mysqlengine 0.1.11.9__cp311-cp311-win_amd64.whl → 0.1.12.1__cp311-cp311-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mysqlengine might be problematic. Click here for more details.

mysqlengine/database.c CHANGED
@@ -11,7 +11,7 @@
11
11
  ],
12
12
  "depends": [],
13
13
  "include_dirs": [
14
- "C:\\Users\\runneradmin\\AppData\\Local\\Temp\\pip-build-env-9s4qk95j\\overlay\\Lib\\site-packages\\numpy\\core\\include"
14
+ "C:\\Users\\runneradmin\\AppData\\Local\\Temp\\pip-build-env-rljcplax\\overlay\\Lib\\site-packages\\numpy\\core\\include"
15
15
  ],
16
16
  "name": "mysqlengine.database",
17
17
  "sources": [
@@ -1592,7 +1592,7 @@ static const char *__pyx_f[] = {
1592
1592
 
1593
1593
  /* #### Code section: numeric_typedefs ### */
1594
1594
 
1595
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":730
1595
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":730
1596
1596
  * # in Cython to enable them only on the right systems.
1597
1597
  *
1598
1598
  * ctypedef npy_int8 int8_t # <<<<<<<<<<<<<<
@@ -1601,7 +1601,7 @@ static const char *__pyx_f[] = {
1601
1601
  */
1602
1602
  typedef npy_int8 __pyx_t_5numpy_int8_t;
1603
1603
 
1604
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":731
1604
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":731
1605
1605
  *
1606
1606
  * ctypedef npy_int8 int8_t
1607
1607
  * ctypedef npy_int16 int16_t # <<<<<<<<<<<<<<
@@ -1610,7 +1610,7 @@ typedef npy_int8 __pyx_t_5numpy_int8_t;
1610
1610
  */
1611
1611
  typedef npy_int16 __pyx_t_5numpy_int16_t;
1612
1612
 
1613
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":732
1613
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":732
1614
1614
  * ctypedef npy_int8 int8_t
1615
1615
  * ctypedef npy_int16 int16_t
1616
1616
  * ctypedef npy_int32 int32_t # <<<<<<<<<<<<<<
@@ -1619,7 +1619,7 @@ typedef npy_int16 __pyx_t_5numpy_int16_t;
1619
1619
  */
1620
1620
  typedef npy_int32 __pyx_t_5numpy_int32_t;
1621
1621
 
1622
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":733
1622
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":733
1623
1623
  * ctypedef npy_int16 int16_t
1624
1624
  * ctypedef npy_int32 int32_t
1625
1625
  * ctypedef npy_int64 int64_t # <<<<<<<<<<<<<<
@@ -1628,7 +1628,7 @@ typedef npy_int32 __pyx_t_5numpy_int32_t;
1628
1628
  */
1629
1629
  typedef npy_int64 __pyx_t_5numpy_int64_t;
1630
1630
 
1631
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":737
1631
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":737
1632
1632
  * #ctypedef npy_int128 int128_t
1633
1633
  *
1634
1634
  * ctypedef npy_uint8 uint8_t # <<<<<<<<<<<<<<
@@ -1637,7 +1637,7 @@ typedef npy_int64 __pyx_t_5numpy_int64_t;
1637
1637
  */
1638
1638
  typedef npy_uint8 __pyx_t_5numpy_uint8_t;
1639
1639
 
1640
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":738
1640
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":738
1641
1641
  *
1642
1642
  * ctypedef npy_uint8 uint8_t
1643
1643
  * ctypedef npy_uint16 uint16_t # <<<<<<<<<<<<<<
@@ -1646,7 +1646,7 @@ typedef npy_uint8 __pyx_t_5numpy_uint8_t;
1646
1646
  */
1647
1647
  typedef npy_uint16 __pyx_t_5numpy_uint16_t;
1648
1648
 
1649
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":739
1649
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":739
1650
1650
  * ctypedef npy_uint8 uint8_t
1651
1651
  * ctypedef npy_uint16 uint16_t
1652
1652
  * ctypedef npy_uint32 uint32_t # <<<<<<<<<<<<<<
@@ -1655,7 +1655,7 @@ typedef npy_uint16 __pyx_t_5numpy_uint16_t;
1655
1655
  */
1656
1656
  typedef npy_uint32 __pyx_t_5numpy_uint32_t;
1657
1657
 
1658
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":740
1658
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":740
1659
1659
  * ctypedef npy_uint16 uint16_t
1660
1660
  * ctypedef npy_uint32 uint32_t
1661
1661
  * ctypedef npy_uint64 uint64_t # <<<<<<<<<<<<<<
@@ -1664,7 +1664,7 @@ typedef npy_uint32 __pyx_t_5numpy_uint32_t;
1664
1664
  */
1665
1665
  typedef npy_uint64 __pyx_t_5numpy_uint64_t;
1666
1666
 
1667
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":744
1667
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":744
1668
1668
  * #ctypedef npy_uint128 uint128_t
1669
1669
  *
1670
1670
  * ctypedef npy_float32 float32_t # <<<<<<<<<<<<<<
@@ -1673,7 +1673,7 @@ typedef npy_uint64 __pyx_t_5numpy_uint64_t;
1673
1673
  */
1674
1674
  typedef npy_float32 __pyx_t_5numpy_float32_t;
1675
1675
 
1676
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":745
1676
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":745
1677
1677
  *
1678
1678
  * ctypedef npy_float32 float32_t
1679
1679
  * ctypedef npy_float64 float64_t # <<<<<<<<<<<<<<
@@ -1682,7 +1682,7 @@ typedef npy_float32 __pyx_t_5numpy_float32_t;
1682
1682
  */
1683
1683
  typedef npy_float64 __pyx_t_5numpy_float64_t;
1684
1684
 
1685
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":754
1685
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":754
1686
1686
  * # The int types are mapped a bit surprising --
1687
1687
  * # numpy.int corresponds to 'l' and numpy.long to 'q'
1688
1688
  * ctypedef npy_long int_t # <<<<<<<<<<<<<<
@@ -1691,7 +1691,7 @@ typedef npy_float64 __pyx_t_5numpy_float64_t;
1691
1691
  */
1692
1692
  typedef npy_long __pyx_t_5numpy_int_t;
1693
1693
 
1694
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":755
1694
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":755
1695
1695
  * # numpy.int corresponds to 'l' and numpy.long to 'q'
1696
1696
  * ctypedef npy_long int_t
1697
1697
  * ctypedef npy_longlong longlong_t # <<<<<<<<<<<<<<
@@ -1700,7 +1700,7 @@ typedef npy_long __pyx_t_5numpy_int_t;
1700
1700
  */
1701
1701
  typedef npy_longlong __pyx_t_5numpy_longlong_t;
1702
1702
 
1703
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":757
1703
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":757
1704
1704
  * ctypedef npy_longlong longlong_t
1705
1705
  *
1706
1706
  * ctypedef npy_ulong uint_t # <<<<<<<<<<<<<<
@@ -1709,7 +1709,7 @@ typedef npy_longlong __pyx_t_5numpy_longlong_t;
1709
1709
  */
1710
1710
  typedef npy_ulong __pyx_t_5numpy_uint_t;
1711
1711
 
1712
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":758
1712
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":758
1713
1713
  *
1714
1714
  * ctypedef npy_ulong uint_t
1715
1715
  * ctypedef npy_ulonglong ulonglong_t # <<<<<<<<<<<<<<
@@ -1718,7 +1718,7 @@ typedef npy_ulong __pyx_t_5numpy_uint_t;
1718
1718
  */
1719
1719
  typedef npy_ulonglong __pyx_t_5numpy_ulonglong_t;
1720
1720
 
1721
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":760
1721
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":760
1722
1722
  * ctypedef npy_ulonglong ulonglong_t
1723
1723
  *
1724
1724
  * ctypedef npy_intp intp_t # <<<<<<<<<<<<<<
@@ -1727,7 +1727,7 @@ typedef npy_ulonglong __pyx_t_5numpy_ulonglong_t;
1727
1727
  */
1728
1728
  typedef npy_intp __pyx_t_5numpy_intp_t;
1729
1729
 
1730
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":761
1730
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":761
1731
1731
  *
1732
1732
  * ctypedef npy_intp intp_t
1733
1733
  * ctypedef npy_uintp uintp_t # <<<<<<<<<<<<<<
@@ -1736,7 +1736,7 @@ typedef npy_intp __pyx_t_5numpy_intp_t;
1736
1736
  */
1737
1737
  typedef npy_uintp __pyx_t_5numpy_uintp_t;
1738
1738
 
1739
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":763
1739
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":763
1740
1740
  * ctypedef npy_uintp uintp_t
1741
1741
  *
1742
1742
  * ctypedef npy_double float_t # <<<<<<<<<<<<<<
@@ -1745,7 +1745,7 @@ typedef npy_uintp __pyx_t_5numpy_uintp_t;
1745
1745
  */
1746
1746
  typedef npy_double __pyx_t_5numpy_float_t;
1747
1747
 
1748
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":764
1748
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":764
1749
1749
  *
1750
1750
  * ctypedef npy_double float_t
1751
1751
  * ctypedef npy_double double_t # <<<<<<<<<<<<<<
@@ -1754,7 +1754,7 @@ typedef npy_double __pyx_t_5numpy_float_t;
1754
1754
  */
1755
1755
  typedef npy_double __pyx_t_5numpy_double_t;
1756
1756
 
1757
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":765
1757
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":765
1758
1758
  * ctypedef npy_double float_t
1759
1759
  * ctypedef npy_double double_t
1760
1760
  * ctypedef npy_longdouble longdouble_t # <<<<<<<<<<<<<<
@@ -2060,7 +2060,7 @@ struct __pyx_opt_args_11mysqlengine_8protocol_11MysqlPacket_get_bytes {
2060
2060
  PY_LONG_LONG length;
2061
2061
  };
2062
2062
 
2063
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":767
2063
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":767
2064
2064
  * ctypedef npy_longdouble longdouble_t
2065
2065
  *
2066
2066
  * ctypedef npy_cfloat cfloat_t # <<<<<<<<<<<<<<
@@ -2069,7 +2069,7 @@ struct __pyx_opt_args_11mysqlengine_8protocol_11MysqlPacket_get_bytes {
2069
2069
  */
2070
2070
  typedef npy_cfloat __pyx_t_5numpy_cfloat_t;
2071
2071
 
2072
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":768
2072
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":768
2073
2073
  *
2074
2074
  * ctypedef npy_cfloat cfloat_t
2075
2075
  * ctypedef npy_cdouble cdouble_t # <<<<<<<<<<<<<<
@@ -2078,7 +2078,7 @@ typedef npy_cfloat __pyx_t_5numpy_cfloat_t;
2078
2078
  */
2079
2079
  typedef npy_cdouble __pyx_t_5numpy_cdouble_t;
2080
2080
 
2081
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":769
2081
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":769
2082
2082
  * ctypedef npy_cfloat cfloat_t
2083
2083
  * ctypedef npy_cdouble cdouble_t
2084
2084
  * ctypedef npy_clongdouble clongdouble_t # <<<<<<<<<<<<<<
@@ -2087,7 +2087,7 @@ typedef npy_cdouble __pyx_t_5numpy_cdouble_t;
2087
2087
  */
2088
2088
  typedef npy_clongdouble __pyx_t_5numpy_clongdouble_t;
2089
2089
 
2090
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":771
2090
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":771
2091
2091
  * ctypedef npy_clongdouble clongdouble_t
2092
2092
  *
2093
2093
  * ctypedef npy_cdouble complex_t # <<<<<<<<<<<<<<
@@ -9062,7 +9062,7 @@ static const char __pyx_k_Define_columns_of_the_table_This[] = "Define columns o
9062
9062
  static const char __pyx_k_Define_indexes_of_the_table_This[] = "Define indexes of the table. This method should be called\n within the `metadata()` method to set the desired indexes.\n\n :param indexes: `<Index>` The indexes to add to the table.\n\n ### Example:\n >>> self.indexes_metadata(\n Index(self.columns[\"tinyint_type\"], unique=True, primary_unique=True),\n Index(self.columns[\"smallint_type\"], self.columns[\"mediumint_type\"]),\n ...\n )\n ";
9063
9063
  static const char __pyx_k_Define_the_database_metadata_Thi[] = "Define the database metadata. This method should be overwritten\n in subclass to configure database's tables.\n\n ### Configuration:\n - Overwrite `Database.metadata()` to define database's tables.\n - Add tables through Table `instance`: `self.my_table = MyTable(self)`\n - Add tables through Table `subclass`: `self.my_table = MyTable`\n - * Notice, using `subclass` approach, most static typing of the table\n methods will be incorrect (redundant 'self' argument), but the\n functionality of the table will not be affected.\n\n ### Example:\n >>> def metadata(self) -> None:\n # . instance approach\n self.table1 = MyTable1(self)\n # . subclass approach\n self.table2 = MyTable2\n ...\n ";
9064
9064
  static const char __pyx_k_Define_the_table_metadata_This_m[] = "Define the table metadata. This method should be overridden\n in subclass to configure the table's columns and indexes.\n\n ### Configuration:\n - Use `self.columns_metadata()` to define columns of the table.\n - Use `self.indexes_metadata()` to define indexes of the table.\n\n ### Example:\n >>> def metadata(self) -> None:\n # . define columns\n self.columns_metadata(\n Column(\"id\", MysqlTypes.BIGINT(primary_key=True)),\n Column(\"username\", MysqlTypes.VARCHAR()),\n Column(\"user_level\", MysqlTypes.TINYINT()),\n Column(\"user_type\", MysqlTypes.VARCHAR()),\n ...\n )\n # . define indexes\n self.indexes_metadata(\n Index(self.columns[\"username\"], unique=True, primary_unique=True),\n Index(self.columns[\"user_level\"], self.columns[\"user_type\"]),\n ...\n )\n ";
9065
- static const char __pyx_k_Execute_a_SQL_statement_and_fetc[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table that do""es not exist, instead of\n raising an error, an empty `<tuple>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[dict[str, Any]]>`: The fetched result.\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
9065
+ static const char __pyx_k_Execute_a_SQL_statement_and_fetc[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `<tuple>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[dict[str, Any]]>`: The fetched result.\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
9066
9066
  static const char __pyx_k_Execute_a_SQL_statement_param_st[] = "Execute a SQL statement.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param reusable: `<bool>` Whether the 'conn' (if provided) is reusable after query execution. Defaults to `True`.\n - If `True`, the connection will return back to the Server pool,\n waiting for the next query.\n - If `False`, after returned to the Server pool, the connection\n will be closed and released. This is useful for certain types\n of statements, such as `CREATE TEMPORARY TABLE` and `LOCK TABLES`,\n where it's desirable to ensure the connection is closed at the end\n to release (potential) resources.\n\n :param cursor: `<type[Cursor/SSCursor]>` The `Cursor` class to use for query execution. Defaults to `Cursor`.\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involve""s a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table that does not exist, instead of\n raising an error, `0` will be returned as the execution result.\n\n :raises: Subclass of `QueryError`.\n :return `<int>`: Number of rows affected by the query.\n\n ### Example:\n >>> await db.user.execute_query(\n \"UPDATE db.user SET name = %s WHERE id = %s;\",\n args=('john', 1), # muti-rows: arge=[('john', 1), ('jackson', 2)]\n conn=None,\n reusable=True,\n cursor=Cursor,\n resolve_absent_table=False,\n timeout=None,\n warnings=True,\n )\n ";
9067
9067
  static const char __pyx_k_Incompatible_checksums_0x_x_vs_0[] = "Incompatible checksums (0x%x vs (0xc1804d9, 0xfe6a6a6, 0xcfc7018) = (_charset, _collate, _columns, _db, _db_pfix, _engine, _fname, _fname_pfix, _indexes, _initiated, _initiated_tables, _is_timetable, _name, _name_pfix, _regex, _server, _syntax, _syntax_val, _temp_id, _type))";
9068
9068
  static const char __pyx_k_Initiate_a_DELETE_query_of_the_t[] = "Initiate a DELETE query of the table.\n\n :param table_aliases: `<str>` The table aliases of the DELETE operation.\n - Only applicable for multi-table DELETE (when JOIN clause is used).\n Single table DELETE takes no effects.\n - If not specified, the DELETE operation will be performed on all\n tables (main & joined ones).\n - If specified, the DELETE operation will be performed only on the\n given tables.\n - *Notice: this arguments only takes the alias of the tables instead\n of the actual table name. For more information, please refer to\n the 'alias' parameter or the Example section below.\n\n :param ignore: `<bool>` The `IGNORE` modifier. Defaults to `False`.\n Determines whether to ignore the duplicate key errors.\n\n :param tabletime: `<str/None>` A specific `tabletime` for the `DELETE` table. Defaults to `None`.\n - This parameter is only applicable when the `DELETE` table corresponds\n to a TimeTable.\n - If `tabletime` is specified, the actual sub-table will derive from this\n parameter. Otherwise, it is required to use `tabletimes()` method to specify\n the sub-tables. For more details, please refer to the `tabletimes()` method.\n\n :param alias: `<str/None>` The alias of the `DELETE` clause. Defaults to `None`.\n - The alias of the clause will be added to the corresponding part of the SQL\n statement using the `'AS <alias>'` syntax.\n - For instance, in a `DELETE... FROM... WHERE...` query, without specified\n alias (default alias), the statement would be constructed as:\n `'DELETE... FROM... AS t1 WHERE...'`, where default alias is derived\n from the order of the tables in the query.\n - However, with a user-defined alias (for example, `alias='tb'`), the\n "" statement would be constructed as: `'DELETE... FROM... AS tb WHERE...'`.\n\n ### Example (DELETE... WHERE... single table):\n >>> await db.user.delete().where(\"id = 1\").execute()\n ### -> Equivalent to:\n >>> DELETE FROM db.user AS t1 WHERE id = 1\n\n ### Example (DELETE... JOIN... WHERE... multi-table [all tables]):\n >>> (\n await db.user.delete() # delete from 't1' and 't2'\n .join(db.user_info, \"t1.id = t2.user_id\", tabletime=\"2023-01-01\")\n .where(\"t1.age > 18\")\n .execute()\n )\n ### -> Equivalent to:\n >>> DELETE t1, t2 FROM db.user AS t1\n INNER JOIN db.user_info_202301 AS t2\n ON t1.id = t2.user_id\n WHERE t1.age > 18\n\n ### Example (DELETE... JOIN... WHERE... multi-table [specific table(s)]):\n >>> (\n await db.user.delete(\"t2\") # Only delete from 't2'\n .join(db.user_info, \"t1.id = t2.user_id\", tabletime=\"2023-01-01\")\n .where(\"t1.age > 18\")\n .execute()\n )\n ### -> Equivalent to:\n >>> DELETE t2 FROM db.user AS t1\n INNER JOIN db.user_info_202301 AS t2\n ON t1.id = t2.user_id\n WHERE t1.age > 18\n\n ### Example (DELETE... with `values()` method):\n >>> values = [\n {\"id\": 1, \"name\": \"John\", \"age\": 20, \"status\": \"active\"},\n {\"id\": 2, \"name\": \"Mary\", \"age\": 25, \"status\": \"inactive\"},\n ]\n >>> (\n await db.user.delete()\n .values(values, where_columns=[\"name\", \"age\"])\n .execute()\n )\n ### -> Equivalent to the following TWO queries:\n >>> DELETE FROM db.user AS t1\n WHERE t1.name = 'John' AND t1.age = 20\n >>> DELETE FROM db.user AS t1\n WHERE t1.nam""e = 'Mary' AND t1.age = 25\n ";
@@ -9099,13 +9099,13 @@ static const char __pyx_k_Acquire_a_free_connection_from_t_2[] = "Acquire a free
9099
9099
  static const char __pyx_k_Acquire_a_free_connection_from_t_3[] = "Acquire a free connection from the `Server` pool.\n\n By acquiring connection through this method, the following will happen:\n - 1. Acquire a free/new connection from the Server pool.\n - 2. Return `PoolConnectionManager` that wraps the connection.\n - 3. Release the connection back to the pool at exist.\n\n This method provides a more flexible approach to execute queries compared\n to the `transaction()` method. However, it requires manual handling of\n transaction states like `BEGIN`, `ROLLBACK`, and `COMMIT`.\n\n :raise: Subclass of `QueryError`.\n :return `PoolConnectionManager`: Server connection.\n\n ### Example:\n >>> async with db.acquire() as conn:\n await conn.begin() # . start transaction\n username = (\n await db.user.select(\"username\")\n .where(\"id = %s\", 1)\n .for_update()\n # IMPORTANT: must pass conn to `execute()`. Otherwise, the\n # query will be executed with a temp (different) connection.\n .execute(conn)\n )\n ... # . sequences of queries\n await conn.commit() # . commit transaction\n ";
9100
9100
  static const char __pyx_k_Acquire_a_free_connection_from_t_4[] = "Acquire a free connection from the `Server` pool and `START TRANSACTION`.\n\n By acquiring connection through this method, the following will happen:\n - 1. Acquire a free/new connection from the Server pool.\n - 2. Use the connection to `START TRANSACTION`.\n - 3. Return `PoolTransactionManager` that wraps the connection.\n - 4a. If catches ANY exceptions during the transaction, execute\n `ROLLBACK`, then close and release the connection.\n - 4b. If the transaction executed successfully, execute `COMMIT`\n and then release the connection back to the Server pool.\n\n This method offers a more convenient way to execute transactions\n compared to the `acquire()` method, as it automatically manages\n transaction states like `BEGIN`, `ROLLBACK`, and `COMMIT`.\n\n :raise: Subclass of `QueryError`.\n :return `PoolTransactionManager`: Server connection.\n\n ### Example:\n >>> async with db.transaction() as conn:\n # . transaction is already started\n username = (\n await db.user.select(\"username\")\n .where(\"id = %s\", 1)\n .for_update()\n # IMPORTANT: must pass conn to `execute()`. Otherwise, the\n # query will be executed with a temp (different) connection.\n .execute(conn)\n )\n ... # . sequences of queries\n # . commit will be executed at exist.\n ";
9101
9101
  static const char __pyx_k_Bypass_data_import_for_table_s_T_2[] = "Bypass data import for table: '%s'. <Table data invalid>.";
9102
- static const char __pyx_k_Execute_a_SQL_statement_and_fetc_2[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table that do""es not exist, instead of\n raising an error, an empty `<DataFrame>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<DataFrame>`: The fetched result.\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
9103
- static const char __pyx_k_Execute_a_SQL_statement_and_fetc_3[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table that do""es not exist, instead of\n raising an error, an empty `tuple[tuple]` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: The fetched result.\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
9104
- static const char __pyx_k_Execute_a_SQL_statement_and_fetc_4[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table that do""es not exist, instead of\n raising an error, an empty `tuple` or `DataFrame` (depends on 'cursor' type)\n will be returned as the execution result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: The fetched result (depends on 'cursor' type).\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
9105
- static const char __pyx_k_Execute_a_SQL_statement_and_fetc_5[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table that do""es not exist, instead of\n raising an error, an empty `<tuple>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[dict]>`: The fetched result.\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
9106
- static const char __pyx_k_Execute_a_SQL_statement_and_fetc_6[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table that do""es not exist, instead of\n raising an error, an empty `<DataFrame>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<DataFrame>`: The fetched result.\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
9107
- static const char __pyx_k_Execute_a_SQL_statement_and_fetc_7[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table that do""es not exist, instead of\n raising an error, an empty `tuple[tuple]` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: The fetched result.\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
9108
- static const char __pyx_k_Execute_a_SQL_statement_and_fetc_8[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table that do""es not exist, instead of\n raising an error, an empty `tuple` or `DataFrame` (depends on 'cursor' type)\n will be returned as the execution result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: The fetched result (depends on 'cursor' type).\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
9102
+ static const char __pyx_k_Execute_a_SQL_statement_and_fetc_2[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `<DataFrame>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<DataFrame>`: The fetched result.\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
9103
+ static const char __pyx_k_Execute_a_SQL_statement_and_fetc_3[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `tuple[tuple]` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: The fetched result.\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
9104
+ static const char __pyx_k_Execute_a_SQL_statement_and_fetc_4[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `tuple` or `DataFrame` (depends on 'cursor' type)\n will be returned as the execution result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: The fetched result (depends on 'cursor' type).\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
9105
+ static const char __pyx_k_Execute_a_SQL_statement_and_fetc_5[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `<tuple>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[dict]>`: The fetched result.\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
9106
+ static const char __pyx_k_Execute_a_SQL_statement_and_fetc_6[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `<DataFrame>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<DataFrame>`: The fetched result.\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
9107
+ static const char __pyx_k_Execute_a_SQL_statement_and_fetc_7[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `tuple[tuple]` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: The fetched result.\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
9108
+ static const char __pyx_k_Execute_a_SQL_statement_and_fetc_8[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `tuple` or `DataFrame` (depends on 'cursor' type)\n will be returned as the execution result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: The fetched result (depends on 'cursor' type).\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
9109
9109
  static const char __pyx_k_Execute_a_SQL_statement_param_st_2[] = "Execute a SQL statement.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param reusable: `<bool>` Whether the 'conn' (if provided) is reusable after query execution. Defaults to `True`.\n - If `True`, the connection will return back to the Server pool,\n waiting for the next query.\n - If `False`, after returned to the Server pool, the connection\n will be closed and released. This is useful for certain types\n of statements, such as `CREATE TEMPORARY TABLE` and `LOCK TABLES`,\n where it's desirable to ensure the connection is closed at the end\n to release (potential) resources.\n\n :param cursor: `<type[Cursor/SSCursor]>` The `Cursor` class to use for query execution. Defaults to `Cursor`.\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involve""s a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table that does not exist, instead of\n raising an error, `0` will be returned as the execution result.\n\n :raises: Subclass of `QueryError`.\n :return `<int>`: Number of rows affected by the query.\n\n ### Example:\n >>> await db.execute_query(\n \"UPDATE db.user SET name = %s WHERE id = %s;\",\n args=('john', 1), # muti-rows: arge=[('john', 1), ('jackson', 2)]\n conn=None,\n reusable=True,\n cursor=Cursor,\n resolve_absent_table=False,\n timeout=None,\n warnings=True,\n )\n ";
9110
9110
  static const char __pyx_k_Incompatible_checksums_0x_x_vs_0_2[] = "Incompatible checksums (0x%x vs (0x810996b, 0x1377fc1, 0x48ef66f) = (_charset, _collate, _columns, _db, _db_pfix, _engine, _fname, _fname_pfix, _indexes, _initiated, _initiated_tables, _is_timetable, _name, _name_format, _name_pfix, _regex, _server, _syntax, _syntax_val, _temp_id, _time_format, _time_unit, _type))";
9111
9111
  static const char __pyx_k_Incompatible_checksums_0x_x_vs_0_3[] = "Incompatible checksums (0x%x vs (0x2600b8a, 0x5944b53, 0xfaf6ec5) = (_db, _dict, _instances, _items, _length, _names, _names_set, _regex_fnames, _regex_names))";
@@ -20749,7 +20749,7 @@ static CYTHON_INLINE PyObject *__pyx_f_11mysqlengine_8database_get_tables_names(
20749
20749
  return __pyx_r;
20750
20750
  }
20751
20751
 
20752
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":245
20752
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":245
20753
20753
  *
20754
20754
  * @property
20755
20755
  * cdef inline PyObject* base(self) nogil: # <<<<<<<<<<<<<<
@@ -20760,7 +20760,7 @@ static CYTHON_INLINE PyObject *__pyx_f_11mysqlengine_8database_get_tables_names(
20760
20760
  static CYTHON_INLINE PyObject *__pyx_f_5numpy_7ndarray_4base_base(PyArrayObject *__pyx_v_self) {
20761
20761
  PyObject *__pyx_r;
20762
20762
 
20763
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":248
20763
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":248
20764
20764
  * """Returns a borrowed reference to the object owning the data/memory.
20765
20765
  * """
20766
20766
  * return PyArray_BASE(self) # <<<<<<<<<<<<<<
@@ -20770,7 +20770,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_7ndarray_4base_base(PyArrayObject
20770
20770
  __pyx_r = PyArray_BASE(__pyx_v_self);
20771
20771
  goto __pyx_L0;
20772
20772
 
20773
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":245
20773
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":245
20774
20774
  *
20775
20775
  * @property
20776
20776
  * cdef inline PyObject* base(self) nogil: # <<<<<<<<<<<<<<
@@ -20783,7 +20783,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_7ndarray_4base_base(PyArrayObject
20783
20783
  return __pyx_r;
20784
20784
  }
20785
20785
 
20786
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":251
20786
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":251
20787
20787
  *
20788
20788
  * @property
20789
20789
  * cdef inline dtype descr(self): # <<<<<<<<<<<<<<
@@ -20797,7 +20797,7 @@ static CYTHON_INLINE PyArray_Descr *__pyx_f_5numpy_7ndarray_5descr_descr(PyArray
20797
20797
  PyArray_Descr *__pyx_t_1;
20798
20798
  __Pyx_RefNannySetupContext("descr", 1);
20799
20799
 
20800
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":254
20800
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":254
20801
20801
  * """Returns an owned reference to the dtype of the array.
20802
20802
  * """
20803
20803
  * return <dtype>PyArray_DESCR(self) # <<<<<<<<<<<<<<
@@ -20810,7 +20810,7 @@ static CYTHON_INLINE PyArray_Descr *__pyx_f_5numpy_7ndarray_5descr_descr(PyArray
20810
20810
  __pyx_r = ((PyArray_Descr *)__pyx_t_1);
20811
20811
  goto __pyx_L0;
20812
20812
 
20813
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":251
20813
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":251
20814
20814
  *
20815
20815
  * @property
20816
20816
  * cdef inline dtype descr(self): # <<<<<<<<<<<<<<
@@ -20825,7 +20825,7 @@ static CYTHON_INLINE PyArray_Descr *__pyx_f_5numpy_7ndarray_5descr_descr(PyArray
20825
20825
  return __pyx_r;
20826
20826
  }
20827
20827
 
20828
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":257
20828
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":257
20829
20829
  *
20830
20830
  * @property
20831
20831
  * cdef inline int ndim(self) nogil: # <<<<<<<<<<<<<<
@@ -20836,7 +20836,7 @@ static CYTHON_INLINE PyArray_Descr *__pyx_f_5numpy_7ndarray_5descr_descr(PyArray
20836
20836
  static CYTHON_INLINE int __pyx_f_5numpy_7ndarray_4ndim_ndim(PyArrayObject *__pyx_v_self) {
20837
20837
  int __pyx_r;
20838
20838
 
20839
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":260
20839
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":260
20840
20840
  * """Returns the number of dimensions in the array.
20841
20841
  * """
20842
20842
  * return PyArray_NDIM(self) # <<<<<<<<<<<<<<
@@ -20846,7 +20846,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_7ndarray_4ndim_ndim(PyArrayObject *__pyx
20846
20846
  __pyx_r = PyArray_NDIM(__pyx_v_self);
20847
20847
  goto __pyx_L0;
20848
20848
 
20849
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":257
20849
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":257
20850
20850
  *
20851
20851
  * @property
20852
20852
  * cdef inline int ndim(self) nogil: # <<<<<<<<<<<<<<
@@ -20859,7 +20859,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_7ndarray_4ndim_ndim(PyArrayObject *__pyx
20859
20859
  return __pyx_r;
20860
20860
  }
20861
20861
 
20862
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":263
20862
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":263
20863
20863
  *
20864
20864
  * @property
20865
20865
  * cdef inline npy_intp *shape(self) nogil: # <<<<<<<<<<<<<<
@@ -20870,7 +20870,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_7ndarray_4ndim_ndim(PyArrayObject *__pyx
20870
20870
  static CYTHON_INLINE npy_intp *__pyx_f_5numpy_7ndarray_5shape_shape(PyArrayObject *__pyx_v_self) {
20871
20871
  npy_intp *__pyx_r;
20872
20872
 
20873
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":268
20873
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":268
20874
20874
  * Can return NULL for 0-dimensional arrays.
20875
20875
  * """
20876
20876
  * return PyArray_DIMS(self) # <<<<<<<<<<<<<<
@@ -20880,7 +20880,7 @@ static CYTHON_INLINE npy_intp *__pyx_f_5numpy_7ndarray_5shape_shape(PyArrayObjec
20880
20880
  __pyx_r = PyArray_DIMS(__pyx_v_self);
20881
20881
  goto __pyx_L0;
20882
20882
 
20883
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":263
20883
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":263
20884
20884
  *
20885
20885
  * @property
20886
20886
  * cdef inline npy_intp *shape(self) nogil: # <<<<<<<<<<<<<<
@@ -20893,7 +20893,7 @@ static CYTHON_INLINE npy_intp *__pyx_f_5numpy_7ndarray_5shape_shape(PyArrayObjec
20893
20893
  return __pyx_r;
20894
20894
  }
20895
20895
 
20896
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":271
20896
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":271
20897
20897
  *
20898
20898
  * @property
20899
20899
  * cdef inline npy_intp *strides(self) nogil: # <<<<<<<<<<<<<<
@@ -20904,7 +20904,7 @@ static CYTHON_INLINE npy_intp *__pyx_f_5numpy_7ndarray_5shape_shape(PyArrayObjec
20904
20904
  static CYTHON_INLINE npy_intp *__pyx_f_5numpy_7ndarray_7strides_strides(PyArrayObject *__pyx_v_self) {
20905
20905
  npy_intp *__pyx_r;
20906
20906
 
20907
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":275
20907
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":275
20908
20908
  * The number of elements matches the number of dimensions of the array (ndim).
20909
20909
  * """
20910
20910
  * return PyArray_STRIDES(self) # <<<<<<<<<<<<<<
@@ -20914,7 +20914,7 @@ static CYTHON_INLINE npy_intp *__pyx_f_5numpy_7ndarray_7strides_strides(PyArrayO
20914
20914
  __pyx_r = PyArray_STRIDES(__pyx_v_self);
20915
20915
  goto __pyx_L0;
20916
20916
 
20917
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":271
20917
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":271
20918
20918
  *
20919
20919
  * @property
20920
20920
  * cdef inline npy_intp *strides(self) nogil: # <<<<<<<<<<<<<<
@@ -20927,7 +20927,7 @@ static CYTHON_INLINE npy_intp *__pyx_f_5numpy_7ndarray_7strides_strides(PyArrayO
20927
20927
  return __pyx_r;
20928
20928
  }
20929
20929
 
20930
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":278
20930
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":278
20931
20931
  *
20932
20932
  * @property
20933
20933
  * cdef inline npy_intp size(self) nogil: # <<<<<<<<<<<<<<
@@ -20938,7 +20938,7 @@ static CYTHON_INLINE npy_intp *__pyx_f_5numpy_7ndarray_7strides_strides(PyArrayO
20938
20938
  static CYTHON_INLINE npy_intp __pyx_f_5numpy_7ndarray_4size_size(PyArrayObject *__pyx_v_self) {
20939
20939
  npy_intp __pyx_r;
20940
20940
 
20941
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":281
20941
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":281
20942
20942
  * """Returns the total size (in number of elements) of the array.
20943
20943
  * """
20944
20944
  * return PyArray_SIZE(self) # <<<<<<<<<<<<<<
@@ -20948,7 +20948,7 @@ static CYTHON_INLINE npy_intp __pyx_f_5numpy_7ndarray_4size_size(PyArrayObject *
20948
20948
  __pyx_r = PyArray_SIZE(__pyx_v_self);
20949
20949
  goto __pyx_L0;
20950
20950
 
20951
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":278
20951
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":278
20952
20952
  *
20953
20953
  * @property
20954
20954
  * cdef inline npy_intp size(self) nogil: # <<<<<<<<<<<<<<
@@ -20961,7 +20961,7 @@ static CYTHON_INLINE npy_intp __pyx_f_5numpy_7ndarray_4size_size(PyArrayObject *
20961
20961
  return __pyx_r;
20962
20962
  }
20963
20963
 
20964
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":284
20964
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":284
20965
20965
  *
20966
20966
  * @property
20967
20967
  * cdef inline char* data(self) nogil: # <<<<<<<<<<<<<<
@@ -20972,7 +20972,7 @@ static CYTHON_INLINE npy_intp __pyx_f_5numpy_7ndarray_4size_size(PyArrayObject *
20972
20972
  static CYTHON_INLINE char *__pyx_f_5numpy_7ndarray_4data_data(PyArrayObject *__pyx_v_self) {
20973
20973
  char *__pyx_r;
20974
20974
 
20975
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":290
20975
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":290
20976
20976
  * of `PyArray_DATA()` instead, which returns a 'void*'.
20977
20977
  * """
20978
20978
  * return PyArray_BYTES(self) # <<<<<<<<<<<<<<
@@ -20982,7 +20982,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy_7ndarray_4data_data(PyArrayObject *__p
20982
20982
  __pyx_r = PyArray_BYTES(__pyx_v_self);
20983
20983
  goto __pyx_L0;
20984
20984
 
20985
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":284
20985
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":284
20986
20986
  *
20987
20987
  * @property
20988
20988
  * cdef inline char* data(self) nogil: # <<<<<<<<<<<<<<
@@ -20995,7 +20995,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy_7ndarray_4data_data(PyArrayObject *__p
20995
20995
  return __pyx_r;
20996
20996
  }
20997
20997
 
20998
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":773
20998
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":773
20999
20999
  * ctypedef npy_cdouble complex_t
21000
21000
  *
21001
21001
  * cdef inline object PyArray_MultiIterNew1(a): # <<<<<<<<<<<<<<
@@ -21012,7 +21012,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew1(PyObject *__
21012
21012
  int __pyx_clineno = 0;
21013
21013
  __Pyx_RefNannySetupContext("PyArray_MultiIterNew1", 1);
21014
21014
 
21015
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":774
21015
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":774
21016
21016
  *
21017
21017
  * cdef inline object PyArray_MultiIterNew1(a):
21018
21018
  * return PyArray_MultiIterNew(1, <void*>a) # <<<<<<<<<<<<<<
@@ -21026,7 +21026,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew1(PyObject *__
21026
21026
  __pyx_t_1 = 0;
21027
21027
  goto __pyx_L0;
21028
21028
 
21029
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":773
21029
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":773
21030
21030
  * ctypedef npy_cdouble complex_t
21031
21031
  *
21032
21032
  * cdef inline object PyArray_MultiIterNew1(a): # <<<<<<<<<<<<<<
@@ -21045,7 +21045,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew1(PyObject *__
21045
21045
  return __pyx_r;
21046
21046
  }
21047
21047
 
21048
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":776
21048
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":776
21049
21049
  * return PyArray_MultiIterNew(1, <void*>a)
21050
21050
  *
21051
21051
  * cdef inline object PyArray_MultiIterNew2(a, b): # <<<<<<<<<<<<<<
@@ -21062,7 +21062,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew2(PyObject *__
21062
21062
  int __pyx_clineno = 0;
21063
21063
  __Pyx_RefNannySetupContext("PyArray_MultiIterNew2", 1);
21064
21064
 
21065
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":777
21065
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":777
21066
21066
  *
21067
21067
  * cdef inline object PyArray_MultiIterNew2(a, b):
21068
21068
  * return PyArray_MultiIterNew(2, <void*>a, <void*>b) # <<<<<<<<<<<<<<
@@ -21076,7 +21076,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew2(PyObject *__
21076
21076
  __pyx_t_1 = 0;
21077
21077
  goto __pyx_L0;
21078
21078
 
21079
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":776
21079
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":776
21080
21080
  * return PyArray_MultiIterNew(1, <void*>a)
21081
21081
  *
21082
21082
  * cdef inline object PyArray_MultiIterNew2(a, b): # <<<<<<<<<<<<<<
@@ -21095,7 +21095,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew2(PyObject *__
21095
21095
  return __pyx_r;
21096
21096
  }
21097
21097
 
21098
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":779
21098
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":779
21099
21099
  * return PyArray_MultiIterNew(2, <void*>a, <void*>b)
21100
21100
  *
21101
21101
  * cdef inline object PyArray_MultiIterNew3(a, b, c): # <<<<<<<<<<<<<<
@@ -21112,7 +21112,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew3(PyObject *__
21112
21112
  int __pyx_clineno = 0;
21113
21113
  __Pyx_RefNannySetupContext("PyArray_MultiIterNew3", 1);
21114
21114
 
21115
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":780
21115
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":780
21116
21116
  *
21117
21117
  * cdef inline object PyArray_MultiIterNew3(a, b, c):
21118
21118
  * return PyArray_MultiIterNew(3, <void*>a, <void*>b, <void*> c) # <<<<<<<<<<<<<<
@@ -21126,7 +21126,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew3(PyObject *__
21126
21126
  __pyx_t_1 = 0;
21127
21127
  goto __pyx_L0;
21128
21128
 
21129
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":779
21129
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":779
21130
21130
  * return PyArray_MultiIterNew(2, <void*>a, <void*>b)
21131
21131
  *
21132
21132
  * cdef inline object PyArray_MultiIterNew3(a, b, c): # <<<<<<<<<<<<<<
@@ -21145,7 +21145,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew3(PyObject *__
21145
21145
  return __pyx_r;
21146
21146
  }
21147
21147
 
21148
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":782
21148
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":782
21149
21149
  * return PyArray_MultiIterNew(3, <void*>a, <void*>b, <void*> c)
21150
21150
  *
21151
21151
  * cdef inline object PyArray_MultiIterNew4(a, b, c, d): # <<<<<<<<<<<<<<
@@ -21162,7 +21162,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew4(PyObject *__
21162
21162
  int __pyx_clineno = 0;
21163
21163
  __Pyx_RefNannySetupContext("PyArray_MultiIterNew4", 1);
21164
21164
 
21165
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":783
21165
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":783
21166
21166
  *
21167
21167
  * cdef inline object PyArray_MultiIterNew4(a, b, c, d):
21168
21168
  * return PyArray_MultiIterNew(4, <void*>a, <void*>b, <void*>c, <void*> d) # <<<<<<<<<<<<<<
@@ -21176,7 +21176,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew4(PyObject *__
21176
21176
  __pyx_t_1 = 0;
21177
21177
  goto __pyx_L0;
21178
21178
 
21179
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":782
21179
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":782
21180
21180
  * return PyArray_MultiIterNew(3, <void*>a, <void*>b, <void*> c)
21181
21181
  *
21182
21182
  * cdef inline object PyArray_MultiIterNew4(a, b, c, d): # <<<<<<<<<<<<<<
@@ -21195,7 +21195,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew4(PyObject *__
21195
21195
  return __pyx_r;
21196
21196
  }
21197
21197
 
21198
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":785
21198
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":785
21199
21199
  * return PyArray_MultiIterNew(4, <void*>a, <void*>b, <void*>c, <void*> d)
21200
21200
  *
21201
21201
  * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): # <<<<<<<<<<<<<<
@@ -21212,7 +21212,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew5(PyObject *__
21212
21212
  int __pyx_clineno = 0;
21213
21213
  __Pyx_RefNannySetupContext("PyArray_MultiIterNew5", 1);
21214
21214
 
21215
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":786
21215
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":786
21216
21216
  *
21217
21217
  * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e):
21218
21218
  * return PyArray_MultiIterNew(5, <void*>a, <void*>b, <void*>c, <void*> d, <void*> e) # <<<<<<<<<<<<<<
@@ -21226,7 +21226,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew5(PyObject *__
21226
21226
  __pyx_t_1 = 0;
21227
21227
  goto __pyx_L0;
21228
21228
 
21229
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":785
21229
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":785
21230
21230
  * return PyArray_MultiIterNew(4, <void*>a, <void*>b, <void*>c, <void*> d)
21231
21231
  *
21232
21232
  * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): # <<<<<<<<<<<<<<
@@ -21245,7 +21245,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew5(PyObject *__
21245
21245
  return __pyx_r;
21246
21246
  }
21247
21247
 
21248
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":788
21248
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":788
21249
21249
  * return PyArray_MultiIterNew(5, <void*>a, <void*>b, <void*>c, <void*> d, <void*> e)
21250
21250
  *
21251
21251
  * cdef inline tuple PyDataType_SHAPE(dtype d): # <<<<<<<<<<<<<<
@@ -21259,7 +21259,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyDataType_SHAPE(PyArray_Descr *__
21259
21259
  int __pyx_t_1;
21260
21260
  __Pyx_RefNannySetupContext("PyDataType_SHAPE", 1);
21261
21261
 
21262
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":789
21262
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":789
21263
21263
  *
21264
21264
  * cdef inline tuple PyDataType_SHAPE(dtype d):
21265
21265
  * if PyDataType_HASSUBARRAY(d): # <<<<<<<<<<<<<<
@@ -21269,7 +21269,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyDataType_SHAPE(PyArray_Descr *__
21269
21269
  __pyx_t_1 = PyDataType_HASSUBARRAY(__pyx_v_d);
21270
21270
  if (__pyx_t_1) {
21271
21271
 
21272
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":790
21272
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":790
21273
21273
  * cdef inline tuple PyDataType_SHAPE(dtype d):
21274
21274
  * if PyDataType_HASSUBARRAY(d):
21275
21275
  * return <tuple>d.subarray.shape # <<<<<<<<<<<<<<
@@ -21281,7 +21281,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyDataType_SHAPE(PyArray_Descr *__
21281
21281
  __pyx_r = ((PyObject*)__pyx_v_d->subarray->shape);
21282
21282
  goto __pyx_L0;
21283
21283
 
21284
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":789
21284
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":789
21285
21285
  *
21286
21286
  * cdef inline tuple PyDataType_SHAPE(dtype d):
21287
21287
  * if PyDataType_HASSUBARRAY(d): # <<<<<<<<<<<<<<
@@ -21290,7 +21290,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyDataType_SHAPE(PyArray_Descr *__
21290
21290
  */
21291
21291
  }
21292
21292
 
21293
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":792
21293
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":792
21294
21294
  * return <tuple>d.subarray.shape
21295
21295
  * else:
21296
21296
  * return () # <<<<<<<<<<<<<<
@@ -21304,7 +21304,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyDataType_SHAPE(PyArray_Descr *__
21304
21304
  goto __pyx_L0;
21305
21305
  }
21306
21306
 
21307
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":788
21307
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":788
21308
21308
  * return PyArray_MultiIterNew(5, <void*>a, <void*>b, <void*>c, <void*> d, <void*> e)
21309
21309
  *
21310
21310
  * cdef inline tuple PyDataType_SHAPE(dtype d): # <<<<<<<<<<<<<<
@@ -21319,7 +21319,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyDataType_SHAPE(PyArray_Descr *__
21319
21319
  return __pyx_r;
21320
21320
  }
21321
21321
 
21322
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":967
21322
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":967
21323
21323
  * int _import_umath() except -1
21324
21324
  *
21325
21325
  * cdef inline void set_array_base(ndarray arr, object base): # <<<<<<<<<<<<<<
@@ -21333,7 +21333,7 @@ static CYTHON_INLINE void __pyx_f_5numpy_set_array_base(PyArrayObject *__pyx_v_a
21333
21333
  const char *__pyx_filename = NULL;
21334
21334
  int __pyx_clineno = 0;
21335
21335
 
21336
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":968
21336
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":968
21337
21337
  *
21338
21338
  * cdef inline void set_array_base(ndarray arr, object base):
21339
21339
  * Py_INCREF(base) # important to do this before stealing the reference below! # <<<<<<<<<<<<<<
@@ -21342,7 +21342,7 @@ static CYTHON_INLINE void __pyx_f_5numpy_set_array_base(PyArrayObject *__pyx_v_a
21342
21342
  */
21343
21343
  Py_INCREF(__pyx_v_base);
21344
21344
 
21345
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":969
21345
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":969
21346
21346
  * cdef inline void set_array_base(ndarray arr, object base):
21347
21347
  * Py_INCREF(base) # important to do this before stealing the reference below!
21348
21348
  * PyArray_SetBaseObject(arr, base) # <<<<<<<<<<<<<<
@@ -21351,7 +21351,7 @@ static CYTHON_INLINE void __pyx_f_5numpy_set_array_base(PyArrayObject *__pyx_v_a
21351
21351
  */
21352
21352
  __pyx_t_1 = PyArray_SetBaseObject(__pyx_v_arr, __pyx_v_base); if (unlikely(__pyx_t_1 == ((int)-1))) __PYX_ERR(7, 969, __pyx_L1_error)
21353
21353
 
21354
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":967
21354
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":967
21355
21355
  * int _import_umath() except -1
21356
21356
  *
21357
21357
  * cdef inline void set_array_base(ndarray arr, object base): # <<<<<<<<<<<<<<
@@ -21366,7 +21366,7 @@ static CYTHON_INLINE void __pyx_f_5numpy_set_array_base(PyArrayObject *__pyx_v_a
21366
21366
  __pyx_L0:;
21367
21367
  }
21368
21368
 
21369
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":971
21369
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":971
21370
21370
  * PyArray_SetBaseObject(arr, base)
21371
21371
  *
21372
21372
  * cdef inline object get_array_base(ndarray arr): # <<<<<<<<<<<<<<
@@ -21381,7 +21381,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__py
21381
21381
  int __pyx_t_1;
21382
21382
  __Pyx_RefNannySetupContext("get_array_base", 1);
21383
21383
 
21384
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":972
21384
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":972
21385
21385
  *
21386
21386
  * cdef inline object get_array_base(ndarray arr):
21387
21387
  * base = PyArray_BASE(arr) # <<<<<<<<<<<<<<
@@ -21390,7 +21390,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__py
21390
21390
  */
21391
21391
  __pyx_v_base = PyArray_BASE(__pyx_v_arr);
21392
21392
 
21393
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":973
21393
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":973
21394
21394
  * cdef inline object get_array_base(ndarray arr):
21395
21395
  * base = PyArray_BASE(arr)
21396
21396
  * if base is NULL: # <<<<<<<<<<<<<<
@@ -21400,7 +21400,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__py
21400
21400
  __pyx_t_1 = (__pyx_v_base == NULL);
21401
21401
  if (__pyx_t_1) {
21402
21402
 
21403
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":974
21403
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":974
21404
21404
  * base = PyArray_BASE(arr)
21405
21405
  * if base is NULL:
21406
21406
  * return None # <<<<<<<<<<<<<<
@@ -21411,7 +21411,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__py
21411
21411
  __pyx_r = Py_None; __Pyx_INCREF(Py_None);
21412
21412
  goto __pyx_L0;
21413
21413
 
21414
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":973
21414
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":973
21415
21415
  * cdef inline object get_array_base(ndarray arr):
21416
21416
  * base = PyArray_BASE(arr)
21417
21417
  * if base is NULL: # <<<<<<<<<<<<<<
@@ -21420,7 +21420,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__py
21420
21420
  */
21421
21421
  }
21422
21422
 
21423
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":975
21423
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":975
21424
21424
  * if base is NULL:
21425
21425
  * return None
21426
21426
  * return <object>base # <<<<<<<<<<<<<<
@@ -21432,7 +21432,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__py
21432
21432
  __pyx_r = ((PyObject *)__pyx_v_base);
21433
21433
  goto __pyx_L0;
21434
21434
 
21435
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":971
21435
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":971
21436
21436
  * PyArray_SetBaseObject(arr, base)
21437
21437
  *
21438
21438
  * cdef inline object get_array_base(ndarray arr): # <<<<<<<<<<<<<<
@@ -21447,7 +21447,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__py
21447
21447
  return __pyx_r;
21448
21448
  }
21449
21449
 
21450
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":979
21450
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":979
21451
21451
  * # Versions of the import_* functions which are more suitable for
21452
21452
  * # Cython code.
21453
21453
  * cdef inline int import_array() except -1: # <<<<<<<<<<<<<<
@@ -21471,7 +21471,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) {
21471
21471
  int __pyx_clineno = 0;
21472
21472
  __Pyx_RefNannySetupContext("import_array", 1);
21473
21473
 
21474
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":980
21474
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":980
21475
21475
  * # Cython code.
21476
21476
  * cdef inline int import_array() except -1:
21477
21477
  * try: # <<<<<<<<<<<<<<
@@ -21487,7 +21487,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) {
21487
21487
  __Pyx_XGOTREF(__pyx_t_3);
21488
21488
  /*try:*/ {
21489
21489
 
21490
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":981
21490
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":981
21491
21491
  * cdef inline int import_array() except -1:
21492
21492
  * try:
21493
21493
  * __pyx_import_array() # <<<<<<<<<<<<<<
@@ -21496,7 +21496,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) {
21496
21496
  */
21497
21497
  __pyx_t_4 = _import_array(); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(7, 981, __pyx_L3_error)
21498
21498
 
21499
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":980
21499
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":980
21500
21500
  * # Cython code.
21501
21501
  * cdef inline int import_array() except -1:
21502
21502
  * try: # <<<<<<<<<<<<<<
@@ -21510,7 +21510,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) {
21510
21510
  goto __pyx_L8_try_end;
21511
21511
  __pyx_L3_error:;
21512
21512
 
21513
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":982
21513
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":982
21514
21514
  * try:
21515
21515
  * __pyx_import_array()
21516
21516
  * except Exception: # <<<<<<<<<<<<<<
@@ -21525,7 +21525,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) {
21525
21525
  __Pyx_XGOTREF(__pyx_t_6);
21526
21526
  __Pyx_XGOTREF(__pyx_t_7);
21527
21527
 
21528
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":983
21528
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":983
21529
21529
  * __pyx_import_array()
21530
21530
  * except Exception:
21531
21531
  * raise ImportError("numpy.core.multiarray failed to import") # <<<<<<<<<<<<<<
@@ -21540,7 +21540,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) {
21540
21540
  }
21541
21541
  goto __pyx_L5_except_error;
21542
21542
 
21543
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":980
21543
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":980
21544
21544
  * # Cython code.
21545
21545
  * cdef inline int import_array() except -1:
21546
21546
  * try: # <<<<<<<<<<<<<<
@@ -21556,7 +21556,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) {
21556
21556
  __pyx_L8_try_end:;
21557
21557
  }
21558
21558
 
21559
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":979
21559
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":979
21560
21560
  * # Versions of the import_* functions which are more suitable for
21561
21561
  * # Cython code.
21562
21562
  * cdef inline int import_array() except -1: # <<<<<<<<<<<<<<
@@ -21579,7 +21579,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) {
21579
21579
  return __pyx_r;
21580
21580
  }
21581
21581
 
21582
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":985
21582
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":985
21583
21583
  * raise ImportError("numpy.core.multiarray failed to import")
21584
21584
  *
21585
21585
  * cdef inline int import_umath() except -1: # <<<<<<<<<<<<<<
@@ -21603,7 +21603,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) {
21603
21603
  int __pyx_clineno = 0;
21604
21604
  __Pyx_RefNannySetupContext("import_umath", 1);
21605
21605
 
21606
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":986
21606
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":986
21607
21607
  *
21608
21608
  * cdef inline int import_umath() except -1:
21609
21609
  * try: # <<<<<<<<<<<<<<
@@ -21619,7 +21619,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) {
21619
21619
  __Pyx_XGOTREF(__pyx_t_3);
21620
21620
  /*try:*/ {
21621
21621
 
21622
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":987
21622
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":987
21623
21623
  * cdef inline int import_umath() except -1:
21624
21624
  * try:
21625
21625
  * _import_umath() # <<<<<<<<<<<<<<
@@ -21628,7 +21628,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) {
21628
21628
  */
21629
21629
  __pyx_t_4 = _import_umath(); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(7, 987, __pyx_L3_error)
21630
21630
 
21631
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":986
21631
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":986
21632
21632
  *
21633
21633
  * cdef inline int import_umath() except -1:
21634
21634
  * try: # <<<<<<<<<<<<<<
@@ -21642,7 +21642,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) {
21642
21642
  goto __pyx_L8_try_end;
21643
21643
  __pyx_L3_error:;
21644
21644
 
21645
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":988
21645
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":988
21646
21646
  * try:
21647
21647
  * _import_umath()
21648
21648
  * except Exception: # <<<<<<<<<<<<<<
@@ -21657,7 +21657,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) {
21657
21657
  __Pyx_XGOTREF(__pyx_t_6);
21658
21658
  __Pyx_XGOTREF(__pyx_t_7);
21659
21659
 
21660
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":989
21660
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":989
21661
21661
  * _import_umath()
21662
21662
  * except Exception:
21663
21663
  * raise ImportError("numpy.core.umath failed to import") # <<<<<<<<<<<<<<
@@ -21672,7 +21672,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) {
21672
21672
  }
21673
21673
  goto __pyx_L5_except_error;
21674
21674
 
21675
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":986
21675
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":986
21676
21676
  *
21677
21677
  * cdef inline int import_umath() except -1:
21678
21678
  * try: # <<<<<<<<<<<<<<
@@ -21688,7 +21688,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) {
21688
21688
  __pyx_L8_try_end:;
21689
21689
  }
21690
21690
 
21691
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":985
21691
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":985
21692
21692
  * raise ImportError("numpy.core.multiarray failed to import")
21693
21693
  *
21694
21694
  * cdef inline int import_umath() except -1: # <<<<<<<<<<<<<<
@@ -21711,7 +21711,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) {
21711
21711
  return __pyx_r;
21712
21712
  }
21713
21713
 
21714
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":991
21714
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":991
21715
21715
  * raise ImportError("numpy.core.umath failed to import")
21716
21716
  *
21717
21717
  * cdef inline int import_ufunc() except -1: # <<<<<<<<<<<<<<
@@ -21735,7 +21735,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) {
21735
21735
  int __pyx_clineno = 0;
21736
21736
  __Pyx_RefNannySetupContext("import_ufunc", 1);
21737
21737
 
21738
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":992
21738
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":992
21739
21739
  *
21740
21740
  * cdef inline int import_ufunc() except -1:
21741
21741
  * try: # <<<<<<<<<<<<<<
@@ -21751,7 +21751,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) {
21751
21751
  __Pyx_XGOTREF(__pyx_t_3);
21752
21752
  /*try:*/ {
21753
21753
 
21754
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":993
21754
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":993
21755
21755
  * cdef inline int import_ufunc() except -1:
21756
21756
  * try:
21757
21757
  * _import_umath() # <<<<<<<<<<<<<<
@@ -21760,7 +21760,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) {
21760
21760
  */
21761
21761
  __pyx_t_4 = _import_umath(); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(7, 993, __pyx_L3_error)
21762
21762
 
21763
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":992
21763
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":992
21764
21764
  *
21765
21765
  * cdef inline int import_ufunc() except -1:
21766
21766
  * try: # <<<<<<<<<<<<<<
@@ -21774,7 +21774,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) {
21774
21774
  goto __pyx_L8_try_end;
21775
21775
  __pyx_L3_error:;
21776
21776
 
21777
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":994
21777
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":994
21778
21778
  * try:
21779
21779
  * _import_umath()
21780
21780
  * except Exception: # <<<<<<<<<<<<<<
@@ -21789,7 +21789,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) {
21789
21789
  __Pyx_XGOTREF(__pyx_t_6);
21790
21790
  __Pyx_XGOTREF(__pyx_t_7);
21791
21791
 
21792
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":995
21792
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":995
21793
21793
  * _import_umath()
21794
21794
  * except Exception:
21795
21795
  * raise ImportError("numpy.core.umath failed to import") # <<<<<<<<<<<<<<
@@ -21804,7 +21804,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) {
21804
21804
  }
21805
21805
  goto __pyx_L5_except_error;
21806
21806
 
21807
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":992
21807
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":992
21808
21808
  *
21809
21809
  * cdef inline int import_ufunc() except -1:
21810
21810
  * try: # <<<<<<<<<<<<<<
@@ -21820,7 +21820,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) {
21820
21820
  __pyx_L8_try_end:;
21821
21821
  }
21822
21822
 
21823
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":991
21823
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":991
21824
21824
  * raise ImportError("numpy.core.umath failed to import")
21825
21825
  *
21826
21826
  * cdef inline int import_ufunc() except -1: # <<<<<<<<<<<<<<
@@ -21843,7 +21843,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) {
21843
21843
  return __pyx_r;
21844
21844
  }
21845
21845
 
21846
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":998
21846
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":998
21847
21847
  *
21848
21848
  *
21849
21849
  * cdef inline bint is_timedelta64_object(object obj): # <<<<<<<<<<<<<<
@@ -21854,7 +21854,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) {
21854
21854
  static CYTHON_INLINE int __pyx_f_5numpy_is_timedelta64_object(PyObject *__pyx_v_obj) {
21855
21855
  int __pyx_r;
21856
21856
 
21857
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":1010
21857
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":1010
21858
21858
  * bool
21859
21859
  * """
21860
21860
  * return PyObject_TypeCheck(obj, &PyTimedeltaArrType_Type) # <<<<<<<<<<<<<<
@@ -21864,7 +21864,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_is_timedelta64_object(PyObject *__pyx_v_
21864
21864
  __pyx_r = PyObject_TypeCheck(__pyx_v_obj, (&PyTimedeltaArrType_Type));
21865
21865
  goto __pyx_L0;
21866
21866
 
21867
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":998
21867
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":998
21868
21868
  *
21869
21869
  *
21870
21870
  * cdef inline bint is_timedelta64_object(object obj): # <<<<<<<<<<<<<<
@@ -21877,7 +21877,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_is_timedelta64_object(PyObject *__pyx_v_
21877
21877
  return __pyx_r;
21878
21878
  }
21879
21879
 
21880
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":1013
21880
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":1013
21881
21881
  *
21882
21882
  *
21883
21883
  * cdef inline bint is_datetime64_object(object obj): # <<<<<<<<<<<<<<
@@ -21888,7 +21888,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_is_timedelta64_object(PyObject *__pyx_v_
21888
21888
  static CYTHON_INLINE int __pyx_f_5numpy_is_datetime64_object(PyObject *__pyx_v_obj) {
21889
21889
  int __pyx_r;
21890
21890
 
21891
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":1025
21891
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":1025
21892
21892
  * bool
21893
21893
  * """
21894
21894
  * return PyObject_TypeCheck(obj, &PyDatetimeArrType_Type) # <<<<<<<<<<<<<<
@@ -21898,7 +21898,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_is_datetime64_object(PyObject *__pyx_v_o
21898
21898
  __pyx_r = PyObject_TypeCheck(__pyx_v_obj, (&PyDatetimeArrType_Type));
21899
21899
  goto __pyx_L0;
21900
21900
 
21901
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":1013
21901
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":1013
21902
21902
  *
21903
21903
  *
21904
21904
  * cdef inline bint is_datetime64_object(object obj): # <<<<<<<<<<<<<<
@@ -21911,7 +21911,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_is_datetime64_object(PyObject *__pyx_v_o
21911
21911
  return __pyx_r;
21912
21912
  }
21913
21913
 
21914
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":1028
21914
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":1028
21915
21915
  *
21916
21916
  *
21917
21917
  * cdef inline npy_datetime get_datetime64_value(object obj) nogil: # <<<<<<<<<<<<<<
@@ -21922,7 +21922,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_is_datetime64_object(PyObject *__pyx_v_o
21922
21922
  static CYTHON_INLINE npy_datetime __pyx_f_5numpy_get_datetime64_value(PyObject *__pyx_v_obj) {
21923
21923
  npy_datetime __pyx_r;
21924
21924
 
21925
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":1035
21925
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":1035
21926
21926
  * also needed. That can be found using `get_datetime64_unit`.
21927
21927
  * """
21928
21928
  * return (<PyDatetimeScalarObject*>obj).obval # <<<<<<<<<<<<<<
@@ -21932,7 +21932,7 @@ static CYTHON_INLINE npy_datetime __pyx_f_5numpy_get_datetime64_value(PyObject *
21932
21932
  __pyx_r = ((PyDatetimeScalarObject *)__pyx_v_obj)->obval;
21933
21933
  goto __pyx_L0;
21934
21934
 
21935
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":1028
21935
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":1028
21936
21936
  *
21937
21937
  *
21938
21938
  * cdef inline npy_datetime get_datetime64_value(object obj) nogil: # <<<<<<<<<<<<<<
@@ -21945,7 +21945,7 @@ static CYTHON_INLINE npy_datetime __pyx_f_5numpy_get_datetime64_value(PyObject *
21945
21945
  return __pyx_r;
21946
21946
  }
21947
21947
 
21948
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":1038
21948
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":1038
21949
21949
  *
21950
21950
  *
21951
21951
  * cdef inline npy_timedelta get_timedelta64_value(object obj) nogil: # <<<<<<<<<<<<<<
@@ -21956,7 +21956,7 @@ static CYTHON_INLINE npy_datetime __pyx_f_5numpy_get_datetime64_value(PyObject *
21956
21956
  static CYTHON_INLINE npy_timedelta __pyx_f_5numpy_get_timedelta64_value(PyObject *__pyx_v_obj) {
21957
21957
  npy_timedelta __pyx_r;
21958
21958
 
21959
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":1042
21959
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":1042
21960
21960
  * returns the int64 value underlying scalar numpy timedelta64 object
21961
21961
  * """
21962
21962
  * return (<PyTimedeltaScalarObject*>obj).obval # <<<<<<<<<<<<<<
@@ -21966,7 +21966,7 @@ static CYTHON_INLINE npy_timedelta __pyx_f_5numpy_get_timedelta64_value(PyObject
21966
21966
  __pyx_r = ((PyTimedeltaScalarObject *)__pyx_v_obj)->obval;
21967
21967
  goto __pyx_L0;
21968
21968
 
21969
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":1038
21969
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":1038
21970
21970
  *
21971
21971
  *
21972
21972
  * cdef inline npy_timedelta get_timedelta64_value(object obj) nogil: # <<<<<<<<<<<<<<
@@ -21979,7 +21979,7 @@ static CYTHON_INLINE npy_timedelta __pyx_f_5numpy_get_timedelta64_value(PyObject
21979
21979
  return __pyx_r;
21980
21980
  }
21981
21981
 
21982
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":1045
21982
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":1045
21983
21983
  *
21984
21984
  *
21985
21985
  * cdef inline NPY_DATETIMEUNIT get_datetime64_unit(object obj) nogil: # <<<<<<<<<<<<<<
@@ -21990,7 +21990,7 @@ static CYTHON_INLINE npy_timedelta __pyx_f_5numpy_get_timedelta64_value(PyObject
21990
21990
  static CYTHON_INLINE NPY_DATETIMEUNIT __pyx_f_5numpy_get_datetime64_unit(PyObject *__pyx_v_obj) {
21991
21991
  NPY_DATETIMEUNIT __pyx_r;
21992
21992
 
21993
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":1049
21993
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":1049
21994
21994
  * returns the unit part of the dtype for a numpy datetime64 object.
21995
21995
  * """
21996
21996
  * return <NPY_DATETIMEUNIT>(<PyDatetimeScalarObject*>obj).obmeta.base # <<<<<<<<<<<<<<
@@ -21998,7 +21998,7 @@ static CYTHON_INLINE NPY_DATETIMEUNIT __pyx_f_5numpy_get_datetime64_unit(PyObjec
21998
21998
  __pyx_r = ((NPY_DATETIMEUNIT)((PyDatetimeScalarObject *)__pyx_v_obj)->obmeta.base);
21999
21999
  goto __pyx_L0;
22000
22000
 
22001
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":1045
22001
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":1045
22002
22002
  *
22003
22003
  *
22004
22004
  * cdef inline NPY_DATETIMEUNIT get_datetime64_unit(object obj) nogil: # <<<<<<<<<<<<<<
@@ -29748,7 +29748,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
29748
29748
  PyObject *__pyx_args, PyObject *__pyx_kwds
29749
29749
  #endif
29750
29750
  ); /*proto*/
29751
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_37fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table that do""es not exist, instead of\n raising an error, an empty `<tuple>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[dict[str, Any]]>`: The fetched result.\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
29751
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_37fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `<tuple>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[dict[str, Any]]>`: The fetched result.\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
29752
29752
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_38fetch_query = {"fetch_query", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_38fetch_query, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_37fetch_query};
29753
29753
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_38fetch_query(PyObject *__pyx_v_self,
29754
29754
  #if CYTHON_METH_FASTCALL
@@ -30081,7 +30081,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
30081
30081
  PyObject *__pyx_args, PyObject *__pyx_kwds
30082
30082
  #endif
30083
30083
  ); /*proto*/
30084
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_40fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table that do""es not exist, instead of\n raising an error, an empty `<DataFrame>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<DataFrame>`: The fetched result.\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
30084
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_40fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `<DataFrame>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<DataFrame>`: The fetched result.\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
30085
30085
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_41fetch_query = {"fetch_query", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_41fetch_query, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_40fetch_query};
30086
30086
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_41fetch_query(PyObject *__pyx_v_self,
30087
30087
  #if CYTHON_METH_FASTCALL
@@ -30414,7 +30414,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
30414
30414
  PyObject *__pyx_args, PyObject *__pyx_kwds
30415
30415
  #endif
30416
30416
  ); /*proto*/
30417
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_43fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table that do""es not exist, instead of\n raising an error, an empty `tuple[tuple]` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: The fetched result.\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
30417
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_43fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `tuple[tuple]` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: The fetched result.\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
30418
30418
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_44fetch_query = {"fetch_query", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_44fetch_query, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_43fetch_query};
30419
30419
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_44fetch_query(PyObject *__pyx_v_self,
30420
30420
  #if CYTHON_METH_FASTCALL
@@ -30747,7 +30747,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
30747
30747
  PyObject *__pyx_args, PyObject *__pyx_kwds
30748
30748
  #endif
30749
30749
  ); /*proto*/
30750
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_46fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table that do""es not exist, instead of\n raising an error, an empty `tuple` or `DataFrame` (depends on 'cursor' type)\n will be returned as the execution result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: The fetched result (depends on 'cursor' type).\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
30750
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_46fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `tuple` or `DataFrame` (depends on 'cursor' type)\n will be returned as the execution result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: The fetched result (depends on 'cursor' type).\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
30751
30751
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_47fetch_query = {"fetch_query", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_47fetch_query, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_46fetch_query};
30752
30752
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_47fetch_query(PyObject *__pyx_v_self,
30753
30753
  #if CYTHON_METH_FASTCALL
@@ -40439,7 +40439,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_5Table_105generator25(__pyx_Co
40439
40439
 
40440
40440
  /* Python wrapper */
40441
40441
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_104information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
40442
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_103information, "Select table information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[dict]>`: Table information..\n ");
40442
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_103information, "Select table information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[dict]>`: Table information..\n ");
40443
40443
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_104information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_104information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_103information};
40444
40444
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_104information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
40445
40445
  CYTHON_UNUSED PyObject *__pyx_v_cursor = 0;
@@ -40606,7 +40606,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_5Table_108generator26(__pyx_Co
40606
40606
 
40607
40607
  /* Python wrapper */
40608
40608
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_107information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
40609
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_106information, "Select table information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<DataFrame>`: Table information.\n ");
40609
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_106information, "Select table information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<DataFrame>`: Table information.\n ");
40610
40610
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_107information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_107information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_106information};
40611
40611
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_107information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
40612
40612
  CYTHON_UNUSED PyObject *__pyx_v_cursor = 0;
@@ -40773,7 +40773,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_5Table_111generator27(__pyx_Co
40773
40773
 
40774
40774
  /* Python wrapper */
40775
40775
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_110information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
40776
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_109information, "Select table information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: Table information.\n ");
40776
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_109information, "Select table information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: Table information.\n ");
40777
40777
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_110information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_110information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_109information};
40778
40778
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_110information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
40779
40779
  CYTHON_UNUSED PyObject *__pyx_v_cursor = 0;
@@ -40940,7 +40940,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_5Table_114generator28(__pyx_Co
40940
40940
 
40941
40941
  /* Python wrapper */
40942
40942
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_113information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
40943
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_112information, "Select table information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Table information (depends on 'cursor' type).\n ");
40943
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_112information, "Select table information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Table information (depends on 'cursor' type).\n ");
40944
40944
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_113information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_113information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_112information};
40945
40945
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_113information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
40946
40946
  PyObject *__pyx_v_cursor = 0;
@@ -42331,7 +42331,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
42331
42331
  PyObject *__pyx_args, PyObject *__pyx_kwds
42332
42332
  #endif
42333
42333
  ); /*proto*/
42334
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_115describe, "`DESCRIBE` the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[dict]>`: Table description.\n ");
42334
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_115describe, "`DESCRIBE` the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[dict]>`: Table description.\n ");
42335
42335
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_116describe = {"describe", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_116describe, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_115describe};
42336
42336
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_116describe(PyObject *__pyx_v_self,
42337
42337
  #if CYTHON_METH_FASTCALL
@@ -42515,7 +42515,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
42515
42515
  PyObject *__pyx_args, PyObject *__pyx_kwds
42516
42516
  #endif
42517
42517
  ); /*proto*/
42518
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_118describe, "`DESCRIBE` the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<DataFrame>`: Table description.\n ");
42518
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_118describe, "`DESCRIBE` the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<DataFrame>`: Table description.\n ");
42519
42519
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_119describe = {"describe", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_119describe, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_118describe};
42520
42520
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_119describe(PyObject *__pyx_v_self,
42521
42521
  #if CYTHON_METH_FASTCALL
@@ -42699,7 +42699,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
42699
42699
  PyObject *__pyx_args, PyObject *__pyx_kwds
42700
42700
  #endif
42701
42701
  ); /*proto*/
42702
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_121describe, "`DESCRIBE` the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: Table description.\n ");
42702
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_121describe, "`DESCRIBE` the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: Table description.\n ");
42703
42703
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_122describe = {"describe", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_122describe, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_121describe};
42704
42704
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_122describe(PyObject *__pyx_v_self,
42705
42705
  #if CYTHON_METH_FASTCALL
@@ -42883,7 +42883,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
42883
42883
  PyObject *__pyx_args, PyObject *__pyx_kwds
42884
42884
  #endif
42885
42885
  ); /*proto*/
42886
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_124describe, "`DESCRIBE` the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Table description (depends on 'cursor' type).\n ");
42886
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_124describe, "`DESCRIBE` the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Table description (depends on 'cursor' type).\n ");
42887
42887
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_125describe = {"describe", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_125describe, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_124describe};
42888
42888
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_125describe(PyObject *__pyx_v_self,
42889
42889
  #if CYTHON_METH_FASTCALL
@@ -43135,7 +43135,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
43135
43135
  PyObject *__pyx_args, PyObject *__pyx_kwds
43136
43136
  #endif
43137
43137
  ); /*proto*/
43138
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_127_describe, "(Base method, internal use only). `DESCRIBE` the table.\n\n :param name: `<str>` Name of the table.\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Table description (depends on 'cursor' type).\n ");
43138
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_127_describe, "(Base method, internal use only). `DESCRIBE` the table.\n\n :param name: `<str>` Name of the table.\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Table description (depends on 'cursor' type).\n ");
43139
43139
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_128_describe = {"_describe", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_128_describe, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_127_describe};
43140
43140
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_128_describe(PyObject *__pyx_v_self,
43141
43141
  #if CYTHON_METH_FASTCALL
@@ -52739,7 +52739,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
52739
52739
  PyObject *__pyx_args, PyObject *__pyx_kwds
52740
52740
  #endif
52741
52741
  ); /*proto*/
52742
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_166show_index, "`SHOW INDEX` from the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[dict]>`: Index information.\n ");
52742
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_166show_index, "`SHOW INDEX` from the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[dict]>`: Index information.\n ");
52743
52743
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_167show_index = {"show_index", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_167show_index, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_166show_index};
52744
52744
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_167show_index(PyObject *__pyx_v_self,
52745
52745
  #if CYTHON_METH_FASTCALL
@@ -52923,7 +52923,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
52923
52923
  PyObject *__pyx_args, PyObject *__pyx_kwds
52924
52924
  #endif
52925
52925
  ); /*proto*/
52926
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_169show_index, "`SHOW INDEX` from the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<DataFrame>`: Index information.\n ");
52926
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_169show_index, "`SHOW INDEX` from the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<DataFrame>`: Index information.\n ");
52927
52927
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_170show_index = {"show_index", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_170show_index, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_169show_index};
52928
52928
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_170show_index(PyObject *__pyx_v_self,
52929
52929
  #if CYTHON_METH_FASTCALL
@@ -53107,7 +53107,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
53107
53107
  PyObject *__pyx_args, PyObject *__pyx_kwds
53108
53108
  #endif
53109
53109
  ); /*proto*/
53110
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_172show_index, "`SHOW INDEX` from the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: Index information.\n ");
53110
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_172show_index, "`SHOW INDEX` from the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: Index information.\n ");
53111
53111
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_173show_index = {"show_index", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_173show_index, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_172show_index};
53112
53112
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_173show_index(PyObject *__pyx_v_self,
53113
53113
  #if CYTHON_METH_FASTCALL
@@ -53291,7 +53291,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
53291
53291
  PyObject *__pyx_args, PyObject *__pyx_kwds
53292
53292
  #endif
53293
53293
  ); /*proto*/
53294
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_175show_index, "`SHOW INDEX` from the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Index information (depends on 'cursor' type).\n ");
53294
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_175show_index, "`SHOW INDEX` from the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Index information (depends on 'cursor' type).\n ");
53295
53295
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_176show_index = {"show_index", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_176show_index, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_175show_index};
53296
53296
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_176show_index(PyObject *__pyx_v_self,
53297
53297
  #if CYTHON_METH_FASTCALL
@@ -53543,7 +53543,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
53543
53543
  PyObject *__pyx_args, PyObject *__pyx_kwds
53544
53544
  #endif
53545
53545
  ); /*proto*/
53546
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_178_show_index, "(Base method, internal use only). `SHOW INDEX` from the table.\n\n :param name: `<str>` Name of the table.\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Index information (depends on 'cursor' type).\n ");
53546
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_178_show_index, "(Base method, internal use only). `SHOW INDEX` from the table.\n\n :param name: `<str>` Name of the table.\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Index information (depends on 'cursor' type).\n ");
53547
53547
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_179_show_index = {"_show_index", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_179_show_index, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_178_show_index};
53548
53548
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_179_show_index(PyObject *__pyx_v_self,
53549
53549
  #if CYTHON_METH_FASTCALL
@@ -85919,7 +85919,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_9TimeTable_55generator70(__pyx
85919
85919
 
85920
85920
  /* Python wrapper */
85921
85921
  static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_54information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
85922
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_53information, "Select all sub-tables information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[dict]>`: All sub-tables information.\n ");
85922
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_53information, "Select all sub-tables information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[dict]>`: All sub-tables information.\n ");
85923
85923
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_54information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_54information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_53information};
85924
85924
  static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_54information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
85925
85925
  CYTHON_UNUSED PyObject *__pyx_v_cursor = 0;
@@ -86086,7 +86086,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_9TimeTable_58generator71(__pyx
86086
86086
 
86087
86087
  /* Python wrapper */
86088
86088
  static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_57information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
86089
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_56information, "Select all sub-tables information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<DataFrame>`: All sub-tables information.\n ");
86089
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_56information, "Select all sub-tables information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<DataFrame>`: All sub-tables information.\n ");
86090
86090
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_57information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_57information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_56information};
86091
86091
  static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_57information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
86092
86092
  CYTHON_UNUSED PyObject *__pyx_v_cursor = 0;
@@ -86253,7 +86253,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_9TimeTable_61generator72(__pyx
86253
86253
 
86254
86254
  /* Python wrapper */
86255
86255
  static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_60information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
86256
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_59information, "Select all sub-tables information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: All sub-tables information.\n ");
86256
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_59information, "Select all sub-tables information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: All sub-tables information.\n ");
86257
86257
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_60information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_60information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_59information};
86258
86258
  static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_60information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
86259
86259
  CYTHON_UNUSED PyObject *__pyx_v_cursor = 0;
@@ -86420,7 +86420,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_9TimeTable_64generator73(__pyx
86420
86420
 
86421
86421
  /* Python wrapper */
86422
86422
  static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_63information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
86423
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_62information, "Select all sub-tables information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: All sub-tables information (depends on 'cursor' type).\n ");
86423
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_62information, "Select all sub-tables information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: All sub-tables information (depends on 'cursor' type).\n ");
86424
86424
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_63information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_63information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_62information};
86425
86425
  static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_63information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
86426
86426
  PyObject *__pyx_v_cursor = 0;
@@ -87811,7 +87811,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
87811
87811
  PyObject *__pyx_args, PyObject *__pyx_kwds
87812
87812
  #endif
87813
87813
  ); /*proto*/
87814
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_65describe, "`DESCRIBE` a sub-table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[dict]>`: Table description.\n ");
87814
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_65describe, "`DESCRIBE` a sub-table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[dict]>`: Table description.\n ");
87815
87815
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_66describe = {"describe", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_66describe, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_65describe};
87816
87816
  static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_66describe(PyObject *__pyx_v_self,
87817
87817
  #if CYTHON_METH_FASTCALL
@@ -87995,7 +87995,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
87995
87995
  PyObject *__pyx_args, PyObject *__pyx_kwds
87996
87996
  #endif
87997
87997
  ); /*proto*/
87998
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_68describe, "`DESCRIBE` a sub-table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<DataFrame>`: Table description.\n ");
87998
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_68describe, "`DESCRIBE` a sub-table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<DataFrame>`: Table description.\n ");
87999
87999
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_69describe = {"describe", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_69describe, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_68describe};
88000
88000
  static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_69describe(PyObject *__pyx_v_self,
88001
88001
  #if CYTHON_METH_FASTCALL
@@ -88179,7 +88179,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
88179
88179
  PyObject *__pyx_args, PyObject *__pyx_kwds
88180
88180
  #endif
88181
88181
  ); /*proto*/
88182
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_71describe, "`DESCRIBE` a sub-table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: Table description.\n ");
88182
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_71describe, "`DESCRIBE` a sub-table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: Table description.\n ");
88183
88183
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_72describe = {"describe", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_72describe, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_71describe};
88184
88184
  static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_72describe(PyObject *__pyx_v_self,
88185
88185
  #if CYTHON_METH_FASTCALL
@@ -88363,7 +88363,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
88363
88363
  PyObject *__pyx_args, PyObject *__pyx_kwds
88364
88364
  #endif
88365
88365
  ); /*proto*/
88366
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_74describe, "`DESCRIBE` a sub-table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Table description (depends on 'cursor' type).\n ");
88366
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_74describe, "`DESCRIBE` a sub-table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Table description (depends on 'cursor' type).\n ");
88367
88367
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_75describe = {"describe", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_75describe, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_74describe};
88368
88368
  static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_75describe(PyObject *__pyx_v_self,
88369
88369
  #if CYTHON_METH_FASTCALL
@@ -92188,7 +92188,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
92188
92188
  PyObject *__pyx_args, PyObject *__pyx_kwds
92189
92189
  #endif
92190
92190
  ); /*proto*/
92191
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_95show_index, "`SHOW INDEX` of the TimeTable.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[dict]>`: Index information.\n ");
92191
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_95show_index, "`SHOW INDEX` of the TimeTable.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[dict]>`: Index information.\n ");
92192
92192
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_96show_index = {"show_index", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_96show_index, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_95show_index};
92193
92193
  static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_96show_index(PyObject *__pyx_v_self,
92194
92194
  #if CYTHON_METH_FASTCALL
@@ -92372,7 +92372,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
92372
92372
  PyObject *__pyx_args, PyObject *__pyx_kwds
92373
92373
  #endif
92374
92374
  ); /*proto*/
92375
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_98show_index, "`SHOW INDEX` of the TimeTable.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<DataFrame>`: Index information.\n ");
92375
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_98show_index, "`SHOW INDEX` of the TimeTable.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<DataFrame>`: Index information.\n ");
92376
92376
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_99show_index = {"show_index", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_99show_index, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_98show_index};
92377
92377
  static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_99show_index(PyObject *__pyx_v_self,
92378
92378
  #if CYTHON_METH_FASTCALL
@@ -92556,7 +92556,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
92556
92556
  PyObject *__pyx_args, PyObject *__pyx_kwds
92557
92557
  #endif
92558
92558
  ); /*proto*/
92559
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_101show_index, "`SHOW INDEX` of the TimeTable.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: Index information.\n ");
92559
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_101show_index, "`SHOW INDEX` of the TimeTable.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: Index information.\n ");
92560
92560
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_102show_index = {"show_index", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_102show_index, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_101show_index};
92561
92561
  static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_102show_index(PyObject *__pyx_v_self,
92562
92562
  #if CYTHON_METH_FASTCALL
@@ -92740,7 +92740,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
92740
92740
  PyObject *__pyx_args, PyObject *__pyx_kwds
92741
92741
  #endif
92742
92742
  ); /*proto*/
92743
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_104show_index, "`SHOW INDEX` of the TimeTable.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Index information (depends on 'cursor' type).\n ");
92743
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_104show_index, "`SHOW INDEX` of the TimeTable.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Index information (depends on 'cursor' type).\n ");
92744
92744
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_105show_index = {"show_index", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_105show_index, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_104show_index};
92745
92745
  static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_105show_index(PyObject *__pyx_v_self,
92746
92746
  #if CYTHON_METH_FASTCALL
@@ -116055,7 +116055,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
116055
116055
  PyObject *__pyx_args, PyObject *__pyx_kwds
116056
116056
  #endif
116057
116057
  ); /*proto*/
116058
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_26fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table that do""es not exist, instead of\n raising an error, an empty `<tuple>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[dict]>`: The fetched result.\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
116058
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_26fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `<tuple>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[dict]>`: The fetched result.\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
116059
116059
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_8Database_27fetch_query = {"fetch_query", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_8Database_27fetch_query, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_8Database_26fetch_query};
116060
116060
  static PyObject *__pyx_pw_11mysqlengine_8database_8Database_27fetch_query(PyObject *__pyx_v_self,
116061
116061
  #if CYTHON_METH_FASTCALL
@@ -116388,7 +116388,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
116388
116388
  PyObject *__pyx_args, PyObject *__pyx_kwds
116389
116389
  #endif
116390
116390
  ); /*proto*/
116391
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_29fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table that do""es not exist, instead of\n raising an error, an empty `<DataFrame>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<DataFrame>`: The fetched result.\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
116391
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_29fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `<DataFrame>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<DataFrame>`: The fetched result.\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
116392
116392
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_8Database_30fetch_query = {"fetch_query", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_8Database_30fetch_query, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_8Database_29fetch_query};
116393
116393
  static PyObject *__pyx_pw_11mysqlengine_8database_8Database_30fetch_query(PyObject *__pyx_v_self,
116394
116394
  #if CYTHON_METH_FASTCALL
@@ -116721,7 +116721,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
116721
116721
  PyObject *__pyx_args, PyObject *__pyx_kwds
116722
116722
  #endif
116723
116723
  ); /*proto*/
116724
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_32fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table that do""es not exist, instead of\n raising an error, an empty `tuple[tuple]` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: The fetched result.\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
116724
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_32fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `tuple[tuple]` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: The fetched result.\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
116725
116725
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_8Database_33fetch_query = {"fetch_query", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_8Database_33fetch_query, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_8Database_32fetch_query};
116726
116726
  static PyObject *__pyx_pw_11mysqlengine_8database_8Database_33fetch_query(PyObject *__pyx_v_self,
116727
116727
  #if CYTHON_METH_FASTCALL
@@ -117054,7 +117054,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
117054
117054
  PyObject *__pyx_args, PyObject *__pyx_kwds
117055
117055
  #endif
117056
117056
  ); /*proto*/
117057
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_35fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table that do""es not exist, instead of\n raising an error, an empty `tuple` or `DataFrame` (depends on 'cursor' type)\n will be returned as the execution result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: The fetched result (depends on 'cursor' type).\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
117057
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_35fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `tuple` or `DataFrame` (depends on 'cursor' type)\n will be returned as the execution result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: The fetched result (depends on 'cursor' type).\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
117058
117058
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_8Database_36fetch_query = {"fetch_query", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_8Database_36fetch_query, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_8Database_35fetch_query};
117059
117059
  static PyObject *__pyx_pw_11mysqlengine_8database_8Database_36fetch_query(PyObject *__pyx_v_self,
117060
117060
  #if CYTHON_METH_FASTCALL
@@ -128942,7 +128942,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_8Database_73generator111(__pyx
128942
128942
 
128943
128943
  /* Python wrapper */
128944
128944
  static PyObject *__pyx_pw_11mysqlengine_8database_8Database_72information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
128945
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_71information, "Select database information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'catelog_name', 'schema_name', 'default_character_set_name',\n - 'default_collation_name', 'sql_path', 'default_encryption'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'schema_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[dict]>`: Database information.\n ");
128945
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_71information, "Select database information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'catelog_name', 'schema_name', 'default_character_set_name',\n - 'default_collation_name', 'sql_path', 'default_encryption'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'schema_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[dict]>`: Database information.\n ");
128946
128946
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_8Database_72information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_8Database_72information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_8Database_71information};
128947
128947
  static PyObject *__pyx_pw_11mysqlengine_8database_8Database_72information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
128948
128948
  CYTHON_UNUSED PyObject *__pyx_v_cursor = 0;
@@ -129109,7 +129109,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_8Database_76generator112(__pyx
129109
129109
 
129110
129110
  /* Python wrapper */
129111
129111
  static PyObject *__pyx_pw_11mysqlengine_8database_8Database_75information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
129112
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_74information, "Select database information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'catelog_name', 'schema_name', 'default_character_set_name',\n - 'default_collation_name', 'sql_path', 'default_encryption'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'schema_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<DataFrame>`: Database information.\n ");
129112
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_74information, "Select database information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'catelog_name', 'schema_name', 'default_character_set_name',\n - 'default_collation_name', 'sql_path', 'default_encryption'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'schema_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<DataFrame>`: Database information.\n ");
129113
129113
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_8Database_75information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_8Database_75information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_8Database_74information};
129114
129114
  static PyObject *__pyx_pw_11mysqlengine_8database_8Database_75information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
129115
129115
  CYTHON_UNUSED PyObject *__pyx_v_cursor = 0;
@@ -129276,7 +129276,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_8Database_79generator113(__pyx
129276
129276
 
129277
129277
  /* Python wrapper */
129278
129278
  static PyObject *__pyx_pw_11mysqlengine_8database_8Database_78information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
129279
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_77information, "Select database information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'catelog_name', 'schema_name', 'default_character_set_name',\n - 'default_collation_name', 'sql_path', 'default_encryption'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'schema_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: Database information.\n ");
129279
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_77information, "Select database information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'catelog_name', 'schema_name', 'default_character_set_name',\n - 'default_collation_name', 'sql_path', 'default_encryption'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'schema_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: Database information.\n ");
129280
129280
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_8Database_78information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_8Database_78information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_8Database_77information};
129281
129281
  static PyObject *__pyx_pw_11mysqlengine_8database_8Database_78information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
129282
129282
  CYTHON_UNUSED PyObject *__pyx_v_cursor = 0;
@@ -129443,7 +129443,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_8Database_82generator114(__pyx
129443
129443
 
129444
129444
  /* Python wrapper */
129445
129445
  static PyObject *__pyx_pw_11mysqlengine_8database_8Database_81information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
129446
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_80information, "Select database information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'catelog_name', 'schema_name', 'default_character_set_name',\n - 'default_collation_name', 'sql_path', 'default_encryption'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'schema_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Database information.\n ");
129446
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_80information, "Select database information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'catelog_name', 'schema_name', 'default_character_set_name',\n - 'default_collation_name', 'sql_path', 'default_encryption'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'schema_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Database information.\n ");
129447
129447
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_8Database_81information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_8Database_81information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_8Database_80information};
129448
129448
  static PyObject *__pyx_pw_11mysqlengine_8database_8Database_81information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
129449
129449
  PyObject *__pyx_v_cursor = 0;
@@ -167987,7 +167987,7 @@ static CYTHON_SMALL_CODE int __Pyx_InitCachedConstants(void) {
167987
167987
  __Pyx_GOTREF(__pyx_tuple__6);
167988
167988
  __Pyx_GIVEREF(__pyx_tuple__6);
167989
167989
 
167990
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":983
167990
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":983
167991
167991
  * __pyx_import_array()
167992
167992
  * except Exception:
167993
167993
  * raise ImportError("numpy.core.multiarray failed to import") # <<<<<<<<<<<<<<
@@ -167998,7 +167998,7 @@ static CYTHON_SMALL_CODE int __Pyx_InitCachedConstants(void) {
167998
167998
  __Pyx_GOTREF(__pyx_tuple__7);
167999
167999
  __Pyx_GIVEREF(__pyx_tuple__7);
168000
168000
 
168001
- /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-9s4qk95j/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":989
168001
+ /* "C:/Users/runneradmin/AppData/Local/Temp/pip-build-env-rljcplax/overlay/Lib/site-packages/numpy/__init__.cython-30.pxd":989
168002
168002
  * _import_umath()
168003
168003
  * except Exception:
168004
168004
  * raise ImportError("numpy.core.umath failed to import") # <<<<<<<<<<<<<<