mysqlengine 0.1.11.9__cp312-cp312-win_amd64.whl → 0.1.12.1__cp312-cp312-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mysqlengine might be problematic. Click here for more details.
- mysqlengine/charset.cp312-win_amd64.pyd +0 -0
- mysqlengine/column.cp312-win_amd64.pyd +0 -0
- mysqlengine/connection.cp312-win_amd64.pyd +0 -0
- mysqlengine/constant.cp312-win_amd64.pyd +0 -0
- mysqlengine/database.c +164 -164
- mysqlengine/database.cp312-win_amd64.pyd +0 -0
- mysqlengine/database.py +76 -76
- mysqlengine/dtype.c +118 -118
- mysqlengine/dtype.cp312-win_amd64.pyd +0 -0
- mysqlengine/engine.cp312-win_amd64.pyd +0 -0
- mysqlengine/errors.cp312-win_amd64.pyd +0 -0
- mysqlengine/index.cp312-win_amd64.pyd +0 -0
- mysqlengine/protocol.cp312-win_amd64.pyd +0 -0
- mysqlengine/query.c +122 -122
- mysqlengine/query.cp312-win_amd64.pyd +0 -0
- mysqlengine/query.py +8 -8
- mysqlengine/regex.cp312-win_amd64.pyd +0 -0
- mysqlengine/settings.cp312-win_amd64.pyd +0 -0
- mysqlengine/transcode.c +118 -118
- mysqlengine/transcode.cp312-win_amd64.pyd +0 -0
- mysqlengine/utils.c +118 -118
- mysqlengine/utils.cp312-win_amd64.pyd +0 -0
- {mysqlengine-0.1.11.9.dist-info → mysqlengine-0.1.12.1.dist-info}/METADATA +1 -1
- {mysqlengine-0.1.11.9.dist-info → mysqlengine-0.1.12.1.dist-info}/RECORD +27 -27
- {mysqlengine-0.1.11.9.dist-info → mysqlengine-0.1.12.1.dist-info}/LICENSE +0 -0
- {mysqlengine-0.1.11.9.dist-info → mysqlengine-0.1.12.1.dist-info}/WHEEL +0 -0
- {mysqlengine-0.1.11.9.dist-info → mysqlengine-0.1.12.1.dist-info}/top_level.txt +0 -0
mysqlengine/database.c
CHANGED
|
@@ -11,7 +11,7 @@
|
|
|
11
11
|
],
|
|
12
12
|
"depends": [],
|
|
13
13
|
"include_dirs": [
|
|
14
|
-
"C:\\Users\\runneradmin\\AppData\\Local\\Temp\\pip-build-env-
|
|
14
|
+
"C:\\Users\\runneradmin\\AppData\\Local\\Temp\\pip-build-env-ju1g3ydc\\overlay\\Lib\\site-packages\\numpy\\core\\include"
|
|
15
15
|
],
|
|
16
16
|
"name": "mysqlengine.database",
|
|
17
17
|
"sources": [
|
|
@@ -1592,7 +1592,7 @@ static const char *__pyx_f[] = {
|
|
|
1592
1592
|
|
|
1593
1593
|
/* #### Code section: numeric_typedefs ### */
|
|
1594
1594
|
|
|
1595
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
1595
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":730
|
|
1596
1596
|
* # in Cython to enable them only on the right systems.
|
|
1597
1597
|
*
|
|
1598
1598
|
* ctypedef npy_int8 int8_t # <<<<<<<<<<<<<<
|
|
@@ -1601,7 +1601,7 @@ static const char *__pyx_f[] = {
|
|
|
1601
1601
|
*/
|
|
1602
1602
|
typedef npy_int8 __pyx_t_5numpy_int8_t;
|
|
1603
1603
|
|
|
1604
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
1604
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":731
|
|
1605
1605
|
*
|
|
1606
1606
|
* ctypedef npy_int8 int8_t
|
|
1607
1607
|
* ctypedef npy_int16 int16_t # <<<<<<<<<<<<<<
|
|
@@ -1610,7 +1610,7 @@ typedef npy_int8 __pyx_t_5numpy_int8_t;
|
|
|
1610
1610
|
*/
|
|
1611
1611
|
typedef npy_int16 __pyx_t_5numpy_int16_t;
|
|
1612
1612
|
|
|
1613
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
1613
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":732
|
|
1614
1614
|
* ctypedef npy_int8 int8_t
|
|
1615
1615
|
* ctypedef npy_int16 int16_t
|
|
1616
1616
|
* ctypedef npy_int32 int32_t # <<<<<<<<<<<<<<
|
|
@@ -1619,7 +1619,7 @@ typedef npy_int16 __pyx_t_5numpy_int16_t;
|
|
|
1619
1619
|
*/
|
|
1620
1620
|
typedef npy_int32 __pyx_t_5numpy_int32_t;
|
|
1621
1621
|
|
|
1622
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
1622
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":733
|
|
1623
1623
|
* ctypedef npy_int16 int16_t
|
|
1624
1624
|
* ctypedef npy_int32 int32_t
|
|
1625
1625
|
* ctypedef npy_int64 int64_t # <<<<<<<<<<<<<<
|
|
@@ -1628,7 +1628,7 @@ typedef npy_int32 __pyx_t_5numpy_int32_t;
|
|
|
1628
1628
|
*/
|
|
1629
1629
|
typedef npy_int64 __pyx_t_5numpy_int64_t;
|
|
1630
1630
|
|
|
1631
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
1631
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":737
|
|
1632
1632
|
* #ctypedef npy_int128 int128_t
|
|
1633
1633
|
*
|
|
1634
1634
|
* ctypedef npy_uint8 uint8_t # <<<<<<<<<<<<<<
|
|
@@ -1637,7 +1637,7 @@ typedef npy_int64 __pyx_t_5numpy_int64_t;
|
|
|
1637
1637
|
*/
|
|
1638
1638
|
typedef npy_uint8 __pyx_t_5numpy_uint8_t;
|
|
1639
1639
|
|
|
1640
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
1640
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":738
|
|
1641
1641
|
*
|
|
1642
1642
|
* ctypedef npy_uint8 uint8_t
|
|
1643
1643
|
* ctypedef npy_uint16 uint16_t # <<<<<<<<<<<<<<
|
|
@@ -1646,7 +1646,7 @@ typedef npy_uint8 __pyx_t_5numpy_uint8_t;
|
|
|
1646
1646
|
*/
|
|
1647
1647
|
typedef npy_uint16 __pyx_t_5numpy_uint16_t;
|
|
1648
1648
|
|
|
1649
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
1649
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":739
|
|
1650
1650
|
* ctypedef npy_uint8 uint8_t
|
|
1651
1651
|
* ctypedef npy_uint16 uint16_t
|
|
1652
1652
|
* ctypedef npy_uint32 uint32_t # <<<<<<<<<<<<<<
|
|
@@ -1655,7 +1655,7 @@ typedef npy_uint16 __pyx_t_5numpy_uint16_t;
|
|
|
1655
1655
|
*/
|
|
1656
1656
|
typedef npy_uint32 __pyx_t_5numpy_uint32_t;
|
|
1657
1657
|
|
|
1658
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
1658
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":740
|
|
1659
1659
|
* ctypedef npy_uint16 uint16_t
|
|
1660
1660
|
* ctypedef npy_uint32 uint32_t
|
|
1661
1661
|
* ctypedef npy_uint64 uint64_t # <<<<<<<<<<<<<<
|
|
@@ -1664,7 +1664,7 @@ typedef npy_uint32 __pyx_t_5numpy_uint32_t;
|
|
|
1664
1664
|
*/
|
|
1665
1665
|
typedef npy_uint64 __pyx_t_5numpy_uint64_t;
|
|
1666
1666
|
|
|
1667
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
1667
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":744
|
|
1668
1668
|
* #ctypedef npy_uint128 uint128_t
|
|
1669
1669
|
*
|
|
1670
1670
|
* ctypedef npy_float32 float32_t # <<<<<<<<<<<<<<
|
|
@@ -1673,7 +1673,7 @@ typedef npy_uint64 __pyx_t_5numpy_uint64_t;
|
|
|
1673
1673
|
*/
|
|
1674
1674
|
typedef npy_float32 __pyx_t_5numpy_float32_t;
|
|
1675
1675
|
|
|
1676
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
1676
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":745
|
|
1677
1677
|
*
|
|
1678
1678
|
* ctypedef npy_float32 float32_t
|
|
1679
1679
|
* ctypedef npy_float64 float64_t # <<<<<<<<<<<<<<
|
|
@@ -1682,7 +1682,7 @@ typedef npy_float32 __pyx_t_5numpy_float32_t;
|
|
|
1682
1682
|
*/
|
|
1683
1683
|
typedef npy_float64 __pyx_t_5numpy_float64_t;
|
|
1684
1684
|
|
|
1685
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
1685
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":754
|
|
1686
1686
|
* # The int types are mapped a bit surprising --
|
|
1687
1687
|
* # numpy.int corresponds to 'l' and numpy.long to 'q'
|
|
1688
1688
|
* ctypedef npy_long int_t # <<<<<<<<<<<<<<
|
|
@@ -1691,7 +1691,7 @@ typedef npy_float64 __pyx_t_5numpy_float64_t;
|
|
|
1691
1691
|
*/
|
|
1692
1692
|
typedef npy_long __pyx_t_5numpy_int_t;
|
|
1693
1693
|
|
|
1694
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
1694
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":755
|
|
1695
1695
|
* # numpy.int corresponds to 'l' and numpy.long to 'q'
|
|
1696
1696
|
* ctypedef npy_long int_t
|
|
1697
1697
|
* ctypedef npy_longlong longlong_t # <<<<<<<<<<<<<<
|
|
@@ -1700,7 +1700,7 @@ typedef npy_long __pyx_t_5numpy_int_t;
|
|
|
1700
1700
|
*/
|
|
1701
1701
|
typedef npy_longlong __pyx_t_5numpy_longlong_t;
|
|
1702
1702
|
|
|
1703
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
1703
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":757
|
|
1704
1704
|
* ctypedef npy_longlong longlong_t
|
|
1705
1705
|
*
|
|
1706
1706
|
* ctypedef npy_ulong uint_t # <<<<<<<<<<<<<<
|
|
@@ -1709,7 +1709,7 @@ typedef npy_longlong __pyx_t_5numpy_longlong_t;
|
|
|
1709
1709
|
*/
|
|
1710
1710
|
typedef npy_ulong __pyx_t_5numpy_uint_t;
|
|
1711
1711
|
|
|
1712
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
1712
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":758
|
|
1713
1713
|
*
|
|
1714
1714
|
* ctypedef npy_ulong uint_t
|
|
1715
1715
|
* ctypedef npy_ulonglong ulonglong_t # <<<<<<<<<<<<<<
|
|
@@ -1718,7 +1718,7 @@ typedef npy_ulong __pyx_t_5numpy_uint_t;
|
|
|
1718
1718
|
*/
|
|
1719
1719
|
typedef npy_ulonglong __pyx_t_5numpy_ulonglong_t;
|
|
1720
1720
|
|
|
1721
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
1721
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":760
|
|
1722
1722
|
* ctypedef npy_ulonglong ulonglong_t
|
|
1723
1723
|
*
|
|
1724
1724
|
* ctypedef npy_intp intp_t # <<<<<<<<<<<<<<
|
|
@@ -1727,7 +1727,7 @@ typedef npy_ulonglong __pyx_t_5numpy_ulonglong_t;
|
|
|
1727
1727
|
*/
|
|
1728
1728
|
typedef npy_intp __pyx_t_5numpy_intp_t;
|
|
1729
1729
|
|
|
1730
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
1730
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":761
|
|
1731
1731
|
*
|
|
1732
1732
|
* ctypedef npy_intp intp_t
|
|
1733
1733
|
* ctypedef npy_uintp uintp_t # <<<<<<<<<<<<<<
|
|
@@ -1736,7 +1736,7 @@ typedef npy_intp __pyx_t_5numpy_intp_t;
|
|
|
1736
1736
|
*/
|
|
1737
1737
|
typedef npy_uintp __pyx_t_5numpy_uintp_t;
|
|
1738
1738
|
|
|
1739
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
1739
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":763
|
|
1740
1740
|
* ctypedef npy_uintp uintp_t
|
|
1741
1741
|
*
|
|
1742
1742
|
* ctypedef npy_double float_t # <<<<<<<<<<<<<<
|
|
@@ -1745,7 +1745,7 @@ typedef npy_uintp __pyx_t_5numpy_uintp_t;
|
|
|
1745
1745
|
*/
|
|
1746
1746
|
typedef npy_double __pyx_t_5numpy_float_t;
|
|
1747
1747
|
|
|
1748
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
1748
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":764
|
|
1749
1749
|
*
|
|
1750
1750
|
* ctypedef npy_double float_t
|
|
1751
1751
|
* ctypedef npy_double double_t # <<<<<<<<<<<<<<
|
|
@@ -1754,7 +1754,7 @@ typedef npy_double __pyx_t_5numpy_float_t;
|
|
|
1754
1754
|
*/
|
|
1755
1755
|
typedef npy_double __pyx_t_5numpy_double_t;
|
|
1756
1756
|
|
|
1757
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
1757
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":765
|
|
1758
1758
|
* ctypedef npy_double float_t
|
|
1759
1759
|
* ctypedef npy_double double_t
|
|
1760
1760
|
* ctypedef npy_longdouble longdouble_t # <<<<<<<<<<<<<<
|
|
@@ -2060,7 +2060,7 @@ struct __pyx_opt_args_11mysqlengine_8protocol_11MysqlPacket_get_bytes {
|
|
|
2060
2060
|
PY_LONG_LONG length;
|
|
2061
2061
|
};
|
|
2062
2062
|
|
|
2063
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
2063
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":767
|
|
2064
2064
|
* ctypedef npy_longdouble longdouble_t
|
|
2065
2065
|
*
|
|
2066
2066
|
* ctypedef npy_cfloat cfloat_t # <<<<<<<<<<<<<<
|
|
@@ -2069,7 +2069,7 @@ struct __pyx_opt_args_11mysqlengine_8protocol_11MysqlPacket_get_bytes {
|
|
|
2069
2069
|
*/
|
|
2070
2070
|
typedef npy_cfloat __pyx_t_5numpy_cfloat_t;
|
|
2071
2071
|
|
|
2072
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
2072
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":768
|
|
2073
2073
|
*
|
|
2074
2074
|
* ctypedef npy_cfloat cfloat_t
|
|
2075
2075
|
* ctypedef npy_cdouble cdouble_t # <<<<<<<<<<<<<<
|
|
@@ -2078,7 +2078,7 @@ typedef npy_cfloat __pyx_t_5numpy_cfloat_t;
|
|
|
2078
2078
|
*/
|
|
2079
2079
|
typedef npy_cdouble __pyx_t_5numpy_cdouble_t;
|
|
2080
2080
|
|
|
2081
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
2081
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":769
|
|
2082
2082
|
* ctypedef npy_cfloat cfloat_t
|
|
2083
2083
|
* ctypedef npy_cdouble cdouble_t
|
|
2084
2084
|
* ctypedef npy_clongdouble clongdouble_t # <<<<<<<<<<<<<<
|
|
@@ -2087,7 +2087,7 @@ typedef npy_cdouble __pyx_t_5numpy_cdouble_t;
|
|
|
2087
2087
|
*/
|
|
2088
2088
|
typedef npy_clongdouble __pyx_t_5numpy_clongdouble_t;
|
|
2089
2089
|
|
|
2090
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
2090
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":771
|
|
2091
2091
|
* ctypedef npy_clongdouble clongdouble_t
|
|
2092
2092
|
*
|
|
2093
2093
|
* ctypedef npy_cdouble complex_t # <<<<<<<<<<<<<<
|
|
@@ -9062,7 +9062,7 @@ static const char __pyx_k_Define_columns_of_the_table_This[] = "Define columns o
|
|
|
9062
9062
|
static const char __pyx_k_Define_indexes_of_the_table_This[] = "Define indexes of the table. This method should be called\n within the `metadata()` method to set the desired indexes.\n\n :param indexes: `<Index>` The indexes to add to the table.\n\n ### Example:\n >>> self.indexes_metadata(\n Index(self.columns[\"tinyint_type\"], unique=True, primary_unique=True),\n Index(self.columns[\"smallint_type\"], self.columns[\"mediumint_type\"]),\n ...\n )\n ";
|
|
9063
9063
|
static const char __pyx_k_Define_the_database_metadata_Thi[] = "Define the database metadata. This method should be overwritten\n in subclass to configure database's tables.\n\n ### Configuration:\n - Overwrite `Database.metadata()` to define database's tables.\n - Add tables through Table `instance`: `self.my_table = MyTable(self)`\n - Add tables through Table `subclass`: `self.my_table = MyTable`\n - * Notice, using `subclass` approach, most static typing of the table\n methods will be incorrect (redundant 'self' argument), but the\n functionality of the table will not be affected.\n\n ### Example:\n >>> def metadata(self) -> None:\n # . instance approach\n self.table1 = MyTable1(self)\n # . subclass approach\n self.table2 = MyTable2\n ...\n ";
|
|
9064
9064
|
static const char __pyx_k_Define_the_table_metadata_This_m[] = "Define the table metadata. This method should be overridden\n in subclass to configure the table's columns and indexes.\n\n ### Configuration:\n - Use `self.columns_metadata()` to define columns of the table.\n - Use `self.indexes_metadata()` to define indexes of the table.\n\n ### Example:\n >>> def metadata(self) -> None:\n # . define columns\n self.columns_metadata(\n Column(\"id\", MysqlTypes.BIGINT(primary_key=True)),\n Column(\"username\", MysqlTypes.VARCHAR()),\n Column(\"user_level\", MysqlTypes.TINYINT()),\n Column(\"user_type\", MysqlTypes.VARCHAR()),\n ...\n )\n # . define indexes\n self.indexes_metadata(\n Index(self.columns[\"username\"], unique=True, primary_unique=True),\n Index(self.columns[\"user_level\"], self.columns[\"user_type\"]),\n ...\n )\n ";
|
|
9065
|
-
static const char __pyx_k_Execute_a_SQL_statement_and_fetc[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
9065
|
+
static const char __pyx_k_Execute_a_SQL_statement_and_fetc[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `<tuple>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[dict[str, Any]]>`: The fetched result.\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
|
|
9066
9066
|
static const char __pyx_k_Execute_a_SQL_statement_param_st[] = "Execute a SQL statement.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param reusable: `<bool>` Whether the 'conn' (if provided) is reusable after query execution. Defaults to `True`.\n - If `True`, the connection will return back to the Server pool,\n waiting for the next query.\n - If `False`, after returned to the Server pool, the connection\n will be closed and released. This is useful for certain types\n of statements, such as `CREATE TEMPORARY TABLE` and `LOCK TABLES`,\n where it's desirable to ensure the connection is closed at the end\n to release (potential) resources.\n\n :param cursor: `<type[Cursor/SSCursor]>` The `Cursor` class to use for query execution. Defaults to `Cursor`.\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involve""s a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table that does not exist, instead of\n raising an error, `0` will be returned as the execution result.\n\n :raises: Subclass of `QueryError`.\n :return `<int>`: Number of rows affected by the query.\n\n ### Example:\n >>> await db.user.execute_query(\n \"UPDATE db.user SET name = %s WHERE id = %s;\",\n args=('john', 1), # muti-rows: arge=[('john', 1), ('jackson', 2)]\n conn=None,\n reusable=True,\n cursor=Cursor,\n resolve_absent_table=False,\n timeout=None,\n warnings=True,\n )\n ";
|
|
9067
9067
|
static const char __pyx_k_Incompatible_checksums_0x_x_vs_0[] = "Incompatible checksums (0x%x vs (0xc1804d9, 0xfe6a6a6, 0xcfc7018) = (_charset, _collate, _columns, _db, _db_pfix, _engine, _fname, _fname_pfix, _indexes, _initiated, _initiated_tables, _is_timetable, _name, _name_pfix, _regex, _server, _syntax, _syntax_val, _temp_id, _type))";
|
|
9068
9068
|
static const char __pyx_k_Initiate_a_DELETE_query_of_the_t[] = "Initiate a DELETE query of the table.\n\n :param table_aliases: `<str>` The table aliases of the DELETE operation.\n - Only applicable for multi-table DELETE (when JOIN clause is used).\n Single table DELETE takes no effects.\n - If not specified, the DELETE operation will be performed on all\n tables (main & joined ones).\n - If specified, the DELETE operation will be performed only on the\n given tables.\n - *Notice: this arguments only takes the alias of the tables instead\n of the actual table name. For more information, please refer to\n the 'alias' parameter or the Example section below.\n\n :param ignore: `<bool>` The `IGNORE` modifier. Defaults to `False`.\n Determines whether to ignore the duplicate key errors.\n\n :param tabletime: `<str/None>` A specific `tabletime` for the `DELETE` table. Defaults to `None`.\n - This parameter is only applicable when the `DELETE` table corresponds\n to a TimeTable.\n - If `tabletime` is specified, the actual sub-table will derive from this\n parameter. Otherwise, it is required to use `tabletimes()` method to specify\n the sub-tables. For more details, please refer to the `tabletimes()` method.\n\n :param alias: `<str/None>` The alias of the `DELETE` clause. Defaults to `None`.\n - The alias of the clause will be added to the corresponding part of the SQL\n statement using the `'AS <alias>'` syntax.\n - For instance, in a `DELETE... FROM... WHERE...` query, without specified\n alias (default alias), the statement would be constructed as:\n `'DELETE... FROM... AS t1 WHERE...'`, where default alias is derived\n from the order of the tables in the query.\n - However, with a user-defined alias (for example, `alias='tb'`), the\n "" statement would be constructed as: `'DELETE... FROM... AS tb WHERE...'`.\n\n ### Example (DELETE... WHERE... single table):\n >>> await db.user.delete().where(\"id = 1\").execute()\n ### -> Equivalent to:\n >>> DELETE FROM db.user AS t1 WHERE id = 1\n\n ### Example (DELETE... JOIN... WHERE... multi-table [all tables]):\n >>> (\n await db.user.delete() # delete from 't1' and 't2'\n .join(db.user_info, \"t1.id = t2.user_id\", tabletime=\"2023-01-01\")\n .where(\"t1.age > 18\")\n .execute()\n )\n ### -> Equivalent to:\n >>> DELETE t1, t2 FROM db.user AS t1\n INNER JOIN db.user_info_202301 AS t2\n ON t1.id = t2.user_id\n WHERE t1.age > 18\n\n ### Example (DELETE... JOIN... WHERE... multi-table [specific table(s)]):\n >>> (\n await db.user.delete(\"t2\") # Only delete from 't2'\n .join(db.user_info, \"t1.id = t2.user_id\", tabletime=\"2023-01-01\")\n .where(\"t1.age > 18\")\n .execute()\n )\n ### -> Equivalent to:\n >>> DELETE t2 FROM db.user AS t1\n INNER JOIN db.user_info_202301 AS t2\n ON t1.id = t2.user_id\n WHERE t1.age > 18\n\n ### Example (DELETE... with `values()` method):\n >>> values = [\n {\"id\": 1, \"name\": \"John\", \"age\": 20, \"status\": \"active\"},\n {\"id\": 2, \"name\": \"Mary\", \"age\": 25, \"status\": \"inactive\"},\n ]\n >>> (\n await db.user.delete()\n .values(values, where_columns=[\"name\", \"age\"])\n .execute()\n )\n ### -> Equivalent to the following TWO queries:\n >>> DELETE FROM db.user AS t1\n WHERE t1.name = 'John' AND t1.age = 20\n >>> DELETE FROM db.user AS t1\n WHERE t1.nam""e = 'Mary' AND t1.age = 25\n ";
|
|
@@ -9099,13 +9099,13 @@ static const char __pyx_k_Acquire_a_free_connection_from_t_2[] = "Acquire a free
|
|
|
9099
9099
|
static const char __pyx_k_Acquire_a_free_connection_from_t_3[] = "Acquire a free connection from the `Server` pool.\n\n By acquiring connection through this method, the following will happen:\n - 1. Acquire a free/new connection from the Server pool.\n - 2. Return `PoolConnectionManager` that wraps the connection.\n - 3. Release the connection back to the pool at exist.\n\n This method provides a more flexible approach to execute queries compared\n to the `transaction()` method. However, it requires manual handling of\n transaction states like `BEGIN`, `ROLLBACK`, and `COMMIT`.\n\n :raise: Subclass of `QueryError`.\n :return `PoolConnectionManager`: Server connection.\n\n ### Example:\n >>> async with db.acquire() as conn:\n await conn.begin() # . start transaction\n username = (\n await db.user.select(\"username\")\n .where(\"id = %s\", 1)\n .for_update()\n # IMPORTANT: must pass conn to `execute()`. Otherwise, the\n # query will be executed with a temp (different) connection.\n .execute(conn)\n )\n ... # . sequences of queries\n await conn.commit() # . commit transaction\n ";
|
|
9100
9100
|
static const char __pyx_k_Acquire_a_free_connection_from_t_4[] = "Acquire a free connection from the `Server` pool and `START TRANSACTION`.\n\n By acquiring connection through this method, the following will happen:\n - 1. Acquire a free/new connection from the Server pool.\n - 2. Use the connection to `START TRANSACTION`.\n - 3. Return `PoolTransactionManager` that wraps the connection.\n - 4a. If catches ANY exceptions during the transaction, execute\n `ROLLBACK`, then close and release the connection.\n - 4b. If the transaction executed successfully, execute `COMMIT`\n and then release the connection back to the Server pool.\n\n This method offers a more convenient way to execute transactions\n compared to the `acquire()` method, as it automatically manages\n transaction states like `BEGIN`, `ROLLBACK`, and `COMMIT`.\n\n :raise: Subclass of `QueryError`.\n :return `PoolTransactionManager`: Server connection.\n\n ### Example:\n >>> async with db.transaction() as conn:\n # . transaction is already started\n username = (\n await db.user.select(\"username\")\n .where(\"id = %s\", 1)\n .for_update()\n # IMPORTANT: must pass conn to `execute()`. Otherwise, the\n # query will be executed with a temp (different) connection.\n .execute(conn)\n )\n ... # . sequences of queries\n # . commit will be executed at exist.\n ";
|
|
9101
9101
|
static const char __pyx_k_Bypass_data_import_for_table_s_T_2[] = "Bypass data import for table: '%s'. <Table data invalid>.";
|
|
9102
|
-
static const char __pyx_k_Execute_a_SQL_statement_and_fetc_2[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
9103
|
-
static const char __pyx_k_Execute_a_SQL_statement_and_fetc_3[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
9104
|
-
static const char __pyx_k_Execute_a_SQL_statement_and_fetc_4[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
9105
|
-
static const char __pyx_k_Execute_a_SQL_statement_and_fetc_5[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
9106
|
-
static const char __pyx_k_Execute_a_SQL_statement_and_fetc_6[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
9107
|
-
static const char __pyx_k_Execute_a_SQL_statement_and_fetc_7[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
9108
|
-
static const char __pyx_k_Execute_a_SQL_statement_and_fetc_8[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
9102
|
+
static const char __pyx_k_Execute_a_SQL_statement_and_fetc_2[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `<DataFrame>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<DataFrame>`: The fetched result.\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
|
|
9103
|
+
static const char __pyx_k_Execute_a_SQL_statement_and_fetc_3[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `tuple[tuple]` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: The fetched result.\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
|
|
9104
|
+
static const char __pyx_k_Execute_a_SQL_statement_and_fetc_4[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `tuple` or `DataFrame` (depends on 'cursor' type)\n will be returned as the execution result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: The fetched result (depends on 'cursor' type).\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
|
|
9105
|
+
static const char __pyx_k_Execute_a_SQL_statement_and_fetc_5[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `<tuple>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[dict]>`: The fetched result.\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
|
|
9106
|
+
static const char __pyx_k_Execute_a_SQL_statement_and_fetc_6[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `<DataFrame>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<DataFrame>`: The fetched result.\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
|
|
9107
|
+
static const char __pyx_k_Execute_a_SQL_statement_and_fetc_7[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `tuple[tuple]` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: The fetched result.\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
|
|
9108
|
+
static const char __pyx_k_Execute_a_SQL_statement_and_fetc_8[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `tuple` or `DataFrame` (depends on 'cursor' type)\n will be returned as the execution result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: The fetched result (depends on 'cursor' type).\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
|
|
9109
9109
|
static const char __pyx_k_Execute_a_SQL_statement_param_st_2[] = "Execute a SQL statement.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param reusable: `<bool>` Whether the 'conn' (if provided) is reusable after query execution. Defaults to `True`.\n - If `True`, the connection will return back to the Server pool,\n waiting for the next query.\n - If `False`, after returned to the Server pool, the connection\n will be closed and released. This is useful for certain types\n of statements, such as `CREATE TEMPORARY TABLE` and `LOCK TABLES`,\n where it's desirable to ensure the connection is closed at the end\n to release (potential) resources.\n\n :param cursor: `<type[Cursor/SSCursor]>` The `Cursor` class to use for query execution. Defaults to `Cursor`.\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involve""s a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table that does not exist, instead of\n raising an error, `0` will be returned as the execution result.\n\n :raises: Subclass of `QueryError`.\n :return `<int>`: Number of rows affected by the query.\n\n ### Example:\n >>> await db.execute_query(\n \"UPDATE db.user SET name = %s WHERE id = %s;\",\n args=('john', 1), # muti-rows: arge=[('john', 1), ('jackson', 2)]\n conn=None,\n reusable=True,\n cursor=Cursor,\n resolve_absent_table=False,\n timeout=None,\n warnings=True,\n )\n ";
|
|
9110
9110
|
static const char __pyx_k_Incompatible_checksums_0x_x_vs_0_2[] = "Incompatible checksums (0x%x vs (0x810996b, 0x1377fc1, 0x48ef66f) = (_charset, _collate, _columns, _db, _db_pfix, _engine, _fname, _fname_pfix, _indexes, _initiated, _initiated_tables, _is_timetable, _name, _name_format, _name_pfix, _regex, _server, _syntax, _syntax_val, _temp_id, _time_format, _time_unit, _type))";
|
|
9111
9111
|
static const char __pyx_k_Incompatible_checksums_0x_x_vs_0_3[] = "Incompatible checksums (0x%x vs (0x2600b8a, 0x5944b53, 0xfaf6ec5) = (_db, _dict, _instances, _items, _length, _names, _names_set, _regex_fnames, _regex_names))";
|
|
@@ -20749,7 +20749,7 @@ static CYTHON_INLINE PyObject *__pyx_f_11mysqlengine_8database_get_tables_names(
|
|
|
20749
20749
|
return __pyx_r;
|
|
20750
20750
|
}
|
|
20751
20751
|
|
|
20752
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
20752
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":245
|
|
20753
20753
|
*
|
|
20754
20754
|
* @property
|
|
20755
20755
|
* cdef inline PyObject* base(self) nogil: # <<<<<<<<<<<<<<
|
|
@@ -20760,7 +20760,7 @@ static CYTHON_INLINE PyObject *__pyx_f_11mysqlengine_8database_get_tables_names(
|
|
|
20760
20760
|
static CYTHON_INLINE PyObject *__pyx_f_5numpy_7ndarray_4base_base(PyArrayObject *__pyx_v_self) {
|
|
20761
20761
|
PyObject *__pyx_r;
|
|
20762
20762
|
|
|
20763
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
20763
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":248
|
|
20764
20764
|
* """Returns a borrowed reference to the object owning the data/memory.
|
|
20765
20765
|
* """
|
|
20766
20766
|
* return PyArray_BASE(self) # <<<<<<<<<<<<<<
|
|
@@ -20770,7 +20770,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_7ndarray_4base_base(PyArrayObject
|
|
|
20770
20770
|
__pyx_r = PyArray_BASE(__pyx_v_self);
|
|
20771
20771
|
goto __pyx_L0;
|
|
20772
20772
|
|
|
20773
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
20773
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":245
|
|
20774
20774
|
*
|
|
20775
20775
|
* @property
|
|
20776
20776
|
* cdef inline PyObject* base(self) nogil: # <<<<<<<<<<<<<<
|
|
@@ -20783,7 +20783,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_7ndarray_4base_base(PyArrayObject
|
|
|
20783
20783
|
return __pyx_r;
|
|
20784
20784
|
}
|
|
20785
20785
|
|
|
20786
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
20786
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":251
|
|
20787
20787
|
*
|
|
20788
20788
|
* @property
|
|
20789
20789
|
* cdef inline dtype descr(self): # <<<<<<<<<<<<<<
|
|
@@ -20797,7 +20797,7 @@ static CYTHON_INLINE PyArray_Descr *__pyx_f_5numpy_7ndarray_5descr_descr(PyArray
|
|
|
20797
20797
|
PyArray_Descr *__pyx_t_1;
|
|
20798
20798
|
__Pyx_RefNannySetupContext("descr", 1);
|
|
20799
20799
|
|
|
20800
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
20800
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":254
|
|
20801
20801
|
* """Returns an owned reference to the dtype of the array.
|
|
20802
20802
|
* """
|
|
20803
20803
|
* return <dtype>PyArray_DESCR(self) # <<<<<<<<<<<<<<
|
|
@@ -20810,7 +20810,7 @@ static CYTHON_INLINE PyArray_Descr *__pyx_f_5numpy_7ndarray_5descr_descr(PyArray
|
|
|
20810
20810
|
__pyx_r = ((PyArray_Descr *)__pyx_t_1);
|
|
20811
20811
|
goto __pyx_L0;
|
|
20812
20812
|
|
|
20813
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
20813
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":251
|
|
20814
20814
|
*
|
|
20815
20815
|
* @property
|
|
20816
20816
|
* cdef inline dtype descr(self): # <<<<<<<<<<<<<<
|
|
@@ -20825,7 +20825,7 @@ static CYTHON_INLINE PyArray_Descr *__pyx_f_5numpy_7ndarray_5descr_descr(PyArray
|
|
|
20825
20825
|
return __pyx_r;
|
|
20826
20826
|
}
|
|
20827
20827
|
|
|
20828
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
20828
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":257
|
|
20829
20829
|
*
|
|
20830
20830
|
* @property
|
|
20831
20831
|
* cdef inline int ndim(self) nogil: # <<<<<<<<<<<<<<
|
|
@@ -20836,7 +20836,7 @@ static CYTHON_INLINE PyArray_Descr *__pyx_f_5numpy_7ndarray_5descr_descr(PyArray
|
|
|
20836
20836
|
static CYTHON_INLINE int __pyx_f_5numpy_7ndarray_4ndim_ndim(PyArrayObject *__pyx_v_self) {
|
|
20837
20837
|
int __pyx_r;
|
|
20838
20838
|
|
|
20839
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
20839
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":260
|
|
20840
20840
|
* """Returns the number of dimensions in the array.
|
|
20841
20841
|
* """
|
|
20842
20842
|
* return PyArray_NDIM(self) # <<<<<<<<<<<<<<
|
|
@@ -20846,7 +20846,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_7ndarray_4ndim_ndim(PyArrayObject *__pyx
|
|
|
20846
20846
|
__pyx_r = PyArray_NDIM(__pyx_v_self);
|
|
20847
20847
|
goto __pyx_L0;
|
|
20848
20848
|
|
|
20849
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
20849
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":257
|
|
20850
20850
|
*
|
|
20851
20851
|
* @property
|
|
20852
20852
|
* cdef inline int ndim(self) nogil: # <<<<<<<<<<<<<<
|
|
@@ -20859,7 +20859,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_7ndarray_4ndim_ndim(PyArrayObject *__pyx
|
|
|
20859
20859
|
return __pyx_r;
|
|
20860
20860
|
}
|
|
20861
20861
|
|
|
20862
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
20862
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":263
|
|
20863
20863
|
*
|
|
20864
20864
|
* @property
|
|
20865
20865
|
* cdef inline npy_intp *shape(self) nogil: # <<<<<<<<<<<<<<
|
|
@@ -20870,7 +20870,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_7ndarray_4ndim_ndim(PyArrayObject *__pyx
|
|
|
20870
20870
|
static CYTHON_INLINE npy_intp *__pyx_f_5numpy_7ndarray_5shape_shape(PyArrayObject *__pyx_v_self) {
|
|
20871
20871
|
npy_intp *__pyx_r;
|
|
20872
20872
|
|
|
20873
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
20873
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":268
|
|
20874
20874
|
* Can return NULL for 0-dimensional arrays.
|
|
20875
20875
|
* """
|
|
20876
20876
|
* return PyArray_DIMS(self) # <<<<<<<<<<<<<<
|
|
@@ -20880,7 +20880,7 @@ static CYTHON_INLINE npy_intp *__pyx_f_5numpy_7ndarray_5shape_shape(PyArrayObjec
|
|
|
20880
20880
|
__pyx_r = PyArray_DIMS(__pyx_v_self);
|
|
20881
20881
|
goto __pyx_L0;
|
|
20882
20882
|
|
|
20883
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
20883
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":263
|
|
20884
20884
|
*
|
|
20885
20885
|
* @property
|
|
20886
20886
|
* cdef inline npy_intp *shape(self) nogil: # <<<<<<<<<<<<<<
|
|
@@ -20893,7 +20893,7 @@ static CYTHON_INLINE npy_intp *__pyx_f_5numpy_7ndarray_5shape_shape(PyArrayObjec
|
|
|
20893
20893
|
return __pyx_r;
|
|
20894
20894
|
}
|
|
20895
20895
|
|
|
20896
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
20896
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":271
|
|
20897
20897
|
*
|
|
20898
20898
|
* @property
|
|
20899
20899
|
* cdef inline npy_intp *strides(self) nogil: # <<<<<<<<<<<<<<
|
|
@@ -20904,7 +20904,7 @@ static CYTHON_INLINE npy_intp *__pyx_f_5numpy_7ndarray_5shape_shape(PyArrayObjec
|
|
|
20904
20904
|
static CYTHON_INLINE npy_intp *__pyx_f_5numpy_7ndarray_7strides_strides(PyArrayObject *__pyx_v_self) {
|
|
20905
20905
|
npy_intp *__pyx_r;
|
|
20906
20906
|
|
|
20907
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
20907
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":275
|
|
20908
20908
|
* The number of elements matches the number of dimensions of the array (ndim).
|
|
20909
20909
|
* """
|
|
20910
20910
|
* return PyArray_STRIDES(self) # <<<<<<<<<<<<<<
|
|
@@ -20914,7 +20914,7 @@ static CYTHON_INLINE npy_intp *__pyx_f_5numpy_7ndarray_7strides_strides(PyArrayO
|
|
|
20914
20914
|
__pyx_r = PyArray_STRIDES(__pyx_v_self);
|
|
20915
20915
|
goto __pyx_L0;
|
|
20916
20916
|
|
|
20917
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
20917
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":271
|
|
20918
20918
|
*
|
|
20919
20919
|
* @property
|
|
20920
20920
|
* cdef inline npy_intp *strides(self) nogil: # <<<<<<<<<<<<<<
|
|
@@ -20927,7 +20927,7 @@ static CYTHON_INLINE npy_intp *__pyx_f_5numpy_7ndarray_7strides_strides(PyArrayO
|
|
|
20927
20927
|
return __pyx_r;
|
|
20928
20928
|
}
|
|
20929
20929
|
|
|
20930
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
20930
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":278
|
|
20931
20931
|
*
|
|
20932
20932
|
* @property
|
|
20933
20933
|
* cdef inline npy_intp size(self) nogil: # <<<<<<<<<<<<<<
|
|
@@ -20938,7 +20938,7 @@ static CYTHON_INLINE npy_intp *__pyx_f_5numpy_7ndarray_7strides_strides(PyArrayO
|
|
|
20938
20938
|
static CYTHON_INLINE npy_intp __pyx_f_5numpy_7ndarray_4size_size(PyArrayObject *__pyx_v_self) {
|
|
20939
20939
|
npy_intp __pyx_r;
|
|
20940
20940
|
|
|
20941
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
20941
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":281
|
|
20942
20942
|
* """Returns the total size (in number of elements) of the array.
|
|
20943
20943
|
* """
|
|
20944
20944
|
* return PyArray_SIZE(self) # <<<<<<<<<<<<<<
|
|
@@ -20948,7 +20948,7 @@ static CYTHON_INLINE npy_intp __pyx_f_5numpy_7ndarray_4size_size(PyArrayObject *
|
|
|
20948
20948
|
__pyx_r = PyArray_SIZE(__pyx_v_self);
|
|
20949
20949
|
goto __pyx_L0;
|
|
20950
20950
|
|
|
20951
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
20951
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":278
|
|
20952
20952
|
*
|
|
20953
20953
|
* @property
|
|
20954
20954
|
* cdef inline npy_intp size(self) nogil: # <<<<<<<<<<<<<<
|
|
@@ -20961,7 +20961,7 @@ static CYTHON_INLINE npy_intp __pyx_f_5numpy_7ndarray_4size_size(PyArrayObject *
|
|
|
20961
20961
|
return __pyx_r;
|
|
20962
20962
|
}
|
|
20963
20963
|
|
|
20964
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
20964
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":284
|
|
20965
20965
|
*
|
|
20966
20966
|
* @property
|
|
20967
20967
|
* cdef inline char* data(self) nogil: # <<<<<<<<<<<<<<
|
|
@@ -20972,7 +20972,7 @@ static CYTHON_INLINE npy_intp __pyx_f_5numpy_7ndarray_4size_size(PyArrayObject *
|
|
|
20972
20972
|
static CYTHON_INLINE char *__pyx_f_5numpy_7ndarray_4data_data(PyArrayObject *__pyx_v_self) {
|
|
20973
20973
|
char *__pyx_r;
|
|
20974
20974
|
|
|
20975
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
20975
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":290
|
|
20976
20976
|
* of `PyArray_DATA()` instead, which returns a 'void*'.
|
|
20977
20977
|
* """
|
|
20978
20978
|
* return PyArray_BYTES(self) # <<<<<<<<<<<<<<
|
|
@@ -20982,7 +20982,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy_7ndarray_4data_data(PyArrayObject *__p
|
|
|
20982
20982
|
__pyx_r = PyArray_BYTES(__pyx_v_self);
|
|
20983
20983
|
goto __pyx_L0;
|
|
20984
20984
|
|
|
20985
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
20985
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":284
|
|
20986
20986
|
*
|
|
20987
20987
|
* @property
|
|
20988
20988
|
* cdef inline char* data(self) nogil: # <<<<<<<<<<<<<<
|
|
@@ -20995,7 +20995,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy_7ndarray_4data_data(PyArrayObject *__p
|
|
|
20995
20995
|
return __pyx_r;
|
|
20996
20996
|
}
|
|
20997
20997
|
|
|
20998
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
20998
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":773
|
|
20999
20999
|
* ctypedef npy_cdouble complex_t
|
|
21000
21000
|
*
|
|
21001
21001
|
* cdef inline object PyArray_MultiIterNew1(a): # <<<<<<<<<<<<<<
|
|
@@ -21012,7 +21012,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew1(PyObject *__
|
|
|
21012
21012
|
int __pyx_clineno = 0;
|
|
21013
21013
|
__Pyx_RefNannySetupContext("PyArray_MultiIterNew1", 1);
|
|
21014
21014
|
|
|
21015
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21015
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":774
|
|
21016
21016
|
*
|
|
21017
21017
|
* cdef inline object PyArray_MultiIterNew1(a):
|
|
21018
21018
|
* return PyArray_MultiIterNew(1, <void*>a) # <<<<<<<<<<<<<<
|
|
@@ -21026,7 +21026,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew1(PyObject *__
|
|
|
21026
21026
|
__pyx_t_1 = 0;
|
|
21027
21027
|
goto __pyx_L0;
|
|
21028
21028
|
|
|
21029
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21029
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":773
|
|
21030
21030
|
* ctypedef npy_cdouble complex_t
|
|
21031
21031
|
*
|
|
21032
21032
|
* cdef inline object PyArray_MultiIterNew1(a): # <<<<<<<<<<<<<<
|
|
@@ -21045,7 +21045,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew1(PyObject *__
|
|
|
21045
21045
|
return __pyx_r;
|
|
21046
21046
|
}
|
|
21047
21047
|
|
|
21048
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21048
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":776
|
|
21049
21049
|
* return PyArray_MultiIterNew(1, <void*>a)
|
|
21050
21050
|
*
|
|
21051
21051
|
* cdef inline object PyArray_MultiIterNew2(a, b): # <<<<<<<<<<<<<<
|
|
@@ -21062,7 +21062,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew2(PyObject *__
|
|
|
21062
21062
|
int __pyx_clineno = 0;
|
|
21063
21063
|
__Pyx_RefNannySetupContext("PyArray_MultiIterNew2", 1);
|
|
21064
21064
|
|
|
21065
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21065
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":777
|
|
21066
21066
|
*
|
|
21067
21067
|
* cdef inline object PyArray_MultiIterNew2(a, b):
|
|
21068
21068
|
* return PyArray_MultiIterNew(2, <void*>a, <void*>b) # <<<<<<<<<<<<<<
|
|
@@ -21076,7 +21076,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew2(PyObject *__
|
|
|
21076
21076
|
__pyx_t_1 = 0;
|
|
21077
21077
|
goto __pyx_L0;
|
|
21078
21078
|
|
|
21079
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21079
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":776
|
|
21080
21080
|
* return PyArray_MultiIterNew(1, <void*>a)
|
|
21081
21081
|
*
|
|
21082
21082
|
* cdef inline object PyArray_MultiIterNew2(a, b): # <<<<<<<<<<<<<<
|
|
@@ -21095,7 +21095,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew2(PyObject *__
|
|
|
21095
21095
|
return __pyx_r;
|
|
21096
21096
|
}
|
|
21097
21097
|
|
|
21098
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21098
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":779
|
|
21099
21099
|
* return PyArray_MultiIterNew(2, <void*>a, <void*>b)
|
|
21100
21100
|
*
|
|
21101
21101
|
* cdef inline object PyArray_MultiIterNew3(a, b, c): # <<<<<<<<<<<<<<
|
|
@@ -21112,7 +21112,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew3(PyObject *__
|
|
|
21112
21112
|
int __pyx_clineno = 0;
|
|
21113
21113
|
__Pyx_RefNannySetupContext("PyArray_MultiIterNew3", 1);
|
|
21114
21114
|
|
|
21115
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21115
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":780
|
|
21116
21116
|
*
|
|
21117
21117
|
* cdef inline object PyArray_MultiIterNew3(a, b, c):
|
|
21118
21118
|
* return PyArray_MultiIterNew(3, <void*>a, <void*>b, <void*> c) # <<<<<<<<<<<<<<
|
|
@@ -21126,7 +21126,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew3(PyObject *__
|
|
|
21126
21126
|
__pyx_t_1 = 0;
|
|
21127
21127
|
goto __pyx_L0;
|
|
21128
21128
|
|
|
21129
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21129
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":779
|
|
21130
21130
|
* return PyArray_MultiIterNew(2, <void*>a, <void*>b)
|
|
21131
21131
|
*
|
|
21132
21132
|
* cdef inline object PyArray_MultiIterNew3(a, b, c): # <<<<<<<<<<<<<<
|
|
@@ -21145,7 +21145,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew3(PyObject *__
|
|
|
21145
21145
|
return __pyx_r;
|
|
21146
21146
|
}
|
|
21147
21147
|
|
|
21148
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21148
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":782
|
|
21149
21149
|
* return PyArray_MultiIterNew(3, <void*>a, <void*>b, <void*> c)
|
|
21150
21150
|
*
|
|
21151
21151
|
* cdef inline object PyArray_MultiIterNew4(a, b, c, d): # <<<<<<<<<<<<<<
|
|
@@ -21162,7 +21162,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew4(PyObject *__
|
|
|
21162
21162
|
int __pyx_clineno = 0;
|
|
21163
21163
|
__Pyx_RefNannySetupContext("PyArray_MultiIterNew4", 1);
|
|
21164
21164
|
|
|
21165
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21165
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":783
|
|
21166
21166
|
*
|
|
21167
21167
|
* cdef inline object PyArray_MultiIterNew4(a, b, c, d):
|
|
21168
21168
|
* return PyArray_MultiIterNew(4, <void*>a, <void*>b, <void*>c, <void*> d) # <<<<<<<<<<<<<<
|
|
@@ -21176,7 +21176,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew4(PyObject *__
|
|
|
21176
21176
|
__pyx_t_1 = 0;
|
|
21177
21177
|
goto __pyx_L0;
|
|
21178
21178
|
|
|
21179
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21179
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":782
|
|
21180
21180
|
* return PyArray_MultiIterNew(3, <void*>a, <void*>b, <void*> c)
|
|
21181
21181
|
*
|
|
21182
21182
|
* cdef inline object PyArray_MultiIterNew4(a, b, c, d): # <<<<<<<<<<<<<<
|
|
@@ -21195,7 +21195,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew4(PyObject *__
|
|
|
21195
21195
|
return __pyx_r;
|
|
21196
21196
|
}
|
|
21197
21197
|
|
|
21198
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21198
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":785
|
|
21199
21199
|
* return PyArray_MultiIterNew(4, <void*>a, <void*>b, <void*>c, <void*> d)
|
|
21200
21200
|
*
|
|
21201
21201
|
* cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): # <<<<<<<<<<<<<<
|
|
@@ -21212,7 +21212,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew5(PyObject *__
|
|
|
21212
21212
|
int __pyx_clineno = 0;
|
|
21213
21213
|
__Pyx_RefNannySetupContext("PyArray_MultiIterNew5", 1);
|
|
21214
21214
|
|
|
21215
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21215
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":786
|
|
21216
21216
|
*
|
|
21217
21217
|
* cdef inline object PyArray_MultiIterNew5(a, b, c, d, e):
|
|
21218
21218
|
* return PyArray_MultiIterNew(5, <void*>a, <void*>b, <void*>c, <void*> d, <void*> e) # <<<<<<<<<<<<<<
|
|
@@ -21226,7 +21226,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew5(PyObject *__
|
|
|
21226
21226
|
__pyx_t_1 = 0;
|
|
21227
21227
|
goto __pyx_L0;
|
|
21228
21228
|
|
|
21229
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21229
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":785
|
|
21230
21230
|
* return PyArray_MultiIterNew(4, <void*>a, <void*>b, <void*>c, <void*> d)
|
|
21231
21231
|
*
|
|
21232
21232
|
* cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): # <<<<<<<<<<<<<<
|
|
@@ -21245,7 +21245,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew5(PyObject *__
|
|
|
21245
21245
|
return __pyx_r;
|
|
21246
21246
|
}
|
|
21247
21247
|
|
|
21248
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21248
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":788
|
|
21249
21249
|
* return PyArray_MultiIterNew(5, <void*>a, <void*>b, <void*>c, <void*> d, <void*> e)
|
|
21250
21250
|
*
|
|
21251
21251
|
* cdef inline tuple PyDataType_SHAPE(dtype d): # <<<<<<<<<<<<<<
|
|
@@ -21259,7 +21259,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyDataType_SHAPE(PyArray_Descr *__
|
|
|
21259
21259
|
int __pyx_t_1;
|
|
21260
21260
|
__Pyx_RefNannySetupContext("PyDataType_SHAPE", 1);
|
|
21261
21261
|
|
|
21262
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21262
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":789
|
|
21263
21263
|
*
|
|
21264
21264
|
* cdef inline tuple PyDataType_SHAPE(dtype d):
|
|
21265
21265
|
* if PyDataType_HASSUBARRAY(d): # <<<<<<<<<<<<<<
|
|
@@ -21269,7 +21269,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyDataType_SHAPE(PyArray_Descr *__
|
|
|
21269
21269
|
__pyx_t_1 = PyDataType_HASSUBARRAY(__pyx_v_d);
|
|
21270
21270
|
if (__pyx_t_1) {
|
|
21271
21271
|
|
|
21272
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21272
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":790
|
|
21273
21273
|
* cdef inline tuple PyDataType_SHAPE(dtype d):
|
|
21274
21274
|
* if PyDataType_HASSUBARRAY(d):
|
|
21275
21275
|
* return <tuple>d.subarray.shape # <<<<<<<<<<<<<<
|
|
@@ -21281,7 +21281,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyDataType_SHAPE(PyArray_Descr *__
|
|
|
21281
21281
|
__pyx_r = ((PyObject*)__pyx_v_d->subarray->shape);
|
|
21282
21282
|
goto __pyx_L0;
|
|
21283
21283
|
|
|
21284
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21284
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":789
|
|
21285
21285
|
*
|
|
21286
21286
|
* cdef inline tuple PyDataType_SHAPE(dtype d):
|
|
21287
21287
|
* if PyDataType_HASSUBARRAY(d): # <<<<<<<<<<<<<<
|
|
@@ -21290,7 +21290,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyDataType_SHAPE(PyArray_Descr *__
|
|
|
21290
21290
|
*/
|
|
21291
21291
|
}
|
|
21292
21292
|
|
|
21293
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21293
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":792
|
|
21294
21294
|
* return <tuple>d.subarray.shape
|
|
21295
21295
|
* else:
|
|
21296
21296
|
* return () # <<<<<<<<<<<<<<
|
|
@@ -21304,7 +21304,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyDataType_SHAPE(PyArray_Descr *__
|
|
|
21304
21304
|
goto __pyx_L0;
|
|
21305
21305
|
}
|
|
21306
21306
|
|
|
21307
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21307
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":788
|
|
21308
21308
|
* return PyArray_MultiIterNew(5, <void*>a, <void*>b, <void*>c, <void*> d, <void*> e)
|
|
21309
21309
|
*
|
|
21310
21310
|
* cdef inline tuple PyDataType_SHAPE(dtype d): # <<<<<<<<<<<<<<
|
|
@@ -21319,7 +21319,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyDataType_SHAPE(PyArray_Descr *__
|
|
|
21319
21319
|
return __pyx_r;
|
|
21320
21320
|
}
|
|
21321
21321
|
|
|
21322
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21322
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":967
|
|
21323
21323
|
* int _import_umath() except -1
|
|
21324
21324
|
*
|
|
21325
21325
|
* cdef inline void set_array_base(ndarray arr, object base): # <<<<<<<<<<<<<<
|
|
@@ -21333,7 +21333,7 @@ static CYTHON_INLINE void __pyx_f_5numpy_set_array_base(PyArrayObject *__pyx_v_a
|
|
|
21333
21333
|
const char *__pyx_filename = NULL;
|
|
21334
21334
|
int __pyx_clineno = 0;
|
|
21335
21335
|
|
|
21336
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21336
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":968
|
|
21337
21337
|
*
|
|
21338
21338
|
* cdef inline void set_array_base(ndarray arr, object base):
|
|
21339
21339
|
* Py_INCREF(base) # important to do this before stealing the reference below! # <<<<<<<<<<<<<<
|
|
@@ -21342,7 +21342,7 @@ static CYTHON_INLINE void __pyx_f_5numpy_set_array_base(PyArrayObject *__pyx_v_a
|
|
|
21342
21342
|
*/
|
|
21343
21343
|
Py_INCREF(__pyx_v_base);
|
|
21344
21344
|
|
|
21345
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21345
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":969
|
|
21346
21346
|
* cdef inline void set_array_base(ndarray arr, object base):
|
|
21347
21347
|
* Py_INCREF(base) # important to do this before stealing the reference below!
|
|
21348
21348
|
* PyArray_SetBaseObject(arr, base) # <<<<<<<<<<<<<<
|
|
@@ -21351,7 +21351,7 @@ static CYTHON_INLINE void __pyx_f_5numpy_set_array_base(PyArrayObject *__pyx_v_a
|
|
|
21351
21351
|
*/
|
|
21352
21352
|
__pyx_t_1 = PyArray_SetBaseObject(__pyx_v_arr, __pyx_v_base); if (unlikely(__pyx_t_1 == ((int)-1))) __PYX_ERR(7, 969, __pyx_L1_error)
|
|
21353
21353
|
|
|
21354
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21354
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":967
|
|
21355
21355
|
* int _import_umath() except -1
|
|
21356
21356
|
*
|
|
21357
21357
|
* cdef inline void set_array_base(ndarray arr, object base): # <<<<<<<<<<<<<<
|
|
@@ -21366,7 +21366,7 @@ static CYTHON_INLINE void __pyx_f_5numpy_set_array_base(PyArrayObject *__pyx_v_a
|
|
|
21366
21366
|
__pyx_L0:;
|
|
21367
21367
|
}
|
|
21368
21368
|
|
|
21369
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21369
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":971
|
|
21370
21370
|
* PyArray_SetBaseObject(arr, base)
|
|
21371
21371
|
*
|
|
21372
21372
|
* cdef inline object get_array_base(ndarray arr): # <<<<<<<<<<<<<<
|
|
@@ -21381,7 +21381,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__py
|
|
|
21381
21381
|
int __pyx_t_1;
|
|
21382
21382
|
__Pyx_RefNannySetupContext("get_array_base", 1);
|
|
21383
21383
|
|
|
21384
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21384
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":972
|
|
21385
21385
|
*
|
|
21386
21386
|
* cdef inline object get_array_base(ndarray arr):
|
|
21387
21387
|
* base = PyArray_BASE(arr) # <<<<<<<<<<<<<<
|
|
@@ -21390,7 +21390,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__py
|
|
|
21390
21390
|
*/
|
|
21391
21391
|
__pyx_v_base = PyArray_BASE(__pyx_v_arr);
|
|
21392
21392
|
|
|
21393
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21393
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":973
|
|
21394
21394
|
* cdef inline object get_array_base(ndarray arr):
|
|
21395
21395
|
* base = PyArray_BASE(arr)
|
|
21396
21396
|
* if base is NULL: # <<<<<<<<<<<<<<
|
|
@@ -21400,7 +21400,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__py
|
|
|
21400
21400
|
__pyx_t_1 = (__pyx_v_base == NULL);
|
|
21401
21401
|
if (__pyx_t_1) {
|
|
21402
21402
|
|
|
21403
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21403
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":974
|
|
21404
21404
|
* base = PyArray_BASE(arr)
|
|
21405
21405
|
* if base is NULL:
|
|
21406
21406
|
* return None # <<<<<<<<<<<<<<
|
|
@@ -21411,7 +21411,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__py
|
|
|
21411
21411
|
__pyx_r = Py_None; __Pyx_INCREF(Py_None);
|
|
21412
21412
|
goto __pyx_L0;
|
|
21413
21413
|
|
|
21414
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21414
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":973
|
|
21415
21415
|
* cdef inline object get_array_base(ndarray arr):
|
|
21416
21416
|
* base = PyArray_BASE(arr)
|
|
21417
21417
|
* if base is NULL: # <<<<<<<<<<<<<<
|
|
@@ -21420,7 +21420,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__py
|
|
|
21420
21420
|
*/
|
|
21421
21421
|
}
|
|
21422
21422
|
|
|
21423
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21423
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":975
|
|
21424
21424
|
* if base is NULL:
|
|
21425
21425
|
* return None
|
|
21426
21426
|
* return <object>base # <<<<<<<<<<<<<<
|
|
@@ -21432,7 +21432,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__py
|
|
|
21432
21432
|
__pyx_r = ((PyObject *)__pyx_v_base);
|
|
21433
21433
|
goto __pyx_L0;
|
|
21434
21434
|
|
|
21435
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21435
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":971
|
|
21436
21436
|
* PyArray_SetBaseObject(arr, base)
|
|
21437
21437
|
*
|
|
21438
21438
|
* cdef inline object get_array_base(ndarray arr): # <<<<<<<<<<<<<<
|
|
@@ -21447,7 +21447,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__py
|
|
|
21447
21447
|
return __pyx_r;
|
|
21448
21448
|
}
|
|
21449
21449
|
|
|
21450
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21450
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":979
|
|
21451
21451
|
* # Versions of the import_* functions which are more suitable for
|
|
21452
21452
|
* # Cython code.
|
|
21453
21453
|
* cdef inline int import_array() except -1: # <<<<<<<<<<<<<<
|
|
@@ -21471,7 +21471,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) {
|
|
|
21471
21471
|
int __pyx_clineno = 0;
|
|
21472
21472
|
__Pyx_RefNannySetupContext("import_array", 1);
|
|
21473
21473
|
|
|
21474
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21474
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":980
|
|
21475
21475
|
* # Cython code.
|
|
21476
21476
|
* cdef inline int import_array() except -1:
|
|
21477
21477
|
* try: # <<<<<<<<<<<<<<
|
|
@@ -21487,7 +21487,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) {
|
|
|
21487
21487
|
__Pyx_XGOTREF(__pyx_t_3);
|
|
21488
21488
|
/*try:*/ {
|
|
21489
21489
|
|
|
21490
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21490
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":981
|
|
21491
21491
|
* cdef inline int import_array() except -1:
|
|
21492
21492
|
* try:
|
|
21493
21493
|
* __pyx_import_array() # <<<<<<<<<<<<<<
|
|
@@ -21496,7 +21496,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) {
|
|
|
21496
21496
|
*/
|
|
21497
21497
|
__pyx_t_4 = _import_array(); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(7, 981, __pyx_L3_error)
|
|
21498
21498
|
|
|
21499
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21499
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":980
|
|
21500
21500
|
* # Cython code.
|
|
21501
21501
|
* cdef inline int import_array() except -1:
|
|
21502
21502
|
* try: # <<<<<<<<<<<<<<
|
|
@@ -21510,7 +21510,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) {
|
|
|
21510
21510
|
goto __pyx_L8_try_end;
|
|
21511
21511
|
__pyx_L3_error:;
|
|
21512
21512
|
|
|
21513
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21513
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":982
|
|
21514
21514
|
* try:
|
|
21515
21515
|
* __pyx_import_array()
|
|
21516
21516
|
* except Exception: # <<<<<<<<<<<<<<
|
|
@@ -21525,7 +21525,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) {
|
|
|
21525
21525
|
__Pyx_XGOTREF(__pyx_t_6);
|
|
21526
21526
|
__Pyx_XGOTREF(__pyx_t_7);
|
|
21527
21527
|
|
|
21528
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21528
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":983
|
|
21529
21529
|
* __pyx_import_array()
|
|
21530
21530
|
* except Exception:
|
|
21531
21531
|
* raise ImportError("numpy.core.multiarray failed to import") # <<<<<<<<<<<<<<
|
|
@@ -21540,7 +21540,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) {
|
|
|
21540
21540
|
}
|
|
21541
21541
|
goto __pyx_L5_except_error;
|
|
21542
21542
|
|
|
21543
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21543
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":980
|
|
21544
21544
|
* # Cython code.
|
|
21545
21545
|
* cdef inline int import_array() except -1:
|
|
21546
21546
|
* try: # <<<<<<<<<<<<<<
|
|
@@ -21556,7 +21556,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) {
|
|
|
21556
21556
|
__pyx_L8_try_end:;
|
|
21557
21557
|
}
|
|
21558
21558
|
|
|
21559
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21559
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":979
|
|
21560
21560
|
* # Versions of the import_* functions which are more suitable for
|
|
21561
21561
|
* # Cython code.
|
|
21562
21562
|
* cdef inline int import_array() except -1: # <<<<<<<<<<<<<<
|
|
@@ -21579,7 +21579,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) {
|
|
|
21579
21579
|
return __pyx_r;
|
|
21580
21580
|
}
|
|
21581
21581
|
|
|
21582
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21582
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":985
|
|
21583
21583
|
* raise ImportError("numpy.core.multiarray failed to import")
|
|
21584
21584
|
*
|
|
21585
21585
|
* cdef inline int import_umath() except -1: # <<<<<<<<<<<<<<
|
|
@@ -21603,7 +21603,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) {
|
|
|
21603
21603
|
int __pyx_clineno = 0;
|
|
21604
21604
|
__Pyx_RefNannySetupContext("import_umath", 1);
|
|
21605
21605
|
|
|
21606
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21606
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":986
|
|
21607
21607
|
*
|
|
21608
21608
|
* cdef inline int import_umath() except -1:
|
|
21609
21609
|
* try: # <<<<<<<<<<<<<<
|
|
@@ -21619,7 +21619,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) {
|
|
|
21619
21619
|
__Pyx_XGOTREF(__pyx_t_3);
|
|
21620
21620
|
/*try:*/ {
|
|
21621
21621
|
|
|
21622
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21622
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":987
|
|
21623
21623
|
* cdef inline int import_umath() except -1:
|
|
21624
21624
|
* try:
|
|
21625
21625
|
* _import_umath() # <<<<<<<<<<<<<<
|
|
@@ -21628,7 +21628,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) {
|
|
|
21628
21628
|
*/
|
|
21629
21629
|
__pyx_t_4 = _import_umath(); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(7, 987, __pyx_L3_error)
|
|
21630
21630
|
|
|
21631
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21631
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":986
|
|
21632
21632
|
*
|
|
21633
21633
|
* cdef inline int import_umath() except -1:
|
|
21634
21634
|
* try: # <<<<<<<<<<<<<<
|
|
@@ -21642,7 +21642,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) {
|
|
|
21642
21642
|
goto __pyx_L8_try_end;
|
|
21643
21643
|
__pyx_L3_error:;
|
|
21644
21644
|
|
|
21645
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21645
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":988
|
|
21646
21646
|
* try:
|
|
21647
21647
|
* _import_umath()
|
|
21648
21648
|
* except Exception: # <<<<<<<<<<<<<<
|
|
@@ -21657,7 +21657,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) {
|
|
|
21657
21657
|
__Pyx_XGOTREF(__pyx_t_6);
|
|
21658
21658
|
__Pyx_XGOTREF(__pyx_t_7);
|
|
21659
21659
|
|
|
21660
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21660
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":989
|
|
21661
21661
|
* _import_umath()
|
|
21662
21662
|
* except Exception:
|
|
21663
21663
|
* raise ImportError("numpy.core.umath failed to import") # <<<<<<<<<<<<<<
|
|
@@ -21672,7 +21672,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) {
|
|
|
21672
21672
|
}
|
|
21673
21673
|
goto __pyx_L5_except_error;
|
|
21674
21674
|
|
|
21675
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21675
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":986
|
|
21676
21676
|
*
|
|
21677
21677
|
* cdef inline int import_umath() except -1:
|
|
21678
21678
|
* try: # <<<<<<<<<<<<<<
|
|
@@ -21688,7 +21688,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) {
|
|
|
21688
21688
|
__pyx_L8_try_end:;
|
|
21689
21689
|
}
|
|
21690
21690
|
|
|
21691
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21691
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":985
|
|
21692
21692
|
* raise ImportError("numpy.core.multiarray failed to import")
|
|
21693
21693
|
*
|
|
21694
21694
|
* cdef inline int import_umath() except -1: # <<<<<<<<<<<<<<
|
|
@@ -21711,7 +21711,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) {
|
|
|
21711
21711
|
return __pyx_r;
|
|
21712
21712
|
}
|
|
21713
21713
|
|
|
21714
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21714
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":991
|
|
21715
21715
|
* raise ImportError("numpy.core.umath failed to import")
|
|
21716
21716
|
*
|
|
21717
21717
|
* cdef inline int import_ufunc() except -1: # <<<<<<<<<<<<<<
|
|
@@ -21735,7 +21735,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) {
|
|
|
21735
21735
|
int __pyx_clineno = 0;
|
|
21736
21736
|
__Pyx_RefNannySetupContext("import_ufunc", 1);
|
|
21737
21737
|
|
|
21738
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21738
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":992
|
|
21739
21739
|
*
|
|
21740
21740
|
* cdef inline int import_ufunc() except -1:
|
|
21741
21741
|
* try: # <<<<<<<<<<<<<<
|
|
@@ -21751,7 +21751,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) {
|
|
|
21751
21751
|
__Pyx_XGOTREF(__pyx_t_3);
|
|
21752
21752
|
/*try:*/ {
|
|
21753
21753
|
|
|
21754
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21754
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":993
|
|
21755
21755
|
* cdef inline int import_ufunc() except -1:
|
|
21756
21756
|
* try:
|
|
21757
21757
|
* _import_umath() # <<<<<<<<<<<<<<
|
|
@@ -21760,7 +21760,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) {
|
|
|
21760
21760
|
*/
|
|
21761
21761
|
__pyx_t_4 = _import_umath(); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(7, 993, __pyx_L3_error)
|
|
21762
21762
|
|
|
21763
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21763
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":992
|
|
21764
21764
|
*
|
|
21765
21765
|
* cdef inline int import_ufunc() except -1:
|
|
21766
21766
|
* try: # <<<<<<<<<<<<<<
|
|
@@ -21774,7 +21774,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) {
|
|
|
21774
21774
|
goto __pyx_L8_try_end;
|
|
21775
21775
|
__pyx_L3_error:;
|
|
21776
21776
|
|
|
21777
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21777
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":994
|
|
21778
21778
|
* try:
|
|
21779
21779
|
* _import_umath()
|
|
21780
21780
|
* except Exception: # <<<<<<<<<<<<<<
|
|
@@ -21789,7 +21789,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) {
|
|
|
21789
21789
|
__Pyx_XGOTREF(__pyx_t_6);
|
|
21790
21790
|
__Pyx_XGOTREF(__pyx_t_7);
|
|
21791
21791
|
|
|
21792
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21792
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":995
|
|
21793
21793
|
* _import_umath()
|
|
21794
21794
|
* except Exception:
|
|
21795
21795
|
* raise ImportError("numpy.core.umath failed to import") # <<<<<<<<<<<<<<
|
|
@@ -21804,7 +21804,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) {
|
|
|
21804
21804
|
}
|
|
21805
21805
|
goto __pyx_L5_except_error;
|
|
21806
21806
|
|
|
21807
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21807
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":992
|
|
21808
21808
|
*
|
|
21809
21809
|
* cdef inline int import_ufunc() except -1:
|
|
21810
21810
|
* try: # <<<<<<<<<<<<<<
|
|
@@ -21820,7 +21820,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) {
|
|
|
21820
21820
|
__pyx_L8_try_end:;
|
|
21821
21821
|
}
|
|
21822
21822
|
|
|
21823
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21823
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":991
|
|
21824
21824
|
* raise ImportError("numpy.core.umath failed to import")
|
|
21825
21825
|
*
|
|
21826
21826
|
* cdef inline int import_ufunc() except -1: # <<<<<<<<<<<<<<
|
|
@@ -21843,7 +21843,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) {
|
|
|
21843
21843
|
return __pyx_r;
|
|
21844
21844
|
}
|
|
21845
21845
|
|
|
21846
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21846
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":998
|
|
21847
21847
|
*
|
|
21848
21848
|
*
|
|
21849
21849
|
* cdef inline bint is_timedelta64_object(object obj): # <<<<<<<<<<<<<<
|
|
@@ -21854,7 +21854,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) {
|
|
|
21854
21854
|
static CYTHON_INLINE int __pyx_f_5numpy_is_timedelta64_object(PyObject *__pyx_v_obj) {
|
|
21855
21855
|
int __pyx_r;
|
|
21856
21856
|
|
|
21857
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21857
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":1010
|
|
21858
21858
|
* bool
|
|
21859
21859
|
* """
|
|
21860
21860
|
* return PyObject_TypeCheck(obj, &PyTimedeltaArrType_Type) # <<<<<<<<<<<<<<
|
|
@@ -21864,7 +21864,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_is_timedelta64_object(PyObject *__pyx_v_
|
|
|
21864
21864
|
__pyx_r = PyObject_TypeCheck(__pyx_v_obj, (&PyTimedeltaArrType_Type));
|
|
21865
21865
|
goto __pyx_L0;
|
|
21866
21866
|
|
|
21867
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21867
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":998
|
|
21868
21868
|
*
|
|
21869
21869
|
*
|
|
21870
21870
|
* cdef inline bint is_timedelta64_object(object obj): # <<<<<<<<<<<<<<
|
|
@@ -21877,7 +21877,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_is_timedelta64_object(PyObject *__pyx_v_
|
|
|
21877
21877
|
return __pyx_r;
|
|
21878
21878
|
}
|
|
21879
21879
|
|
|
21880
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21880
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":1013
|
|
21881
21881
|
*
|
|
21882
21882
|
*
|
|
21883
21883
|
* cdef inline bint is_datetime64_object(object obj): # <<<<<<<<<<<<<<
|
|
@@ -21888,7 +21888,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_is_timedelta64_object(PyObject *__pyx_v_
|
|
|
21888
21888
|
static CYTHON_INLINE int __pyx_f_5numpy_is_datetime64_object(PyObject *__pyx_v_obj) {
|
|
21889
21889
|
int __pyx_r;
|
|
21890
21890
|
|
|
21891
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21891
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":1025
|
|
21892
21892
|
* bool
|
|
21893
21893
|
* """
|
|
21894
21894
|
* return PyObject_TypeCheck(obj, &PyDatetimeArrType_Type) # <<<<<<<<<<<<<<
|
|
@@ -21898,7 +21898,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_is_datetime64_object(PyObject *__pyx_v_o
|
|
|
21898
21898
|
__pyx_r = PyObject_TypeCheck(__pyx_v_obj, (&PyDatetimeArrType_Type));
|
|
21899
21899
|
goto __pyx_L0;
|
|
21900
21900
|
|
|
21901
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21901
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":1013
|
|
21902
21902
|
*
|
|
21903
21903
|
*
|
|
21904
21904
|
* cdef inline bint is_datetime64_object(object obj): # <<<<<<<<<<<<<<
|
|
@@ -21911,7 +21911,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_is_datetime64_object(PyObject *__pyx_v_o
|
|
|
21911
21911
|
return __pyx_r;
|
|
21912
21912
|
}
|
|
21913
21913
|
|
|
21914
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21914
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":1028
|
|
21915
21915
|
*
|
|
21916
21916
|
*
|
|
21917
21917
|
* cdef inline npy_datetime get_datetime64_value(object obj) nogil: # <<<<<<<<<<<<<<
|
|
@@ -21922,7 +21922,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_is_datetime64_object(PyObject *__pyx_v_o
|
|
|
21922
21922
|
static CYTHON_INLINE npy_datetime __pyx_f_5numpy_get_datetime64_value(PyObject *__pyx_v_obj) {
|
|
21923
21923
|
npy_datetime __pyx_r;
|
|
21924
21924
|
|
|
21925
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21925
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":1035
|
|
21926
21926
|
* also needed. That can be found using `get_datetime64_unit`.
|
|
21927
21927
|
* """
|
|
21928
21928
|
* return (<PyDatetimeScalarObject*>obj).obval # <<<<<<<<<<<<<<
|
|
@@ -21932,7 +21932,7 @@ static CYTHON_INLINE npy_datetime __pyx_f_5numpy_get_datetime64_value(PyObject *
|
|
|
21932
21932
|
__pyx_r = ((PyDatetimeScalarObject *)__pyx_v_obj)->obval;
|
|
21933
21933
|
goto __pyx_L0;
|
|
21934
21934
|
|
|
21935
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21935
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":1028
|
|
21936
21936
|
*
|
|
21937
21937
|
*
|
|
21938
21938
|
* cdef inline npy_datetime get_datetime64_value(object obj) nogil: # <<<<<<<<<<<<<<
|
|
@@ -21945,7 +21945,7 @@ static CYTHON_INLINE npy_datetime __pyx_f_5numpy_get_datetime64_value(PyObject *
|
|
|
21945
21945
|
return __pyx_r;
|
|
21946
21946
|
}
|
|
21947
21947
|
|
|
21948
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21948
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":1038
|
|
21949
21949
|
*
|
|
21950
21950
|
*
|
|
21951
21951
|
* cdef inline npy_timedelta get_timedelta64_value(object obj) nogil: # <<<<<<<<<<<<<<
|
|
@@ -21956,7 +21956,7 @@ static CYTHON_INLINE npy_datetime __pyx_f_5numpy_get_datetime64_value(PyObject *
|
|
|
21956
21956
|
static CYTHON_INLINE npy_timedelta __pyx_f_5numpy_get_timedelta64_value(PyObject *__pyx_v_obj) {
|
|
21957
21957
|
npy_timedelta __pyx_r;
|
|
21958
21958
|
|
|
21959
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21959
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":1042
|
|
21960
21960
|
* returns the int64 value underlying scalar numpy timedelta64 object
|
|
21961
21961
|
* """
|
|
21962
21962
|
* return (<PyTimedeltaScalarObject*>obj).obval # <<<<<<<<<<<<<<
|
|
@@ -21966,7 +21966,7 @@ static CYTHON_INLINE npy_timedelta __pyx_f_5numpy_get_timedelta64_value(PyObject
|
|
|
21966
21966
|
__pyx_r = ((PyTimedeltaScalarObject *)__pyx_v_obj)->obval;
|
|
21967
21967
|
goto __pyx_L0;
|
|
21968
21968
|
|
|
21969
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21969
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":1038
|
|
21970
21970
|
*
|
|
21971
21971
|
*
|
|
21972
21972
|
* cdef inline npy_timedelta get_timedelta64_value(object obj) nogil: # <<<<<<<<<<<<<<
|
|
@@ -21979,7 +21979,7 @@ static CYTHON_INLINE npy_timedelta __pyx_f_5numpy_get_timedelta64_value(PyObject
|
|
|
21979
21979
|
return __pyx_r;
|
|
21980
21980
|
}
|
|
21981
21981
|
|
|
21982
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21982
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":1045
|
|
21983
21983
|
*
|
|
21984
21984
|
*
|
|
21985
21985
|
* cdef inline NPY_DATETIMEUNIT get_datetime64_unit(object obj) nogil: # <<<<<<<<<<<<<<
|
|
@@ -21990,7 +21990,7 @@ static CYTHON_INLINE npy_timedelta __pyx_f_5numpy_get_timedelta64_value(PyObject
|
|
|
21990
21990
|
static CYTHON_INLINE NPY_DATETIMEUNIT __pyx_f_5numpy_get_datetime64_unit(PyObject *__pyx_v_obj) {
|
|
21991
21991
|
NPY_DATETIMEUNIT __pyx_r;
|
|
21992
21992
|
|
|
21993
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
21993
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":1049
|
|
21994
21994
|
* returns the unit part of the dtype for a numpy datetime64 object.
|
|
21995
21995
|
* """
|
|
21996
21996
|
* return <NPY_DATETIMEUNIT>(<PyDatetimeScalarObject*>obj).obmeta.base # <<<<<<<<<<<<<<
|
|
@@ -21998,7 +21998,7 @@ static CYTHON_INLINE NPY_DATETIMEUNIT __pyx_f_5numpy_get_datetime64_unit(PyObjec
|
|
|
21998
21998
|
__pyx_r = ((NPY_DATETIMEUNIT)((PyDatetimeScalarObject *)__pyx_v_obj)->obmeta.base);
|
|
21999
21999
|
goto __pyx_L0;
|
|
22000
22000
|
|
|
22001
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
22001
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":1045
|
|
22002
22002
|
*
|
|
22003
22003
|
*
|
|
22004
22004
|
* cdef inline NPY_DATETIMEUNIT get_datetime64_unit(object obj) nogil: # <<<<<<<<<<<<<<
|
|
@@ -29748,7 +29748,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
29748
29748
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
29749
29749
|
#endif
|
|
29750
29750
|
); /*proto*/
|
|
29751
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_37fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
29751
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_37fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `<tuple>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[dict[str, Any]]>`: The fetched result.\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
|
|
29752
29752
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_38fetch_query = {"fetch_query", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_38fetch_query, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_37fetch_query};
|
|
29753
29753
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_38fetch_query(PyObject *__pyx_v_self,
|
|
29754
29754
|
#if CYTHON_METH_FASTCALL
|
|
@@ -30081,7 +30081,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
30081
30081
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
30082
30082
|
#endif
|
|
30083
30083
|
); /*proto*/
|
|
30084
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_40fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
30084
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_40fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `<DataFrame>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<DataFrame>`: The fetched result.\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
|
|
30085
30085
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_41fetch_query = {"fetch_query", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_41fetch_query, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_40fetch_query};
|
|
30086
30086
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_41fetch_query(PyObject *__pyx_v_self,
|
|
30087
30087
|
#if CYTHON_METH_FASTCALL
|
|
@@ -30414,7 +30414,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
30414
30414
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
30415
30415
|
#endif
|
|
30416
30416
|
); /*proto*/
|
|
30417
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_43fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
30417
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_43fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `tuple[tuple]` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: The fetched result.\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
|
|
30418
30418
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_44fetch_query = {"fetch_query", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_44fetch_query, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_43fetch_query};
|
|
30419
30419
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_44fetch_query(PyObject *__pyx_v_self,
|
|
30420
30420
|
#if CYTHON_METH_FASTCALL
|
|
@@ -30747,7 +30747,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
30747
30747
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
30748
30748
|
#endif
|
|
30749
30749
|
); /*proto*/
|
|
30750
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_46fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
30750
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_46fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `tuple` or `DataFrame` (depends on 'cursor' type)\n will be returned as the execution result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: The fetched result (depends on 'cursor' type).\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
|
|
30751
30751
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_47fetch_query = {"fetch_query", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_47fetch_query, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_46fetch_query};
|
|
30752
30752
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_47fetch_query(PyObject *__pyx_v_self,
|
|
30753
30753
|
#if CYTHON_METH_FASTCALL
|
|
@@ -40439,7 +40439,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_5Table_105generator25(__pyx_Co
|
|
|
40439
40439
|
|
|
40440
40440
|
/* Python wrapper */
|
|
40441
40441
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_104information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
|
|
40442
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_103information, "Select table information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
40442
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_103information, "Select table information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[dict]>`: Table information..\n ");
|
|
40443
40443
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_104information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_104information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_103information};
|
|
40444
40444
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_104information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
|
|
40445
40445
|
CYTHON_UNUSED PyObject *__pyx_v_cursor = 0;
|
|
@@ -40606,7 +40606,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_5Table_108generator26(__pyx_Co
|
|
|
40606
40606
|
|
|
40607
40607
|
/* Python wrapper */
|
|
40608
40608
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_107information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
|
|
40609
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_106information, "Select table information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
40609
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_106information, "Select table information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<DataFrame>`: Table information.\n ");
|
|
40610
40610
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_107information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_107information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_106information};
|
|
40611
40611
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_107information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
|
|
40612
40612
|
CYTHON_UNUSED PyObject *__pyx_v_cursor = 0;
|
|
@@ -40773,7 +40773,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_5Table_111generator27(__pyx_Co
|
|
|
40773
40773
|
|
|
40774
40774
|
/* Python wrapper */
|
|
40775
40775
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_110information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
|
|
40776
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_109information, "Select table information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
40776
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_109information, "Select table information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: Table information.\n ");
|
|
40777
40777
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_110information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_110information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_109information};
|
|
40778
40778
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_110information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
|
|
40779
40779
|
CYTHON_UNUSED PyObject *__pyx_v_cursor = 0;
|
|
@@ -40940,7 +40940,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_5Table_114generator28(__pyx_Co
|
|
|
40940
40940
|
|
|
40941
40941
|
/* Python wrapper */
|
|
40942
40942
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_113information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
|
|
40943
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_112information, "Select table information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
40943
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_112information, "Select table information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Table information (depends on 'cursor' type).\n ");
|
|
40944
40944
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_113information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_113information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_112information};
|
|
40945
40945
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_113information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
|
|
40946
40946
|
PyObject *__pyx_v_cursor = 0;
|
|
@@ -42331,7 +42331,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
42331
42331
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
42332
42332
|
#endif
|
|
42333
42333
|
); /*proto*/
|
|
42334
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_115describe, "`DESCRIBE` the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
42334
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_115describe, "`DESCRIBE` the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[dict]>`: Table description.\n ");
|
|
42335
42335
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_116describe = {"describe", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_116describe, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_115describe};
|
|
42336
42336
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_116describe(PyObject *__pyx_v_self,
|
|
42337
42337
|
#if CYTHON_METH_FASTCALL
|
|
@@ -42515,7 +42515,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
42515
42515
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
42516
42516
|
#endif
|
|
42517
42517
|
); /*proto*/
|
|
42518
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_118describe, "`DESCRIBE` the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
42518
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_118describe, "`DESCRIBE` the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<DataFrame>`: Table description.\n ");
|
|
42519
42519
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_119describe = {"describe", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_119describe, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_118describe};
|
|
42520
42520
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_119describe(PyObject *__pyx_v_self,
|
|
42521
42521
|
#if CYTHON_METH_FASTCALL
|
|
@@ -42699,7 +42699,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
42699
42699
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
42700
42700
|
#endif
|
|
42701
42701
|
); /*proto*/
|
|
42702
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_121describe, "`DESCRIBE` the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
42702
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_121describe, "`DESCRIBE` the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: Table description.\n ");
|
|
42703
42703
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_122describe = {"describe", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_122describe, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_121describe};
|
|
42704
42704
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_122describe(PyObject *__pyx_v_self,
|
|
42705
42705
|
#if CYTHON_METH_FASTCALL
|
|
@@ -42883,7 +42883,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
42883
42883
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
42884
42884
|
#endif
|
|
42885
42885
|
); /*proto*/
|
|
42886
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_124describe, "`DESCRIBE` the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
42886
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_124describe, "`DESCRIBE` the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Table description (depends on 'cursor' type).\n ");
|
|
42887
42887
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_125describe = {"describe", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_125describe, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_124describe};
|
|
42888
42888
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_125describe(PyObject *__pyx_v_self,
|
|
42889
42889
|
#if CYTHON_METH_FASTCALL
|
|
@@ -43135,7 +43135,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
43135
43135
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
43136
43136
|
#endif
|
|
43137
43137
|
); /*proto*/
|
|
43138
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_127_describe, "(Base method, internal use only). `DESCRIBE` the table.\n\n :param name: `<str>` Name of the table.\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
43138
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_127_describe, "(Base method, internal use only). `DESCRIBE` the table.\n\n :param name: `<str>` Name of the table.\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Table description (depends on 'cursor' type).\n ");
|
|
43139
43139
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_128_describe = {"_describe", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_128_describe, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_127_describe};
|
|
43140
43140
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_128_describe(PyObject *__pyx_v_self,
|
|
43141
43141
|
#if CYTHON_METH_FASTCALL
|
|
@@ -52739,7 +52739,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
52739
52739
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
52740
52740
|
#endif
|
|
52741
52741
|
); /*proto*/
|
|
52742
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_166show_index, "`SHOW INDEX` from the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
52742
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_166show_index, "`SHOW INDEX` from the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[dict]>`: Index information.\n ");
|
|
52743
52743
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_167show_index = {"show_index", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_167show_index, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_166show_index};
|
|
52744
52744
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_167show_index(PyObject *__pyx_v_self,
|
|
52745
52745
|
#if CYTHON_METH_FASTCALL
|
|
@@ -52923,7 +52923,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
52923
52923
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
52924
52924
|
#endif
|
|
52925
52925
|
); /*proto*/
|
|
52926
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_169show_index, "`SHOW INDEX` from the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
52926
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_169show_index, "`SHOW INDEX` from the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<DataFrame>`: Index information.\n ");
|
|
52927
52927
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_170show_index = {"show_index", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_170show_index, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_169show_index};
|
|
52928
52928
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_170show_index(PyObject *__pyx_v_self,
|
|
52929
52929
|
#if CYTHON_METH_FASTCALL
|
|
@@ -53107,7 +53107,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
53107
53107
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
53108
53108
|
#endif
|
|
53109
53109
|
); /*proto*/
|
|
53110
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_172show_index, "`SHOW INDEX` from the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
53110
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_172show_index, "`SHOW INDEX` from the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: Index information.\n ");
|
|
53111
53111
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_173show_index = {"show_index", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_173show_index, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_172show_index};
|
|
53112
53112
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_173show_index(PyObject *__pyx_v_self,
|
|
53113
53113
|
#if CYTHON_METH_FASTCALL
|
|
@@ -53291,7 +53291,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
53291
53291
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
53292
53292
|
#endif
|
|
53293
53293
|
); /*proto*/
|
|
53294
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_175show_index, "`SHOW INDEX` from the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
53294
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_175show_index, "`SHOW INDEX` from the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Index information (depends on 'cursor' type).\n ");
|
|
53295
53295
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_176show_index = {"show_index", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_176show_index, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_175show_index};
|
|
53296
53296
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_176show_index(PyObject *__pyx_v_self,
|
|
53297
53297
|
#if CYTHON_METH_FASTCALL
|
|
@@ -53543,7 +53543,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
53543
53543
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
53544
53544
|
#endif
|
|
53545
53545
|
); /*proto*/
|
|
53546
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_178_show_index, "(Base method, internal use only). `SHOW INDEX` from the table.\n\n :param name: `<str>` Name of the table.\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
53546
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_178_show_index, "(Base method, internal use only). `SHOW INDEX` from the table.\n\n :param name: `<str>` Name of the table.\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Index information (depends on 'cursor' type).\n ");
|
|
53547
53547
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_179_show_index = {"_show_index", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_179_show_index, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_178_show_index};
|
|
53548
53548
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_179_show_index(PyObject *__pyx_v_self,
|
|
53549
53549
|
#if CYTHON_METH_FASTCALL
|
|
@@ -85919,7 +85919,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_9TimeTable_55generator70(__pyx
|
|
|
85919
85919
|
|
|
85920
85920
|
/* Python wrapper */
|
|
85921
85921
|
static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_54information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
|
|
85922
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_53information, "Select all sub-tables information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
85922
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_53information, "Select all sub-tables information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[dict]>`: All sub-tables information.\n ");
|
|
85923
85923
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_54information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_54information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_53information};
|
|
85924
85924
|
static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_54information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
|
|
85925
85925
|
CYTHON_UNUSED PyObject *__pyx_v_cursor = 0;
|
|
@@ -86086,7 +86086,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_9TimeTable_58generator71(__pyx
|
|
|
86086
86086
|
|
|
86087
86087
|
/* Python wrapper */
|
|
86088
86088
|
static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_57information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
|
|
86089
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_56information, "Select all sub-tables information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
86089
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_56information, "Select all sub-tables information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<DataFrame>`: All sub-tables information.\n ");
|
|
86090
86090
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_57information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_57information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_56information};
|
|
86091
86091
|
static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_57information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
|
|
86092
86092
|
CYTHON_UNUSED PyObject *__pyx_v_cursor = 0;
|
|
@@ -86253,7 +86253,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_9TimeTable_61generator72(__pyx
|
|
|
86253
86253
|
|
|
86254
86254
|
/* Python wrapper */
|
|
86255
86255
|
static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_60information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
|
|
86256
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_59information, "Select all sub-tables information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
86256
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_59information, "Select all sub-tables information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: All sub-tables information.\n ");
|
|
86257
86257
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_60information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_60information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_59information};
|
|
86258
86258
|
static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_60information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
|
|
86259
86259
|
CYTHON_UNUSED PyObject *__pyx_v_cursor = 0;
|
|
@@ -86420,7 +86420,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_9TimeTable_64generator73(__pyx
|
|
|
86420
86420
|
|
|
86421
86421
|
/* Python wrapper */
|
|
86422
86422
|
static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_63information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
|
|
86423
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_62information, "Select all sub-tables information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
86423
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_62information, "Select all sub-tables information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: All sub-tables information (depends on 'cursor' type).\n ");
|
|
86424
86424
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_63information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_63information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_62information};
|
|
86425
86425
|
static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_63information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
|
|
86426
86426
|
PyObject *__pyx_v_cursor = 0;
|
|
@@ -87811,7 +87811,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
87811
87811
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
87812
87812
|
#endif
|
|
87813
87813
|
); /*proto*/
|
|
87814
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_65describe, "`DESCRIBE` a sub-table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
87814
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_65describe, "`DESCRIBE` a sub-table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[dict]>`: Table description.\n ");
|
|
87815
87815
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_66describe = {"describe", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_66describe, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_65describe};
|
|
87816
87816
|
static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_66describe(PyObject *__pyx_v_self,
|
|
87817
87817
|
#if CYTHON_METH_FASTCALL
|
|
@@ -87995,7 +87995,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
87995
87995
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
87996
87996
|
#endif
|
|
87997
87997
|
); /*proto*/
|
|
87998
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_68describe, "`DESCRIBE` a sub-table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
87998
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_68describe, "`DESCRIBE` a sub-table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<DataFrame>`: Table description.\n ");
|
|
87999
87999
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_69describe = {"describe", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_69describe, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_68describe};
|
|
88000
88000
|
static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_69describe(PyObject *__pyx_v_self,
|
|
88001
88001
|
#if CYTHON_METH_FASTCALL
|
|
@@ -88179,7 +88179,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
88179
88179
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
88180
88180
|
#endif
|
|
88181
88181
|
); /*proto*/
|
|
88182
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_71describe, "`DESCRIBE` a sub-table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
88182
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_71describe, "`DESCRIBE` a sub-table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: Table description.\n ");
|
|
88183
88183
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_72describe = {"describe", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_72describe, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_71describe};
|
|
88184
88184
|
static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_72describe(PyObject *__pyx_v_self,
|
|
88185
88185
|
#if CYTHON_METH_FASTCALL
|
|
@@ -88363,7 +88363,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
88363
88363
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
88364
88364
|
#endif
|
|
88365
88365
|
); /*proto*/
|
|
88366
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_74describe, "`DESCRIBE` a sub-table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
88366
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_74describe, "`DESCRIBE` a sub-table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Table description (depends on 'cursor' type).\n ");
|
|
88367
88367
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_75describe = {"describe", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_75describe, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_74describe};
|
|
88368
88368
|
static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_75describe(PyObject *__pyx_v_self,
|
|
88369
88369
|
#if CYTHON_METH_FASTCALL
|
|
@@ -92188,7 +92188,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
92188
92188
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
92189
92189
|
#endif
|
|
92190
92190
|
); /*proto*/
|
|
92191
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_95show_index, "`SHOW INDEX` of the TimeTable.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
92191
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_95show_index, "`SHOW INDEX` of the TimeTable.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[dict]>`: Index information.\n ");
|
|
92192
92192
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_96show_index = {"show_index", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_96show_index, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_95show_index};
|
|
92193
92193
|
static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_96show_index(PyObject *__pyx_v_self,
|
|
92194
92194
|
#if CYTHON_METH_FASTCALL
|
|
@@ -92372,7 +92372,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
92372
92372
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
92373
92373
|
#endif
|
|
92374
92374
|
); /*proto*/
|
|
92375
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_98show_index, "`SHOW INDEX` of the TimeTable.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
92375
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_98show_index, "`SHOW INDEX` of the TimeTable.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<DataFrame>`: Index information.\n ");
|
|
92376
92376
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_99show_index = {"show_index", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_99show_index, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_98show_index};
|
|
92377
92377
|
static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_99show_index(PyObject *__pyx_v_self,
|
|
92378
92378
|
#if CYTHON_METH_FASTCALL
|
|
@@ -92556,7 +92556,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
92556
92556
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
92557
92557
|
#endif
|
|
92558
92558
|
); /*proto*/
|
|
92559
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_101show_index, "`SHOW INDEX` of the TimeTable.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
92559
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_101show_index, "`SHOW INDEX` of the TimeTable.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: Index information.\n ");
|
|
92560
92560
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_102show_index = {"show_index", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_102show_index, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_101show_index};
|
|
92561
92561
|
static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_102show_index(PyObject *__pyx_v_self,
|
|
92562
92562
|
#if CYTHON_METH_FASTCALL
|
|
@@ -92740,7 +92740,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
92740
92740
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
92741
92741
|
#endif
|
|
92742
92742
|
); /*proto*/
|
|
92743
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_104show_index, "`SHOW INDEX` of the TimeTable.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
92743
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_104show_index, "`SHOW INDEX` of the TimeTable.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Index information (depends on 'cursor' type).\n ");
|
|
92744
92744
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_105show_index = {"show_index", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_105show_index, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_104show_index};
|
|
92745
92745
|
static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_105show_index(PyObject *__pyx_v_self,
|
|
92746
92746
|
#if CYTHON_METH_FASTCALL
|
|
@@ -116055,7 +116055,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
116055
116055
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
116056
116056
|
#endif
|
|
116057
116057
|
); /*proto*/
|
|
116058
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_26fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
116058
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_26fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `<tuple>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[dict]>`: The fetched result.\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
|
|
116059
116059
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_8Database_27fetch_query = {"fetch_query", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_8Database_27fetch_query, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_8Database_26fetch_query};
|
|
116060
116060
|
static PyObject *__pyx_pw_11mysqlengine_8database_8Database_27fetch_query(PyObject *__pyx_v_self,
|
|
116061
116061
|
#if CYTHON_METH_FASTCALL
|
|
@@ -116388,7 +116388,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
116388
116388
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
116389
116389
|
#endif
|
|
116390
116390
|
); /*proto*/
|
|
116391
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_29fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
116391
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_29fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `<DataFrame>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<DataFrame>`: The fetched result.\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
|
|
116392
116392
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_8Database_30fetch_query = {"fetch_query", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_8Database_30fetch_query, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_8Database_29fetch_query};
|
|
116393
116393
|
static PyObject *__pyx_pw_11mysqlengine_8database_8Database_30fetch_query(PyObject *__pyx_v_self,
|
|
116394
116394
|
#if CYTHON_METH_FASTCALL
|
|
@@ -116721,7 +116721,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
116721
116721
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
116722
116722
|
#endif
|
|
116723
116723
|
); /*proto*/
|
|
116724
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_32fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
116724
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_32fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `tuple[tuple]` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: The fetched result.\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
|
|
116725
116725
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_8Database_33fetch_query = {"fetch_query", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_8Database_33fetch_query, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_8Database_32fetch_query};
|
|
116726
116726
|
static PyObject *__pyx_pw_11mysqlengine_8database_8Database_33fetch_query(PyObject *__pyx_v_self,
|
|
116727
116727
|
#if CYTHON_METH_FASTCALL
|
|
@@ -117054,7 +117054,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
117054
117054
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
117055
117055
|
#endif
|
|
117056
117056
|
); /*proto*/
|
|
117057
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_35fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
117057
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_35fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `tuple` or `DataFrame` (depends on 'cursor' type)\n will be returned as the execution result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: The fetched result (depends on 'cursor' type).\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
|
|
117058
117058
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_8Database_36fetch_query = {"fetch_query", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_8Database_36fetch_query, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_8Database_35fetch_query};
|
|
117059
117059
|
static PyObject *__pyx_pw_11mysqlengine_8database_8Database_36fetch_query(PyObject *__pyx_v_self,
|
|
117060
117060
|
#if CYTHON_METH_FASTCALL
|
|
@@ -128942,7 +128942,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_8Database_73generator111(__pyx
|
|
|
128942
128942
|
|
|
128943
128943
|
/* Python wrapper */
|
|
128944
128944
|
static PyObject *__pyx_pw_11mysqlengine_8database_8Database_72information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
|
|
128945
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_71information, "Select database information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'catelog_name', 'schema_name', 'default_character_set_name',\n - 'default_collation_name', 'sql_path', 'default_encryption'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'schema_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
128945
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_71information, "Select database information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'catelog_name', 'schema_name', 'default_character_set_name',\n - 'default_collation_name', 'sql_path', 'default_encryption'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'schema_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[dict]>`: Database information.\n ");
|
|
128946
128946
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_8Database_72information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_8Database_72information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_8Database_71information};
|
|
128947
128947
|
static PyObject *__pyx_pw_11mysqlengine_8database_8Database_72information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
|
|
128948
128948
|
CYTHON_UNUSED PyObject *__pyx_v_cursor = 0;
|
|
@@ -129109,7 +129109,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_8Database_76generator112(__pyx
|
|
|
129109
129109
|
|
|
129110
129110
|
/* Python wrapper */
|
|
129111
129111
|
static PyObject *__pyx_pw_11mysqlengine_8database_8Database_75information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
|
|
129112
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_74information, "Select database information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'catelog_name', 'schema_name', 'default_character_set_name',\n - 'default_collation_name', 'sql_path', 'default_encryption'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'schema_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
129112
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_74information, "Select database information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'catelog_name', 'schema_name', 'default_character_set_name',\n - 'default_collation_name', 'sql_path', 'default_encryption'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'schema_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<DataFrame>`: Database information.\n ");
|
|
129113
129113
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_8Database_75information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_8Database_75information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_8Database_74information};
|
|
129114
129114
|
static PyObject *__pyx_pw_11mysqlengine_8database_8Database_75information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
|
|
129115
129115
|
CYTHON_UNUSED PyObject *__pyx_v_cursor = 0;
|
|
@@ -129276,7 +129276,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_8Database_79generator113(__pyx
|
|
|
129276
129276
|
|
|
129277
129277
|
/* Python wrapper */
|
|
129278
129278
|
static PyObject *__pyx_pw_11mysqlengine_8database_8Database_78information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
|
|
129279
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_77information, "Select database information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'catelog_name', 'schema_name', 'default_character_set_name',\n - 'default_collation_name', 'sql_path', 'default_encryption'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'schema_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
129279
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_77information, "Select database information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'catelog_name', 'schema_name', 'default_character_set_name',\n - 'default_collation_name', 'sql_path', 'default_encryption'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'schema_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: Database information.\n ");
|
|
129280
129280
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_8Database_78information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_8Database_78information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_8Database_77information};
|
|
129281
129281
|
static PyObject *__pyx_pw_11mysqlengine_8database_8Database_78information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
|
|
129282
129282
|
CYTHON_UNUSED PyObject *__pyx_v_cursor = 0;
|
|
@@ -129443,7 +129443,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_8Database_82generator114(__pyx
|
|
|
129443
129443
|
|
|
129444
129444
|
/* Python wrapper */
|
|
129445
129445
|
static PyObject *__pyx_pw_11mysqlengine_8database_8Database_81information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
|
|
129446
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_80information, "Select database information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'catelog_name', 'schema_name', 'default_character_set_name',\n - 'default_collation_name', 'sql_path', 'default_encryption'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'schema_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
129446
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_80information, "Select database information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'catelog_name', 'schema_name', 'default_character_set_name',\n - 'default_collation_name', 'sql_path', 'default_encryption'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'schema_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Database information.\n ");
|
|
129447
129447
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_8Database_81information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_8Database_81information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_8Database_80information};
|
|
129448
129448
|
static PyObject *__pyx_pw_11mysqlengine_8database_8Database_81information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
|
|
129449
129449
|
PyObject *__pyx_v_cursor = 0;
|
|
@@ -167987,7 +167987,7 @@ static CYTHON_SMALL_CODE int __Pyx_InitCachedConstants(void) {
|
|
|
167987
167987
|
__Pyx_GOTREF(__pyx_tuple__6);
|
|
167988
167988
|
__Pyx_GIVEREF(__pyx_tuple__6);
|
|
167989
167989
|
|
|
167990
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
167990
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":983
|
|
167991
167991
|
* __pyx_import_array()
|
|
167992
167992
|
* except Exception:
|
|
167993
167993
|
* raise ImportError("numpy.core.multiarray failed to import") # <<<<<<<<<<<<<<
|
|
@@ -167998,7 +167998,7 @@ static CYTHON_SMALL_CODE int __Pyx_InitCachedConstants(void) {
|
|
|
167998
167998
|
__Pyx_GOTREF(__pyx_tuple__7);
|
|
167999
167999
|
__Pyx_GIVEREF(__pyx_tuple__7);
|
|
168000
168000
|
|
|
168001
|
-
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-
|
|
168001
|
+
/* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-ju1g3ydc/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":989
|
|
168002
168002
|
* _import_umath()
|
|
168003
168003
|
* except Exception:
|
|
168004
168004
|
* raise ImportError("numpy.core.umath failed to import") # <<<<<<<<<<<<<<
|