nabu 2025.1.0rc5__py3-none-any.whl → 2025.1.0rc6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
nabu/__init__.py CHANGED
@@ -1,4 +1,4 @@
1
- __version__ = "2025.1.0-rc5"
1
+ __version__ = "2025.1.0-rc6"
2
2
  __nabu_modules__ = [
3
3
  "app",
4
4
  "cuda",
nabu/io/reader.py CHANGED
@@ -556,7 +556,11 @@ class VolReaderBase:
556
556
  slice_x = None
557
557
  if isinstance(sub_region, (tuple, list)):
558
558
  slice_angle, slice_z, slice_x = sub_region
559
- self.sub_region = (slice_angle or slice(None, None), slice_z or slice(None, None), slice_x or slice(None, None))
559
+ self.sub_region = (
560
+ slice_angle if slice_angle is not None else slice(None, None),
561
+ slice_z if slice_z is not None else slice(None, None),
562
+ slice_x if slice_x is not None else slice(None, None),
563
+ )
560
564
 
561
565
  def _set_processing_function(self, processing_func, processing_func_args, processing_func_kwargs):
562
566
  self.processing_func = processing_func
@@ -682,9 +686,13 @@ class NXTomoReader(VolReaderBase):
682
686
  # In this case, we can use h5py read_direct() to avoid extraneous memory consumption
683
687
  image_key_slice = self._image_key_slices[0]
684
688
  # merge image key selection and user selection (if any)
685
- self._source_selection = (
686
- merge_slices(image_key_slice, self.sub_region[0] or slice(None, None)),
687
- ) + self.sub_region[1:]
689
+ angles_slice = self.sub_region[0]
690
+ if isinstance(angles_slice, slice) or angles_slice is None:
691
+ angles_slice = merge_slices(image_key_slice, self.sub_region[0] or slice(None, None))
692
+ else: # assuming numpy array
693
+ # TODO more elegant
694
+ angles_slice = np.arange(self.data_shape_total[0], dtype=np.uint64)[image_key_slice][angles_slice]
695
+ self._source_selection = (angles_slice,) + self.sub_region[1:]
688
696
  else:
689
697
  user_selection_dim0 = self.sub_region[0]
690
698
  indices = np.arange(self.data_shape_total[0])
@@ -1,41 +1,23 @@
1
1
  from math import ceil
2
2
  from tempfile import TemporaryDirectory
3
- from dataclasses import dataclass
4
3
  from tomoscan.io import HDF5File
5
4
  import pytest
6
5
  import numpy as np
7
6
  from nxtomo.application.nxtomo import ImageKey
8
7
  from tomoscan.esrf import EDFVolume
9
8
  from nabu.pipeline.reader import NXTomoReaderBinning
10
- from nabu.testutils import utilstest, __do_long_tests__, get_file
9
+ from nabu.testutils import utilstest, __do_long_tests__, get_file, get_dummy_nxtomo_info
11
10
  from nabu.utils import indices_to_slices, merge_slices
12
11
  from nabu.io.reader import EDFStackReader, NXTomoReader, NXDarksFlats
13
-
14
-
15
- @dataclass
16
- class SimpleNXTomoDescription:
17
- n_darks: int = 0
18
- n_flats1: int = 0
19
- n_projs: int = 0
20
- n_flats2: int = 0
21
- n_align: int = 0
22
- frame_shape: tuple = None
23
- dtype: np.dtype = np.uint16
12
+ from nabu.resources.dataset_analyzer import analyze_dataset
24
13
 
25
14
 
26
15
  @pytest.fixture(scope="class")
27
16
  def bootstrap_nx_reader(request):
28
17
  cls = request.cls
29
-
30
- cls.nx_fname = utilstest.getfile("dummy_nxtomo.nx")
31
- cls.nx_data_path = "entry/instrument/detector/data"
32
- cls.data_desc = SimpleNXTomoDescription(
33
- n_darks=10, n_flats1=11, n_projs=100, n_flats2=11, n_align=12, frame_shape=(11, 10), dtype=np.uint16
18
+ cls.nx_fname, cls.data_desc, cls.image_key, cls.projs_vals, cls.darks_vals, cls.flats1_vals, cls.flats2_vals = (
19
+ get_dummy_nxtomo_info()
34
20
  )
35
- cls.projs_vals = np.arange(cls.data_desc.n_projs) + cls.data_desc.n_flats1 + cls.data_desc.n_darks
36
- cls.darks_vals = np.arange(cls.data_desc.n_darks)
37
- cls.flats1_vals = np.arange(cls.data_desc.n_darks, cls.data_desc.n_darks + cls.data_desc.n_flats1)
38
- cls.flats2_vals = np.arange(cls.data_desc.n_darks, cls.data_desc.n_darks + cls.data_desc.n_flats2)
39
21
 
40
22
  yield
41
23
  # teardown
@@ -45,7 +27,7 @@ def bootstrap_nx_reader(request):
45
27
  class TestNXReader:
46
28
  def test_incorrect_path(self):
47
29
  with pytest.raises(FileNotFoundError):
48
- reader = NXTomoReader("/invalid/path", self.nx_data_path)
30
+ reader = NXTomoReader("/invalid/path")
49
31
  with pytest.raises(KeyError):
50
32
  reader = NXTomoReader(self.nx_fname, "/bad/data/path") # noqa: F841
51
33
 
@@ -53,7 +35,7 @@ class TestNXReader:
53
35
  """
54
36
  Test NXTomoReader with simplest settings
55
37
  """
56
- reader1 = NXTomoReader(self.nx_fname, self.nx_data_path)
38
+ reader1 = NXTomoReader(self.nx_fname)
57
39
  data1 = reader1.load_data()
58
40
  assert data1.shape == (self.data_desc.n_projs,) + self.data_desc.frame_shape
59
41
  assert np.allclose(data1[:, 0, 0], self.projs_vals)
@@ -62,15 +44,15 @@ class TestNXReader:
62
44
  """
63
45
  Test the data selection using "image_key".
64
46
  """
65
- reader_projs = NXTomoReader(self.nx_fname, self.nx_data_path, image_key=ImageKey.PROJECTION.value)
47
+ reader_projs = NXTomoReader(self.nx_fname, image_key=ImageKey.PROJECTION.value)
66
48
  data = reader_projs.load_data()
67
49
  assert np.allclose(data[:, 0, 0], self.projs_vals)
68
50
 
69
- reader_darks = NXTomoReader(self.nx_fname, self.nx_data_path, image_key=ImageKey.DARK_FIELD.value)
51
+ reader_darks = NXTomoReader(self.nx_fname, image_key=ImageKey.DARK_FIELD.value)
70
52
  data_darks = reader_darks.load_data()
71
53
  assert np.allclose(data_darks[:, 0, 0], self.darks_vals)
72
54
 
73
- reader_flats = NXTomoReader(self.nx_fname, self.nx_data_path, image_key=ImageKey.FLAT_FIELD.value)
55
+ reader_flats = NXTomoReader(self.nx_fname, image_key=ImageKey.FLAT_FIELD.value)
74
56
  data_flats = reader_flats.load_data()
75
57
  assert np.allclose(data_flats[:, 0, 0], np.concatenate([self.flats1_vals, self.flats2_vals]))
76
58
 
@@ -83,10 +65,10 @@ class TestNXReader:
83
65
  def _check_correct_shape_succeeds(shape, sub_region, test_description=""):
84
66
  err_msg = "Something wrong with the following test:" + test_description
85
67
  data_buffer = np.zeros(shape, dtype="f")
86
- reader1 = NXTomoReader(self.nx_fname, self.nx_data_path, sub_region=sub_region)
68
+ reader1 = NXTomoReader(self.nx_fname, sub_region=sub_region)
87
69
  data1 = reader1.load_data(output=data_buffer)
88
70
  assert id(data1) == id(data_buffer), err_msg
89
- reader2 = NXTomoReader(self.nx_fname, self.nx_data_path, sub_region=sub_region)
71
+ reader2 = NXTomoReader(self.nx_fname, sub_region=sub_region)
90
72
  data2 = reader2.load_data()
91
73
  assert np.allclose(data1, data2), err_msg
92
74
 
@@ -124,7 +106,6 @@ class TestNXReader:
124
106
  data_buffer_wrong_shape = np.zeros(wrong_shape, dtype="f")
125
107
  reader = NXTomoReader(
126
108
  self.nx_fname,
127
- self.nx_data_path,
128
109
  sub_region=test_case["sub_region"],
129
110
  )
130
111
  reader.load_data(output=data_buffer_wrong_shape)
@@ -148,7 +129,7 @@ class TestNXReader:
148
129
  ]
149
130
 
150
131
  for test_case in test_cases:
151
- reader = NXTomoReader(self.nx_fname, self.nx_data_path, sub_region=test_case["sub_region"])
132
+ reader = NXTomoReader(self.nx_fname, sub_region=test_case["sub_region"])
152
133
  data = reader.load_data()
153
134
  assert data.shape == test_case["expected_shape"]
154
135
  assert np.allclose(data[:, 0, 0], test_case["expected_values"])
@@ -156,7 +137,7 @@ class TestNXReader:
156
137
  def test_reading_with_binning_(self):
157
138
  from nabu.pipeline.reader import NXTomoReaderBinning
158
139
 
159
- reader_with_binning = NXTomoReaderBinning((2, 2), self.nx_fname, self.nx_data_path)
140
+ reader_with_binning = NXTomoReaderBinning((2, 2), self.nx_fname)
160
141
  data = reader_with_binning.load_data()
161
142
  assert data.shape == (self.data_desc.n_projs,) + tuple(n // 2 for n in self.data_desc.frame_shape)
162
143
 
@@ -177,7 +158,6 @@ class TestNXReader:
177
158
  reader_distortion_corr = NXTomoReaderDistortionCorrection(
178
159
  distortion_corrector,
179
160
  self.nx_fname,
180
- self.nx_data_path,
181
161
  sub_region=sub_region,
182
162
  )
183
163
 
@@ -220,7 +200,7 @@ class TestNXReader:
220
200
  for test_case in test_cases:
221
201
  binning = test_case.get("binning", None)
222
202
  reader_cls = NXTomoReader
223
- init_args = [self.nx_fname, self.nx_data_path]
203
+ init_args = [self.nx_fname]
224
204
  init_kwargs = {"sub_region": test_case["sub_region"]}
225
205
  if binning is not None:
226
206
  reader_cls = NXTomoReaderBinning
@@ -231,6 +211,29 @@ class TestNXReader:
231
211
  assert data.shape == test_case["expected_shape"], err_msg
232
212
  assert np.allclose(data[:, 0, 0], test_case["expected_values"]), err_msg
233
213
 
214
+ def test_load_exclude_projections(self):
215
+ n_z, n_x = self.data_desc.frame_shape
216
+ # projs_idx = np.where(self.image_key == 0)[0]
217
+ projs_idx = np.arange(self.data_desc.n_projs, dtype=np.int64)
218
+ excluded_projs_idx_1 = projs_idx[10:20]
219
+ excluded_projs_idx_2 = np.concatenate([projs_idx[10:14], projs_idx[50:57]])
220
+
221
+ set_to_nparray = lambda x: np.array(sorted(list(x)))
222
+
223
+ projs_idx1 = set_to_nparray(set(projs_idx) - set(excluded_projs_idx_1))
224
+ projs_idx2 = set_to_nparray(set(projs_idx) - set(excluded_projs_idx_2))
225
+
226
+ sub_regions_to_test = (
227
+ (projs_idx1, None, None),
228
+ (projs_idx1, slice(0, n_z // 2), None),
229
+ (projs_idx2, None, None),
230
+ (projs_idx2, slice(3, n_z // 2), None),
231
+ )
232
+ for sub_region in sub_regions_to_test:
233
+ reader = NXTomoReader(self.nx_fname, sub_region=sub_region)
234
+ data = reader.load_data()
235
+ assert np.allclose(data[:, 0, 0], self.projs_vals[sub_region[0]])
236
+
234
237
 
235
238
  @pytest.fixture(scope="class")
236
239
  def bootstrap_edf_reader(request):
@@ -1,6 +1,5 @@
1
1
  from os import path
2
2
  from time import time
3
- from math import ceil
4
3
  import numpy as np
5
4
  from silx.io.url import DataUrl
6
5
 
@@ -127,10 +126,10 @@ class ChunkedPipeline:
127
126
  if len(chunk_shape) != 3:
128
127
  raise ValueError("Expected chunk_shape to be a tuple of length 3 in the form (n_z, n_y, n_x)")
129
128
  self.chunk_shape = tuple(int(c) for c in chunk_shape) # cast to int, as numpy.int64 can make pycuda crash
130
- # TODO: sanity check (eg. compare to size of radios in dataset_info) ?
129
+ ss_start = getattr(self.process_config, "subsampling_start", 0)
131
130
  # (n_a, n_z, n_x)
132
131
  self.radios_shape = (
133
- ceil(self.chunk_shape[0] / self.process_config.subsampling_factor),
132
+ np.arange(self.chunk_shape[0])[ss_start :: self.process_config.subsampling_factor].size,
134
133
  self.chunk_shape[1] // self.process_config.binning[1],
135
134
  self.chunk_shape[2] // self.process_config.binning[0],
136
135
  )
@@ -340,13 +339,28 @@ class ChunkedPipeline:
340
339
  subs_z = None
341
340
  subs_x = None
342
341
  angular_sub_region = slice(*(self.sub_region[0]))
342
+
343
+ # exclude(subsample(.)) != subsample(exclude(.))
344
+ # Here we want the latter: first exclude the user-defined angular range, and then subsample the remaining indices
345
+ if len(self.dataset_info.get_excluded_projections_indices()) > 0:
346
+ angular_sub_region = np.array(
347
+ [
348
+ self.dataset_info.index_to_proj_number(i)
349
+ for i in sorted(list(self.dataset_info.projections.keys()))
350
+ ]
351
+ )
343
352
  if self.process_config.subsampling_factor:
344
353
  subs_angles = self.process_config.subsampling_factor
345
- angular_sub_region = slice(
346
- getattr(self.process_config, "subsampling_start", 0) + self.sub_region[0][0],
347
- self.sub_region[0][1],
348
- subs_angles,
349
- )
354
+ start = getattr(self.process_config, "subsampling_start", 0) + self.sub_region[0][0]
355
+ if isinstance(angular_sub_region, slice):
356
+ angular_sub_region = slice(
357
+ start,
358
+ self.sub_region[0][1],
359
+ subs_angles,
360
+ )
361
+ else:
362
+ angular_sub_region = angular_sub_region[start::subs_angles]
363
+
350
364
  reader_sub_region = (
351
365
  angular_sub_region,
352
366
  slice(*(self.sub_region[1]) + ((subs_z,) if subs_z else ())),
@@ -363,7 +377,7 @@ class ChunkedPipeline:
363
377
  if self.dataset_info.kind == "nx":
364
378
  self.chunk_reader = NXTomoReader(
365
379
  self.dataset_info.dataset_hdf5_url.file_path(),
366
- self.dataset_info.dataset_hdf5_url.data_path(),
380
+ data_path=self.dataset_info.dataset_hdf5_url.data_path(),
367
381
  sub_region=reader_sub_region,
368
382
  image_key=0,
369
383
  **other_reader_kwargs,
@@ -12,6 +12,7 @@ from ...resources.nxflatfield import update_dataset_info_flats_darks
12
12
  from ...resources.utils import get_quantities_and_units
13
13
  from ..estimators import estimate_cor
14
14
  from ..processconfig import ProcessConfigBase
15
+ from ..config_validators import convert_to_bool
15
16
  from .nabu_config import nabu_config, renamed_keys
16
17
  from .dataset_validator import FullFieldDatasetValidator
17
18
  from nxtomo.nxobject.nxdetector import ImageKey
@@ -475,7 +476,7 @@ class ProcessConfig(ProcessConfigBase):
475
476
  # Double flat field
476
477
  #
477
478
  # ---- COMPAT ----
478
- if nabu_config["preproc"].get("double_flatfield_enabled", False):
479
+ if convert_to_bool(nabu_config["preproc"].get("double_flatfield_enabled", False))[0]:
479
480
  deprecation_warning(
480
481
  "'double_flatfield_enabled' has been renamed to 'double_flatfield'. Please update your configuration file"
481
482
  )
nabu/preproc/flatfield.py CHANGED
@@ -456,10 +456,10 @@ class FlatFieldDataUrls(FlatField):
456
456
 
457
457
 
458
458
  class PCAFlatsNormalizer:
459
- """This class implement a flatfield normalization based on a PCA of a series of acauired flatfields.
459
+ """This class implement a flatfield normalization based on a PCA of a series of acquired flatfields.
460
460
  The PCA decomposition is handled by a PCAFlatsDecomposer object.
461
461
 
462
- This implementation was proposed by Jailin C. et al in https://doi.org/10.1107/S1600577516015812.
462
+ This implementation was proposed by Jailin C. et al in https://journals.iucr.org/s/issues/2017/01/00/fv5055/
463
463
 
464
464
  Code initially written by ID11 @ ESRF staff.
465
465
  Jonathan Wright - Implementation based on research paper
@@ -619,7 +619,7 @@ class PCAFlatsDecomposer:
619
619
  """This class implements a PCA decomposition of a serie of acquired flatfields.
620
620
  The PCA decomposition is used to normalize the projections through a PCAFLatNormalizer object.
621
621
 
622
- This implementation was proposed by Jailin C. et al in https://doi.org/10.1107/S1600577516015812.
622
+ This implementation was proposed by Jailin C. et al in https://journals.iucr.org/s/issues/2017/01/00/fv5055/
623
623
 
624
624
  Code initially written by ID11 @ ESRF staff.
625
625
  Jonathan Wright - Implementation based on research paper
@@ -396,6 +396,11 @@ class EDFDatasetAnalyzer(DatasetAnalyzer):
396
396
  def scan_dirname(self):
397
397
  return self.dataset_scanner.path
398
398
 
399
+ def get_excluded_projections_indices(self, including_other_frames_types=True):
400
+ if not (including_other_frames_types):
401
+ raise NotImplementedError
402
+ return self.dataset_scanner.get_ignored_projection_indices()
403
+
399
404
 
400
405
  class HDF5DatasetAnalyzer(DatasetAnalyzer):
401
406
  """
@@ -606,6 +611,36 @@ class HDF5DatasetAnalyzer(DatasetAnalyzer):
606
611
  def get_frame(self, idx):
607
612
  return get_data(self.dataset_scanner.frames[idx].url)
608
613
 
614
+ def get_frames_indices(self, frame_type):
615
+ return self._select_according_to_frame_type(np.arange(self.dataset_scanner.image_key_control.size), frame_type)
616
+
617
+ def index_to_proj_number(self, proj_index):
618
+ """
619
+ Return the projection *number*, from its frame *index*.
620
+
621
+ For example if there are 11 flats before projections,
622
+ then projections will have indices [11, 12, .....] (possibly not contiguous)
623
+ while their number is [0, 1, ..., ] (contiguous, starts from 0)
624
+ """
625
+ all_projs_indices = self.get_frames_indices("projection")
626
+ return search_sorted(all_projs_indices, proj_index)
627
+
628
+ def get_excluded_projections_indices(self, including_other_frames_types=True):
629
+ # Get indices of ALL projections (even excluded ones)
630
+ # the index accounts for flats/darks !
631
+ # Get indices of excluded projs (again, accounting for flats/darks)
632
+ ignored_projs_indices = self.dataset_scanner.get_ignored_projection_indices()
633
+ ignored_projs_indices = [
634
+ idx for idx in ignored_projs_indices if self.dataset_scanner.frames[idx].is_control is False
635
+ ]
636
+ if including_other_frames_types:
637
+ return ignored_projs_indices
638
+ # Get indices of excluded projs, now relative to the pure projections stack
639
+ ignored_projs_indices_rel = [
640
+ self.index_to_proj_number(ignored_proj_idx_abs) for ignored_proj_idx_abs in ignored_projs_indices
641
+ ]
642
+ return ignored_projs_indices_rel
643
+
609
644
 
610
645
  def get_angle_at_index(all_angles, index):
611
646
  """
@@ -0,0 +1,37 @@
1
+ import pytest
2
+ import numpy as np
3
+ from nabu.testutils import get_dummy_nxtomo_info
4
+ from nabu.resources.dataset_analyzer import analyze_dataset
5
+
6
+
7
+ @pytest.fixture(scope="class")
8
+ def bootstrap_nx(request):
9
+ cls = request.cls
10
+ cls.nx_fname, cls.data_desc, cls.image_key, cls.projs_vals, cls.darks_vals, cls.flats1_vals, cls.flats2_vals = (
11
+ get_dummy_nxtomo_info()
12
+ )
13
+
14
+
15
+ @pytest.mark.usefixtures("bootstrap_nx")
16
+ class TestNXDataset:
17
+
18
+ def test_exclude_projs_angular_range(self):
19
+ dataset_info_with_all_projs = analyze_dataset(self.nx_fname)
20
+
21
+ # Test exclude angular range - angles min and max in degrees
22
+ angular_ranges_to_test = [(0, 15), (5, 6), (50, 58.5)]
23
+ for angular_range in angular_ranges_to_test:
24
+ angle_min, angle_max = angular_range
25
+ dataset_info = analyze_dataset(
26
+ self.nx_fname,
27
+ extra_options={"exclude_projections": {"type": "angular_range", "range": [angle_min, angle_max]}},
28
+ )
29
+ excluded_projs_indices = dataset_info.get_excluded_projections_indices()
30
+ # Check that get_excluded_projections_indices() angles are correct
31
+ for excluded_proj_index in excluded_projs_indices:
32
+ frame_angle_deg = dataset_info.dataset_scanner.frames[excluded_proj_index].rotation_angle
33
+ assert angle_min <= frame_angle_deg and frame_angle_deg <= angle_max
34
+
35
+ assert set(dataset_info_with_all_projs.projections.keys()) - set(dataset_info.projections.keys()) == set(
36
+ excluded_projs_indices
37
+ )
nabu/testutils.py CHANGED
@@ -1,3 +1,4 @@
1
+ from dataclasses import dataclass
1
2
  from itertools import product
2
3
  import tarfile
3
4
  import os
@@ -5,6 +6,7 @@ import numpy as np
5
6
  from scipy.signal.windows import gaussian
6
7
  from silx.resources import ExternalResources
7
8
  from silx.io.dictdump import nxtodict, dicttonx
9
+ from nxtomo.application.nxtomo import ImageKey
8
10
 
9
11
  utilstest = ExternalResources(
10
12
  project="nabu", url_base="http://www.silx.org/pub/nabu/data/", env_key="NABU_DATA", timeout=60
@@ -56,6 +58,38 @@ def get_data(*dataset_path):
56
58
  return np.load(dataset_downloaded_path)
57
59
 
58
60
 
61
+ @dataclass
62
+ class SimpleNXTomoDescription:
63
+ n_darks: int = 0
64
+ n_flats1: int = 0
65
+ n_projs: int = 0
66
+ n_flats2: int = 0
67
+ n_align: int = 0
68
+ frame_shape: tuple = None
69
+ dtype: np.dtype = np.uint16
70
+
71
+
72
+ def get_dummy_nxtomo_info():
73
+ nx_fname = utilstest.getfile("dummy_nxtomo.nx")
74
+ data_desc = SimpleNXTomoDescription(
75
+ n_darks=10, n_flats1=11, n_projs=100, n_flats2=11, n_align=12, frame_shape=(11, 10), dtype=np.uint16
76
+ )
77
+ image_key = np.concatenate(
78
+ [
79
+ np.zeros(data_desc.n_darks, dtype=np.int32) + ImageKey.DARK_FIELD.value,
80
+ np.zeros(data_desc.n_flats1, dtype=np.int32) + ImageKey.FLAT_FIELD.value,
81
+ np.zeros(data_desc.n_projs, dtype=np.int32) + ImageKey.PROJECTION.value,
82
+ np.zeros(data_desc.n_flats2, dtype=np.int32) + ImageKey.FLAT_FIELD.value,
83
+ np.zeros(data_desc.n_align, dtype=np.int32) + ImageKey.ALIGNMENT.value,
84
+ ]
85
+ )
86
+ projs_vals = np.arange(data_desc.n_projs) + data_desc.n_flats1 + data_desc.n_darks
87
+ darks_vals = np.arange(data_desc.n_darks)
88
+ flats1_vals = np.arange(data_desc.n_darks, data_desc.n_darks + data_desc.n_flats1)
89
+ flats2_vals = np.arange(data_desc.n_darks, data_desc.n_darks + data_desc.n_flats2)
90
+ return nx_fname, data_desc, image_key, projs_vals, darks_vals, flats1_vals, flats2_vals
91
+
92
+
59
93
  def get_array_of_given_shape(img, shape, dtype):
60
94
  """
61
95
  From a given image, returns an array of the wanted shape and dtype.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: nabu
3
- Version: 2025.1.0rc5
3
+ Version: 2025.1.0rc6
4
4
  Summary: Nabu - Tomography software
5
5
  Author-email: Pierre Paleo <pierre.paleo@esrf.fr>, Henri Payno <henri.payno@esrf.fr>, Alessandro Mirone <mirone@esrf.fr>, Jérôme Lesaint <jerome.lesaint@esrf.fr>
6
6
  Maintainer-email: Pierre Paleo <pierre.paleo@esrf.fr>
@@ -1,10 +1,9 @@
1
1
  doc/conf.py,sha256=3xtCarCHrXPr50GbeRDuH-o3Jzojw7mpr7vpGfZPLAE,3787
2
2
  doc/create_conf_doc.py,sha256=IVOdP70KvbW9WS_UQu3Iyd0YfS60E2fJ5IDtQ_s4cDw,1143
3
- doc/doc_config.py,sha256=anqeOVjqE2e7eVzg7yuh9dvIneTkrA5doGl1cVBqT7Q,730
4
3
  doc/get_mathjax.py,sha256=VIvKRCdDuF2VoY8JD3mSey9XX13AZMmwTJBHdt1tUs4,1012
5
- nabu/__init__.py,sha256=MqQy5o-iAgwXYvJPxuObZvQDv0dpmXSmWkMXaLkGkog,274
4
+ nabu/__init__.py,sha256=EGKVb44QFboUSoFCqFcSfj8VLtWXW3czbgYHuNnE_-I,274
6
5
  nabu/tests.py,sha256=hOJD1GGxn_KE1bWMoxfjnjzI7d9JBUpoc9B2_tVFiEk,1370
7
- nabu/testutils.py,sha256=eL81DWgYwu2CCFmDMsFs4QjfI7w9RPXFuPU5gvYF6No,8631
6
+ nabu/testutils.py,sha256=4I62IP3VLOJx8JvGBgY1t4i4CiJMWfT_aUopxg39JIM,10047
8
7
  nabu/utils.py,sha256=tJI64BNXMhD6W293fwwcgf9bvTalYG_5AwVGYkgi6tU,27179
9
8
  nabu/app/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
9
  nabu/app/bootstrap.py,sha256=3yLZJmrmQBmPJMBtE2ih2cspfqOy5T_UN2U8B3i_hkI,3266
@@ -84,13 +83,13 @@ nabu/estimation/tests/test_translation.py,sha256=RkOnCYgk9DZGKlIka1snqTv4wbIz_nG
84
83
  nabu/io/__init__.py,sha256=AbQgj4-fCCHOKynO_PyAR9ejnFSuWKgroxxhxWVpjyQ,120
85
84
  nabu/io/cast_volume.py,sha256=eJuiKuZILD3xClUtYOjCqmwnbW12gwg-gJTzj606u_Y,21499
86
85
  nabu/io/detector_distortion.py,sha256=qO1Z6gejkBrixThvU_sLwH3UfLAe8aAO63YQ8z7PH78,11750
87
- nabu/io/reader.py,sha256=M6kLLzDe-OLh4veNr_F1Nn4TT6E6RfBpWPxMxrsnL94,41324
86
+ nabu/io/reader.py,sha256=CRQfzLqG10QNzKpPY1j3z2toEAti2bNgImMwWnHQfVE,41775
88
87
  nabu/io/reader_helical.py,sha256=q3LOmu6F_4Uxi3rZZWJ-rsix2Lgu_saXXdiJF8TLi24,4533
89
88
  nabu/io/utils.py,sha256=iSeBhOIcLlKgiHXdDLfAdyvSrgdv6I5iQUcjT2gv_WQ,9303
90
89
  nabu/io/writer.py,sha256=0bZ2X0hvT-r_2Uu2u3fIfXZH7clxKIDhBwHmBS0ZcxM,15811
91
90
  nabu/io/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
92
91
  nabu/io/tests/test_cast_volume.py,sha256=UGrIYVp1fxm372YFJinLWAL-xCtcR731axYchhonZHY,10774
93
- nabu/io/tests/test_readers.py,sha256=E26UE_nwqKcA6fBvzSdANNwqJ4Py07Dho61ShcMLb50,18131
92
+ nabu/io/tests/test_readers.py,sha256=70vD7qPuhVjZnebDAR9zrXjk1cD65bCH_F_5xb0JfbA,18252
94
93
  nabu/io/tests/test_remove_volume.py,sha256=q632Rq0qLneDcJLHGWCR8HYlvdnTvaEEyTQAsNv1ggM,5967
95
94
  nabu/io/tests/test_writers.py,sha256=EJp3DKeaRko7FVTgGdjrl2tt6jES228_XT5Jb767I0w,3137
96
95
  nabu/misc/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -142,13 +141,13 @@ nabu/pipeline/reader.py,sha256=wkxPHYOi_C8dHNc7kddB8AMtFuW7GjsP_tm6SJeHlEY,4792
142
141
  nabu/pipeline/utils.py,sha256=5GGhT9Wu7tHDlF3w7YNjTTYkNBl5xHa9EcRZSGFUWtM,3538
143
142
  nabu/pipeline/writer.py,sha256=NVeAtkWDtXg5UJ4C3wsbkfM23ZnK64atCWl8tjmjsuY,8166
144
143
  nabu/pipeline/fullfield/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
145
- nabu/pipeline/fullfield/chunked.py,sha256=MVqIceFGZKQZSiNa1PfetXrNAVlto-a4K4b_AyWtZnA,42534
144
+ nabu/pipeline/fullfield/chunked.py,sha256=gEm9XYk1MhNQBi-2VSVrXKQD55XmLPQAoHn9sCsEDIc,43272
146
145
  nabu/pipeline/fullfield/chunked_cuda.py,sha256=US5prrhNjsx3QVHkY5duQp8uFcGdgYEPzVS7nfWkJRw,6047
147
146
  nabu/pipeline/fullfield/computations.py,sha256=uqf7LvuDPm7n51BpP8eb8vTewDgRFyzSDP249g3FWBE,10098
148
147
  nabu/pipeline/fullfield/dataset_validator.py,sha256=HK_bmlII9pc59PXCgKJOyLv7Xu3DYv_jbH3RmQSgzvI,2933
149
148
  nabu/pipeline/fullfield/get_double_flatfield.py,sha256=uYFDAii6Nw4RCUQO_6Id6tXLdmtVbj_pxAHQWennSeE,5411
150
149
  nabu/pipeline/fullfield/nabu_config.py,sha256=F1E4KwHTfw6tynBnBjvr1F6tflIFsvDp8Pyop7xNmGg,33146
151
- nabu/pipeline/fullfield/processconfig.py,sha256=skNF8z7bV0-dw8xJUUNsrR2hSnmBYG1fnwIpyIS2Jfs,38393
150
+ nabu/pipeline/fullfield/processconfig.py,sha256=72hjxgClKcxmzypVpvcWzkzoXP7Ypu5VpRxMjYQVnJQ,38461
152
151
  nabu/pipeline/fullfield/reconstruction.py,sha256=cljRyxD8rvZ5qDws_5AwChi7P-5T_0SSXsGkYUGOVb8,38006
153
152
  nabu/pipeline/helical/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
154
153
  nabu/pipeline/helical/dataset_validator.py,sha256=HdKjUSj3PIpJb1dKSzJg8s4zXbAnMPWaPn8kvp_xQEs,657
@@ -177,7 +176,7 @@ nabu/preproc/distortion.py,sha256=XksQNrrSBfZS7mlvIdVEMZjw839ppQWP6AitTLcgfb0,33
177
176
  nabu/preproc/double_flatfield.py,sha256=WcYsNuotgQgm_KaioNa3OVI8rGfk3Wrn_YCW5v4mo4w,7895
178
177
  nabu/preproc/double_flatfield_cuda.py,sha256=lqgvZyeujdWJ5nF_GNRMQx7punjqA3SZ8K3IIyL3HDY,6197
179
178
  nabu/preproc/double_flatfield_variable_region.py,sha256=yiyvfGLFv3b93aKzHw84EQszPwQHfBv0PqtlQ8khvm4,2258
180
- nabu/preproc/flatfield.py,sha256=Lgh_2MsszLshUotH-Y1RJj0qtplnASy81tuanuxPrdc,30552
179
+ nabu/preproc/flatfield.py,sha256=t0NaV0NYaUAKtfWAop2srhL7wrfw6sGPMUAjs--LE3k,30574
181
180
  nabu/preproc/flatfield_cuda.py,sha256=Iiqv7bHa870DZOH68L19xiN1kG9I9JXuckFfA3khGtY,5482
182
181
  nabu/preproc/flatfield_variable_region.py,sha256=RVmSW515vgkHagjqotPNPUe97oQooHgdqkBn6hPH_2Q,3142
183
182
  nabu/preproc/phase.py,sha256=nRFhnHN_Bmmu5AHDcoO-Kt59sXYFSQaTljHZ5dlZiA0,13857
@@ -228,7 +227,6 @@ nabu/processing/tests/test_rotation.py,sha256=5O1yHthJfdoP-2loXob96j_V2IwI2eb8ro
228
227
  nabu/processing/tests/test_transpose.py,sha256=hTG17wTaB5Wv6twbW3ZFhBv6BYfqJY7DTQPoO0-KdkM,2760
229
228
  nabu/processing/tests/test_unsharp.py,sha256=R3ovbwDDp3ccy2A8t6CcUVELXRWkED5EnQdN2FQOfQM,4391
230
229
  nabu/reconstruction/__init__.py,sha256=EmKVvx_-FJvzJngG4ielIC7FhMCpI1Waaflg_lF44tk,163
231
- nabu/reconstruction/astra.py,sha256=qnFYabU-Bzgys8hXjIBcwO2NazrvhNXUYFIkMHc6BmM,10444
232
230
  nabu/reconstruction/cone.py,sha256=tSjaMDHeFV-h_IFbxUqSbhqlWmvlBcJQ8u89Y9Q9gg8,20559
233
231
  nabu/reconstruction/fbp.py,sha256=ptHcQsZTxgMFa9PhFJeTzDekibWR-P1BUj2SvRrk770,5684
234
232
  nabu/reconstruction/fbp_base.py,sha256=usd49ctQMI5w6uU5xn8qBsN7gI95iU9a3jRZgSPmOJk,18653
@@ -258,7 +256,7 @@ nabu/reconstruction/tests/test_reconstructor.py,sha256=xzfEM0j48ScQoGqWVcAK74HG9
258
256
  nabu/reconstruction/tests/test_sino_normalization.py,sha256=qNnpVUp3UcFGyLlSP0rCzE5hxdV6YENL9AF6mo72WcQ,3669
259
257
  nabu/resources/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
260
258
  nabu/resources/cor.py,sha256=-mcrTbj3G7o4PP5E_gIRo2j6_-ADmMkkOc_0CyQv84c,170
261
- nabu/resources/dataset_analyzer.py,sha256=WnY3GpNc5EfmYaCSgoCM2kguBkd3LC2BRa6U1vO6wfI,23982
259
+ nabu/resources/dataset_analyzer.py,sha256=X52X2YAOGBSMRfWko4Z2-oL_VePpc27A1GZbbTAk5yI,25739
262
260
  nabu/resources/gpu.py,sha256=oQA8PpPdyuIzpxq1PwVd9gJdyCiLIry2godUV1AbPW0,5769
263
261
  nabu/resources/logger.py,sha256=xV9UoLZBw3wXAWYfOgqrnOtzJc9aC1VNO4LM2cHxWJg,3738
264
262
  nabu/resources/nxflatfield.py,sha256=kgHPf_jGQiuJ_EFe8fladRkx_PM6PfdRtcf5Tf2cYgU,12385
@@ -271,6 +269,7 @@ nabu/resources/templates/id16_holo.conf,sha256=sDd_rEJGZjOGVAsGub5sT2arfXDnc_sxy
271
269
  nabu/resources/templates/id16a_fluo.conf,sha256=Nz1etzO2fSwksi7CThWJ5T1kZEdyBe8rMO7puNJ93Hc,542
272
270
  nabu/resources/templates/id19_pag.conf,sha256=u4fFPEBprzOW9_5_ChkIgowQcYpLhjmA8Gwm5XgC4Jc,384
273
271
  nabu/resources/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
272
+ nabu/resources/tests/test_dataset_analyzer.py,sha256=qp0cCwZfZMITWNDvxa-q84xpfUyFnQygDwCLN7QMSOs,1590
274
273
  nabu/resources/tests/test_extract.py,sha256=6ufLTc4Wgf9-FLsscpG2TbUDEn767iLVdyOrwRQyI9A,443
275
274
  nabu/resources/tests/test_nxflatfield.py,sha256=XCiFULzNyApdhr89a3a3BseJMPUN4JnzxQ8VdBaA8ac,4225
276
275
  nabu/resources/tests/test_units.py,sha256=F2jFTck-1UwYET1MwTtX6ntzYUosfwOJkugSencGgz8,2155
@@ -319,9 +318,9 @@ nabu/thirdparty/pore3d_deringer_munch.py,sha256=o4bisnFc-wMjuohWBT8wgWmfNehPQGtC
319
318
  nabu/thirdparty/tomocupy_remove_stripe.py,sha256=Khe4zFf0kRzu65Yxnvq58gt1ljOztqJGdMDhVAiM7lM,24363
320
319
  nabu/thirdparty/tomopy_phase.py,sha256=hK4oPpkogLOhv23XzzEXQY2u3r8fJvASY_bINVs6ERE,8634
321
320
  nabu/thirdparty/tomwer_load_flats_darks.py,sha256=ZNoVAinUb_wGYbfvs_4BVnWsjsQmNxSvCh1bWhR2WWg,5611
322
- nabu-2025.1.0rc5.dist-info/licenses/LICENSE,sha256=1eAIPSnEsnSFNUODnLtNtQTs76exG3ZxJ1DJR6zoUBA,1066
323
- nabu-2025.1.0rc5.dist-info/METADATA,sha256=AL9rbvVgIzYBY5oxByuzL3yj8iZBJ0ozErVn3Y8n8FU,4274
324
- nabu-2025.1.0rc5.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
325
- nabu-2025.1.0rc5.dist-info/entry_points.txt,sha256=YxzCY5CNQ1XHrIGbRKg-BgC1Jy7QaCITdITpyhhxpZU,1338
326
- nabu-2025.1.0rc5.dist-info/top_level.txt,sha256=fsm_N3eXLRZk2QXF9OSKPNDPFXOz8FAQjHh5avT3dok,9
327
- nabu-2025.1.0rc5.dist-info/RECORD,,
321
+ nabu-2025.1.0rc6.dist-info/licenses/LICENSE,sha256=1eAIPSnEsnSFNUODnLtNtQTs76exG3ZxJ1DJR6zoUBA,1066
322
+ nabu-2025.1.0rc6.dist-info/METADATA,sha256=yA0Om_mA72YwMBuAcOrLfV5_PjGK375QUsRrnp1gE50,4274
323
+ nabu-2025.1.0rc6.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
324
+ nabu-2025.1.0rc6.dist-info/entry_points.txt,sha256=YxzCY5CNQ1XHrIGbRKg-BgC1Jy7QaCITdITpyhhxpZU,1338
325
+ nabu-2025.1.0rc6.dist-info/top_level.txt,sha256=fsm_N3eXLRZk2QXF9OSKPNDPFXOz8FAQjHh5avT3dok,9
326
+ nabu-2025.1.0rc6.dist-info/RECORD,,
doc/doc_config.py DELETED
@@ -1,32 +0,0 @@
1
- #!/usr/bin/env python
2
-
3
- from nabu.resources.nabu_config import nabu_config
4
-
5
-
6
- def generate(file_):
7
- def write(content):
8
- print(content, file=file_)
9
- for section, values in nabu_config.items():
10
- if section == "about":
11
- continue
12
- write("## %s\n" % section)
13
- for key, val in values.items():
14
- if val["type"] == "unsupported":
15
- continue
16
- write(val["help"] + "\n")
17
- write(
18
- "```ini\n%s = %s\n```"
19
- % (key, val["default"])
20
- )
21
-
22
-
23
-
24
- if __name__ == "__main__":
25
-
26
- import sys, os
27
- print(os.path.abspath(__file__))
28
- exit(0)
29
-
30
- fname = "/tmp/test.md"
31
- with open(fname, "w") as f:
32
- generate(f)
@@ -1,245 +0,0 @@
1
- # ruff: noqa
2
- try:
3
- import astra
4
-
5
- __have_astra__ = True
6
- except ImportError:
7
- __have_astra__ = False
8
- astra = None
9
-
10
-
11
- class AstraReconstructor:
12
- """
13
- Base class for reconstructors based on the Astra toolbox
14
- """
15
-
16
- default_extra_options = {
17
- "axis_correction": None,
18
- "clip_outer_circle": False,
19
- "scale_factor": None,
20
- "filter_cutoff": 1.0,
21
- "outer_circle_value": 0.0,
22
- }
23
-
24
- def __init__(
25
- self,
26
- sinos_shape,
27
- angles=None,
28
- volume_shape=None,
29
- rot_center=None,
30
- pixel_size=None,
31
- padding_mode="zeros",
32
- filter_name=None,
33
- slice_roi=None,
34
- cuda_options=None,
35
- extra_options=None,
36
- ):
37
- self._configure_extra_options(extra_options)
38
- self._init_cuda(cuda_options)
39
- self._set_sino_shape(sinos_shape)
40
- self._orig_prog_geom = None
41
- self._init_geometry(
42
- source_origin_dist,
43
- origin_detector_dist,
44
- pixel_size,
45
- angles,
46
- volume_shape,
47
- rot_center,
48
- relative_z_position,
49
- slice_roi,
50
- )
51
- self._init_fdk(padding_mode, filter_name)
52
- self._alg_id = None
53
- self._vol_id = None
54
- self._proj_id = None
55
-
56
- def _configure_extra_options(self, extra_options):
57
- self.extra_options = self.default_extra_options.copy()
58
- self.extra_options.update(extra_options or {})
59
-
60
- def _init_cuda(self, cuda_options):
61
- cuda_options = cuda_options or {}
62
- self.cuda = CudaProcessing(**cuda_options)
63
-
64
- def _set_sino_shape(self, sinos_shape):
65
- if len(sinos_shape) != 3:
66
- raise ValueError("Expected a 3D shape")
67
- self.sinos_shape = sinos_shape
68
- self.n_sinos, self.n_angles, self.prj_width = sinos_shape
69
-
70
- def _set_pixel_size(self, pixel_size):
71
- if pixel_size is None:
72
- det_spacing_y = det_spacing_x = 1
73
- elif np.iterable(pixel_size):
74
- det_spacing_y, det_spacing_x = pixel_size
75
- else:
76
- # assuming scalar
77
- det_spacing_y = det_spacing_x = pixel_size
78
- self._det_spacing_y = det_spacing_y
79
- self._det_spacing_x = det_spacing_x
80
-
81
- def _set_slice_roi(self, slice_roi):
82
- self.slice_roi = slice_roi
83
- self._vol_geom_n_x = self.n_x
84
- self._vol_geom_n_y = self.n_y
85
- self._crop_data = True
86
- if slice_roi is None:
87
- return
88
- start_x, end_x, start_y, end_y = slice_roi
89
- if roi_is_centered(self.volume_shape[1:], (slice(start_y, end_y), slice(start_x, end_x))):
90
- # Astra can only reconstruct subregion centered around the origin
91
- self._vol_geom_n_x = self.n_x - start_x * 2
92
- self._vol_geom_n_y = self.n_y - start_y * 2
93
- else:
94
- raise NotImplementedError(
95
- "Astra supports only slice_roi centered around origin (got slice_roi=%s with n_x=%d, n_y=%d)"
96
- % (str(slice_roi), self.n_x, self.n_y)
97
- )
98
-
99
- def _init_geometry(
100
- self,
101
- source_origin_dist,
102
- origin_detector_dist,
103
- pixel_size,
104
- angles,
105
- volume_shape,
106
- rot_center,
107
- relative_z_position,
108
- slice_roi,
109
- ):
110
- if angles is None:
111
- self.angles = np.linspace(0, 2 * np.pi, self.n_angles, endpoint=True)
112
- else:
113
- self.angles = angles
114
- if volume_shape is None:
115
- volume_shape = (self.sinos_shape[0], self.sinos_shape[2], self.sinos_shape[2])
116
- self.volume_shape = volume_shape
117
- self.n_z, self.n_y, self.n_x = self.volume_shape
118
- self.source_origin_dist = source_origin_dist
119
- self.origin_detector_dist = origin_detector_dist
120
- self.magnification = 1 + origin_detector_dist / source_origin_dist
121
- self._set_slice_roi(slice_roi)
122
- self.vol_geom = astra.create_vol_geom(self._vol_geom_n_y, self._vol_geom_n_x, self.n_z)
123
- self.vol_shape = astra.geom_size(self.vol_geom)
124
- self._cor_shift = 0.0
125
- self.rot_center = rot_center
126
- if rot_center is not None:
127
- self._cor_shift = (self.sinos_shape[-1] - 1) / 2.0 - rot_center
128
- self._set_pixel_size(pixel_size)
129
- self._axis_corrections = self.extra_options.get("axis_correction", None)
130
- self._create_astra_proj_geometry(relative_z_position)
131
-
132
- def _create_astra_proj_geometry(self, relative_z_position):
133
- # This object has to be re-created each time, because once the modifications below are done,
134
- # it is no more a "cone" geometry but a "cone_vec" geometry, and cannot be updated subsequently
135
- # (see astra/functions.py:271)
136
- self.proj_geom = astra.create_proj_geom(
137
- "cone",
138
- self._det_spacing_x,
139
- self._det_spacing_y,
140
- self.n_sinos,
141
- self.prj_width,
142
- self.angles,
143
- self.source_origin_dist,
144
- self.origin_detector_dist,
145
- )
146
- self.relative_z_position = relative_z_position or 0.0
147
- # This will turn the geometry of type "cone" into a geometry of type "cone_vec"
148
- if self._orig_prog_geom is None:
149
- self._orig_prog_geom = self.proj_geom
150
- self.proj_geom = astra.geom_postalignment(self.proj_geom, (self._cor_shift, 0))
151
- # (src, detector_center, u, v) = (srcX, srcY, srcZ, dX, dY, dZ, uX, uY, uZ, vX, vY, vZ)
152
- vecs = self.proj_geom["Vectors"]
153
-
154
- # To adapt the center of rotation:
155
- # dX = cor_shift * cos(theta) - origin_detector_dist * sin(theta)
156
- # dY = origin_detector_dist * cos(theta) + cor_shift * sin(theta)
157
- if self._axis_corrections is not None:
158
- # should we check that dX and dY match the above formulas ?
159
- cor_shifts = self._cor_shift + self._axis_corrections
160
- vecs[:, 3] = cor_shifts * np.cos(self.angles) - self.origin_detector_dist * np.sin(self.angles)
161
- vecs[:, 4] = self.origin_detector_dist * np.cos(self.angles) + cor_shifts * np.sin(self.angles)
162
-
163
- # To adapt the z position:
164
- # Component 2 of vecs is the z coordinate of the source, component 5 is the z component of the detector position
165
- # We need to re-create the same inclination of the cone beam, thus we need to keep the inclination of the two z positions.
166
- # The detector is centered on the rotation axis, thus moving it up or down, just moves it out of the reconstruction volume.
167
- # We can bring back the detector in the correct volume position, by applying a rigid translation of both the detector and the source.
168
- # The translation is exactly the amount that brought the detector up or down, but in the opposite direction.
169
- vecs[:, 2] = -self.relative_z_position
170
-
171
- def _set_output(self, volume):
172
- if volume is not None:
173
- expected_shape = self.vol_shape # if not (self._crop_data) else self._output_cropped_shape
174
- self.cuda.check_array(volume, expected_shape)
175
- self.cuda.set_array("output", volume)
176
- if volume is None:
177
- self.cuda.allocate_array("output", self.vol_shape)
178
- d_volume = self.cuda.get_array("output")
179
- z, y, x = d_volume.shape
180
- self._vol_link = astra.data3d.GPULink(d_volume.ptr, x, y, z, d_volume.strides[-2])
181
- self._vol_id = astra.data3d.link("-vol", self.vol_geom, self._vol_link)
182
-
183
- def _set_input(self, sinos):
184
- self.cuda.check_array(sinos, self.sinos_shape)
185
- self.cuda.set_array("sinos", sinos) # self.cuda.sinos is now a GPU array
186
- # TODO don't create new link/proj_id if ptr is the same ?
187
- # But it seems Astra modifies the input sinogram while doing FDK, so this might be not relevant
188
- d_sinos = self.cuda.get_array("sinos")
189
-
190
- # self._proj_data_link = astra.data3d.GPULink(d_sinos.ptr, self.prj_width, self.n_angles, self.n_z, sinos.strides[-2])
191
- self._proj_data_link = astra.data3d.GPULink(
192
- d_sinos.ptr, self.prj_width, self.n_angles, self.n_sinos, d_sinos.strides[-2]
193
- )
194
- self._proj_id = astra.data3d.link("-sino", self.proj_geom, self._proj_data_link)
195
-
196
- def _preprocess_data(self):
197
- d_sinos = self.cuda.sinos
198
- for i in range(d_sinos.shape[0]):
199
- self.sino_filter.filter_sino(d_sinos[i], output=d_sinos[i])
200
-
201
- def _update_reconstruction(self):
202
- cfg = astra.astra_dict("BP3D_CUDA")
203
- cfg["ReconstructionDataId"] = self._vol_id
204
- cfg["ProjectionDataId"] = self._proj_id
205
- if self._alg_id is not None:
206
- astra.algorithm.delete(self._alg_id)
207
- self._alg_id = astra.algorithm.create(cfg)
208
-
209
- def reconstruct(self, sinos, output=None, relative_z_position=None):
210
- """
211
- sinos: numpy.ndarray or pycuda.gpuarray
212
- Sinograms, with shape (n_sinograms, n_angles, width)
213
- output: pycuda.gpuarray, optional
214
- Output array. If not provided, a new numpy array is returned
215
- relative_z_position: int, optional
216
- Position of the central slice of the slab, with respect to the full stack of slices.
217
- By default it is set to zero, meaning that the current slab is assumed in the middle of the stack
218
- """
219
- self._create_astra_proj_geometry(relative_z_position)
220
- self._set_input(sinos)
221
- self._set_output(output)
222
- self._preprocess_data()
223
- self._update_reconstruction()
224
- astra.algorithm.run(self._alg_id)
225
- #
226
- # NB: Could also be done with
227
- # from astra.experimental import direct_BP3D
228
- # projector_id = astra.create_projector("cuda3d", self.proj_geom, self.vol_geom, options=None)
229
- # direct_BP3D(projector_id, self._vol_link, self._proj_data_link)
230
- #
231
- result = self.cuda.get_array("output")
232
- if output is None:
233
- result = result.get()
234
- if self.extra_options.get("scale_factor", None) is not None:
235
- result *= np.float32(self.extra_options["scale_factor"]) # in-place for pycuda
236
- self.cuda.recover_arrays_references(["sinos", "output"])
237
- return result
238
-
239
- def __del__(self):
240
- if getattr(self, "_alg_id", None) is not None:
241
- astra.algorithm.delete(self._alg_id)
242
- if getattr(self, "_vol_id", None) is not None:
243
- astra.data3d.delete(self._vol_id)
244
- if getattr(self, "_proj_id", None) is not None:
245
- astra.data3d.delete(self._proj_id)