nabu 2024.2.1__py3-none-any.whl → 2024.2.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
doc/doc_config.py ADDED
@@ -0,0 +1,32 @@
1
+ #!/usr/bin/env python
2
+
3
+ from nabu.resources.nabu_config import nabu_config
4
+
5
+
6
+ def generate(file_):
7
+ def write(content):
8
+ print(content, file=file_)
9
+ for section, values in nabu_config.items():
10
+ if section == "about":
11
+ continue
12
+ write("## %s\n" % section)
13
+ for key, val in values.items():
14
+ if val["type"] == "unsupported":
15
+ continue
16
+ write(val["help"] + "\n")
17
+ write(
18
+ "```ini\n%s = %s\n```"
19
+ % (key, val["default"])
20
+ )
21
+
22
+
23
+
24
+ if __name__ == "__main__":
25
+
26
+ import sys, os
27
+ print(os.path.abspath(__file__))
28
+ exit(0)
29
+
30
+ fname = "/tmp/test.md"
31
+ with open(fname, "w") as f:
32
+ generate(f)
nabu/__init__.py CHANGED
@@ -1,4 +1,4 @@
1
- __version__ = "2024.2.1"
1
+ __version__ = "2024.2.2"
2
2
  __nabu_modules__ = [
3
3
  "app",
4
4
  "cuda",
@@ -89,11 +89,13 @@ def estimate_cor(method, dataset_info, do_flatfield=True, cor_options=None, logg
89
89
  estimated_cor = cor_finder.find_cor()
90
90
  else:
91
91
  composite_options = update_func_kwargs(CompositeCORFinder, cor_options)
92
- for what in ["cor_options", "logger"]:
92
+ for what in ["cor_options", "logger", "do_flatfield"]:
93
93
  composite_options.pop(what, None)
94
94
  cor_finder = CompositeCORFinder(
95
95
  dataset_info,
96
96
  cor_options=cor_options,
97
+ do_flatfield=do_flatfield,
98
+ take_log=cor_options.get("take_log", True),
97
99
  logger=logger,
98
100
  **composite_options,
99
101
  )
@@ -451,6 +453,7 @@ class CompositeCORFinder(CORFinderBase):
451
453
  oversampling=4,
452
454
  theta_interval=5,
453
455
  n_subsampling_y=40,
456
+ do_flatfield=True,
454
457
  take_log=True,
455
458
  cor_options=None,
456
459
  spike_threshold=0.04,
@@ -458,7 +461,7 @@ class CompositeCORFinder(CORFinderBase):
458
461
  norm_order=1,
459
462
  ):
460
463
  super().__init__(
461
- "composite-coarse-to-fine", dataset_info, do_flatfield=True, cor_options=cor_options, logger=logger
464
+ "composite-coarse-to-fine", dataset_info, do_flatfield=False, cor_options=cor_options, logger=logger
462
465
  )
463
466
  if norm_order not in [1, 2]:
464
467
  raise ValueError(
@@ -535,7 +538,10 @@ class CompositeCORFinder(CORFinderBase):
535
538
 
536
539
  self.absolute_indices = sorted(self.dataset_info.projections.keys())
537
540
 
538
- my_flats = self.dataset_info.flats
541
+ if do_flatfield:
542
+ my_flats = self.dataset_info.flats
543
+ else:
544
+ my_flats = None
539
545
 
540
546
  if my_flats is not None and len(list(my_flats.keys())):
541
547
  self.use_flat = True
@@ -0,0 +1,244 @@
1
+ try:
2
+ import astra
3
+
4
+ __have_astra__ = True
5
+ except ImportError:
6
+ __have_astra__ = False
7
+ astra = None
8
+
9
+
10
+ class AstraReconstructor:
11
+ """
12
+ Base class for reconstructors based on the Astra toolbox
13
+ """
14
+
15
+ default_extra_options = {
16
+ "axis_correction": None,
17
+ "clip_outer_circle": False,
18
+ "scale_factor": None,
19
+ "filter_cutoff": 1.0,
20
+ "outer_circle_value": 0.0,
21
+ }
22
+
23
+ def __init__(
24
+ self,
25
+ sinos_shape,
26
+ angles=None,
27
+ volume_shape=None,
28
+ rot_center=None,
29
+ pixel_size=None,
30
+ padding_mode="zeros",
31
+ filter_name=None,
32
+ slice_roi=None,
33
+ cuda_options=None,
34
+ extra_options=None,
35
+ ):
36
+ self._configure_extra_options(extra_options)
37
+ self._init_cuda(cuda_options)
38
+ self._set_sino_shape(sinos_shape)
39
+ self._orig_prog_geom = None
40
+ self._init_geometry(
41
+ source_origin_dist,
42
+ origin_detector_dist,
43
+ pixel_size,
44
+ angles,
45
+ volume_shape,
46
+ rot_center,
47
+ relative_z_position,
48
+ slice_roi,
49
+ )
50
+ self._init_fdk(padding_mode, filter_name)
51
+ self._alg_id = None
52
+ self._vol_id = None
53
+ self._proj_id = None
54
+
55
+ def _configure_extra_options(self, extra_options):
56
+ self.extra_options = self.default_extra_options.copy()
57
+ self.extra_options.update(extra_options or {})
58
+
59
+ def _init_cuda(self, cuda_options):
60
+ cuda_options = cuda_options or {}
61
+ self.cuda = CudaProcessing(**cuda_options)
62
+
63
+ def _set_sino_shape(self, sinos_shape):
64
+ if len(sinos_shape) != 3:
65
+ raise ValueError("Expected a 3D shape")
66
+ self.sinos_shape = sinos_shape
67
+ self.n_sinos, self.n_angles, self.prj_width = sinos_shape
68
+
69
+ def _set_pixel_size(self, pixel_size):
70
+ if pixel_size is None:
71
+ det_spacing_y = det_spacing_x = 1
72
+ elif np.iterable(pixel_size):
73
+ det_spacing_y, det_spacing_x = pixel_size
74
+ else:
75
+ # assuming scalar
76
+ det_spacing_y = det_spacing_x = pixel_size
77
+ self._det_spacing_y = det_spacing_y
78
+ self._det_spacing_x = det_spacing_x
79
+
80
+ def _set_slice_roi(self, slice_roi):
81
+ self.slice_roi = slice_roi
82
+ self._vol_geom_n_x = self.n_x
83
+ self._vol_geom_n_y = self.n_y
84
+ self._crop_data = True
85
+ if slice_roi is None:
86
+ return
87
+ start_x, end_x, start_y, end_y = slice_roi
88
+ if roi_is_centered(self.volume_shape[1:], (slice(start_y, end_y), slice(start_x, end_x))):
89
+ # Astra can only reconstruct subregion centered around the origin
90
+ self._vol_geom_n_x = self.n_x - start_x * 2
91
+ self._vol_geom_n_y = self.n_y - start_y * 2
92
+ else:
93
+ raise NotImplementedError(
94
+ "Astra supports only slice_roi centered around origin (got slice_roi=%s with n_x=%d, n_y=%d)"
95
+ % (str(slice_roi), self.n_x, self.n_y)
96
+ )
97
+
98
+ def _init_geometry(
99
+ self,
100
+ source_origin_dist,
101
+ origin_detector_dist,
102
+ pixel_size,
103
+ angles,
104
+ volume_shape,
105
+ rot_center,
106
+ relative_z_position,
107
+ slice_roi,
108
+ ):
109
+ if angles is None:
110
+ self.angles = np.linspace(0, 2 * np.pi, self.n_angles, endpoint=True)
111
+ else:
112
+ self.angles = angles
113
+ if volume_shape is None:
114
+ volume_shape = (self.sinos_shape[0], self.sinos_shape[2], self.sinos_shape[2])
115
+ self.volume_shape = volume_shape
116
+ self.n_z, self.n_y, self.n_x = self.volume_shape
117
+ self.source_origin_dist = source_origin_dist
118
+ self.origin_detector_dist = origin_detector_dist
119
+ self.magnification = 1 + origin_detector_dist / source_origin_dist
120
+ self._set_slice_roi(slice_roi)
121
+ self.vol_geom = astra.create_vol_geom(self._vol_geom_n_y, self._vol_geom_n_x, self.n_z)
122
+ self.vol_shape = astra.geom_size(self.vol_geom)
123
+ self._cor_shift = 0.0
124
+ self.rot_center = rot_center
125
+ if rot_center is not None:
126
+ self._cor_shift = (self.sinos_shape[-1] - 1) / 2.0 - rot_center
127
+ self._set_pixel_size(pixel_size)
128
+ self._axis_corrections = self.extra_options.get("axis_correction", None)
129
+ self._create_astra_proj_geometry(relative_z_position)
130
+
131
+ def _create_astra_proj_geometry(self, relative_z_position):
132
+ # This object has to be re-created each time, because once the modifications below are done,
133
+ # it is no more a "cone" geometry but a "cone_vec" geometry, and cannot be updated subsequently
134
+ # (see astra/functions.py:271)
135
+ self.proj_geom = astra.create_proj_geom(
136
+ "cone",
137
+ self._det_spacing_x,
138
+ self._det_spacing_y,
139
+ self.n_sinos,
140
+ self.prj_width,
141
+ self.angles,
142
+ self.source_origin_dist,
143
+ self.origin_detector_dist,
144
+ )
145
+ self.relative_z_position = relative_z_position or 0.0
146
+ # This will turn the geometry of type "cone" into a geometry of type "cone_vec"
147
+ if self._orig_prog_geom is None:
148
+ self._orig_prog_geom = self.proj_geom
149
+ self.proj_geom = astra.geom_postalignment(self.proj_geom, (self._cor_shift, 0))
150
+ # (src, detector_center, u, v) = (srcX, srcY, srcZ, dX, dY, dZ, uX, uY, uZ, vX, vY, vZ)
151
+ vecs = self.proj_geom["Vectors"]
152
+
153
+ # To adapt the center of rotation:
154
+ # dX = cor_shift * cos(theta) - origin_detector_dist * sin(theta)
155
+ # dY = origin_detector_dist * cos(theta) + cor_shift * sin(theta)
156
+ if self._axis_corrections is not None:
157
+ # should we check that dX and dY match the above formulas ?
158
+ cor_shifts = self._cor_shift + self._axis_corrections
159
+ vecs[:, 3] = cor_shifts * np.cos(self.angles) - self.origin_detector_dist * np.sin(self.angles)
160
+ vecs[:, 4] = self.origin_detector_dist * np.cos(self.angles) + cor_shifts * np.sin(self.angles)
161
+
162
+ # To adapt the z position:
163
+ # Component 2 of vecs is the z coordinate of the source, component 5 is the z component of the detector position
164
+ # We need to re-create the same inclination of the cone beam, thus we need to keep the inclination of the two z positions.
165
+ # The detector is centered on the rotation axis, thus moving it up or down, just moves it out of the reconstruction volume.
166
+ # We can bring back the detector in the correct volume position, by applying a rigid translation of both the detector and the source.
167
+ # The translation is exactly the amount that brought the detector up or down, but in the opposite direction.
168
+ vecs[:, 2] = -self.relative_z_position
169
+
170
+ def _set_output(self, volume):
171
+ if volume is not None:
172
+ expected_shape = self.vol_shape # if not (self._crop_data) else self._output_cropped_shape
173
+ self.cuda.check_array(volume, expected_shape)
174
+ self.cuda.set_array("output", volume)
175
+ if volume is None:
176
+ self.cuda.allocate_array("output", self.vol_shape)
177
+ d_volume = self.cuda.get_array("output")
178
+ z, y, x = d_volume.shape
179
+ self._vol_link = astra.data3d.GPULink(d_volume.ptr, x, y, z, d_volume.strides[-2])
180
+ self._vol_id = astra.data3d.link("-vol", self.vol_geom, self._vol_link)
181
+
182
+ def _set_input(self, sinos):
183
+ self.cuda.check_array(sinos, self.sinos_shape)
184
+ self.cuda.set_array("sinos", sinos) # self.cuda.sinos is now a GPU array
185
+ # TODO don't create new link/proj_id if ptr is the same ?
186
+ # But it seems Astra modifies the input sinogram while doing FDK, so this might be not relevant
187
+ d_sinos = self.cuda.get_array("sinos")
188
+
189
+ # self._proj_data_link = astra.data3d.GPULink(d_sinos.ptr, self.prj_width, self.n_angles, self.n_z, sinos.strides[-2])
190
+ self._proj_data_link = astra.data3d.GPULink(
191
+ d_sinos.ptr, self.prj_width, self.n_angles, self.n_sinos, d_sinos.strides[-2]
192
+ )
193
+ self._proj_id = astra.data3d.link("-sino", self.proj_geom, self._proj_data_link)
194
+
195
+ def _preprocess_data(self):
196
+ d_sinos = self.cuda.sinos
197
+ for i in range(d_sinos.shape[0]):
198
+ self.sino_filter.filter_sino(d_sinos[i], output=d_sinos[i])
199
+
200
+ def _update_reconstruction(self):
201
+ cfg = astra.astra_dict("BP3D_CUDA")
202
+ cfg["ReconstructionDataId"] = self._vol_id
203
+ cfg["ProjectionDataId"] = self._proj_id
204
+ if self._alg_id is not None:
205
+ astra.algorithm.delete(self._alg_id)
206
+ self._alg_id = astra.algorithm.create(cfg)
207
+
208
+ def reconstruct(self, sinos, output=None, relative_z_position=None):
209
+ """
210
+ sinos: numpy.ndarray or pycuda.gpuarray
211
+ Sinograms, with shape (n_sinograms, n_angles, width)
212
+ output: pycuda.gpuarray, optional
213
+ Output array. If not provided, a new numpy array is returned
214
+ relative_z_position: int, optional
215
+ Position of the central slice of the slab, with respect to the full stack of slices.
216
+ By default it is set to zero, meaning that the current slab is assumed in the middle of the stack
217
+ """
218
+ self._create_astra_proj_geometry(relative_z_position)
219
+ self._set_input(sinos)
220
+ self._set_output(output)
221
+ self._preprocess_data()
222
+ self._update_reconstruction()
223
+ astra.algorithm.run(self._alg_id)
224
+ #
225
+ # NB: Could also be done with
226
+ # from astra.experimental import direct_BP3D
227
+ # projector_id = astra.create_projector("cuda3d", self.proj_geom, self.vol_geom, options=None)
228
+ # direct_BP3D(projector_id, self._vol_link, self._proj_data_link)
229
+ #
230
+ result = self.cuda.get_array("output")
231
+ if output is None:
232
+ result = result.get()
233
+ if self.extra_options.get("scale_factor", None) is not None:
234
+ result *= np.float32(self.extra_options["scale_factor"]) # in-place for pycuda
235
+ self.cuda.recover_arrays_references(["sinos", "output"])
236
+ return result
237
+
238
+ def __del__(self):
239
+ if getattr(self, "_alg_id", None) is not None:
240
+ astra.algorithm.delete(self._alg_id)
241
+ if getattr(self, "_vol_id", None) is not None:
242
+ astra.data3d.delete(self._vol_id)
243
+ if getattr(self, "_proj_id", None) is not None:
244
+ astra.data3d.delete(self._proj_id)
nabu/stitching/config.py CHANGED
@@ -1038,8 +1038,9 @@ class PreProcessedSingleAxisStitchingConfiguration(SingleAxisStitchingConfigurat
1038
1038
  config[STITCHING_SECTION].get(ALIGNMENT_AXIS_2_FIELD, AlignmentAxis2.CENTER)
1039
1039
  ),
1040
1040
  pad_mode=config[STITCHING_SECTION].get(PAD_MODE_FIELD, "constant"),
1041
- duplicate_data=not config[STITCHING_SECTION].get(AVOID_DATA_DUPLICATION_FIELD, False),
1042
- normalization_by_sample=NormalizationBySample.from_dict(config.get(NORMALIZATION_BY_SAMPLE_SECTION, {})),
1041
+ duplicate_data=not _scalar_or_tuple_to_bool_or_tuple_of_bool(
1042
+ config[STITCHING_SECTION].get(AVOID_DATA_DUPLICATION_FIELD, False)
1043
+ ),
1043
1044
  )
1044
1045
 
1045
1046
 
@@ -1196,7 +1197,9 @@ class PostProcessedSingleAxisStitchingConfiguration(SingleAxisStitchingConfigura
1196
1197
  config[STITCHING_SECTION].get(ALIGNMENT_AXIS_2_FIELD, AlignmentAxis2.CENTER)
1197
1198
  ),
1198
1199
  pad_mode=config[STITCHING_SECTION].get(PAD_MODE_FIELD, "constant"),
1199
- duplicate_data=not config[STITCHING_SECTION].get(AVOID_DATA_DUPLICATION_FIELD, False),
1200
+ duplicate_data=not _scalar_or_tuple_to_bool_or_tuple_of_bool(
1201
+ config[STITCHING_SECTION].get(AVOID_DATA_DUPLICATION_FIELD, False)
1202
+ ),
1200
1203
  normalization_by_sample=NormalizationBySample.from_dict(config.get(NORMALIZATION_BY_SAMPLE_SECTION, {})),
1201
1204
  )
1202
1205
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nabu
3
- Version: 2024.2.1
3
+ Version: 2024.2.2
4
4
  Summary: Nabu - Tomography software
5
5
  Author-email: Pierre Paleo <pierre.paleo@esrf.fr>, Henri Payno <henri.payno@esrf.fr>, Alessandro Mirone <mirone@esrf.fr>, Jérôme Lesaint <jerome.lesaint@esrf.fr>
6
6
  Maintainer-email: Pierre Paleo <pierre.paleo@esrf.fr>
@@ -1,7 +1,8 @@
1
1
  doc/conf.py,sha256=3xtCarCHrXPr50GbeRDuH-o3Jzojw7mpr7vpGfZPLAE,3787
2
2
  doc/create_conf_doc.py,sha256=IVOdP70KvbW9WS_UQu3Iyd0YfS60E2fJ5IDtQ_s4cDw,1143
3
+ doc/doc_config.py,sha256=anqeOVjqE2e7eVzg7yuh9dvIneTkrA5doGl1cVBqT7Q,730
3
4
  doc/get_mathjax.py,sha256=VIvKRCdDuF2VoY8JD3mSey9XX13AZMmwTJBHdt1tUs4,1012
4
- nabu/__init__.py,sha256=_crjpH1e06xe5ACe0WGTWJwi-ZGm59UWsB_3tUnYxlA,270
5
+ nabu/__init__.py,sha256=c4AaFlxaEks7K6XWAPy5va8o7QnA79fGW45T36l46to,270
5
6
  nabu/tests.py,sha256=cew9OY2uTyncHI_HM32W8CP6B1GTGKaOW65XtMEqs7o,1417
6
7
  nabu/testutils.py,sha256=VkSL9tbY0XEH49Z5OjDFFhzkSxrCv4UIuvSVFgegSUY,7632
7
8
  nabu/utils.py,sha256=V1B_sD54XGNKn5pORa2yNCATyswOzybey3sv8BuIYWY,26355
@@ -31,7 +32,6 @@ nabu/app/shrink_dataset.py,sha256=P9dorO0Q-gPAWgSHyZi3XQp4jkMTJacDYzNvJY4oh98,35
31
32
  nabu/app/stitching.py,sha256=T5nQVp7D6jNg86vMi8BCQANJJsKstvwItJWZDs05t64,4194
32
33
  nabu/app/utils.py,sha256=XUBRWDmth4i3BZHd27rfarFAUP7OEcsMeVmDJ6T4EXA,1178
33
34
  nabu/app/validator.py,sha256=IR-DcUV5h1Fc5CChBfBIaglrGpfKNICX7tGirAroMiw,3368
34
- nabu/app/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
35
35
  nabu/app/tests/test_reduce_dark_flat.py,sha256=qD52JL6fgJh7UEeGLssmsmGkqPTL8YTu29Hj1Nk9Bjg,2725
36
36
  nabu/cuda/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
37
37
  nabu/cuda/convolution.py,sha256=n8KsJ7IZdPOs_K5QZC6qblnOvIKYwxtdt03oNa0GiMU,241
@@ -131,7 +131,7 @@ nabu/pipeline/config_validators.py,sha256=ocAKB26iRjm5qs1Ay4B_rgGcg8aZjAP34XpEZR
131
131
  nabu/pipeline/datadump.py,sha256=lK36YlsVSeE4fdkD7cgVCl4RKn-Wa9KYgOw4DNtH8Ow,6982
132
132
  nabu/pipeline/dataset_validator.py,sha256=etQw9NC_YGsdWCgjsn8aJ3WfvcRuJlLVZlWoqhvvo-8,9263
133
133
  nabu/pipeline/detector_distortion_provider.py,sha256=ru1AxbcuO-FA8FYooPBWgp1lzdSDUtzFUC1A_sS8jME,920
134
- nabu/pipeline/estimators.py,sha256=AZXDmz7hngbVEfytpcu3E2QkOG4IqtXjQN8uUMBJTa0,40298
134
+ nabu/pipeline/estimators.py,sha256=AF7Nzbj9vPHfW5_ivo3_64D1Ct4RYqeOHx6tb1Phf30,40508
135
135
  nabu/pipeline/params.py,sha256=EoovjCUTUXmj5HQ3qE0RhP7XD3cndaiT21TdvjTIhE8,3746
136
136
  nabu/pipeline/processconfig.py,sha256=3xx2Lc8uEzPAqSMwUncr4RCiCtKn2c7wnXXbPSn8GNo,7719
137
137
  nabu/pipeline/reader.py,sha256=wkxPHYOi_C8dHNc7kddB8AMtFuW7GjsP_tm6SJeHlEY,4792
@@ -221,6 +221,7 @@ nabu/processing/tests/test_rotation.py,sha256=vedRXV9RePJywBKoyBkGANP1dhZCjphbYO
221
221
  nabu/processing/tests/test_transpose.py,sha256=hTG17wTaB5Wv6twbW3ZFhBv6BYfqJY7DTQPoO0-KdkM,2760
222
222
  nabu/processing/tests/test_unsharp.py,sha256=R3ovbwDDp3ccy2A8t6CcUVELXRWkED5EnQdN2FQOfQM,4391
223
223
  nabu/reconstruction/__init__.py,sha256=EmKVvx_-FJvzJngG4ielIC7FhMCpI1Waaflg_lF44tk,163
224
+ nabu/reconstruction/astra.py,sha256=qTAkUe6UGN5CRqS9ie-nDsvZTYrXBIjUl0JzPKQjkMg,10431
224
225
  nabu/reconstruction/cone.py,sha256=WObFcHvv7NkaZhUoC_xTlvl95f38AjsAJkePSOzngVk,18870
225
226
  nabu/reconstruction/fbp.py,sha256=uwEniGdEOn1atc9mTAHEDeF1y-ZqneifCKVr-ieHZss,5015
226
227
  nabu/reconstruction/fbp_base.py,sha256=DwZCilPXgGMRPV8_XfkWiaXUzWFM8rNBa8IyMdy5nno,17092
@@ -263,12 +264,11 @@ nabu/resources/templates/id16_holo.conf,sha256=sDd_rEJGZjOGVAsGub5sT2arfXDnc_sxy
263
264
  nabu/resources/templates/id16a_fluo.conf,sha256=Nz1etzO2fSwksi7CThWJ5T1kZEdyBe8rMO7puNJ93Hc,542
264
265
  nabu/resources/templates/id19_pag.conf,sha256=u4fFPEBprzOW9_5_ChkIgowQcYpLhjmA8Gwm5XgC4Jc,384
265
266
  nabu/resources/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
266
- nabu/resources/tests/test_extract.py,sha256=pDFvgwPNH4n-UjhJibRH2vTkjDWYF2wSImUtfNq1ITo,220
267
267
  nabu/resources/tests/test_nxflatfield.py,sha256=XRGbYwqJv0NYAVQnAB224TwTZP_W2Bs3-yu0zQnDzEM,4179
268
268
  nabu/resources/tests/test_units.py,sha256=F2jFTck-1UwYET1MwTtX6ntzYUosfwOJkugSencGgz8,2155
269
269
  nabu/stitching/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
270
270
  nabu/stitching/alignment.py,sha256=2ehpuWDz38AFAoJk3yA0DXf-18Kb329YaCCBBpa7Txc,9078
271
- nabu/stitching/config.py,sha256=wxidcHaCfp0LxqKKMFqshS_oECslcgBozIenQOQMJPU,52755
271
+ nabu/stitching/config.py,sha256=CP5g3f4sXpUBLAlG7LRg-90Ebon-janurbuORgYGi1c,52783
272
272
  nabu/stitching/definitions.py,sha256=JbmYwXKxOTYCr2LDXbHO-uNE2OLOBm4ir9AQ7e-Q3lY,158
273
273
  nabu/stitching/frame_composition.py,sha256=7HebOFzSBirJT-MG10T7dzR8Gu0YVwfJb27LDk8lln4,6687
274
274
  nabu/stitching/overlap.py,sha256=JkLM8gNyacEY7BE9vyF8M28Rer97-ExK8ZEvOKeFbPw,17200
@@ -311,9 +311,9 @@ nabu/thirdparty/pore3d_deringer_munch.py,sha256=o4bisnFc-wMjuohWBT8wgWmfNehPQGtC
311
311
  nabu/thirdparty/tomocupy_remove_stripe.py,sha256=Khe4zFf0kRzu65Yxnvq58gt1ljOztqJGdMDhVAiM7lM,24363
312
312
  nabu/thirdparty/tomopy_phase.py,sha256=hK4oPpkogLOhv23XzzEXQY2u3r8fJvASY_bINVs6ERE,8634
313
313
  nabu/thirdparty/tomwer_load_flats_darks.py,sha256=ZNoVAinUb_wGYbfvs_4BVnWsjsQmNxSvCh1bWhR2WWg,5611
314
- nabu-2024.2.1.dist-info/LICENSE,sha256=1eAIPSnEsnSFNUODnLtNtQTs76exG3ZxJ1DJR6zoUBA,1066
315
- nabu-2024.2.1.dist-info/METADATA,sha256=XlEefB-apFg-XrbRJ-uOM18VdoqY-MXyiqO77-l3_m4,5538
316
- nabu-2024.2.1.dist-info/WHEEL,sha256=5sUXSg9e4bi7lTLOHcm6QEYwO5TIF1TNbTSVFVjcJcc,92
317
- nabu-2024.2.1.dist-info/entry_points.txt,sha256=cJKGkBeykVL7uK3E4R0RLRqMXifTL2qdO573syPAvJc,1288
318
- nabu-2024.2.1.dist-info/top_level.txt,sha256=fsm_N3eXLRZk2QXF9OSKPNDPFXOz8FAQjHh5avT3dok,9
319
- nabu-2024.2.1.dist-info/RECORD,,
314
+ nabu-2024.2.2.dist-info/LICENSE,sha256=1eAIPSnEsnSFNUODnLtNtQTs76exG3ZxJ1DJR6zoUBA,1066
315
+ nabu-2024.2.2.dist-info/METADATA,sha256=D8BRBoDIZHm9VsFDcx6ADFq_mxv7n7BtdkbdpU3m2u0,5538
316
+ nabu-2024.2.2.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
317
+ nabu-2024.2.2.dist-info/entry_points.txt,sha256=cJKGkBeykVL7uK3E4R0RLRqMXifTL2qdO573syPAvJc,1288
318
+ nabu-2024.2.2.dist-info/top_level.txt,sha256=fsm_N3eXLRZk2QXF9OSKPNDPFXOz8FAQjHh5avT3dok,9
319
+ nabu-2024.2.2.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.41.1)
2
+ Generator: bdist_wheel (0.42.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
File without changes
@@ -1,10 +0,0 @@
1
- import pytest
2
- from nabu.utils import list_match_queries
3
-
4
-
5
- def test_list_match_queries():
6
-
7
- # entry0000 .... entry0099
8
- avail = ["entry%04d" % i for i in range(100)]
9
- query = "entry0000"
10
- list_match_queries()