mysqlengine 0.1.11.9__cp312-cp312-musllinux_1_1_x86_64.whl → 0.1.12.1__cp312-cp312-musllinux_1_1_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mysqlengine might be problematic. Click here for more details.
- mysqlengine/database.c +164 -164
- mysqlengine/database.cpython-312-x86_64-linux-musl.so +0 -0
- mysqlengine/database.py +76 -76
- mysqlengine/dtype.c +118 -118
- mysqlengine/dtype.cpython-312-x86_64-linux-musl.so +0 -0
- mysqlengine/query.c +122 -122
- mysqlengine/query.cpython-312-x86_64-linux-musl.so +0 -0
- mysqlengine/query.py +8 -8
- mysqlengine/transcode.c +118 -118
- mysqlengine/transcode.cpython-312-x86_64-linux-musl.so +0 -0
- mysqlengine/utils.c +118 -118
- mysqlengine/utils.cpython-312-x86_64-linux-musl.so +0 -0
- {mysqlengine-0.1.11.9.dist-info → mysqlengine-0.1.12.1.dist-info}/METADATA +1 -1
- {mysqlengine-0.1.11.9.dist-info → mysqlengine-0.1.12.1.dist-info}/RECORD +17 -17
- {mysqlengine-0.1.11.9.dist-info → mysqlengine-0.1.12.1.dist-info}/LICENSE +0 -0
- {mysqlengine-0.1.11.9.dist-info → mysqlengine-0.1.12.1.dist-info}/WHEEL +0 -0
- {mysqlengine-0.1.11.9.dist-info → mysqlengine-0.1.12.1.dist-info}/top_level.txt +0 -0
mysqlengine/database.c
CHANGED
|
@@ -15,7 +15,7 @@
|
|
|
15
15
|
"-Wno-incompatible-pointer-types"
|
|
16
16
|
],
|
|
17
17
|
"include_dirs": [
|
|
18
|
-
"/tmp/pip-build-env-
|
|
18
|
+
"/tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/core/include"
|
|
19
19
|
],
|
|
20
20
|
"name": "mysqlengine.database",
|
|
21
21
|
"sources": [
|
|
@@ -1596,7 +1596,7 @@ static const char *__pyx_f[] = {
|
|
|
1596
1596
|
|
|
1597
1597
|
/* #### Code section: numeric_typedefs ### */
|
|
1598
1598
|
|
|
1599
|
-
/* "../tmp/pip-build-env-
|
|
1599
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":730
|
|
1600
1600
|
* # in Cython to enable them only on the right systems.
|
|
1601
1601
|
*
|
|
1602
1602
|
* ctypedef npy_int8 int8_t # <<<<<<<<<<<<<<
|
|
@@ -1605,7 +1605,7 @@ static const char *__pyx_f[] = {
|
|
|
1605
1605
|
*/
|
|
1606
1606
|
typedef npy_int8 __pyx_t_5numpy_int8_t;
|
|
1607
1607
|
|
|
1608
|
-
/* "../tmp/pip-build-env-
|
|
1608
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":731
|
|
1609
1609
|
*
|
|
1610
1610
|
* ctypedef npy_int8 int8_t
|
|
1611
1611
|
* ctypedef npy_int16 int16_t # <<<<<<<<<<<<<<
|
|
@@ -1614,7 +1614,7 @@ typedef npy_int8 __pyx_t_5numpy_int8_t;
|
|
|
1614
1614
|
*/
|
|
1615
1615
|
typedef npy_int16 __pyx_t_5numpy_int16_t;
|
|
1616
1616
|
|
|
1617
|
-
/* "../tmp/pip-build-env-
|
|
1617
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":732
|
|
1618
1618
|
* ctypedef npy_int8 int8_t
|
|
1619
1619
|
* ctypedef npy_int16 int16_t
|
|
1620
1620
|
* ctypedef npy_int32 int32_t # <<<<<<<<<<<<<<
|
|
@@ -1623,7 +1623,7 @@ typedef npy_int16 __pyx_t_5numpy_int16_t;
|
|
|
1623
1623
|
*/
|
|
1624
1624
|
typedef npy_int32 __pyx_t_5numpy_int32_t;
|
|
1625
1625
|
|
|
1626
|
-
/* "../tmp/pip-build-env-
|
|
1626
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":733
|
|
1627
1627
|
* ctypedef npy_int16 int16_t
|
|
1628
1628
|
* ctypedef npy_int32 int32_t
|
|
1629
1629
|
* ctypedef npy_int64 int64_t # <<<<<<<<<<<<<<
|
|
@@ -1632,7 +1632,7 @@ typedef npy_int32 __pyx_t_5numpy_int32_t;
|
|
|
1632
1632
|
*/
|
|
1633
1633
|
typedef npy_int64 __pyx_t_5numpy_int64_t;
|
|
1634
1634
|
|
|
1635
|
-
/* "../tmp/pip-build-env-
|
|
1635
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":737
|
|
1636
1636
|
* #ctypedef npy_int128 int128_t
|
|
1637
1637
|
*
|
|
1638
1638
|
* ctypedef npy_uint8 uint8_t # <<<<<<<<<<<<<<
|
|
@@ -1641,7 +1641,7 @@ typedef npy_int64 __pyx_t_5numpy_int64_t;
|
|
|
1641
1641
|
*/
|
|
1642
1642
|
typedef npy_uint8 __pyx_t_5numpy_uint8_t;
|
|
1643
1643
|
|
|
1644
|
-
/* "../tmp/pip-build-env-
|
|
1644
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":738
|
|
1645
1645
|
*
|
|
1646
1646
|
* ctypedef npy_uint8 uint8_t
|
|
1647
1647
|
* ctypedef npy_uint16 uint16_t # <<<<<<<<<<<<<<
|
|
@@ -1650,7 +1650,7 @@ typedef npy_uint8 __pyx_t_5numpy_uint8_t;
|
|
|
1650
1650
|
*/
|
|
1651
1651
|
typedef npy_uint16 __pyx_t_5numpy_uint16_t;
|
|
1652
1652
|
|
|
1653
|
-
/* "../tmp/pip-build-env-
|
|
1653
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":739
|
|
1654
1654
|
* ctypedef npy_uint8 uint8_t
|
|
1655
1655
|
* ctypedef npy_uint16 uint16_t
|
|
1656
1656
|
* ctypedef npy_uint32 uint32_t # <<<<<<<<<<<<<<
|
|
@@ -1659,7 +1659,7 @@ typedef npy_uint16 __pyx_t_5numpy_uint16_t;
|
|
|
1659
1659
|
*/
|
|
1660
1660
|
typedef npy_uint32 __pyx_t_5numpy_uint32_t;
|
|
1661
1661
|
|
|
1662
|
-
/* "../tmp/pip-build-env-
|
|
1662
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":740
|
|
1663
1663
|
* ctypedef npy_uint16 uint16_t
|
|
1664
1664
|
* ctypedef npy_uint32 uint32_t
|
|
1665
1665
|
* ctypedef npy_uint64 uint64_t # <<<<<<<<<<<<<<
|
|
@@ -1668,7 +1668,7 @@ typedef npy_uint32 __pyx_t_5numpy_uint32_t;
|
|
|
1668
1668
|
*/
|
|
1669
1669
|
typedef npy_uint64 __pyx_t_5numpy_uint64_t;
|
|
1670
1670
|
|
|
1671
|
-
/* "../tmp/pip-build-env-
|
|
1671
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":744
|
|
1672
1672
|
* #ctypedef npy_uint128 uint128_t
|
|
1673
1673
|
*
|
|
1674
1674
|
* ctypedef npy_float32 float32_t # <<<<<<<<<<<<<<
|
|
@@ -1677,7 +1677,7 @@ typedef npy_uint64 __pyx_t_5numpy_uint64_t;
|
|
|
1677
1677
|
*/
|
|
1678
1678
|
typedef npy_float32 __pyx_t_5numpy_float32_t;
|
|
1679
1679
|
|
|
1680
|
-
/* "../tmp/pip-build-env-
|
|
1680
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":745
|
|
1681
1681
|
*
|
|
1682
1682
|
* ctypedef npy_float32 float32_t
|
|
1683
1683
|
* ctypedef npy_float64 float64_t # <<<<<<<<<<<<<<
|
|
@@ -1686,7 +1686,7 @@ typedef npy_float32 __pyx_t_5numpy_float32_t;
|
|
|
1686
1686
|
*/
|
|
1687
1687
|
typedef npy_float64 __pyx_t_5numpy_float64_t;
|
|
1688
1688
|
|
|
1689
|
-
/* "../tmp/pip-build-env-
|
|
1689
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":754
|
|
1690
1690
|
* # The int types are mapped a bit surprising --
|
|
1691
1691
|
* # numpy.int corresponds to 'l' and numpy.long to 'q'
|
|
1692
1692
|
* ctypedef npy_long int_t # <<<<<<<<<<<<<<
|
|
@@ -1695,7 +1695,7 @@ typedef npy_float64 __pyx_t_5numpy_float64_t;
|
|
|
1695
1695
|
*/
|
|
1696
1696
|
typedef npy_long __pyx_t_5numpy_int_t;
|
|
1697
1697
|
|
|
1698
|
-
/* "../tmp/pip-build-env-
|
|
1698
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":755
|
|
1699
1699
|
* # numpy.int corresponds to 'l' and numpy.long to 'q'
|
|
1700
1700
|
* ctypedef npy_long int_t
|
|
1701
1701
|
* ctypedef npy_longlong longlong_t # <<<<<<<<<<<<<<
|
|
@@ -1704,7 +1704,7 @@ typedef npy_long __pyx_t_5numpy_int_t;
|
|
|
1704
1704
|
*/
|
|
1705
1705
|
typedef npy_longlong __pyx_t_5numpy_longlong_t;
|
|
1706
1706
|
|
|
1707
|
-
/* "../tmp/pip-build-env-
|
|
1707
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":757
|
|
1708
1708
|
* ctypedef npy_longlong longlong_t
|
|
1709
1709
|
*
|
|
1710
1710
|
* ctypedef npy_ulong uint_t # <<<<<<<<<<<<<<
|
|
@@ -1713,7 +1713,7 @@ typedef npy_longlong __pyx_t_5numpy_longlong_t;
|
|
|
1713
1713
|
*/
|
|
1714
1714
|
typedef npy_ulong __pyx_t_5numpy_uint_t;
|
|
1715
1715
|
|
|
1716
|
-
/* "../tmp/pip-build-env-
|
|
1716
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":758
|
|
1717
1717
|
*
|
|
1718
1718
|
* ctypedef npy_ulong uint_t
|
|
1719
1719
|
* ctypedef npy_ulonglong ulonglong_t # <<<<<<<<<<<<<<
|
|
@@ -1722,7 +1722,7 @@ typedef npy_ulong __pyx_t_5numpy_uint_t;
|
|
|
1722
1722
|
*/
|
|
1723
1723
|
typedef npy_ulonglong __pyx_t_5numpy_ulonglong_t;
|
|
1724
1724
|
|
|
1725
|
-
/* "../tmp/pip-build-env-
|
|
1725
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":760
|
|
1726
1726
|
* ctypedef npy_ulonglong ulonglong_t
|
|
1727
1727
|
*
|
|
1728
1728
|
* ctypedef npy_intp intp_t # <<<<<<<<<<<<<<
|
|
@@ -1731,7 +1731,7 @@ typedef npy_ulonglong __pyx_t_5numpy_ulonglong_t;
|
|
|
1731
1731
|
*/
|
|
1732
1732
|
typedef npy_intp __pyx_t_5numpy_intp_t;
|
|
1733
1733
|
|
|
1734
|
-
/* "../tmp/pip-build-env-
|
|
1734
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":761
|
|
1735
1735
|
*
|
|
1736
1736
|
* ctypedef npy_intp intp_t
|
|
1737
1737
|
* ctypedef npy_uintp uintp_t # <<<<<<<<<<<<<<
|
|
@@ -1740,7 +1740,7 @@ typedef npy_intp __pyx_t_5numpy_intp_t;
|
|
|
1740
1740
|
*/
|
|
1741
1741
|
typedef npy_uintp __pyx_t_5numpy_uintp_t;
|
|
1742
1742
|
|
|
1743
|
-
/* "../tmp/pip-build-env-
|
|
1743
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":763
|
|
1744
1744
|
* ctypedef npy_uintp uintp_t
|
|
1745
1745
|
*
|
|
1746
1746
|
* ctypedef npy_double float_t # <<<<<<<<<<<<<<
|
|
@@ -1749,7 +1749,7 @@ typedef npy_uintp __pyx_t_5numpy_uintp_t;
|
|
|
1749
1749
|
*/
|
|
1750
1750
|
typedef npy_double __pyx_t_5numpy_float_t;
|
|
1751
1751
|
|
|
1752
|
-
/* "../tmp/pip-build-env-
|
|
1752
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":764
|
|
1753
1753
|
*
|
|
1754
1754
|
* ctypedef npy_double float_t
|
|
1755
1755
|
* ctypedef npy_double double_t # <<<<<<<<<<<<<<
|
|
@@ -1758,7 +1758,7 @@ typedef npy_double __pyx_t_5numpy_float_t;
|
|
|
1758
1758
|
*/
|
|
1759
1759
|
typedef npy_double __pyx_t_5numpy_double_t;
|
|
1760
1760
|
|
|
1761
|
-
/* "../tmp/pip-build-env-
|
|
1761
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":765
|
|
1762
1762
|
* ctypedef npy_double float_t
|
|
1763
1763
|
* ctypedef npy_double double_t
|
|
1764
1764
|
* ctypedef npy_longdouble longdouble_t # <<<<<<<<<<<<<<
|
|
@@ -2064,7 +2064,7 @@ struct __pyx_opt_args_11mysqlengine_8protocol_11MysqlPacket_get_bytes {
|
|
|
2064
2064
|
PY_LONG_LONG length;
|
|
2065
2065
|
};
|
|
2066
2066
|
|
|
2067
|
-
/* "../tmp/pip-build-env-
|
|
2067
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":767
|
|
2068
2068
|
* ctypedef npy_longdouble longdouble_t
|
|
2069
2069
|
*
|
|
2070
2070
|
* ctypedef npy_cfloat cfloat_t # <<<<<<<<<<<<<<
|
|
@@ -2073,7 +2073,7 @@ struct __pyx_opt_args_11mysqlengine_8protocol_11MysqlPacket_get_bytes {
|
|
|
2073
2073
|
*/
|
|
2074
2074
|
typedef npy_cfloat __pyx_t_5numpy_cfloat_t;
|
|
2075
2075
|
|
|
2076
|
-
/* "../tmp/pip-build-env-
|
|
2076
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":768
|
|
2077
2077
|
*
|
|
2078
2078
|
* ctypedef npy_cfloat cfloat_t
|
|
2079
2079
|
* ctypedef npy_cdouble cdouble_t # <<<<<<<<<<<<<<
|
|
@@ -2082,7 +2082,7 @@ typedef npy_cfloat __pyx_t_5numpy_cfloat_t;
|
|
|
2082
2082
|
*/
|
|
2083
2083
|
typedef npy_cdouble __pyx_t_5numpy_cdouble_t;
|
|
2084
2084
|
|
|
2085
|
-
/* "../tmp/pip-build-env-
|
|
2085
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":769
|
|
2086
2086
|
* ctypedef npy_cfloat cfloat_t
|
|
2087
2087
|
* ctypedef npy_cdouble cdouble_t
|
|
2088
2088
|
* ctypedef npy_clongdouble clongdouble_t # <<<<<<<<<<<<<<
|
|
@@ -2091,7 +2091,7 @@ typedef npy_cdouble __pyx_t_5numpy_cdouble_t;
|
|
|
2091
2091
|
*/
|
|
2092
2092
|
typedef npy_clongdouble __pyx_t_5numpy_clongdouble_t;
|
|
2093
2093
|
|
|
2094
|
-
/* "../tmp/pip-build-env-
|
|
2094
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":771
|
|
2095
2095
|
* ctypedef npy_clongdouble clongdouble_t
|
|
2096
2096
|
*
|
|
2097
2097
|
* ctypedef npy_cdouble complex_t # <<<<<<<<<<<<<<
|
|
@@ -9066,7 +9066,7 @@ static const char __pyx_k_Define_columns_of_the_table_This[] = "Define columns o
|
|
|
9066
9066
|
static const char __pyx_k_Define_indexes_of_the_table_This[] = "Define indexes of the table. This method should be called\n within the `metadata()` method to set the desired indexes.\n\n :param indexes: `<Index>` The indexes to add to the table.\n\n ### Example:\n >>> self.indexes_metadata(\n Index(self.columns[\"tinyint_type\"], unique=True, primary_unique=True),\n Index(self.columns[\"smallint_type\"], self.columns[\"mediumint_type\"]),\n ...\n )\n ";
|
|
9067
9067
|
static const char __pyx_k_Define_the_database_metadata_Thi[] = "Define the database metadata. This method should be overwritten\n in subclass to configure database's tables.\n\n ### Configuration:\n - Overwrite `Database.metadata()` to define database's tables.\n - Add tables through Table `instance`: `self.my_table = MyTable(self)`\n - Add tables through Table `subclass`: `self.my_table = MyTable`\n - * Notice, using `subclass` approach, most static typing of the table\n methods will be incorrect (redundant 'self' argument), but the\n functionality of the table will not be affected.\n\n ### Example:\n >>> def metadata(self) -> None:\n # . instance approach\n self.table1 = MyTable1(self)\n # . subclass approach\n self.table2 = MyTable2\n ...\n ";
|
|
9068
9068
|
static const char __pyx_k_Define_the_table_metadata_This_m[] = "Define the table metadata. This method should be overridden\n in subclass to configure the table's columns and indexes.\n\n ### Configuration:\n - Use `self.columns_metadata()` to define columns of the table.\n - Use `self.indexes_metadata()` to define indexes of the table.\n\n ### Example:\n >>> def metadata(self) -> None:\n # . define columns\n self.columns_metadata(\n Column(\"id\", MysqlTypes.BIGINT(primary_key=True)),\n Column(\"username\", MysqlTypes.VARCHAR()),\n Column(\"user_level\", MysqlTypes.TINYINT()),\n Column(\"user_type\", MysqlTypes.VARCHAR()),\n ...\n )\n # . define indexes\n self.indexes_metadata(\n Index(self.columns[\"username\"], unique=True, primary_unique=True),\n Index(self.columns[\"user_level\"], self.columns[\"user_type\"]),\n ...\n )\n ";
|
|
9069
|
-
static const char __pyx_k_Execute_a_SQL_statement_and_fetc[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
9069
|
+
static const char __pyx_k_Execute_a_SQL_statement_and_fetc[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `<tuple>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[dict[str, Any]]>`: The fetched result.\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
|
|
9070
9070
|
static const char __pyx_k_Execute_a_SQL_statement_param_st[] = "Execute a SQL statement.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param reusable: `<bool>` Whether the 'conn' (if provided) is reusable after query execution. Defaults to `True`.\n - If `True`, the connection will return back to the Server pool,\n waiting for the next query.\n - If `False`, after returned to the Server pool, the connection\n will be closed and released. This is useful for certain types\n of statements, such as `CREATE TEMPORARY TABLE` and `LOCK TABLES`,\n where it's desirable to ensure the connection is closed at the end\n to release (potential) resources.\n\n :param cursor: `<type[Cursor/SSCursor]>` The `Cursor` class to use for query execution. Defaults to `Cursor`.\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involve""s a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table that does not exist, instead of\n raising an error, `0` will be returned as the execution result.\n\n :raises: Subclass of `QueryError`.\n :return `<int>`: Number of rows affected by the query.\n\n ### Example:\n >>> await db.user.execute_query(\n \"UPDATE db.user SET name = %s WHERE id = %s;\",\n args=('john', 1), # muti-rows: arge=[('john', 1), ('jackson', 2)]\n conn=None,\n reusable=True,\n cursor=Cursor,\n resolve_absent_table=False,\n timeout=None,\n warnings=True,\n )\n ";
|
|
9071
9071
|
static const char __pyx_k_Incompatible_checksums_0x_x_vs_0[] = "Incompatible checksums (0x%x vs (0xc1804d9, 0xfe6a6a6, 0xcfc7018) = (_charset, _collate, _columns, _db, _db_pfix, _engine, _fname, _fname_pfix, _indexes, _initiated, _initiated_tables, _is_timetable, _name, _name_pfix, _regex, _server, _syntax, _syntax_val, _temp_id, _type))";
|
|
9072
9072
|
static const char __pyx_k_Initiate_a_DELETE_query_of_the_t[] = "Initiate a DELETE query of the table.\n\n :param table_aliases: `<str>` The table aliases of the DELETE operation.\n - Only applicable for multi-table DELETE (when JOIN clause is used).\n Single table DELETE takes no effects.\n - If not specified, the DELETE operation will be performed on all\n tables (main & joined ones).\n - If specified, the DELETE operation will be performed only on the\n given tables.\n - *Notice: this arguments only takes the alias of the tables instead\n of the actual table name. For more information, please refer to\n the 'alias' parameter or the Example section below.\n\n :param ignore: `<bool>` The `IGNORE` modifier. Defaults to `False`.\n Determines whether to ignore the duplicate key errors.\n\n :param tabletime: `<str/None>` A specific `tabletime` for the `DELETE` table. Defaults to `None`.\n - This parameter is only applicable when the `DELETE` table corresponds\n to a TimeTable.\n - If `tabletime` is specified, the actual sub-table will derive from this\n parameter. Otherwise, it is required to use `tabletimes()` method to specify\n the sub-tables. For more details, please refer to the `tabletimes()` method.\n\n :param alias: `<str/None>` The alias of the `DELETE` clause. Defaults to `None`.\n - The alias of the clause will be added to the corresponding part of the SQL\n statement using the `'AS <alias>'` syntax.\n - For instance, in a `DELETE... FROM... WHERE...` query, without specified\n alias (default alias), the statement would be constructed as:\n `'DELETE... FROM... AS t1 WHERE...'`, where default alias is derived\n from the order of the tables in the query.\n - However, with a user-defined alias (for example, `alias='tb'`), the\n "" statement would be constructed as: `'DELETE... FROM... AS tb WHERE...'`.\n\n ### Example (DELETE... WHERE... single table):\n >>> await db.user.delete().where(\"id = 1\").execute()\n ### -> Equivalent to:\n >>> DELETE FROM db.user AS t1 WHERE id = 1\n\n ### Example (DELETE... JOIN... WHERE... multi-table [all tables]):\n >>> (\n await db.user.delete() # delete from 't1' and 't2'\n .join(db.user_info, \"t1.id = t2.user_id\", tabletime=\"2023-01-01\")\n .where(\"t1.age > 18\")\n .execute()\n )\n ### -> Equivalent to:\n >>> DELETE t1, t2 FROM db.user AS t1\n INNER JOIN db.user_info_202301 AS t2\n ON t1.id = t2.user_id\n WHERE t1.age > 18\n\n ### Example (DELETE... JOIN... WHERE... multi-table [specific table(s)]):\n >>> (\n await db.user.delete(\"t2\") # Only delete from 't2'\n .join(db.user_info, \"t1.id = t2.user_id\", tabletime=\"2023-01-01\")\n .where(\"t1.age > 18\")\n .execute()\n )\n ### -> Equivalent to:\n >>> DELETE t2 FROM db.user AS t1\n INNER JOIN db.user_info_202301 AS t2\n ON t1.id = t2.user_id\n WHERE t1.age > 18\n\n ### Example (DELETE... with `values()` method):\n >>> values = [\n {\"id\": 1, \"name\": \"John\", \"age\": 20, \"status\": \"active\"},\n {\"id\": 2, \"name\": \"Mary\", \"age\": 25, \"status\": \"inactive\"},\n ]\n >>> (\n await db.user.delete()\n .values(values, where_columns=[\"name\", \"age\"])\n .execute()\n )\n ### -> Equivalent to the following TWO queries:\n >>> DELETE FROM db.user AS t1\n WHERE t1.name = 'John' AND t1.age = 20\n >>> DELETE FROM db.user AS t1\n WHERE t1.nam""e = 'Mary' AND t1.age = 25\n ";
|
|
@@ -9103,13 +9103,13 @@ static const char __pyx_k_Acquire_a_free_connection_from_t_2[] = "Acquire a free
|
|
|
9103
9103
|
static const char __pyx_k_Acquire_a_free_connection_from_t_3[] = "Acquire a free connection from the `Server` pool.\n\n By acquiring connection through this method, the following will happen:\n - 1. Acquire a free/new connection from the Server pool.\n - 2. Return `PoolConnectionManager` that wraps the connection.\n - 3. Release the connection back to the pool at exist.\n\n This method provides a more flexible approach to execute queries compared\n to the `transaction()` method. However, it requires manual handling of\n transaction states like `BEGIN`, `ROLLBACK`, and `COMMIT`.\n\n :raise: Subclass of `QueryError`.\n :return `PoolConnectionManager`: Server connection.\n\n ### Example:\n >>> async with db.acquire() as conn:\n await conn.begin() # . start transaction\n username = (\n await db.user.select(\"username\")\n .where(\"id = %s\", 1)\n .for_update()\n # IMPORTANT: must pass conn to `execute()`. Otherwise, the\n # query will be executed with a temp (different) connection.\n .execute(conn)\n )\n ... # . sequences of queries\n await conn.commit() # . commit transaction\n ";
|
|
9104
9104
|
static const char __pyx_k_Acquire_a_free_connection_from_t_4[] = "Acquire a free connection from the `Server` pool and `START TRANSACTION`.\n\n By acquiring connection through this method, the following will happen:\n - 1. Acquire a free/new connection from the Server pool.\n - 2. Use the connection to `START TRANSACTION`.\n - 3. Return `PoolTransactionManager` that wraps the connection.\n - 4a. If catches ANY exceptions during the transaction, execute\n `ROLLBACK`, then close and release the connection.\n - 4b. If the transaction executed successfully, execute `COMMIT`\n and then release the connection back to the Server pool.\n\n This method offers a more convenient way to execute transactions\n compared to the `acquire()` method, as it automatically manages\n transaction states like `BEGIN`, `ROLLBACK`, and `COMMIT`.\n\n :raise: Subclass of `QueryError`.\n :return `PoolTransactionManager`: Server connection.\n\n ### Example:\n >>> async with db.transaction() as conn:\n # . transaction is already started\n username = (\n await db.user.select(\"username\")\n .where(\"id = %s\", 1)\n .for_update()\n # IMPORTANT: must pass conn to `execute()`. Otherwise, the\n # query will be executed with a temp (different) connection.\n .execute(conn)\n )\n ... # . sequences of queries\n # . commit will be executed at exist.\n ";
|
|
9105
9105
|
static const char __pyx_k_Bypass_data_import_for_table_s_T_2[] = "Bypass data import for table: '%s'. <Table data invalid>.";
|
|
9106
|
-
static const char __pyx_k_Execute_a_SQL_statement_and_fetc_2[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
9107
|
-
static const char __pyx_k_Execute_a_SQL_statement_and_fetc_3[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
9108
|
-
static const char __pyx_k_Execute_a_SQL_statement_and_fetc_4[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
9109
|
-
static const char __pyx_k_Execute_a_SQL_statement_and_fetc_5[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
9110
|
-
static const char __pyx_k_Execute_a_SQL_statement_and_fetc_6[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
9111
|
-
static const char __pyx_k_Execute_a_SQL_statement_and_fetc_7[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
9112
|
-
static const char __pyx_k_Execute_a_SQL_statement_and_fetc_8[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
9106
|
+
static const char __pyx_k_Execute_a_SQL_statement_and_fetc_2[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `<DataFrame>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<DataFrame>`: The fetched result.\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
|
|
9107
|
+
static const char __pyx_k_Execute_a_SQL_statement_and_fetc_3[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `tuple[tuple]` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: The fetched result.\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
|
|
9108
|
+
static const char __pyx_k_Execute_a_SQL_statement_and_fetc_4[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `tuple` or `DataFrame` (depends on 'cursor' type)\n will be returned as the execution result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: The fetched result (depends on 'cursor' type).\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
|
|
9109
|
+
static const char __pyx_k_Execute_a_SQL_statement_and_fetc_5[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `<tuple>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[dict]>`: The fetched result.\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
|
|
9110
|
+
static const char __pyx_k_Execute_a_SQL_statement_and_fetc_6[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `<DataFrame>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<DataFrame>`: The fetched result.\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
|
|
9111
|
+
static const char __pyx_k_Execute_a_SQL_statement_and_fetc_7[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `tuple[tuple]` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: The fetched result.\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
|
|
9112
|
+
static const char __pyx_k_Execute_a_SQL_statement_and_fetc_8[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `tuple` or `DataFrame` (depends on 'cursor' type)\n will be returned as the execution result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: The fetched result (depends on 'cursor' type).\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
|
|
9113
9113
|
static const char __pyx_k_Execute_a_SQL_statement_param_st_2[] = "Execute a SQL statement.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param reusable: `<bool>` Whether the 'conn' (if provided) is reusable after query execution. Defaults to `True`.\n - If `True`, the connection will return back to the Server pool,\n waiting for the next query.\n - If `False`, after returned to the Server pool, the connection\n will be closed and released. This is useful for certain types\n of statements, such as `CREATE TEMPORARY TABLE` and `LOCK TABLES`,\n where it's desirable to ensure the connection is closed at the end\n to release (potential) resources.\n\n :param cursor: `<type[Cursor/SSCursor]>` The `Cursor` class to use for query execution. Defaults to `Cursor`.\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involve""s a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table that does not exist, instead of\n raising an error, `0` will be returned as the execution result.\n\n :raises: Subclass of `QueryError`.\n :return `<int>`: Number of rows affected by the query.\n\n ### Example:\n >>> await db.execute_query(\n \"UPDATE db.user SET name = %s WHERE id = %s;\",\n args=('john', 1), # muti-rows: arge=[('john', 1), ('jackson', 2)]\n conn=None,\n reusable=True,\n cursor=Cursor,\n resolve_absent_table=False,\n timeout=None,\n warnings=True,\n )\n ";
|
|
9114
9114
|
static const char __pyx_k_Incompatible_checksums_0x_x_vs_0_2[] = "Incompatible checksums (0x%x vs (0x810996b, 0x1377fc1, 0x48ef66f) = (_charset, _collate, _columns, _db, _db_pfix, _engine, _fname, _fname_pfix, _indexes, _initiated, _initiated_tables, _is_timetable, _name, _name_format, _name_pfix, _regex, _server, _syntax, _syntax_val, _temp_id, _time_format, _time_unit, _type))";
|
|
9115
9115
|
static const char __pyx_k_Incompatible_checksums_0x_x_vs_0_3[] = "Incompatible checksums (0x%x vs (0x2600b8a, 0x5944b53, 0xfaf6ec5) = (_db, _dict, _instances, _items, _length, _names, _names_set, _regex_fnames, _regex_names))";
|
|
@@ -20753,7 +20753,7 @@ static CYTHON_INLINE PyObject *__pyx_f_11mysqlengine_8database_get_tables_names(
|
|
|
20753
20753
|
return __pyx_r;
|
|
20754
20754
|
}
|
|
20755
20755
|
|
|
20756
|
-
/* "../tmp/pip-build-env-
|
|
20756
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":245
|
|
20757
20757
|
*
|
|
20758
20758
|
* @property
|
|
20759
20759
|
* cdef inline PyObject* base(self) nogil: # <<<<<<<<<<<<<<
|
|
@@ -20764,7 +20764,7 @@ static CYTHON_INLINE PyObject *__pyx_f_11mysqlengine_8database_get_tables_names(
|
|
|
20764
20764
|
static CYTHON_INLINE PyObject *__pyx_f_5numpy_7ndarray_4base_base(PyArrayObject *__pyx_v_self) {
|
|
20765
20765
|
PyObject *__pyx_r;
|
|
20766
20766
|
|
|
20767
|
-
/* "../tmp/pip-build-env-
|
|
20767
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":248
|
|
20768
20768
|
* """Returns a borrowed reference to the object owning the data/memory.
|
|
20769
20769
|
* """
|
|
20770
20770
|
* return PyArray_BASE(self) # <<<<<<<<<<<<<<
|
|
@@ -20774,7 +20774,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_7ndarray_4base_base(PyArrayObject
|
|
|
20774
20774
|
__pyx_r = PyArray_BASE(__pyx_v_self);
|
|
20775
20775
|
goto __pyx_L0;
|
|
20776
20776
|
|
|
20777
|
-
/* "../tmp/pip-build-env-
|
|
20777
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":245
|
|
20778
20778
|
*
|
|
20779
20779
|
* @property
|
|
20780
20780
|
* cdef inline PyObject* base(self) nogil: # <<<<<<<<<<<<<<
|
|
@@ -20787,7 +20787,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_7ndarray_4base_base(PyArrayObject
|
|
|
20787
20787
|
return __pyx_r;
|
|
20788
20788
|
}
|
|
20789
20789
|
|
|
20790
|
-
/* "../tmp/pip-build-env-
|
|
20790
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":251
|
|
20791
20791
|
*
|
|
20792
20792
|
* @property
|
|
20793
20793
|
* cdef inline dtype descr(self): # <<<<<<<<<<<<<<
|
|
@@ -20801,7 +20801,7 @@ static CYTHON_INLINE PyArray_Descr *__pyx_f_5numpy_7ndarray_5descr_descr(PyArray
|
|
|
20801
20801
|
PyArray_Descr *__pyx_t_1;
|
|
20802
20802
|
__Pyx_RefNannySetupContext("descr", 1);
|
|
20803
20803
|
|
|
20804
|
-
/* "../tmp/pip-build-env-
|
|
20804
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":254
|
|
20805
20805
|
* """Returns an owned reference to the dtype of the array.
|
|
20806
20806
|
* """
|
|
20807
20807
|
* return <dtype>PyArray_DESCR(self) # <<<<<<<<<<<<<<
|
|
@@ -20814,7 +20814,7 @@ static CYTHON_INLINE PyArray_Descr *__pyx_f_5numpy_7ndarray_5descr_descr(PyArray
|
|
|
20814
20814
|
__pyx_r = ((PyArray_Descr *)__pyx_t_1);
|
|
20815
20815
|
goto __pyx_L0;
|
|
20816
20816
|
|
|
20817
|
-
/* "../tmp/pip-build-env-
|
|
20817
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":251
|
|
20818
20818
|
*
|
|
20819
20819
|
* @property
|
|
20820
20820
|
* cdef inline dtype descr(self): # <<<<<<<<<<<<<<
|
|
@@ -20829,7 +20829,7 @@ static CYTHON_INLINE PyArray_Descr *__pyx_f_5numpy_7ndarray_5descr_descr(PyArray
|
|
|
20829
20829
|
return __pyx_r;
|
|
20830
20830
|
}
|
|
20831
20831
|
|
|
20832
|
-
/* "../tmp/pip-build-env-
|
|
20832
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":257
|
|
20833
20833
|
*
|
|
20834
20834
|
* @property
|
|
20835
20835
|
* cdef inline int ndim(self) nogil: # <<<<<<<<<<<<<<
|
|
@@ -20840,7 +20840,7 @@ static CYTHON_INLINE PyArray_Descr *__pyx_f_5numpy_7ndarray_5descr_descr(PyArray
|
|
|
20840
20840
|
static CYTHON_INLINE int __pyx_f_5numpy_7ndarray_4ndim_ndim(PyArrayObject *__pyx_v_self) {
|
|
20841
20841
|
int __pyx_r;
|
|
20842
20842
|
|
|
20843
|
-
/* "../tmp/pip-build-env-
|
|
20843
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":260
|
|
20844
20844
|
* """Returns the number of dimensions in the array.
|
|
20845
20845
|
* """
|
|
20846
20846
|
* return PyArray_NDIM(self) # <<<<<<<<<<<<<<
|
|
@@ -20850,7 +20850,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_7ndarray_4ndim_ndim(PyArrayObject *__pyx
|
|
|
20850
20850
|
__pyx_r = PyArray_NDIM(__pyx_v_self);
|
|
20851
20851
|
goto __pyx_L0;
|
|
20852
20852
|
|
|
20853
|
-
/* "../tmp/pip-build-env-
|
|
20853
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":257
|
|
20854
20854
|
*
|
|
20855
20855
|
* @property
|
|
20856
20856
|
* cdef inline int ndim(self) nogil: # <<<<<<<<<<<<<<
|
|
@@ -20863,7 +20863,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_7ndarray_4ndim_ndim(PyArrayObject *__pyx
|
|
|
20863
20863
|
return __pyx_r;
|
|
20864
20864
|
}
|
|
20865
20865
|
|
|
20866
|
-
/* "../tmp/pip-build-env-
|
|
20866
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":263
|
|
20867
20867
|
*
|
|
20868
20868
|
* @property
|
|
20869
20869
|
* cdef inline npy_intp *shape(self) nogil: # <<<<<<<<<<<<<<
|
|
@@ -20874,7 +20874,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_7ndarray_4ndim_ndim(PyArrayObject *__pyx
|
|
|
20874
20874
|
static CYTHON_INLINE npy_intp *__pyx_f_5numpy_7ndarray_5shape_shape(PyArrayObject *__pyx_v_self) {
|
|
20875
20875
|
npy_intp *__pyx_r;
|
|
20876
20876
|
|
|
20877
|
-
/* "../tmp/pip-build-env-
|
|
20877
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":268
|
|
20878
20878
|
* Can return NULL for 0-dimensional arrays.
|
|
20879
20879
|
* """
|
|
20880
20880
|
* return PyArray_DIMS(self) # <<<<<<<<<<<<<<
|
|
@@ -20884,7 +20884,7 @@ static CYTHON_INLINE npy_intp *__pyx_f_5numpy_7ndarray_5shape_shape(PyArrayObjec
|
|
|
20884
20884
|
__pyx_r = PyArray_DIMS(__pyx_v_self);
|
|
20885
20885
|
goto __pyx_L0;
|
|
20886
20886
|
|
|
20887
|
-
/* "../tmp/pip-build-env-
|
|
20887
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":263
|
|
20888
20888
|
*
|
|
20889
20889
|
* @property
|
|
20890
20890
|
* cdef inline npy_intp *shape(self) nogil: # <<<<<<<<<<<<<<
|
|
@@ -20897,7 +20897,7 @@ static CYTHON_INLINE npy_intp *__pyx_f_5numpy_7ndarray_5shape_shape(PyArrayObjec
|
|
|
20897
20897
|
return __pyx_r;
|
|
20898
20898
|
}
|
|
20899
20899
|
|
|
20900
|
-
/* "../tmp/pip-build-env-
|
|
20900
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":271
|
|
20901
20901
|
*
|
|
20902
20902
|
* @property
|
|
20903
20903
|
* cdef inline npy_intp *strides(self) nogil: # <<<<<<<<<<<<<<
|
|
@@ -20908,7 +20908,7 @@ static CYTHON_INLINE npy_intp *__pyx_f_5numpy_7ndarray_5shape_shape(PyArrayObjec
|
|
|
20908
20908
|
static CYTHON_INLINE npy_intp *__pyx_f_5numpy_7ndarray_7strides_strides(PyArrayObject *__pyx_v_self) {
|
|
20909
20909
|
npy_intp *__pyx_r;
|
|
20910
20910
|
|
|
20911
|
-
/* "../tmp/pip-build-env-
|
|
20911
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":275
|
|
20912
20912
|
* The number of elements matches the number of dimensions of the array (ndim).
|
|
20913
20913
|
* """
|
|
20914
20914
|
* return PyArray_STRIDES(self) # <<<<<<<<<<<<<<
|
|
@@ -20918,7 +20918,7 @@ static CYTHON_INLINE npy_intp *__pyx_f_5numpy_7ndarray_7strides_strides(PyArrayO
|
|
|
20918
20918
|
__pyx_r = PyArray_STRIDES(__pyx_v_self);
|
|
20919
20919
|
goto __pyx_L0;
|
|
20920
20920
|
|
|
20921
|
-
/* "../tmp/pip-build-env-
|
|
20921
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":271
|
|
20922
20922
|
*
|
|
20923
20923
|
* @property
|
|
20924
20924
|
* cdef inline npy_intp *strides(self) nogil: # <<<<<<<<<<<<<<
|
|
@@ -20931,7 +20931,7 @@ static CYTHON_INLINE npy_intp *__pyx_f_5numpy_7ndarray_7strides_strides(PyArrayO
|
|
|
20931
20931
|
return __pyx_r;
|
|
20932
20932
|
}
|
|
20933
20933
|
|
|
20934
|
-
/* "../tmp/pip-build-env-
|
|
20934
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":278
|
|
20935
20935
|
*
|
|
20936
20936
|
* @property
|
|
20937
20937
|
* cdef inline npy_intp size(self) nogil: # <<<<<<<<<<<<<<
|
|
@@ -20942,7 +20942,7 @@ static CYTHON_INLINE npy_intp *__pyx_f_5numpy_7ndarray_7strides_strides(PyArrayO
|
|
|
20942
20942
|
static CYTHON_INLINE npy_intp __pyx_f_5numpy_7ndarray_4size_size(PyArrayObject *__pyx_v_self) {
|
|
20943
20943
|
npy_intp __pyx_r;
|
|
20944
20944
|
|
|
20945
|
-
/* "../tmp/pip-build-env-
|
|
20945
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":281
|
|
20946
20946
|
* """Returns the total size (in number of elements) of the array.
|
|
20947
20947
|
* """
|
|
20948
20948
|
* return PyArray_SIZE(self) # <<<<<<<<<<<<<<
|
|
@@ -20952,7 +20952,7 @@ static CYTHON_INLINE npy_intp __pyx_f_5numpy_7ndarray_4size_size(PyArrayObject *
|
|
|
20952
20952
|
__pyx_r = PyArray_SIZE(__pyx_v_self);
|
|
20953
20953
|
goto __pyx_L0;
|
|
20954
20954
|
|
|
20955
|
-
/* "../tmp/pip-build-env-
|
|
20955
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":278
|
|
20956
20956
|
*
|
|
20957
20957
|
* @property
|
|
20958
20958
|
* cdef inline npy_intp size(self) nogil: # <<<<<<<<<<<<<<
|
|
@@ -20965,7 +20965,7 @@ static CYTHON_INLINE npy_intp __pyx_f_5numpy_7ndarray_4size_size(PyArrayObject *
|
|
|
20965
20965
|
return __pyx_r;
|
|
20966
20966
|
}
|
|
20967
20967
|
|
|
20968
|
-
/* "../tmp/pip-build-env-
|
|
20968
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":284
|
|
20969
20969
|
*
|
|
20970
20970
|
* @property
|
|
20971
20971
|
* cdef inline char* data(self) nogil: # <<<<<<<<<<<<<<
|
|
@@ -20976,7 +20976,7 @@ static CYTHON_INLINE npy_intp __pyx_f_5numpy_7ndarray_4size_size(PyArrayObject *
|
|
|
20976
20976
|
static CYTHON_INLINE char *__pyx_f_5numpy_7ndarray_4data_data(PyArrayObject *__pyx_v_self) {
|
|
20977
20977
|
char *__pyx_r;
|
|
20978
20978
|
|
|
20979
|
-
/* "../tmp/pip-build-env-
|
|
20979
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":290
|
|
20980
20980
|
* of `PyArray_DATA()` instead, which returns a 'void*'.
|
|
20981
20981
|
* """
|
|
20982
20982
|
* return PyArray_BYTES(self) # <<<<<<<<<<<<<<
|
|
@@ -20986,7 +20986,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy_7ndarray_4data_data(PyArrayObject *__p
|
|
|
20986
20986
|
__pyx_r = PyArray_BYTES(__pyx_v_self);
|
|
20987
20987
|
goto __pyx_L0;
|
|
20988
20988
|
|
|
20989
|
-
/* "../tmp/pip-build-env-
|
|
20989
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":284
|
|
20990
20990
|
*
|
|
20991
20991
|
* @property
|
|
20992
20992
|
* cdef inline char* data(self) nogil: # <<<<<<<<<<<<<<
|
|
@@ -20999,7 +20999,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy_7ndarray_4data_data(PyArrayObject *__p
|
|
|
20999
20999
|
return __pyx_r;
|
|
21000
21000
|
}
|
|
21001
21001
|
|
|
21002
|
-
/* "../tmp/pip-build-env-
|
|
21002
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":773
|
|
21003
21003
|
* ctypedef npy_cdouble complex_t
|
|
21004
21004
|
*
|
|
21005
21005
|
* cdef inline object PyArray_MultiIterNew1(a): # <<<<<<<<<<<<<<
|
|
@@ -21016,7 +21016,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew1(PyObject *__
|
|
|
21016
21016
|
int __pyx_clineno = 0;
|
|
21017
21017
|
__Pyx_RefNannySetupContext("PyArray_MultiIterNew1", 1);
|
|
21018
21018
|
|
|
21019
|
-
/* "../tmp/pip-build-env-
|
|
21019
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":774
|
|
21020
21020
|
*
|
|
21021
21021
|
* cdef inline object PyArray_MultiIterNew1(a):
|
|
21022
21022
|
* return PyArray_MultiIterNew(1, <void*>a) # <<<<<<<<<<<<<<
|
|
@@ -21030,7 +21030,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew1(PyObject *__
|
|
|
21030
21030
|
__pyx_t_1 = 0;
|
|
21031
21031
|
goto __pyx_L0;
|
|
21032
21032
|
|
|
21033
|
-
/* "../tmp/pip-build-env-
|
|
21033
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":773
|
|
21034
21034
|
* ctypedef npy_cdouble complex_t
|
|
21035
21035
|
*
|
|
21036
21036
|
* cdef inline object PyArray_MultiIterNew1(a): # <<<<<<<<<<<<<<
|
|
@@ -21049,7 +21049,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew1(PyObject *__
|
|
|
21049
21049
|
return __pyx_r;
|
|
21050
21050
|
}
|
|
21051
21051
|
|
|
21052
|
-
/* "../tmp/pip-build-env-
|
|
21052
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":776
|
|
21053
21053
|
* return PyArray_MultiIterNew(1, <void*>a)
|
|
21054
21054
|
*
|
|
21055
21055
|
* cdef inline object PyArray_MultiIterNew2(a, b): # <<<<<<<<<<<<<<
|
|
@@ -21066,7 +21066,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew2(PyObject *__
|
|
|
21066
21066
|
int __pyx_clineno = 0;
|
|
21067
21067
|
__Pyx_RefNannySetupContext("PyArray_MultiIterNew2", 1);
|
|
21068
21068
|
|
|
21069
|
-
/* "../tmp/pip-build-env-
|
|
21069
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":777
|
|
21070
21070
|
*
|
|
21071
21071
|
* cdef inline object PyArray_MultiIterNew2(a, b):
|
|
21072
21072
|
* return PyArray_MultiIterNew(2, <void*>a, <void*>b) # <<<<<<<<<<<<<<
|
|
@@ -21080,7 +21080,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew2(PyObject *__
|
|
|
21080
21080
|
__pyx_t_1 = 0;
|
|
21081
21081
|
goto __pyx_L0;
|
|
21082
21082
|
|
|
21083
|
-
/* "../tmp/pip-build-env-
|
|
21083
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":776
|
|
21084
21084
|
* return PyArray_MultiIterNew(1, <void*>a)
|
|
21085
21085
|
*
|
|
21086
21086
|
* cdef inline object PyArray_MultiIterNew2(a, b): # <<<<<<<<<<<<<<
|
|
@@ -21099,7 +21099,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew2(PyObject *__
|
|
|
21099
21099
|
return __pyx_r;
|
|
21100
21100
|
}
|
|
21101
21101
|
|
|
21102
|
-
/* "../tmp/pip-build-env-
|
|
21102
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":779
|
|
21103
21103
|
* return PyArray_MultiIterNew(2, <void*>a, <void*>b)
|
|
21104
21104
|
*
|
|
21105
21105
|
* cdef inline object PyArray_MultiIterNew3(a, b, c): # <<<<<<<<<<<<<<
|
|
@@ -21116,7 +21116,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew3(PyObject *__
|
|
|
21116
21116
|
int __pyx_clineno = 0;
|
|
21117
21117
|
__Pyx_RefNannySetupContext("PyArray_MultiIterNew3", 1);
|
|
21118
21118
|
|
|
21119
|
-
/* "../tmp/pip-build-env-
|
|
21119
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":780
|
|
21120
21120
|
*
|
|
21121
21121
|
* cdef inline object PyArray_MultiIterNew3(a, b, c):
|
|
21122
21122
|
* return PyArray_MultiIterNew(3, <void*>a, <void*>b, <void*> c) # <<<<<<<<<<<<<<
|
|
@@ -21130,7 +21130,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew3(PyObject *__
|
|
|
21130
21130
|
__pyx_t_1 = 0;
|
|
21131
21131
|
goto __pyx_L0;
|
|
21132
21132
|
|
|
21133
|
-
/* "../tmp/pip-build-env-
|
|
21133
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":779
|
|
21134
21134
|
* return PyArray_MultiIterNew(2, <void*>a, <void*>b)
|
|
21135
21135
|
*
|
|
21136
21136
|
* cdef inline object PyArray_MultiIterNew3(a, b, c): # <<<<<<<<<<<<<<
|
|
@@ -21149,7 +21149,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew3(PyObject *__
|
|
|
21149
21149
|
return __pyx_r;
|
|
21150
21150
|
}
|
|
21151
21151
|
|
|
21152
|
-
/* "../tmp/pip-build-env-
|
|
21152
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":782
|
|
21153
21153
|
* return PyArray_MultiIterNew(3, <void*>a, <void*>b, <void*> c)
|
|
21154
21154
|
*
|
|
21155
21155
|
* cdef inline object PyArray_MultiIterNew4(a, b, c, d): # <<<<<<<<<<<<<<
|
|
@@ -21166,7 +21166,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew4(PyObject *__
|
|
|
21166
21166
|
int __pyx_clineno = 0;
|
|
21167
21167
|
__Pyx_RefNannySetupContext("PyArray_MultiIterNew4", 1);
|
|
21168
21168
|
|
|
21169
|
-
/* "../tmp/pip-build-env-
|
|
21169
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":783
|
|
21170
21170
|
*
|
|
21171
21171
|
* cdef inline object PyArray_MultiIterNew4(a, b, c, d):
|
|
21172
21172
|
* return PyArray_MultiIterNew(4, <void*>a, <void*>b, <void*>c, <void*> d) # <<<<<<<<<<<<<<
|
|
@@ -21180,7 +21180,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew4(PyObject *__
|
|
|
21180
21180
|
__pyx_t_1 = 0;
|
|
21181
21181
|
goto __pyx_L0;
|
|
21182
21182
|
|
|
21183
|
-
/* "../tmp/pip-build-env-
|
|
21183
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":782
|
|
21184
21184
|
* return PyArray_MultiIterNew(3, <void*>a, <void*>b, <void*> c)
|
|
21185
21185
|
*
|
|
21186
21186
|
* cdef inline object PyArray_MultiIterNew4(a, b, c, d): # <<<<<<<<<<<<<<
|
|
@@ -21199,7 +21199,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew4(PyObject *__
|
|
|
21199
21199
|
return __pyx_r;
|
|
21200
21200
|
}
|
|
21201
21201
|
|
|
21202
|
-
/* "../tmp/pip-build-env-
|
|
21202
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":785
|
|
21203
21203
|
* return PyArray_MultiIterNew(4, <void*>a, <void*>b, <void*>c, <void*> d)
|
|
21204
21204
|
*
|
|
21205
21205
|
* cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): # <<<<<<<<<<<<<<
|
|
@@ -21216,7 +21216,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew5(PyObject *__
|
|
|
21216
21216
|
int __pyx_clineno = 0;
|
|
21217
21217
|
__Pyx_RefNannySetupContext("PyArray_MultiIterNew5", 1);
|
|
21218
21218
|
|
|
21219
|
-
/* "../tmp/pip-build-env-
|
|
21219
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":786
|
|
21220
21220
|
*
|
|
21221
21221
|
* cdef inline object PyArray_MultiIterNew5(a, b, c, d, e):
|
|
21222
21222
|
* return PyArray_MultiIterNew(5, <void*>a, <void*>b, <void*>c, <void*> d, <void*> e) # <<<<<<<<<<<<<<
|
|
@@ -21230,7 +21230,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew5(PyObject *__
|
|
|
21230
21230
|
__pyx_t_1 = 0;
|
|
21231
21231
|
goto __pyx_L0;
|
|
21232
21232
|
|
|
21233
|
-
/* "../tmp/pip-build-env-
|
|
21233
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":785
|
|
21234
21234
|
* return PyArray_MultiIterNew(4, <void*>a, <void*>b, <void*>c, <void*> d)
|
|
21235
21235
|
*
|
|
21236
21236
|
* cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): # <<<<<<<<<<<<<<
|
|
@@ -21249,7 +21249,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew5(PyObject *__
|
|
|
21249
21249
|
return __pyx_r;
|
|
21250
21250
|
}
|
|
21251
21251
|
|
|
21252
|
-
/* "../tmp/pip-build-env-
|
|
21252
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":788
|
|
21253
21253
|
* return PyArray_MultiIterNew(5, <void*>a, <void*>b, <void*>c, <void*> d, <void*> e)
|
|
21254
21254
|
*
|
|
21255
21255
|
* cdef inline tuple PyDataType_SHAPE(dtype d): # <<<<<<<<<<<<<<
|
|
@@ -21263,7 +21263,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyDataType_SHAPE(PyArray_Descr *__
|
|
|
21263
21263
|
int __pyx_t_1;
|
|
21264
21264
|
__Pyx_RefNannySetupContext("PyDataType_SHAPE", 1);
|
|
21265
21265
|
|
|
21266
|
-
/* "../tmp/pip-build-env-
|
|
21266
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":789
|
|
21267
21267
|
*
|
|
21268
21268
|
* cdef inline tuple PyDataType_SHAPE(dtype d):
|
|
21269
21269
|
* if PyDataType_HASSUBARRAY(d): # <<<<<<<<<<<<<<
|
|
@@ -21273,7 +21273,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyDataType_SHAPE(PyArray_Descr *__
|
|
|
21273
21273
|
__pyx_t_1 = PyDataType_HASSUBARRAY(__pyx_v_d);
|
|
21274
21274
|
if (__pyx_t_1) {
|
|
21275
21275
|
|
|
21276
|
-
/* "../tmp/pip-build-env-
|
|
21276
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":790
|
|
21277
21277
|
* cdef inline tuple PyDataType_SHAPE(dtype d):
|
|
21278
21278
|
* if PyDataType_HASSUBARRAY(d):
|
|
21279
21279
|
* return <tuple>d.subarray.shape # <<<<<<<<<<<<<<
|
|
@@ -21285,7 +21285,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyDataType_SHAPE(PyArray_Descr *__
|
|
|
21285
21285
|
__pyx_r = ((PyObject*)__pyx_v_d->subarray->shape);
|
|
21286
21286
|
goto __pyx_L0;
|
|
21287
21287
|
|
|
21288
|
-
/* "../tmp/pip-build-env-
|
|
21288
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":789
|
|
21289
21289
|
*
|
|
21290
21290
|
* cdef inline tuple PyDataType_SHAPE(dtype d):
|
|
21291
21291
|
* if PyDataType_HASSUBARRAY(d): # <<<<<<<<<<<<<<
|
|
@@ -21294,7 +21294,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyDataType_SHAPE(PyArray_Descr *__
|
|
|
21294
21294
|
*/
|
|
21295
21295
|
}
|
|
21296
21296
|
|
|
21297
|
-
/* "../tmp/pip-build-env-
|
|
21297
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":792
|
|
21298
21298
|
* return <tuple>d.subarray.shape
|
|
21299
21299
|
* else:
|
|
21300
21300
|
* return () # <<<<<<<<<<<<<<
|
|
@@ -21308,7 +21308,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyDataType_SHAPE(PyArray_Descr *__
|
|
|
21308
21308
|
goto __pyx_L0;
|
|
21309
21309
|
}
|
|
21310
21310
|
|
|
21311
|
-
/* "../tmp/pip-build-env-
|
|
21311
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":788
|
|
21312
21312
|
* return PyArray_MultiIterNew(5, <void*>a, <void*>b, <void*>c, <void*> d, <void*> e)
|
|
21313
21313
|
*
|
|
21314
21314
|
* cdef inline tuple PyDataType_SHAPE(dtype d): # <<<<<<<<<<<<<<
|
|
@@ -21323,7 +21323,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyDataType_SHAPE(PyArray_Descr *__
|
|
|
21323
21323
|
return __pyx_r;
|
|
21324
21324
|
}
|
|
21325
21325
|
|
|
21326
|
-
/* "../tmp/pip-build-env-
|
|
21326
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":967
|
|
21327
21327
|
* int _import_umath() except -1
|
|
21328
21328
|
*
|
|
21329
21329
|
* cdef inline void set_array_base(ndarray arr, object base): # <<<<<<<<<<<<<<
|
|
@@ -21337,7 +21337,7 @@ static CYTHON_INLINE void __pyx_f_5numpy_set_array_base(PyArrayObject *__pyx_v_a
|
|
|
21337
21337
|
const char *__pyx_filename = NULL;
|
|
21338
21338
|
int __pyx_clineno = 0;
|
|
21339
21339
|
|
|
21340
|
-
/* "../tmp/pip-build-env-
|
|
21340
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":968
|
|
21341
21341
|
*
|
|
21342
21342
|
* cdef inline void set_array_base(ndarray arr, object base):
|
|
21343
21343
|
* Py_INCREF(base) # important to do this before stealing the reference below! # <<<<<<<<<<<<<<
|
|
@@ -21346,7 +21346,7 @@ static CYTHON_INLINE void __pyx_f_5numpy_set_array_base(PyArrayObject *__pyx_v_a
|
|
|
21346
21346
|
*/
|
|
21347
21347
|
Py_INCREF(__pyx_v_base);
|
|
21348
21348
|
|
|
21349
|
-
/* "../tmp/pip-build-env-
|
|
21349
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":969
|
|
21350
21350
|
* cdef inline void set_array_base(ndarray arr, object base):
|
|
21351
21351
|
* Py_INCREF(base) # important to do this before stealing the reference below!
|
|
21352
21352
|
* PyArray_SetBaseObject(arr, base) # <<<<<<<<<<<<<<
|
|
@@ -21355,7 +21355,7 @@ static CYTHON_INLINE void __pyx_f_5numpy_set_array_base(PyArrayObject *__pyx_v_a
|
|
|
21355
21355
|
*/
|
|
21356
21356
|
__pyx_t_1 = PyArray_SetBaseObject(__pyx_v_arr, __pyx_v_base); if (unlikely(__pyx_t_1 == ((int)-1))) __PYX_ERR(7, 969, __pyx_L1_error)
|
|
21357
21357
|
|
|
21358
|
-
/* "../tmp/pip-build-env-
|
|
21358
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":967
|
|
21359
21359
|
* int _import_umath() except -1
|
|
21360
21360
|
*
|
|
21361
21361
|
* cdef inline void set_array_base(ndarray arr, object base): # <<<<<<<<<<<<<<
|
|
@@ -21370,7 +21370,7 @@ static CYTHON_INLINE void __pyx_f_5numpy_set_array_base(PyArrayObject *__pyx_v_a
|
|
|
21370
21370
|
__pyx_L0:;
|
|
21371
21371
|
}
|
|
21372
21372
|
|
|
21373
|
-
/* "../tmp/pip-build-env-
|
|
21373
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":971
|
|
21374
21374
|
* PyArray_SetBaseObject(arr, base)
|
|
21375
21375
|
*
|
|
21376
21376
|
* cdef inline object get_array_base(ndarray arr): # <<<<<<<<<<<<<<
|
|
@@ -21385,7 +21385,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__py
|
|
|
21385
21385
|
int __pyx_t_1;
|
|
21386
21386
|
__Pyx_RefNannySetupContext("get_array_base", 1);
|
|
21387
21387
|
|
|
21388
|
-
/* "../tmp/pip-build-env-
|
|
21388
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":972
|
|
21389
21389
|
*
|
|
21390
21390
|
* cdef inline object get_array_base(ndarray arr):
|
|
21391
21391
|
* base = PyArray_BASE(arr) # <<<<<<<<<<<<<<
|
|
@@ -21394,7 +21394,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__py
|
|
|
21394
21394
|
*/
|
|
21395
21395
|
__pyx_v_base = PyArray_BASE(__pyx_v_arr);
|
|
21396
21396
|
|
|
21397
|
-
/* "../tmp/pip-build-env-
|
|
21397
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":973
|
|
21398
21398
|
* cdef inline object get_array_base(ndarray arr):
|
|
21399
21399
|
* base = PyArray_BASE(arr)
|
|
21400
21400
|
* if base is NULL: # <<<<<<<<<<<<<<
|
|
@@ -21404,7 +21404,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__py
|
|
|
21404
21404
|
__pyx_t_1 = (__pyx_v_base == NULL);
|
|
21405
21405
|
if (__pyx_t_1) {
|
|
21406
21406
|
|
|
21407
|
-
/* "../tmp/pip-build-env-
|
|
21407
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":974
|
|
21408
21408
|
* base = PyArray_BASE(arr)
|
|
21409
21409
|
* if base is NULL:
|
|
21410
21410
|
* return None # <<<<<<<<<<<<<<
|
|
@@ -21415,7 +21415,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__py
|
|
|
21415
21415
|
__pyx_r = Py_None; __Pyx_INCREF(Py_None);
|
|
21416
21416
|
goto __pyx_L0;
|
|
21417
21417
|
|
|
21418
|
-
/* "../tmp/pip-build-env-
|
|
21418
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":973
|
|
21419
21419
|
* cdef inline object get_array_base(ndarray arr):
|
|
21420
21420
|
* base = PyArray_BASE(arr)
|
|
21421
21421
|
* if base is NULL: # <<<<<<<<<<<<<<
|
|
@@ -21424,7 +21424,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__py
|
|
|
21424
21424
|
*/
|
|
21425
21425
|
}
|
|
21426
21426
|
|
|
21427
|
-
/* "../tmp/pip-build-env-
|
|
21427
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":975
|
|
21428
21428
|
* if base is NULL:
|
|
21429
21429
|
* return None
|
|
21430
21430
|
* return <object>base # <<<<<<<<<<<<<<
|
|
@@ -21436,7 +21436,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__py
|
|
|
21436
21436
|
__pyx_r = ((PyObject *)__pyx_v_base);
|
|
21437
21437
|
goto __pyx_L0;
|
|
21438
21438
|
|
|
21439
|
-
/* "../tmp/pip-build-env-
|
|
21439
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":971
|
|
21440
21440
|
* PyArray_SetBaseObject(arr, base)
|
|
21441
21441
|
*
|
|
21442
21442
|
* cdef inline object get_array_base(ndarray arr): # <<<<<<<<<<<<<<
|
|
@@ -21451,7 +21451,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__py
|
|
|
21451
21451
|
return __pyx_r;
|
|
21452
21452
|
}
|
|
21453
21453
|
|
|
21454
|
-
/* "../tmp/pip-build-env-
|
|
21454
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":979
|
|
21455
21455
|
* # Versions of the import_* functions which are more suitable for
|
|
21456
21456
|
* # Cython code.
|
|
21457
21457
|
* cdef inline int import_array() except -1: # <<<<<<<<<<<<<<
|
|
@@ -21475,7 +21475,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) {
|
|
|
21475
21475
|
int __pyx_clineno = 0;
|
|
21476
21476
|
__Pyx_RefNannySetupContext("import_array", 1);
|
|
21477
21477
|
|
|
21478
|
-
/* "../tmp/pip-build-env-
|
|
21478
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":980
|
|
21479
21479
|
* # Cython code.
|
|
21480
21480
|
* cdef inline int import_array() except -1:
|
|
21481
21481
|
* try: # <<<<<<<<<<<<<<
|
|
@@ -21491,7 +21491,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) {
|
|
|
21491
21491
|
__Pyx_XGOTREF(__pyx_t_3);
|
|
21492
21492
|
/*try:*/ {
|
|
21493
21493
|
|
|
21494
|
-
/* "../tmp/pip-build-env-
|
|
21494
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":981
|
|
21495
21495
|
* cdef inline int import_array() except -1:
|
|
21496
21496
|
* try:
|
|
21497
21497
|
* __pyx_import_array() # <<<<<<<<<<<<<<
|
|
@@ -21500,7 +21500,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) {
|
|
|
21500
21500
|
*/
|
|
21501
21501
|
__pyx_t_4 = _import_array(); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(7, 981, __pyx_L3_error)
|
|
21502
21502
|
|
|
21503
|
-
/* "../tmp/pip-build-env-
|
|
21503
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":980
|
|
21504
21504
|
* # Cython code.
|
|
21505
21505
|
* cdef inline int import_array() except -1:
|
|
21506
21506
|
* try: # <<<<<<<<<<<<<<
|
|
@@ -21514,7 +21514,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) {
|
|
|
21514
21514
|
goto __pyx_L8_try_end;
|
|
21515
21515
|
__pyx_L3_error:;
|
|
21516
21516
|
|
|
21517
|
-
/* "../tmp/pip-build-env-
|
|
21517
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":982
|
|
21518
21518
|
* try:
|
|
21519
21519
|
* __pyx_import_array()
|
|
21520
21520
|
* except Exception: # <<<<<<<<<<<<<<
|
|
@@ -21529,7 +21529,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) {
|
|
|
21529
21529
|
__Pyx_XGOTREF(__pyx_t_6);
|
|
21530
21530
|
__Pyx_XGOTREF(__pyx_t_7);
|
|
21531
21531
|
|
|
21532
|
-
/* "../tmp/pip-build-env-
|
|
21532
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":983
|
|
21533
21533
|
* __pyx_import_array()
|
|
21534
21534
|
* except Exception:
|
|
21535
21535
|
* raise ImportError("numpy.core.multiarray failed to import") # <<<<<<<<<<<<<<
|
|
@@ -21544,7 +21544,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) {
|
|
|
21544
21544
|
}
|
|
21545
21545
|
goto __pyx_L5_except_error;
|
|
21546
21546
|
|
|
21547
|
-
/* "../tmp/pip-build-env-
|
|
21547
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":980
|
|
21548
21548
|
* # Cython code.
|
|
21549
21549
|
* cdef inline int import_array() except -1:
|
|
21550
21550
|
* try: # <<<<<<<<<<<<<<
|
|
@@ -21560,7 +21560,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) {
|
|
|
21560
21560
|
__pyx_L8_try_end:;
|
|
21561
21561
|
}
|
|
21562
21562
|
|
|
21563
|
-
/* "../tmp/pip-build-env-
|
|
21563
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":979
|
|
21564
21564
|
* # Versions of the import_* functions which are more suitable for
|
|
21565
21565
|
* # Cython code.
|
|
21566
21566
|
* cdef inline int import_array() except -1: # <<<<<<<<<<<<<<
|
|
@@ -21583,7 +21583,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) {
|
|
|
21583
21583
|
return __pyx_r;
|
|
21584
21584
|
}
|
|
21585
21585
|
|
|
21586
|
-
/* "../tmp/pip-build-env-
|
|
21586
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":985
|
|
21587
21587
|
* raise ImportError("numpy.core.multiarray failed to import")
|
|
21588
21588
|
*
|
|
21589
21589
|
* cdef inline int import_umath() except -1: # <<<<<<<<<<<<<<
|
|
@@ -21607,7 +21607,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) {
|
|
|
21607
21607
|
int __pyx_clineno = 0;
|
|
21608
21608
|
__Pyx_RefNannySetupContext("import_umath", 1);
|
|
21609
21609
|
|
|
21610
|
-
/* "../tmp/pip-build-env-
|
|
21610
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":986
|
|
21611
21611
|
*
|
|
21612
21612
|
* cdef inline int import_umath() except -1:
|
|
21613
21613
|
* try: # <<<<<<<<<<<<<<
|
|
@@ -21623,7 +21623,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) {
|
|
|
21623
21623
|
__Pyx_XGOTREF(__pyx_t_3);
|
|
21624
21624
|
/*try:*/ {
|
|
21625
21625
|
|
|
21626
|
-
/* "../tmp/pip-build-env-
|
|
21626
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":987
|
|
21627
21627
|
* cdef inline int import_umath() except -1:
|
|
21628
21628
|
* try:
|
|
21629
21629
|
* _import_umath() # <<<<<<<<<<<<<<
|
|
@@ -21632,7 +21632,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) {
|
|
|
21632
21632
|
*/
|
|
21633
21633
|
__pyx_t_4 = _import_umath(); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(7, 987, __pyx_L3_error)
|
|
21634
21634
|
|
|
21635
|
-
/* "../tmp/pip-build-env-
|
|
21635
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":986
|
|
21636
21636
|
*
|
|
21637
21637
|
* cdef inline int import_umath() except -1:
|
|
21638
21638
|
* try: # <<<<<<<<<<<<<<
|
|
@@ -21646,7 +21646,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) {
|
|
|
21646
21646
|
goto __pyx_L8_try_end;
|
|
21647
21647
|
__pyx_L3_error:;
|
|
21648
21648
|
|
|
21649
|
-
/* "../tmp/pip-build-env-
|
|
21649
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":988
|
|
21650
21650
|
* try:
|
|
21651
21651
|
* _import_umath()
|
|
21652
21652
|
* except Exception: # <<<<<<<<<<<<<<
|
|
@@ -21661,7 +21661,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) {
|
|
|
21661
21661
|
__Pyx_XGOTREF(__pyx_t_6);
|
|
21662
21662
|
__Pyx_XGOTREF(__pyx_t_7);
|
|
21663
21663
|
|
|
21664
|
-
/* "../tmp/pip-build-env-
|
|
21664
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":989
|
|
21665
21665
|
* _import_umath()
|
|
21666
21666
|
* except Exception:
|
|
21667
21667
|
* raise ImportError("numpy.core.umath failed to import") # <<<<<<<<<<<<<<
|
|
@@ -21676,7 +21676,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) {
|
|
|
21676
21676
|
}
|
|
21677
21677
|
goto __pyx_L5_except_error;
|
|
21678
21678
|
|
|
21679
|
-
/* "../tmp/pip-build-env-
|
|
21679
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":986
|
|
21680
21680
|
*
|
|
21681
21681
|
* cdef inline int import_umath() except -1:
|
|
21682
21682
|
* try: # <<<<<<<<<<<<<<
|
|
@@ -21692,7 +21692,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) {
|
|
|
21692
21692
|
__pyx_L8_try_end:;
|
|
21693
21693
|
}
|
|
21694
21694
|
|
|
21695
|
-
/* "../tmp/pip-build-env-
|
|
21695
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":985
|
|
21696
21696
|
* raise ImportError("numpy.core.multiarray failed to import")
|
|
21697
21697
|
*
|
|
21698
21698
|
* cdef inline int import_umath() except -1: # <<<<<<<<<<<<<<
|
|
@@ -21715,7 +21715,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) {
|
|
|
21715
21715
|
return __pyx_r;
|
|
21716
21716
|
}
|
|
21717
21717
|
|
|
21718
|
-
/* "../tmp/pip-build-env-
|
|
21718
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":991
|
|
21719
21719
|
* raise ImportError("numpy.core.umath failed to import")
|
|
21720
21720
|
*
|
|
21721
21721
|
* cdef inline int import_ufunc() except -1: # <<<<<<<<<<<<<<
|
|
@@ -21739,7 +21739,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) {
|
|
|
21739
21739
|
int __pyx_clineno = 0;
|
|
21740
21740
|
__Pyx_RefNannySetupContext("import_ufunc", 1);
|
|
21741
21741
|
|
|
21742
|
-
/* "../tmp/pip-build-env-
|
|
21742
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":992
|
|
21743
21743
|
*
|
|
21744
21744
|
* cdef inline int import_ufunc() except -1:
|
|
21745
21745
|
* try: # <<<<<<<<<<<<<<
|
|
@@ -21755,7 +21755,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) {
|
|
|
21755
21755
|
__Pyx_XGOTREF(__pyx_t_3);
|
|
21756
21756
|
/*try:*/ {
|
|
21757
21757
|
|
|
21758
|
-
/* "../tmp/pip-build-env-
|
|
21758
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":993
|
|
21759
21759
|
* cdef inline int import_ufunc() except -1:
|
|
21760
21760
|
* try:
|
|
21761
21761
|
* _import_umath() # <<<<<<<<<<<<<<
|
|
@@ -21764,7 +21764,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) {
|
|
|
21764
21764
|
*/
|
|
21765
21765
|
__pyx_t_4 = _import_umath(); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(7, 993, __pyx_L3_error)
|
|
21766
21766
|
|
|
21767
|
-
/* "../tmp/pip-build-env-
|
|
21767
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":992
|
|
21768
21768
|
*
|
|
21769
21769
|
* cdef inline int import_ufunc() except -1:
|
|
21770
21770
|
* try: # <<<<<<<<<<<<<<
|
|
@@ -21778,7 +21778,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) {
|
|
|
21778
21778
|
goto __pyx_L8_try_end;
|
|
21779
21779
|
__pyx_L3_error:;
|
|
21780
21780
|
|
|
21781
|
-
/* "../tmp/pip-build-env-
|
|
21781
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":994
|
|
21782
21782
|
* try:
|
|
21783
21783
|
* _import_umath()
|
|
21784
21784
|
* except Exception: # <<<<<<<<<<<<<<
|
|
@@ -21793,7 +21793,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) {
|
|
|
21793
21793
|
__Pyx_XGOTREF(__pyx_t_6);
|
|
21794
21794
|
__Pyx_XGOTREF(__pyx_t_7);
|
|
21795
21795
|
|
|
21796
|
-
/* "../tmp/pip-build-env-
|
|
21796
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":995
|
|
21797
21797
|
* _import_umath()
|
|
21798
21798
|
* except Exception:
|
|
21799
21799
|
* raise ImportError("numpy.core.umath failed to import") # <<<<<<<<<<<<<<
|
|
@@ -21808,7 +21808,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) {
|
|
|
21808
21808
|
}
|
|
21809
21809
|
goto __pyx_L5_except_error;
|
|
21810
21810
|
|
|
21811
|
-
/* "../tmp/pip-build-env-
|
|
21811
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":992
|
|
21812
21812
|
*
|
|
21813
21813
|
* cdef inline int import_ufunc() except -1:
|
|
21814
21814
|
* try: # <<<<<<<<<<<<<<
|
|
@@ -21824,7 +21824,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) {
|
|
|
21824
21824
|
__pyx_L8_try_end:;
|
|
21825
21825
|
}
|
|
21826
21826
|
|
|
21827
|
-
/* "../tmp/pip-build-env-
|
|
21827
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":991
|
|
21828
21828
|
* raise ImportError("numpy.core.umath failed to import")
|
|
21829
21829
|
*
|
|
21830
21830
|
* cdef inline int import_ufunc() except -1: # <<<<<<<<<<<<<<
|
|
@@ -21847,7 +21847,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) {
|
|
|
21847
21847
|
return __pyx_r;
|
|
21848
21848
|
}
|
|
21849
21849
|
|
|
21850
|
-
/* "../tmp/pip-build-env-
|
|
21850
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":998
|
|
21851
21851
|
*
|
|
21852
21852
|
*
|
|
21853
21853
|
* cdef inline bint is_timedelta64_object(object obj): # <<<<<<<<<<<<<<
|
|
@@ -21858,7 +21858,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) {
|
|
|
21858
21858
|
static CYTHON_INLINE int __pyx_f_5numpy_is_timedelta64_object(PyObject *__pyx_v_obj) {
|
|
21859
21859
|
int __pyx_r;
|
|
21860
21860
|
|
|
21861
|
-
/* "../tmp/pip-build-env-
|
|
21861
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":1010
|
|
21862
21862
|
* bool
|
|
21863
21863
|
* """
|
|
21864
21864
|
* return PyObject_TypeCheck(obj, &PyTimedeltaArrType_Type) # <<<<<<<<<<<<<<
|
|
@@ -21868,7 +21868,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_is_timedelta64_object(PyObject *__pyx_v_
|
|
|
21868
21868
|
__pyx_r = PyObject_TypeCheck(__pyx_v_obj, (&PyTimedeltaArrType_Type));
|
|
21869
21869
|
goto __pyx_L0;
|
|
21870
21870
|
|
|
21871
|
-
/* "../tmp/pip-build-env-
|
|
21871
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":998
|
|
21872
21872
|
*
|
|
21873
21873
|
*
|
|
21874
21874
|
* cdef inline bint is_timedelta64_object(object obj): # <<<<<<<<<<<<<<
|
|
@@ -21881,7 +21881,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_is_timedelta64_object(PyObject *__pyx_v_
|
|
|
21881
21881
|
return __pyx_r;
|
|
21882
21882
|
}
|
|
21883
21883
|
|
|
21884
|
-
/* "../tmp/pip-build-env-
|
|
21884
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":1013
|
|
21885
21885
|
*
|
|
21886
21886
|
*
|
|
21887
21887
|
* cdef inline bint is_datetime64_object(object obj): # <<<<<<<<<<<<<<
|
|
@@ -21892,7 +21892,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_is_timedelta64_object(PyObject *__pyx_v_
|
|
|
21892
21892
|
static CYTHON_INLINE int __pyx_f_5numpy_is_datetime64_object(PyObject *__pyx_v_obj) {
|
|
21893
21893
|
int __pyx_r;
|
|
21894
21894
|
|
|
21895
|
-
/* "../tmp/pip-build-env-
|
|
21895
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":1025
|
|
21896
21896
|
* bool
|
|
21897
21897
|
* """
|
|
21898
21898
|
* return PyObject_TypeCheck(obj, &PyDatetimeArrType_Type) # <<<<<<<<<<<<<<
|
|
@@ -21902,7 +21902,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_is_datetime64_object(PyObject *__pyx_v_o
|
|
|
21902
21902
|
__pyx_r = PyObject_TypeCheck(__pyx_v_obj, (&PyDatetimeArrType_Type));
|
|
21903
21903
|
goto __pyx_L0;
|
|
21904
21904
|
|
|
21905
|
-
/* "../tmp/pip-build-env-
|
|
21905
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":1013
|
|
21906
21906
|
*
|
|
21907
21907
|
*
|
|
21908
21908
|
* cdef inline bint is_datetime64_object(object obj): # <<<<<<<<<<<<<<
|
|
@@ -21915,7 +21915,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_is_datetime64_object(PyObject *__pyx_v_o
|
|
|
21915
21915
|
return __pyx_r;
|
|
21916
21916
|
}
|
|
21917
21917
|
|
|
21918
|
-
/* "../tmp/pip-build-env-
|
|
21918
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":1028
|
|
21919
21919
|
*
|
|
21920
21920
|
*
|
|
21921
21921
|
* cdef inline npy_datetime get_datetime64_value(object obj) nogil: # <<<<<<<<<<<<<<
|
|
@@ -21926,7 +21926,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_is_datetime64_object(PyObject *__pyx_v_o
|
|
|
21926
21926
|
static CYTHON_INLINE npy_datetime __pyx_f_5numpy_get_datetime64_value(PyObject *__pyx_v_obj) {
|
|
21927
21927
|
npy_datetime __pyx_r;
|
|
21928
21928
|
|
|
21929
|
-
/* "../tmp/pip-build-env-
|
|
21929
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":1035
|
|
21930
21930
|
* also needed. That can be found using `get_datetime64_unit`.
|
|
21931
21931
|
* """
|
|
21932
21932
|
* return (<PyDatetimeScalarObject*>obj).obval # <<<<<<<<<<<<<<
|
|
@@ -21936,7 +21936,7 @@ static CYTHON_INLINE npy_datetime __pyx_f_5numpy_get_datetime64_value(PyObject *
|
|
|
21936
21936
|
__pyx_r = ((PyDatetimeScalarObject *)__pyx_v_obj)->obval;
|
|
21937
21937
|
goto __pyx_L0;
|
|
21938
21938
|
|
|
21939
|
-
/* "../tmp/pip-build-env-
|
|
21939
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":1028
|
|
21940
21940
|
*
|
|
21941
21941
|
*
|
|
21942
21942
|
* cdef inline npy_datetime get_datetime64_value(object obj) nogil: # <<<<<<<<<<<<<<
|
|
@@ -21949,7 +21949,7 @@ static CYTHON_INLINE npy_datetime __pyx_f_5numpy_get_datetime64_value(PyObject *
|
|
|
21949
21949
|
return __pyx_r;
|
|
21950
21950
|
}
|
|
21951
21951
|
|
|
21952
|
-
/* "../tmp/pip-build-env-
|
|
21952
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":1038
|
|
21953
21953
|
*
|
|
21954
21954
|
*
|
|
21955
21955
|
* cdef inline npy_timedelta get_timedelta64_value(object obj) nogil: # <<<<<<<<<<<<<<
|
|
@@ -21960,7 +21960,7 @@ static CYTHON_INLINE npy_datetime __pyx_f_5numpy_get_datetime64_value(PyObject *
|
|
|
21960
21960
|
static CYTHON_INLINE npy_timedelta __pyx_f_5numpy_get_timedelta64_value(PyObject *__pyx_v_obj) {
|
|
21961
21961
|
npy_timedelta __pyx_r;
|
|
21962
21962
|
|
|
21963
|
-
/* "../tmp/pip-build-env-
|
|
21963
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":1042
|
|
21964
21964
|
* returns the int64 value underlying scalar numpy timedelta64 object
|
|
21965
21965
|
* """
|
|
21966
21966
|
* return (<PyTimedeltaScalarObject*>obj).obval # <<<<<<<<<<<<<<
|
|
@@ -21970,7 +21970,7 @@ static CYTHON_INLINE npy_timedelta __pyx_f_5numpy_get_timedelta64_value(PyObject
|
|
|
21970
21970
|
__pyx_r = ((PyTimedeltaScalarObject *)__pyx_v_obj)->obval;
|
|
21971
21971
|
goto __pyx_L0;
|
|
21972
21972
|
|
|
21973
|
-
/* "../tmp/pip-build-env-
|
|
21973
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":1038
|
|
21974
21974
|
*
|
|
21975
21975
|
*
|
|
21976
21976
|
* cdef inline npy_timedelta get_timedelta64_value(object obj) nogil: # <<<<<<<<<<<<<<
|
|
@@ -21983,7 +21983,7 @@ static CYTHON_INLINE npy_timedelta __pyx_f_5numpy_get_timedelta64_value(PyObject
|
|
|
21983
21983
|
return __pyx_r;
|
|
21984
21984
|
}
|
|
21985
21985
|
|
|
21986
|
-
/* "../tmp/pip-build-env-
|
|
21986
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":1045
|
|
21987
21987
|
*
|
|
21988
21988
|
*
|
|
21989
21989
|
* cdef inline NPY_DATETIMEUNIT get_datetime64_unit(object obj) nogil: # <<<<<<<<<<<<<<
|
|
@@ -21994,7 +21994,7 @@ static CYTHON_INLINE npy_timedelta __pyx_f_5numpy_get_timedelta64_value(PyObject
|
|
|
21994
21994
|
static CYTHON_INLINE NPY_DATETIMEUNIT __pyx_f_5numpy_get_datetime64_unit(PyObject *__pyx_v_obj) {
|
|
21995
21995
|
NPY_DATETIMEUNIT __pyx_r;
|
|
21996
21996
|
|
|
21997
|
-
/* "../tmp/pip-build-env-
|
|
21997
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":1049
|
|
21998
21998
|
* returns the unit part of the dtype for a numpy datetime64 object.
|
|
21999
21999
|
* """
|
|
22000
22000
|
* return <NPY_DATETIMEUNIT>(<PyDatetimeScalarObject*>obj).obmeta.base # <<<<<<<<<<<<<<
|
|
@@ -22002,7 +22002,7 @@ static CYTHON_INLINE NPY_DATETIMEUNIT __pyx_f_5numpy_get_datetime64_unit(PyObjec
|
|
|
22002
22002
|
__pyx_r = ((NPY_DATETIMEUNIT)((PyDatetimeScalarObject *)__pyx_v_obj)->obmeta.base);
|
|
22003
22003
|
goto __pyx_L0;
|
|
22004
22004
|
|
|
22005
|
-
/* "../tmp/pip-build-env-
|
|
22005
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":1045
|
|
22006
22006
|
*
|
|
22007
22007
|
*
|
|
22008
22008
|
* cdef inline NPY_DATETIMEUNIT get_datetime64_unit(object obj) nogil: # <<<<<<<<<<<<<<
|
|
@@ -29752,7 +29752,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
29752
29752
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
29753
29753
|
#endif
|
|
29754
29754
|
); /*proto*/
|
|
29755
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_37fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
29755
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_37fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `<tuple>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[dict[str, Any]]>`: The fetched result.\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
|
|
29756
29756
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_38fetch_query = {"fetch_query", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_38fetch_query, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_37fetch_query};
|
|
29757
29757
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_38fetch_query(PyObject *__pyx_v_self,
|
|
29758
29758
|
#if CYTHON_METH_FASTCALL
|
|
@@ -30085,7 +30085,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
30085
30085
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
30086
30086
|
#endif
|
|
30087
30087
|
); /*proto*/
|
|
30088
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_40fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
30088
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_40fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `<DataFrame>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<DataFrame>`: The fetched result.\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
|
|
30089
30089
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_41fetch_query = {"fetch_query", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_41fetch_query, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_40fetch_query};
|
|
30090
30090
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_41fetch_query(PyObject *__pyx_v_self,
|
|
30091
30091
|
#if CYTHON_METH_FASTCALL
|
|
@@ -30418,7 +30418,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
30418
30418
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
30419
30419
|
#endif
|
|
30420
30420
|
); /*proto*/
|
|
30421
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_43fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
30421
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_43fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `tuple[tuple]` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: The fetched result.\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
|
|
30422
30422
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_44fetch_query = {"fetch_query", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_44fetch_query, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_43fetch_query};
|
|
30423
30423
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_44fetch_query(PyObject *__pyx_v_self,
|
|
30424
30424
|
#if CYTHON_METH_FASTCALL
|
|
@@ -30751,7 +30751,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
30751
30751
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
30752
30752
|
#endif
|
|
30753
30753
|
); /*proto*/
|
|
30754
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_46fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
30754
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_46fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `tuple` or `DataFrame` (depends on 'cursor' type)\n will be returned as the execution result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: The fetched result (depends on 'cursor' type).\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
|
|
30755
30755
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_47fetch_query = {"fetch_query", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_47fetch_query, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_46fetch_query};
|
|
30756
30756
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_47fetch_query(PyObject *__pyx_v_self,
|
|
30757
30757
|
#if CYTHON_METH_FASTCALL
|
|
@@ -40443,7 +40443,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_5Table_105generator25(__pyx_Co
|
|
|
40443
40443
|
|
|
40444
40444
|
/* Python wrapper */
|
|
40445
40445
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_104information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
|
|
40446
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_103information, "Select table information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
40446
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_103information, "Select table information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[dict]>`: Table information..\n ");
|
|
40447
40447
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_104information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_104information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_103information};
|
|
40448
40448
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_104information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
|
|
40449
40449
|
CYTHON_UNUSED PyObject *__pyx_v_cursor = 0;
|
|
@@ -40610,7 +40610,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_5Table_108generator26(__pyx_Co
|
|
|
40610
40610
|
|
|
40611
40611
|
/* Python wrapper */
|
|
40612
40612
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_107information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
|
|
40613
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_106information, "Select table information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
40613
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_106information, "Select table information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<DataFrame>`: Table information.\n ");
|
|
40614
40614
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_107information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_107information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_106information};
|
|
40615
40615
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_107information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
|
|
40616
40616
|
CYTHON_UNUSED PyObject *__pyx_v_cursor = 0;
|
|
@@ -40777,7 +40777,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_5Table_111generator27(__pyx_Co
|
|
|
40777
40777
|
|
|
40778
40778
|
/* Python wrapper */
|
|
40779
40779
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_110information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
|
|
40780
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_109information, "Select table information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
40780
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_109information, "Select table information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: Table information.\n ");
|
|
40781
40781
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_110information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_110information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_109information};
|
|
40782
40782
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_110information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
|
|
40783
40783
|
CYTHON_UNUSED PyObject *__pyx_v_cursor = 0;
|
|
@@ -40944,7 +40944,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_5Table_114generator28(__pyx_Co
|
|
|
40944
40944
|
|
|
40945
40945
|
/* Python wrapper */
|
|
40946
40946
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_113information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
|
|
40947
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_112information, "Select table information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
40947
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_112information, "Select table information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Table information (depends on 'cursor' type).\n ");
|
|
40948
40948
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_113information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_113information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_112information};
|
|
40949
40949
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_113information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
|
|
40950
40950
|
PyObject *__pyx_v_cursor = 0;
|
|
@@ -42335,7 +42335,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
42335
42335
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
42336
42336
|
#endif
|
|
42337
42337
|
); /*proto*/
|
|
42338
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_115describe, "`DESCRIBE` the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
42338
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_115describe, "`DESCRIBE` the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[dict]>`: Table description.\n ");
|
|
42339
42339
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_116describe = {"describe", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_116describe, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_115describe};
|
|
42340
42340
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_116describe(PyObject *__pyx_v_self,
|
|
42341
42341
|
#if CYTHON_METH_FASTCALL
|
|
@@ -42519,7 +42519,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
42519
42519
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
42520
42520
|
#endif
|
|
42521
42521
|
); /*proto*/
|
|
42522
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_118describe, "`DESCRIBE` the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
42522
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_118describe, "`DESCRIBE` the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<DataFrame>`: Table description.\n ");
|
|
42523
42523
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_119describe = {"describe", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_119describe, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_118describe};
|
|
42524
42524
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_119describe(PyObject *__pyx_v_self,
|
|
42525
42525
|
#if CYTHON_METH_FASTCALL
|
|
@@ -42703,7 +42703,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
42703
42703
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
42704
42704
|
#endif
|
|
42705
42705
|
); /*proto*/
|
|
42706
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_121describe, "`DESCRIBE` the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
42706
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_121describe, "`DESCRIBE` the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: Table description.\n ");
|
|
42707
42707
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_122describe = {"describe", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_122describe, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_121describe};
|
|
42708
42708
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_122describe(PyObject *__pyx_v_self,
|
|
42709
42709
|
#if CYTHON_METH_FASTCALL
|
|
@@ -42887,7 +42887,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
42887
42887
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
42888
42888
|
#endif
|
|
42889
42889
|
); /*proto*/
|
|
42890
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_124describe, "`DESCRIBE` the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
42890
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_124describe, "`DESCRIBE` the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Table description (depends on 'cursor' type).\n ");
|
|
42891
42891
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_125describe = {"describe", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_125describe, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_124describe};
|
|
42892
42892
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_125describe(PyObject *__pyx_v_self,
|
|
42893
42893
|
#if CYTHON_METH_FASTCALL
|
|
@@ -43139,7 +43139,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
43139
43139
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
43140
43140
|
#endif
|
|
43141
43141
|
); /*proto*/
|
|
43142
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_127_describe, "(Base method, internal use only). `DESCRIBE` the table.\n\n :param name: `<str>` Name of the table.\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
43142
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_127_describe, "(Base method, internal use only). `DESCRIBE` the table.\n\n :param name: `<str>` Name of the table.\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Table description (depends on 'cursor' type).\n ");
|
|
43143
43143
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_128_describe = {"_describe", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_128_describe, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_127_describe};
|
|
43144
43144
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_128_describe(PyObject *__pyx_v_self,
|
|
43145
43145
|
#if CYTHON_METH_FASTCALL
|
|
@@ -52743,7 +52743,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
52743
52743
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
52744
52744
|
#endif
|
|
52745
52745
|
); /*proto*/
|
|
52746
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_166show_index, "`SHOW INDEX` from the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
52746
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_166show_index, "`SHOW INDEX` from the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[dict]>`: Index information.\n ");
|
|
52747
52747
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_167show_index = {"show_index", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_167show_index, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_166show_index};
|
|
52748
52748
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_167show_index(PyObject *__pyx_v_self,
|
|
52749
52749
|
#if CYTHON_METH_FASTCALL
|
|
@@ -52927,7 +52927,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
52927
52927
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
52928
52928
|
#endif
|
|
52929
52929
|
); /*proto*/
|
|
52930
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_169show_index, "`SHOW INDEX` from the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
52930
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_169show_index, "`SHOW INDEX` from the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<DataFrame>`: Index information.\n ");
|
|
52931
52931
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_170show_index = {"show_index", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_170show_index, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_169show_index};
|
|
52932
52932
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_170show_index(PyObject *__pyx_v_self,
|
|
52933
52933
|
#if CYTHON_METH_FASTCALL
|
|
@@ -53111,7 +53111,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
53111
53111
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
53112
53112
|
#endif
|
|
53113
53113
|
); /*proto*/
|
|
53114
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_172show_index, "`SHOW INDEX` from the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
53114
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_172show_index, "`SHOW INDEX` from the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: Index information.\n ");
|
|
53115
53115
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_173show_index = {"show_index", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_173show_index, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_172show_index};
|
|
53116
53116
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_173show_index(PyObject *__pyx_v_self,
|
|
53117
53117
|
#if CYTHON_METH_FASTCALL
|
|
@@ -53295,7 +53295,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
53295
53295
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
53296
53296
|
#endif
|
|
53297
53297
|
); /*proto*/
|
|
53298
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_175show_index, "`SHOW INDEX` from the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
53298
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_175show_index, "`SHOW INDEX` from the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Index information (depends on 'cursor' type).\n ");
|
|
53299
53299
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_176show_index = {"show_index", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_176show_index, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_175show_index};
|
|
53300
53300
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_176show_index(PyObject *__pyx_v_self,
|
|
53301
53301
|
#if CYTHON_METH_FASTCALL
|
|
@@ -53547,7 +53547,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
53547
53547
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
53548
53548
|
#endif
|
|
53549
53549
|
); /*proto*/
|
|
53550
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_178_show_index, "(Base method, internal use only). `SHOW INDEX` from the table.\n\n :param name: `<str>` Name of the table.\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
53550
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_178_show_index, "(Base method, internal use only). `SHOW INDEX` from the table.\n\n :param name: `<str>` Name of the table.\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Index information (depends on 'cursor' type).\n ");
|
|
53551
53551
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_179_show_index = {"_show_index", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_179_show_index, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_178_show_index};
|
|
53552
53552
|
static PyObject *__pyx_pw_11mysqlengine_8database_5Table_179_show_index(PyObject *__pyx_v_self,
|
|
53553
53553
|
#if CYTHON_METH_FASTCALL
|
|
@@ -85923,7 +85923,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_9TimeTable_55generator70(__pyx
|
|
|
85923
85923
|
|
|
85924
85924
|
/* Python wrapper */
|
|
85925
85925
|
static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_54information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
|
|
85926
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_53information, "Select all sub-tables information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
85926
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_53information, "Select all sub-tables information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[dict]>`: All sub-tables information.\n ");
|
|
85927
85927
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_54information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_54information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_53information};
|
|
85928
85928
|
static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_54information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
|
|
85929
85929
|
CYTHON_UNUSED PyObject *__pyx_v_cursor = 0;
|
|
@@ -86090,7 +86090,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_9TimeTable_58generator71(__pyx
|
|
|
86090
86090
|
|
|
86091
86091
|
/* Python wrapper */
|
|
86092
86092
|
static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_57information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
|
|
86093
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_56information, "Select all sub-tables information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
86093
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_56information, "Select all sub-tables information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<DataFrame>`: All sub-tables information.\n ");
|
|
86094
86094
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_57information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_57information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_56information};
|
|
86095
86095
|
static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_57information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
|
|
86096
86096
|
CYTHON_UNUSED PyObject *__pyx_v_cursor = 0;
|
|
@@ -86257,7 +86257,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_9TimeTable_61generator72(__pyx
|
|
|
86257
86257
|
|
|
86258
86258
|
/* Python wrapper */
|
|
86259
86259
|
static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_60information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
|
|
86260
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_59information, "Select all sub-tables information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
86260
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_59information, "Select all sub-tables information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: All sub-tables information.\n ");
|
|
86261
86261
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_60information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_60information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_59information};
|
|
86262
86262
|
static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_60information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
|
|
86263
86263
|
CYTHON_UNUSED PyObject *__pyx_v_cursor = 0;
|
|
@@ -86424,7 +86424,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_9TimeTable_64generator73(__pyx
|
|
|
86424
86424
|
|
|
86425
86425
|
/* Python wrapper */
|
|
86426
86426
|
static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_63information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
|
|
86427
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_62information, "Select all sub-tables information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
86427
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_62information, "Select all sub-tables information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: All sub-tables information (depends on 'cursor' type).\n ");
|
|
86428
86428
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_63information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_63information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_62information};
|
|
86429
86429
|
static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_63information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
|
|
86430
86430
|
PyObject *__pyx_v_cursor = 0;
|
|
@@ -87815,7 +87815,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
87815
87815
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
87816
87816
|
#endif
|
|
87817
87817
|
); /*proto*/
|
|
87818
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_65describe, "`DESCRIBE` a sub-table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
87818
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_65describe, "`DESCRIBE` a sub-table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[dict]>`: Table description.\n ");
|
|
87819
87819
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_66describe = {"describe", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_66describe, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_65describe};
|
|
87820
87820
|
static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_66describe(PyObject *__pyx_v_self,
|
|
87821
87821
|
#if CYTHON_METH_FASTCALL
|
|
@@ -87999,7 +87999,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
87999
87999
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
88000
88000
|
#endif
|
|
88001
88001
|
); /*proto*/
|
|
88002
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_68describe, "`DESCRIBE` a sub-table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
88002
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_68describe, "`DESCRIBE` a sub-table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<DataFrame>`: Table description.\n ");
|
|
88003
88003
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_69describe = {"describe", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_69describe, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_68describe};
|
|
88004
88004
|
static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_69describe(PyObject *__pyx_v_self,
|
|
88005
88005
|
#if CYTHON_METH_FASTCALL
|
|
@@ -88183,7 +88183,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
88183
88183
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
88184
88184
|
#endif
|
|
88185
88185
|
); /*proto*/
|
|
88186
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_71describe, "`DESCRIBE` a sub-table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
88186
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_71describe, "`DESCRIBE` a sub-table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: Table description.\n ");
|
|
88187
88187
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_72describe = {"describe", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_72describe, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_71describe};
|
|
88188
88188
|
static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_72describe(PyObject *__pyx_v_self,
|
|
88189
88189
|
#if CYTHON_METH_FASTCALL
|
|
@@ -88367,7 +88367,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
88367
88367
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
88368
88368
|
#endif
|
|
88369
88369
|
); /*proto*/
|
|
88370
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_74describe, "`DESCRIBE` a sub-table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
88370
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_74describe, "`DESCRIBE` a sub-table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Table description (depends on 'cursor' type).\n ");
|
|
88371
88371
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_75describe = {"describe", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_75describe, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_74describe};
|
|
88372
88372
|
static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_75describe(PyObject *__pyx_v_self,
|
|
88373
88373
|
#if CYTHON_METH_FASTCALL
|
|
@@ -92192,7 +92192,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
92192
92192
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
92193
92193
|
#endif
|
|
92194
92194
|
); /*proto*/
|
|
92195
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_95show_index, "`SHOW INDEX` of the TimeTable.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
92195
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_95show_index, "`SHOW INDEX` of the TimeTable.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[dict]>`: Index information.\n ");
|
|
92196
92196
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_96show_index = {"show_index", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_96show_index, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_95show_index};
|
|
92197
92197
|
static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_96show_index(PyObject *__pyx_v_self,
|
|
92198
92198
|
#if CYTHON_METH_FASTCALL
|
|
@@ -92376,7 +92376,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
92376
92376
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
92377
92377
|
#endif
|
|
92378
92378
|
); /*proto*/
|
|
92379
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_98show_index, "`SHOW INDEX` of the TimeTable.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
92379
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_98show_index, "`SHOW INDEX` of the TimeTable.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<DataFrame>`: Index information.\n ");
|
|
92380
92380
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_99show_index = {"show_index", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_99show_index, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_98show_index};
|
|
92381
92381
|
static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_99show_index(PyObject *__pyx_v_self,
|
|
92382
92382
|
#if CYTHON_METH_FASTCALL
|
|
@@ -92560,7 +92560,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
92560
92560
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
92561
92561
|
#endif
|
|
92562
92562
|
); /*proto*/
|
|
92563
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_101show_index, "`SHOW INDEX` of the TimeTable.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
92563
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_101show_index, "`SHOW INDEX` of the TimeTable.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: Index information.\n ");
|
|
92564
92564
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_102show_index = {"show_index", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_102show_index, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_101show_index};
|
|
92565
92565
|
static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_102show_index(PyObject *__pyx_v_self,
|
|
92566
92566
|
#if CYTHON_METH_FASTCALL
|
|
@@ -92744,7 +92744,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
92744
92744
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
92745
92745
|
#endif
|
|
92746
92746
|
); /*proto*/
|
|
92747
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_104show_index, "`SHOW INDEX` of the TimeTable.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
92747
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_104show_index, "`SHOW INDEX` of the TimeTable.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Index information (depends on 'cursor' type).\n ");
|
|
92748
92748
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_105show_index = {"show_index", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_105show_index, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_104show_index};
|
|
92749
92749
|
static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_105show_index(PyObject *__pyx_v_self,
|
|
92750
92750
|
#if CYTHON_METH_FASTCALL
|
|
@@ -116059,7 +116059,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
116059
116059
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
116060
116060
|
#endif
|
|
116061
116061
|
); /*proto*/
|
|
116062
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_26fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
116062
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_26fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `<tuple>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[dict]>`: The fetched result.\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
|
|
116063
116063
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_8Database_27fetch_query = {"fetch_query", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_8Database_27fetch_query, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_8Database_26fetch_query};
|
|
116064
116064
|
static PyObject *__pyx_pw_11mysqlengine_8database_8Database_27fetch_query(PyObject *__pyx_v_self,
|
|
116065
116065
|
#if CYTHON_METH_FASTCALL
|
|
@@ -116392,7 +116392,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
116392
116392
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
116393
116393
|
#endif
|
|
116394
116394
|
); /*proto*/
|
|
116395
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_29fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
116395
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_29fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `<DataFrame>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<DataFrame>`: The fetched result.\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
|
|
116396
116396
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_8Database_30fetch_query = {"fetch_query", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_8Database_30fetch_query, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_8Database_29fetch_query};
|
|
116397
116397
|
static PyObject *__pyx_pw_11mysqlengine_8database_8Database_30fetch_query(PyObject *__pyx_v_self,
|
|
116398
116398
|
#if CYTHON_METH_FASTCALL
|
|
@@ -116725,7 +116725,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
116725
116725
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
116726
116726
|
#endif
|
|
116727
116727
|
); /*proto*/
|
|
116728
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_32fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
116728
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_32fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `tuple[tuple]` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: The fetched result.\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
|
|
116729
116729
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_8Database_33fetch_query = {"fetch_query", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_8Database_33fetch_query, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_8Database_32fetch_query};
|
|
116730
116730
|
static PyObject *__pyx_pw_11mysqlengine_8database_8Database_33fetch_query(PyObject *__pyx_v_self,
|
|
116731
116731
|
#if CYTHON_METH_FASTCALL
|
|
@@ -117058,7 +117058,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
|
|
|
117058
117058
|
PyObject *__pyx_args, PyObject *__pyx_kwds
|
|
117059
117059
|
#endif
|
|
117060
117060
|
); /*proto*/
|
|
117061
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_35fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
117061
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_35fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `tuple` or `DataFrame` (depends on 'cursor' type)\n will be returned as the execution result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: The fetched result (depends on 'cursor' type).\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
|
|
117062
117062
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_8Database_36fetch_query = {"fetch_query", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_8Database_36fetch_query, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_8Database_35fetch_query};
|
|
117063
117063
|
static PyObject *__pyx_pw_11mysqlengine_8database_8Database_36fetch_query(PyObject *__pyx_v_self,
|
|
117064
117064
|
#if CYTHON_METH_FASTCALL
|
|
@@ -128946,7 +128946,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_8Database_73generator111(__pyx
|
|
|
128946
128946
|
|
|
128947
128947
|
/* Python wrapper */
|
|
128948
128948
|
static PyObject *__pyx_pw_11mysqlengine_8database_8Database_72information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
|
|
128949
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_71information, "Select database information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'catelog_name', 'schema_name', 'default_character_set_name',\n - 'default_collation_name', 'sql_path', 'default_encryption'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'schema_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
128949
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_71information, "Select database information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'catelog_name', 'schema_name', 'default_character_set_name',\n - 'default_collation_name', 'sql_path', 'default_encryption'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'schema_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[dict]>`: Database information.\n ");
|
|
128950
128950
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_8Database_72information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_8Database_72information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_8Database_71information};
|
|
128951
128951
|
static PyObject *__pyx_pw_11mysqlengine_8database_8Database_72information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
|
|
128952
128952
|
CYTHON_UNUSED PyObject *__pyx_v_cursor = 0;
|
|
@@ -129113,7 +129113,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_8Database_76generator112(__pyx
|
|
|
129113
129113
|
|
|
129114
129114
|
/* Python wrapper */
|
|
129115
129115
|
static PyObject *__pyx_pw_11mysqlengine_8database_8Database_75information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
|
|
129116
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_74information, "Select database information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'catelog_name', 'schema_name', 'default_character_set_name',\n - 'default_collation_name', 'sql_path', 'default_encryption'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'schema_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
129116
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_74information, "Select database information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'catelog_name', 'schema_name', 'default_character_set_name',\n - 'default_collation_name', 'sql_path', 'default_encryption'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'schema_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<DataFrame>`: Database information.\n ");
|
|
129117
129117
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_8Database_75information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_8Database_75information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_8Database_74information};
|
|
129118
129118
|
static PyObject *__pyx_pw_11mysqlengine_8database_8Database_75information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
|
|
129119
129119
|
CYTHON_UNUSED PyObject *__pyx_v_cursor = 0;
|
|
@@ -129280,7 +129280,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_8Database_79generator113(__pyx
|
|
|
129280
129280
|
|
|
129281
129281
|
/* Python wrapper */
|
|
129282
129282
|
static PyObject *__pyx_pw_11mysqlengine_8database_8Database_78information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
|
|
129283
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_77information, "Select database information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'catelog_name', 'schema_name', 'default_character_set_name',\n - 'default_collation_name', 'sql_path', 'default_encryption'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'schema_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
129283
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_77information, "Select database information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'catelog_name', 'schema_name', 'default_character_set_name',\n - 'default_collation_name', 'sql_path', 'default_encryption'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'schema_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: Database information.\n ");
|
|
129284
129284
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_8Database_78information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_8Database_78information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_8Database_77information};
|
|
129285
129285
|
static PyObject *__pyx_pw_11mysqlengine_8database_8Database_78information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
|
|
129286
129286
|
CYTHON_UNUSED PyObject *__pyx_v_cursor = 0;
|
|
@@ -129447,7 +129447,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_8Database_82generator114(__pyx
|
|
|
129447
129447
|
|
|
129448
129448
|
/* Python wrapper */
|
|
129449
129449
|
static PyObject *__pyx_pw_11mysqlengine_8database_8Database_81information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
|
|
129450
|
-
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_80information, "Select database information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'catelog_name', 'schema_name', 'default_character_set_name',\n - 'default_collation_name', 'sql_path', 'default_encryption'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'schema_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as
|
|
129450
|
+
PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_80information, "Select database information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'catelog_name', 'schema_name', 'default_character_set_name',\n - 'default_collation_name', 'sql_path', 'default_encryption'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'schema_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Database information.\n ");
|
|
129451
129451
|
static PyMethodDef __pyx_mdef_11mysqlengine_8database_8Database_81information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_8Database_81information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_8Database_80information};
|
|
129452
129452
|
static PyObject *__pyx_pw_11mysqlengine_8database_8Database_81information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
|
|
129453
129453
|
PyObject *__pyx_v_cursor = 0;
|
|
@@ -167991,7 +167991,7 @@ static CYTHON_SMALL_CODE int __Pyx_InitCachedConstants(void) {
|
|
|
167991
167991
|
__Pyx_GOTREF(__pyx_tuple__6);
|
|
167992
167992
|
__Pyx_GIVEREF(__pyx_tuple__6);
|
|
167993
167993
|
|
|
167994
|
-
/* "../tmp/pip-build-env-
|
|
167994
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":983
|
|
167995
167995
|
* __pyx_import_array()
|
|
167996
167996
|
* except Exception:
|
|
167997
167997
|
* raise ImportError("numpy.core.multiarray failed to import") # <<<<<<<<<<<<<<
|
|
@@ -168002,7 +168002,7 @@ static CYTHON_SMALL_CODE int __Pyx_InitCachedConstants(void) {
|
|
|
168002
168002
|
__Pyx_GOTREF(__pyx_tuple__7);
|
|
168003
168003
|
__Pyx_GIVEREF(__pyx_tuple__7);
|
|
168004
168004
|
|
|
168005
|
-
/* "../tmp/pip-build-env-
|
|
168005
|
+
/* "../tmp/pip-build-env-zxgwljve/overlay/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd":989
|
|
168006
168006
|
* _import_umath()
|
|
168007
168007
|
* except Exception:
|
|
168008
168008
|
* raise ImportError("numpy.core.umath failed to import") # <<<<<<<<<<<<<<
|