 0.30, 0.00, 1.0),
|
|
270
|
+
(0.00, 0.70, 0.40, 1.0),
|
|
271
|
+
(0.40, 0.80, 1.00, 1.0),
|
|
272
|
+
(1.00, 0.20, 0.70, 1.0),
|
|
273
|
+
(0.50, 0.90, 0.20, 1.0),
|
|
274
|
+
(0.20, 0.90, 0.70, 1.0),
|
|
275
|
+
(0.70, 0.50, 1.00, 1.0),
|
|
276
|
+
(1.00, 0.50, 0.20, 1.0),
|
|
277
|
+
(0.20, 0.60, 1.00, 1.0),
|
|
278
|
+
(1.00, 0.70, 0.20, 1.0),
|
|
279
|
+
(0.60, 1.00, 0.20, 1.0),
|
|
280
|
+
(0.20, 1.00, 0.40, 1.0),
|
|
281
|
+
(0.20, 1.00, 0.90, 1.0),
|
|
282
|
+
(0.20, 0.90, 1.00, 1.0),
|
|
283
|
+
(0.40, 0.60, 1.00, 1.0),
|
|
284
|
+
(0.80, 0.20, 1.00, 1.0),
|
|
285
|
+
(1.00, 0.20, 0.30, 1.0),
|
|
286
|
+
(1.00, 0.30, 0.50, 1.0),
|
|
287
|
+
(1.00, 0.60, 0.60, 1.0),
|
|
288
|
+
(1.00, 0.90, 0.30, 1.0),
|
|
289
|
+
(0.60, 1.00, 0.60, 1.0),
|
|
290
|
+
(0.60, 0.90, 1.00, 1.0),
|
|
291
|
+
]
|
|
292
|
+
return palette[index % len(palette)]
|
napari_mlarray/_version.py
CHANGED
|
@@ -28,7 +28,7 @@ version_tuple: VERSION_TUPLE
|
|
|
28
28
|
commit_id: COMMIT_ID
|
|
29
29
|
__commit_id__: COMMIT_ID
|
|
30
30
|
|
|
31
|
-
__version__ = version = '0.0.
|
|
32
|
-
__version_tuple__ = version_tuple = (0, 0,
|
|
31
|
+
__version__ = version = '0.0.3'
|
|
32
|
+
__version_tuple__ = version_tuple = (0, 0, 3)
|
|
33
33
|
|
|
34
34
|
__commit_id__ = commit_id = None
|
napari_mlarray/_writer.py
CHANGED
|
@@ -34,7 +34,7 @@ def write_single_image(path: str, data: Any, meta: dict) -> list[str]:
|
|
|
34
34
|
-------
|
|
35
35
|
[path] : A list containing the string path to the saved file.
|
|
36
36
|
"""
|
|
37
|
-
mlarray = MLArray(data, meta=Meta.
|
|
37
|
+
mlarray = MLArray(data, meta=Meta.from_mapping(meta["metadata"]))
|
|
38
38
|
mlarray.save(path)
|
|
39
39
|
|
|
40
40
|
# return path to any file(s) that were successfully written
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: napari-mlarray
|
|
3
|
-
Version: 0.0.
|
|
3
|
+
Version: 0.0.3
|
|
4
4
|
Summary: A reader/writer Napari plugin for MLArray images.
|
|
5
5
|
Author: Karol-G
|
|
6
6
|
Author-email: karol.gotkowski@dkfz.de
|
|
@@ -44,6 +44,8 @@ Requires-Python: >=3.10
|
|
|
44
44
|
Description-Content-Type: text/markdown
|
|
45
45
|
License-File: LICENSE
|
|
46
46
|
Requires-Dist: mlarray
|
|
47
|
+
Requires-Dist: numpy
|
|
48
|
+
Requires-Dist: napari-bbox-fix
|
|
47
49
|
Provides-Extra: all
|
|
48
50
|
Requires-Dist: napari[all]; extra == "all"
|
|
49
51
|
Dynamic: license-file
|
|
@@ -0,0 +1,12 @@
|
|
|
1
|
+
napari_mlarray/__init__.py,sha256=c2b0_m5sORovlHyyozJS1l00lXjFM7ULIkrHqojq5N4,249
|
|
2
|
+
napari_mlarray/_reader.py,sha256=VwJ0GZqsH7prQZrfwlMiYAsDFffsj7TpuzgTaX9sA7A,9746
|
|
3
|
+
napari_mlarray/_version.py,sha256=pBZsQt6tlL02W-ri--X_4JCubpAK7jjCSnOmUp_isjc,704
|
|
4
|
+
napari_mlarray/_widget.py,sha256=K6MYwgFiQg7-dORp-kC_VivrfppiUwMmevbPMhwMT9c,4810
|
|
5
|
+
napari_mlarray/_writer.py,sha256=EG-013mGR14L5V7tygzoZg2EPyIwnZAP8zG8flg58hU,1209
|
|
6
|
+
napari_mlarray/napari.yaml,sha256=HILzIxDmFpRPgCmM7uVzzZ86Ayp2ecWiSXHTCC1qjx4,796
|
|
7
|
+
napari_mlarray-0.0.3.dist-info/licenses/LICENSE,sha256=LKlNG6Bx5z0YnzAp9GjCxCR0aypSPO_JcUHmuVGtwds,1162
|
|
8
|
+
napari_mlarray-0.0.3.dist-info/METADATA,sha256=cnSU5VuWk2nOqERetsv8KKFwrV9BDmUOCgy8D_BUhh4,5593
|
|
9
|
+
napari_mlarray-0.0.3.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
|
|
10
|
+
napari_mlarray-0.0.3.dist-info/entry_points.txt,sha256=ibu_ymiLzJPNpL0x0Fdendi5fQiq_baxx224E5pAW0c,62
|
|
11
|
+
napari_mlarray-0.0.3.dist-info/top_level.txt,sha256=ZfJPiLTSmZ9eakEU1J6znzWi6dS_OTGAXQSI08HOgQg,15
|
|
12
|
+
napari_mlarray-0.0.3.dist-info/RECORD,,
|
|
@@ -1,12 +0,0 @@
|
|
|
1
|
-
napari_mlarray/__init__.py,sha256=c2b0_m5sORovlHyyozJS1l00lXjFM7ULIkrHqojq5N4,249
|
|
2
|
-
napari_mlarray/_reader.py,sha256=TT6-L8t7wlYRA5laoVH-frf-ogBxXlEQWE7y70IUHHs,3045
|
|
3
|
-
napari_mlarray/_version.py,sha256=qf6R-J7-UyuABBo8c0HgaquJ8bejVbf07HodXgwAwgQ,704
|
|
4
|
-
napari_mlarray/_widget.py,sha256=K6MYwgFiQg7-dORp-kC_VivrfppiUwMmevbPMhwMT9c,4810
|
|
5
|
-
napari_mlarray/_writer.py,sha256=tAFCX1-LnmDqeDFpO2H22Xrju58-3D-d0ZrEvdAXMbE,1206
|
|
6
|
-
napari_mlarray/napari.yaml,sha256=HILzIxDmFpRPgCmM7uVzzZ86Ayp2ecWiSXHTCC1qjx4,796
|
|
7
|
-
napari_mlarray-0.0.1.dist-info/licenses/LICENSE,sha256=LKlNG6Bx5z0YnzAp9GjCxCR0aypSPO_JcUHmuVGtwds,1162
|
|
8
|
-
napari_mlarray-0.0.1.dist-info/METADATA,sha256=tHD_AJuOHEEWg3OU6FepCJSMQDbVPHtCGoVa1y6ZBHg,5541
|
|
9
|
-
napari_mlarray-0.0.1.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
|
|
10
|
-
napari_mlarray-0.0.1.dist-info/entry_points.txt,sha256=ibu_ymiLzJPNpL0x0Fdendi5fQiq_baxx224E5pAW0c,62
|
|
11
|
-
napari_mlarray-0.0.1.dist-info/top_level.txt,sha256=ZfJPiLTSmZ9eakEU1J6znzWi6dS_OTGAXQSI08HOgQg,15
|
|
12
|
-
napari_mlarray-0.0.1.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|