napari-dpr 0.1.0__cp39-cp39-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- napari_dpr/__init__.py +9 -0
- napari_dpr/dpr.py +131 -0
- napari_dpr/dpr_core.cp311-win_amd64.pyd +0 -0
- napari_dpr/dpr_core.cp312-win_amd64.pyd +0 -0
- napari_dpr/dpr_core.cp39-win_amd64.pyd +0 -0
- napari_dpr/dpr_core.cpp +15428 -0
- napari_dpr/dpr_core.pyx +103 -0
- napari_dpr/run.dpr.py +68 -0
- napari_dpr-0.1.0.dist-info/METADATA +32 -0
- napari_dpr-0.1.0.dist-info/RECORD +12 -0
- napari_dpr-0.1.0.dist-info/WHEEL +5 -0
- napari_dpr-0.1.0.dist-info/top_level.txt +1 -0
napari_dpr/__init__.py
ADDED
napari_dpr/dpr.py
ADDED
@@ -0,0 +1,131 @@
|
|
1
|
+
import os, sys, time, numpy as np, scipy.ndimage as ndi
|
2
|
+
from scipy.interpolate import RectBivariateSpline
|
3
|
+
import tifffile as tiff
|
4
|
+
from PIL import Image
|
5
|
+
import matplotlib.pyplot as plt
|
6
|
+
|
7
|
+
## original DPR as shown by https://github.com/biomicroscopy/DPR-Resolution_enhancement_with_deblurring_by_pixel_reassignment
|
8
|
+
|
9
|
+
def dpr_set_parameters(psf, **k): return {'gain': k.get('gain',1), 'background': k.get('background',int(np.ceil(17*psf))), 'temporal': k.get('temporal',None)}
|
10
|
+
|
11
|
+
def dpr_update_single(i, psf, opt):
|
12
|
+
g, r = opt['gain'], int(np.ceil(opt['background']))
|
13
|
+
psf /= 1.6651
|
14
|
+
h, w = i.shape
|
15
|
+
x0, y0 = np.linspace(-.5,.5,w), np.linspace(-.5,.5,h)
|
16
|
+
x, y = np.linspace(-.5,.5,round(5*w/psf)), np.linspace(-.5,.5,round(5*h/psf))
|
17
|
+
sx, sy = np.array([[1,0,-1],[2,0,-2],[1,0,-1]]), np.array([[1,2,1],[0,0,0],[-1,-2,-1]])
|
18
|
+
i = i - i.min()
|
19
|
+
localmin = np.zeros_like(i)
|
20
|
+
i_localmin = np.zeros_like(i)
|
21
|
+
for u in range(h):
|
22
|
+
for v in range(w):
|
23
|
+
sub = i[max(0,u-r):min(h,u+r+1), max(0,v-r):min(w,v+r+1)]
|
24
|
+
localmin[u,v] = sub.min()
|
25
|
+
i_localmin[u,v] = i[u,v] - localmin[u,v]
|
26
|
+
m = RectBivariateSpline(y0,x0,i_localmin)(y,x)
|
27
|
+
m[m<0] = 0
|
28
|
+
m = np.pad(m,10)
|
29
|
+
mag = RectBivariateSpline(y0,x0,i)(y,x)
|
30
|
+
mag[mag<0] = 0
|
31
|
+
mag = np.pad(mag,10)
|
32
|
+
hn, wn = mag.shape
|
33
|
+
norm = m / (ndi.gaussian_filter(m,10)+1e-5)
|
34
|
+
gx = ndi.convolve(norm, sy, mode='reflect') / (norm + 1e-5)
|
35
|
+
gy = ndi.convolve(norm, sx, mode='reflect') / (norm + 1e-5)
|
36
|
+
d = 0.5*g+1
|
37
|
+
dx, dy = d*gx, d*gy
|
38
|
+
dx[np.abs(dx)>10] = 0
|
39
|
+
dy[np.abs(dy)>10] = 0
|
40
|
+
out = np.zeros((hn, wn))
|
41
|
+
for nx in range(10, hn-10):
|
42
|
+
for ny in range(10, wn-10):
|
43
|
+
wx, wy = dx[nx,ny], dy[nx,ny]
|
44
|
+
fx, fy = int(wx), int(wy)
|
45
|
+
sx, sy = int(np.sign(wx)), int(np.sign(wy))
|
46
|
+
w1 = (1-abs(wx-fx))*(1-abs(wy-fy))
|
47
|
+
w2 = (1-abs(wx-fx))*abs(wy-fy)
|
48
|
+
w3 = abs(wx-fx)*(1-abs(wy-fy))
|
49
|
+
w4 = abs(wx-fx)*abs(wy-fy)
|
50
|
+
c1 = [fx, fy]
|
51
|
+
c2 = [fx, fy+sy]
|
52
|
+
c3 = [fx+sx, fy]
|
53
|
+
c4 = [fx+sx, fy+sy]
|
54
|
+
val = mag[nx,ny]
|
55
|
+
out[nx+c1[0], ny+c1[1]] += w1*val
|
56
|
+
out[nx+c2[0], ny+c2[1]] += w2*val
|
57
|
+
out[nx+c3[0], ny+c3[1]] += w3*val
|
58
|
+
out[nx+c4[0], ny+c4[1]] += w4*val
|
59
|
+
return out[10:-10,10:-10], mag[10:-10,10:-10], g, r
|
60
|
+
|
61
|
+
def dpr_stack(s, psf, o):
|
62
|
+
f = s.shape[2]
|
63
|
+
shp = dpr_update_single(s[:,:,0],psf,o)[1].shape
|
64
|
+
out = np.zeros((*shp,f)); mag = np.zeros((*shp,f))
|
65
|
+
for i in range(f):
|
66
|
+
sys.stdout.write(f"\rProcessing {i+1}/{f}"); sys.stdout.flush()
|
67
|
+
o1,o2,_,_ = dpr_update_single(s[:,:,i],psf,o)
|
68
|
+
out[:,:,i], mag[:,:,i] = o1, o2
|
69
|
+
t = o.get('temporal','')
|
70
|
+
if t == 'mean': out = np.mean(out,axis=2)
|
71
|
+
elif t == 'var': out = np.var(out,axis=2)
|
72
|
+
return out, mag
|
73
|
+
|
74
|
+
def load_image_stack(p,n,t):
|
75
|
+
path = os.path.join(p,f'{n}.{t}')
|
76
|
+
if t.lower() == 'tif':
|
77
|
+
d = tiff.imread(path)
|
78
|
+
return np.transpose(d,(1,2,0)) if d.ndim==3 else d
|
79
|
+
return np.array(Image.open(path))
|
80
|
+
|
81
|
+
def save_image(im, p, n, t):
|
82
|
+
os.makedirs(p, exist_ok=True)
|
83
|
+
f = os.path.join(p, f'{n}.{t}')
|
84
|
+
if t.lower()=='tif': tiff.imwrite(f, im)
|
85
|
+
else:
|
86
|
+
if im.dtype != np.uint8:
|
87
|
+
im = ((im-im.min())/(im.max()-im.min())*255).astype(np.uint8)
|
88
|
+
Image.fromarray(im).save(f)
|
89
|
+
|
90
|
+
def process_image(p,n,t,psf,o):
|
91
|
+
s = load_image_stack(p,n,t)
|
92
|
+
out, mag = dpr_stack(s, psf, o)
|
93
|
+
save_image(out, os.path.join(p,'DPR_results'), f'{n}_result', t)
|
94
|
+
return s, out, mag
|
95
|
+
|
96
|
+
def display_images(i,m,o):
|
97
|
+
plt.figure(figsize=(12,4))
|
98
|
+
plt.subplot(1,3,1); plt.imshow(i[...,0] if i.ndim==3 else i, cmap='gray'); plt.title('Initial')
|
99
|
+
plt.subplot(1,3,2); plt.imshow(np.mean(m,axis=2) if m.ndim==3 else m, cmap='gray'); plt.title('Magnified')
|
100
|
+
plt.subplot(1,3,3); plt.imshow(o, cmap='gray'); plt.title('DPR')
|
101
|
+
plt.tight_layout(); plt.show()
|
102
|
+
|
103
|
+
def main():
|
104
|
+
p = r'test_data'
|
105
|
+
f = input("File name [test_image.tif]: ") or "test_image.tif"
|
106
|
+
n,t = f.rsplit('.',1)
|
107
|
+
mode = input("Use default params? y/n/e [y]: ").lower() or 'y'
|
108
|
+
if mode == 'e':
|
109
|
+
print("PSF: blur radius\nGain: enhancement\nBackground: subtraction\nTemporal: mean or var")
|
110
|
+
mode = input("Use default now? y/n [y]: ").lower() or 'y'
|
111
|
+
if mode == 'y': psf,g,bg,tmp = 4,2,10,'mean'
|
112
|
+
else:
|
113
|
+
psf = float(input("PSF [4]: ") or 4)
|
114
|
+
g = float(input("Gain [2]: ") or 2)
|
115
|
+
bg = float(input("Background [10]: ") or 10)
|
116
|
+
tmp = input("Temporal [mean]: ") or 'mean'
|
117
|
+
o = dpr_set_parameters(psf, gain=g, background=bg, temporal=tmp)
|
118
|
+
start = time.time()
|
119
|
+
res = process_image(p,n,t,psf,o)
|
120
|
+
if res:
|
121
|
+
img,dpr,mag = res
|
122
|
+
print(f"\nTime: {time.time()-start:.2f}s")
|
123
|
+
display_images(img,mag,dpr)
|
124
|
+
else: print("Failed.")
|
125
|
+
|
126
|
+
def apply_dpr(im, psf=4, gain=2, background=10, temporal='mean'):
|
127
|
+
if im.ndim == 2: im = im[:,:,np.newaxis]
|
128
|
+
o = dpr_set_parameters(psf, gain=gain, background=background, temporal=temporal)
|
129
|
+
return dpr_stack(im, psf, o)
|
130
|
+
|
131
|
+
if __name__ == '__main__': main()
|
Binary file
|
Binary file
|
Binary file
|