mysqlengine 0.1.11.9__cp311-cp311-musllinux_1_1_x86_64.whl → 0.1.12.1__cp311-cp311-musllinux_1_1_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mysqlengine might be problematic. Click here for more details.

mysqlengine/database.c CHANGED
@@ -15,7 +15,7 @@
15
15
  "-Wno-incompatible-pointer-types"
16
16
  ],
17
17
  "include_dirs": [
18
- "/tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/core/include"
18
+ "/tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/core/include"
19
19
  ],
20
20
  "name": "mysqlengine.database",
21
21
  "sources": [
@@ -1596,7 +1596,7 @@ static const char *__pyx_f[] = {
1596
1596
 
1597
1597
  /* #### Code section: numeric_typedefs ### */
1598
1598
 
1599
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":730
1599
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":730
1600
1600
  * # in Cython to enable them only on the right systems.
1601
1601
  *
1602
1602
  * ctypedef npy_int8 int8_t # <<<<<<<<<<<<<<
@@ -1605,7 +1605,7 @@ static const char *__pyx_f[] = {
1605
1605
  */
1606
1606
  typedef npy_int8 __pyx_t_5numpy_int8_t;
1607
1607
 
1608
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":731
1608
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":731
1609
1609
  *
1610
1610
  * ctypedef npy_int8 int8_t
1611
1611
  * ctypedef npy_int16 int16_t # <<<<<<<<<<<<<<
@@ -1614,7 +1614,7 @@ typedef npy_int8 __pyx_t_5numpy_int8_t;
1614
1614
  */
1615
1615
  typedef npy_int16 __pyx_t_5numpy_int16_t;
1616
1616
 
1617
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":732
1617
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":732
1618
1618
  * ctypedef npy_int8 int8_t
1619
1619
  * ctypedef npy_int16 int16_t
1620
1620
  * ctypedef npy_int32 int32_t # <<<<<<<<<<<<<<
@@ -1623,7 +1623,7 @@ typedef npy_int16 __pyx_t_5numpy_int16_t;
1623
1623
  */
1624
1624
  typedef npy_int32 __pyx_t_5numpy_int32_t;
1625
1625
 
1626
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":733
1626
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":733
1627
1627
  * ctypedef npy_int16 int16_t
1628
1628
  * ctypedef npy_int32 int32_t
1629
1629
  * ctypedef npy_int64 int64_t # <<<<<<<<<<<<<<
@@ -1632,7 +1632,7 @@ typedef npy_int32 __pyx_t_5numpy_int32_t;
1632
1632
  */
1633
1633
  typedef npy_int64 __pyx_t_5numpy_int64_t;
1634
1634
 
1635
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":737
1635
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":737
1636
1636
  * #ctypedef npy_int128 int128_t
1637
1637
  *
1638
1638
  * ctypedef npy_uint8 uint8_t # <<<<<<<<<<<<<<
@@ -1641,7 +1641,7 @@ typedef npy_int64 __pyx_t_5numpy_int64_t;
1641
1641
  */
1642
1642
  typedef npy_uint8 __pyx_t_5numpy_uint8_t;
1643
1643
 
1644
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":738
1644
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":738
1645
1645
  *
1646
1646
  * ctypedef npy_uint8 uint8_t
1647
1647
  * ctypedef npy_uint16 uint16_t # <<<<<<<<<<<<<<
@@ -1650,7 +1650,7 @@ typedef npy_uint8 __pyx_t_5numpy_uint8_t;
1650
1650
  */
1651
1651
  typedef npy_uint16 __pyx_t_5numpy_uint16_t;
1652
1652
 
1653
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":739
1653
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":739
1654
1654
  * ctypedef npy_uint8 uint8_t
1655
1655
  * ctypedef npy_uint16 uint16_t
1656
1656
  * ctypedef npy_uint32 uint32_t # <<<<<<<<<<<<<<
@@ -1659,7 +1659,7 @@ typedef npy_uint16 __pyx_t_5numpy_uint16_t;
1659
1659
  */
1660
1660
  typedef npy_uint32 __pyx_t_5numpy_uint32_t;
1661
1661
 
1662
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":740
1662
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":740
1663
1663
  * ctypedef npy_uint16 uint16_t
1664
1664
  * ctypedef npy_uint32 uint32_t
1665
1665
  * ctypedef npy_uint64 uint64_t # <<<<<<<<<<<<<<
@@ -1668,7 +1668,7 @@ typedef npy_uint32 __pyx_t_5numpy_uint32_t;
1668
1668
  */
1669
1669
  typedef npy_uint64 __pyx_t_5numpy_uint64_t;
1670
1670
 
1671
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":744
1671
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":744
1672
1672
  * #ctypedef npy_uint128 uint128_t
1673
1673
  *
1674
1674
  * ctypedef npy_float32 float32_t # <<<<<<<<<<<<<<
@@ -1677,7 +1677,7 @@ typedef npy_uint64 __pyx_t_5numpy_uint64_t;
1677
1677
  */
1678
1678
  typedef npy_float32 __pyx_t_5numpy_float32_t;
1679
1679
 
1680
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":745
1680
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":745
1681
1681
  *
1682
1682
  * ctypedef npy_float32 float32_t
1683
1683
  * ctypedef npy_float64 float64_t # <<<<<<<<<<<<<<
@@ -1686,7 +1686,7 @@ typedef npy_float32 __pyx_t_5numpy_float32_t;
1686
1686
  */
1687
1687
  typedef npy_float64 __pyx_t_5numpy_float64_t;
1688
1688
 
1689
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":754
1689
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":754
1690
1690
  * # The int types are mapped a bit surprising --
1691
1691
  * # numpy.int corresponds to 'l' and numpy.long to 'q'
1692
1692
  * ctypedef npy_long int_t # <<<<<<<<<<<<<<
@@ -1695,7 +1695,7 @@ typedef npy_float64 __pyx_t_5numpy_float64_t;
1695
1695
  */
1696
1696
  typedef npy_long __pyx_t_5numpy_int_t;
1697
1697
 
1698
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":755
1698
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":755
1699
1699
  * # numpy.int corresponds to 'l' and numpy.long to 'q'
1700
1700
  * ctypedef npy_long int_t
1701
1701
  * ctypedef npy_longlong longlong_t # <<<<<<<<<<<<<<
@@ -1704,7 +1704,7 @@ typedef npy_long __pyx_t_5numpy_int_t;
1704
1704
  */
1705
1705
  typedef npy_longlong __pyx_t_5numpy_longlong_t;
1706
1706
 
1707
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":757
1707
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":757
1708
1708
  * ctypedef npy_longlong longlong_t
1709
1709
  *
1710
1710
  * ctypedef npy_ulong uint_t # <<<<<<<<<<<<<<
@@ -1713,7 +1713,7 @@ typedef npy_longlong __pyx_t_5numpy_longlong_t;
1713
1713
  */
1714
1714
  typedef npy_ulong __pyx_t_5numpy_uint_t;
1715
1715
 
1716
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":758
1716
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":758
1717
1717
  *
1718
1718
  * ctypedef npy_ulong uint_t
1719
1719
  * ctypedef npy_ulonglong ulonglong_t # <<<<<<<<<<<<<<
@@ -1722,7 +1722,7 @@ typedef npy_ulong __pyx_t_5numpy_uint_t;
1722
1722
  */
1723
1723
  typedef npy_ulonglong __pyx_t_5numpy_ulonglong_t;
1724
1724
 
1725
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":760
1725
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":760
1726
1726
  * ctypedef npy_ulonglong ulonglong_t
1727
1727
  *
1728
1728
  * ctypedef npy_intp intp_t # <<<<<<<<<<<<<<
@@ -1731,7 +1731,7 @@ typedef npy_ulonglong __pyx_t_5numpy_ulonglong_t;
1731
1731
  */
1732
1732
  typedef npy_intp __pyx_t_5numpy_intp_t;
1733
1733
 
1734
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":761
1734
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":761
1735
1735
  *
1736
1736
  * ctypedef npy_intp intp_t
1737
1737
  * ctypedef npy_uintp uintp_t # <<<<<<<<<<<<<<
@@ -1740,7 +1740,7 @@ typedef npy_intp __pyx_t_5numpy_intp_t;
1740
1740
  */
1741
1741
  typedef npy_uintp __pyx_t_5numpy_uintp_t;
1742
1742
 
1743
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":763
1743
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":763
1744
1744
  * ctypedef npy_uintp uintp_t
1745
1745
  *
1746
1746
  * ctypedef npy_double float_t # <<<<<<<<<<<<<<
@@ -1749,7 +1749,7 @@ typedef npy_uintp __pyx_t_5numpy_uintp_t;
1749
1749
  */
1750
1750
  typedef npy_double __pyx_t_5numpy_float_t;
1751
1751
 
1752
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":764
1752
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":764
1753
1753
  *
1754
1754
  * ctypedef npy_double float_t
1755
1755
  * ctypedef npy_double double_t # <<<<<<<<<<<<<<
@@ -1758,7 +1758,7 @@ typedef npy_double __pyx_t_5numpy_float_t;
1758
1758
  */
1759
1759
  typedef npy_double __pyx_t_5numpy_double_t;
1760
1760
 
1761
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":765
1761
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":765
1762
1762
  * ctypedef npy_double float_t
1763
1763
  * ctypedef npy_double double_t
1764
1764
  * ctypedef npy_longdouble longdouble_t # <<<<<<<<<<<<<<
@@ -2064,7 +2064,7 @@ struct __pyx_opt_args_11mysqlengine_8protocol_11MysqlPacket_get_bytes {
2064
2064
  PY_LONG_LONG length;
2065
2065
  };
2066
2066
 
2067
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":767
2067
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":767
2068
2068
  * ctypedef npy_longdouble longdouble_t
2069
2069
  *
2070
2070
  * ctypedef npy_cfloat cfloat_t # <<<<<<<<<<<<<<
@@ -2073,7 +2073,7 @@ struct __pyx_opt_args_11mysqlengine_8protocol_11MysqlPacket_get_bytes {
2073
2073
  */
2074
2074
  typedef npy_cfloat __pyx_t_5numpy_cfloat_t;
2075
2075
 
2076
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":768
2076
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":768
2077
2077
  *
2078
2078
  * ctypedef npy_cfloat cfloat_t
2079
2079
  * ctypedef npy_cdouble cdouble_t # <<<<<<<<<<<<<<
@@ -2082,7 +2082,7 @@ typedef npy_cfloat __pyx_t_5numpy_cfloat_t;
2082
2082
  */
2083
2083
  typedef npy_cdouble __pyx_t_5numpy_cdouble_t;
2084
2084
 
2085
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":769
2085
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":769
2086
2086
  * ctypedef npy_cfloat cfloat_t
2087
2087
  * ctypedef npy_cdouble cdouble_t
2088
2088
  * ctypedef npy_clongdouble clongdouble_t # <<<<<<<<<<<<<<
@@ -2091,7 +2091,7 @@ typedef npy_cdouble __pyx_t_5numpy_cdouble_t;
2091
2091
  */
2092
2092
  typedef npy_clongdouble __pyx_t_5numpy_clongdouble_t;
2093
2093
 
2094
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":771
2094
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":771
2095
2095
  * ctypedef npy_clongdouble clongdouble_t
2096
2096
  *
2097
2097
  * ctypedef npy_cdouble complex_t # <<<<<<<<<<<<<<
@@ -9066,7 +9066,7 @@ static const char __pyx_k_Define_columns_of_the_table_This[] = "Define columns o
9066
9066
  static const char __pyx_k_Define_indexes_of_the_table_This[] = "Define indexes of the table. This method should be called\n within the `metadata()` method to set the desired indexes.\n\n :param indexes: `<Index>` The indexes to add to the table.\n\n ### Example:\n >>> self.indexes_metadata(\n Index(self.columns[\"tinyint_type\"], unique=True, primary_unique=True),\n Index(self.columns[\"smallint_type\"], self.columns[\"mediumint_type\"]),\n ...\n )\n ";
9067
9067
  static const char __pyx_k_Define_the_database_metadata_Thi[] = "Define the database metadata. This method should be overwritten\n in subclass to configure database's tables.\n\n ### Configuration:\n - Overwrite `Database.metadata()` to define database's tables.\n - Add tables through Table `instance`: `self.my_table = MyTable(self)`\n - Add tables through Table `subclass`: `self.my_table = MyTable`\n - * Notice, using `subclass` approach, most static typing of the table\n methods will be incorrect (redundant 'self' argument), but the\n functionality of the table will not be affected.\n\n ### Example:\n >>> def metadata(self) -> None:\n # . instance approach\n self.table1 = MyTable1(self)\n # . subclass approach\n self.table2 = MyTable2\n ...\n ";
9068
9068
  static const char __pyx_k_Define_the_table_metadata_This_m[] = "Define the table metadata. This method should be overridden\n in subclass to configure the table's columns and indexes.\n\n ### Configuration:\n - Use `self.columns_metadata()` to define columns of the table.\n - Use `self.indexes_metadata()` to define indexes of the table.\n\n ### Example:\n >>> def metadata(self) -> None:\n # . define columns\n self.columns_metadata(\n Column(\"id\", MysqlTypes.BIGINT(primary_key=True)),\n Column(\"username\", MysqlTypes.VARCHAR()),\n Column(\"user_level\", MysqlTypes.TINYINT()),\n Column(\"user_type\", MysqlTypes.VARCHAR()),\n ...\n )\n # . define indexes\n self.indexes_metadata(\n Index(self.columns[\"username\"], unique=True, primary_unique=True),\n Index(self.columns[\"user_level\"], self.columns[\"user_type\"]),\n ...\n )\n ";
9069
- static const char __pyx_k_Execute_a_SQL_statement_and_fetc[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table that do""es not exist, instead of\n raising an error, an empty `<tuple>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[dict[str, Any]]>`: The fetched result.\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
9069
+ static const char __pyx_k_Execute_a_SQL_statement_and_fetc[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `<tuple>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[dict[str, Any]]>`: The fetched result.\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
9070
9070
  static const char __pyx_k_Execute_a_SQL_statement_param_st[] = "Execute a SQL statement.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param reusable: `<bool>` Whether the 'conn' (if provided) is reusable after query execution. Defaults to `True`.\n - If `True`, the connection will return back to the Server pool,\n waiting for the next query.\n - If `False`, after returned to the Server pool, the connection\n will be closed and released. This is useful for certain types\n of statements, such as `CREATE TEMPORARY TABLE` and `LOCK TABLES`,\n where it's desirable to ensure the connection is closed at the end\n to release (potential) resources.\n\n :param cursor: `<type[Cursor/SSCursor]>` The `Cursor` class to use for query execution. Defaults to `Cursor`.\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involve""s a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table that does not exist, instead of\n raising an error, `0` will be returned as the execution result.\n\n :raises: Subclass of `QueryError`.\n :return `<int>`: Number of rows affected by the query.\n\n ### Example:\n >>> await db.user.execute_query(\n \"UPDATE db.user SET name = %s WHERE id = %s;\",\n args=('john', 1), # muti-rows: arge=[('john', 1), ('jackson', 2)]\n conn=None,\n reusable=True,\n cursor=Cursor,\n resolve_absent_table=False,\n timeout=None,\n warnings=True,\n )\n ";
9071
9071
  static const char __pyx_k_Incompatible_checksums_0x_x_vs_0[] = "Incompatible checksums (0x%x vs (0xc1804d9, 0xfe6a6a6, 0xcfc7018) = (_charset, _collate, _columns, _db, _db_pfix, _engine, _fname, _fname_pfix, _indexes, _initiated, _initiated_tables, _is_timetable, _name, _name_pfix, _regex, _server, _syntax, _syntax_val, _temp_id, _type))";
9072
9072
  static const char __pyx_k_Initiate_a_DELETE_query_of_the_t[] = "Initiate a DELETE query of the table.\n\n :param table_aliases: `<str>` The table aliases of the DELETE operation.\n - Only applicable for multi-table DELETE (when JOIN clause is used).\n Single table DELETE takes no effects.\n - If not specified, the DELETE operation will be performed on all\n tables (main & joined ones).\n - If specified, the DELETE operation will be performed only on the\n given tables.\n - *Notice: this arguments only takes the alias of the tables instead\n of the actual table name. For more information, please refer to\n the 'alias' parameter or the Example section below.\n\n :param ignore: `<bool>` The `IGNORE` modifier. Defaults to `False`.\n Determines whether to ignore the duplicate key errors.\n\n :param tabletime: `<str/None>` A specific `tabletime` for the `DELETE` table. Defaults to `None`.\n - This parameter is only applicable when the `DELETE` table corresponds\n to a TimeTable.\n - If `tabletime` is specified, the actual sub-table will derive from this\n parameter. Otherwise, it is required to use `tabletimes()` method to specify\n the sub-tables. For more details, please refer to the `tabletimes()` method.\n\n :param alias: `<str/None>` The alias of the `DELETE` clause. Defaults to `None`.\n - The alias of the clause will be added to the corresponding part of the SQL\n statement using the `'AS <alias>'` syntax.\n - For instance, in a `DELETE... FROM... WHERE...` query, without specified\n alias (default alias), the statement would be constructed as:\n `'DELETE... FROM... AS t1 WHERE...'`, where default alias is derived\n from the order of the tables in the query.\n - However, with a user-defined alias (for example, `alias='tb'`), the\n "" statement would be constructed as: `'DELETE... FROM... AS tb WHERE...'`.\n\n ### Example (DELETE... WHERE... single table):\n >>> await db.user.delete().where(\"id = 1\").execute()\n ### -> Equivalent to:\n >>> DELETE FROM db.user AS t1 WHERE id = 1\n\n ### Example (DELETE... JOIN... WHERE... multi-table [all tables]):\n >>> (\n await db.user.delete() # delete from 't1' and 't2'\n .join(db.user_info, \"t1.id = t2.user_id\", tabletime=\"2023-01-01\")\n .where(\"t1.age > 18\")\n .execute()\n )\n ### -> Equivalent to:\n >>> DELETE t1, t2 FROM db.user AS t1\n INNER JOIN db.user_info_202301 AS t2\n ON t1.id = t2.user_id\n WHERE t1.age > 18\n\n ### Example (DELETE... JOIN... WHERE... multi-table [specific table(s)]):\n >>> (\n await db.user.delete(\"t2\") # Only delete from 't2'\n .join(db.user_info, \"t1.id = t2.user_id\", tabletime=\"2023-01-01\")\n .where(\"t1.age > 18\")\n .execute()\n )\n ### -> Equivalent to:\n >>> DELETE t2 FROM db.user AS t1\n INNER JOIN db.user_info_202301 AS t2\n ON t1.id = t2.user_id\n WHERE t1.age > 18\n\n ### Example (DELETE... with `values()` method):\n >>> values = [\n {\"id\": 1, \"name\": \"John\", \"age\": 20, \"status\": \"active\"},\n {\"id\": 2, \"name\": \"Mary\", \"age\": 25, \"status\": \"inactive\"},\n ]\n >>> (\n await db.user.delete()\n .values(values, where_columns=[\"name\", \"age\"])\n .execute()\n )\n ### -> Equivalent to the following TWO queries:\n >>> DELETE FROM db.user AS t1\n WHERE t1.name = 'John' AND t1.age = 20\n >>> DELETE FROM db.user AS t1\n WHERE t1.nam""e = 'Mary' AND t1.age = 25\n ";
@@ -9103,13 +9103,13 @@ static const char __pyx_k_Acquire_a_free_connection_from_t_2[] = "Acquire a free
9103
9103
  static const char __pyx_k_Acquire_a_free_connection_from_t_3[] = "Acquire a free connection from the `Server` pool.\n\n By acquiring connection through this method, the following will happen:\n - 1. Acquire a free/new connection from the Server pool.\n - 2. Return `PoolConnectionManager` that wraps the connection.\n - 3. Release the connection back to the pool at exist.\n\n This method provides a more flexible approach to execute queries compared\n to the `transaction()` method. However, it requires manual handling of\n transaction states like `BEGIN`, `ROLLBACK`, and `COMMIT`.\n\n :raise: Subclass of `QueryError`.\n :return `PoolConnectionManager`: Server connection.\n\n ### Example:\n >>> async with db.acquire() as conn:\n await conn.begin() # . start transaction\n username = (\n await db.user.select(\"username\")\n .where(\"id = %s\", 1)\n .for_update()\n # IMPORTANT: must pass conn to `execute()`. Otherwise, the\n # query will be executed with a temp (different) connection.\n .execute(conn)\n )\n ... # . sequences of queries\n await conn.commit() # . commit transaction\n ";
9104
9104
  static const char __pyx_k_Acquire_a_free_connection_from_t_4[] = "Acquire a free connection from the `Server` pool and `START TRANSACTION`.\n\n By acquiring connection through this method, the following will happen:\n - 1. Acquire a free/new connection from the Server pool.\n - 2. Use the connection to `START TRANSACTION`.\n - 3. Return `PoolTransactionManager` that wraps the connection.\n - 4a. If catches ANY exceptions during the transaction, execute\n `ROLLBACK`, then close and release the connection.\n - 4b. If the transaction executed successfully, execute `COMMIT`\n and then release the connection back to the Server pool.\n\n This method offers a more convenient way to execute transactions\n compared to the `acquire()` method, as it automatically manages\n transaction states like `BEGIN`, `ROLLBACK`, and `COMMIT`.\n\n :raise: Subclass of `QueryError`.\n :return `PoolTransactionManager`: Server connection.\n\n ### Example:\n >>> async with db.transaction() as conn:\n # . transaction is already started\n username = (\n await db.user.select(\"username\")\n .where(\"id = %s\", 1)\n .for_update()\n # IMPORTANT: must pass conn to `execute()`. Otherwise, the\n # query will be executed with a temp (different) connection.\n .execute(conn)\n )\n ... # . sequences of queries\n # . commit will be executed at exist.\n ";
9105
9105
  static const char __pyx_k_Bypass_data_import_for_table_s_T_2[] = "Bypass data import for table: '%s'. <Table data invalid>.";
9106
- static const char __pyx_k_Execute_a_SQL_statement_and_fetc_2[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table that do""es not exist, instead of\n raising an error, an empty `<DataFrame>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<DataFrame>`: The fetched result.\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
9107
- static const char __pyx_k_Execute_a_SQL_statement_and_fetc_3[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table that do""es not exist, instead of\n raising an error, an empty `tuple[tuple]` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: The fetched result.\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
9108
- static const char __pyx_k_Execute_a_SQL_statement_and_fetc_4[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table that do""es not exist, instead of\n raising an error, an empty `tuple` or `DataFrame` (depends on 'cursor' type)\n will be returned as the execution result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: The fetched result (depends on 'cursor' type).\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
9109
- static const char __pyx_k_Execute_a_SQL_statement_and_fetc_5[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table that do""es not exist, instead of\n raising an error, an empty `<tuple>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[dict]>`: The fetched result.\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
9110
- static const char __pyx_k_Execute_a_SQL_statement_and_fetc_6[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table that do""es not exist, instead of\n raising an error, an empty `<DataFrame>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<DataFrame>`: The fetched result.\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
9111
- static const char __pyx_k_Execute_a_SQL_statement_and_fetc_7[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table that do""es not exist, instead of\n raising an error, an empty `tuple[tuple]` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: The fetched result.\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
9112
- static const char __pyx_k_Execute_a_SQL_statement_and_fetc_8[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table that do""es not exist, instead of\n raising an error, an empty `tuple` or `DataFrame` (depends on 'cursor' type)\n will be returned as the execution result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: The fetched result (depends on 'cursor' type).\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
9106
+ static const char __pyx_k_Execute_a_SQL_statement_and_fetc_2[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `<DataFrame>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<DataFrame>`: The fetched result.\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
9107
+ static const char __pyx_k_Execute_a_SQL_statement_and_fetc_3[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `tuple[tuple]` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: The fetched result.\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
9108
+ static const char __pyx_k_Execute_a_SQL_statement_and_fetc_4[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `tuple` or `DataFrame` (depends on 'cursor' type)\n will be returned as the execution result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: The fetched result (depends on 'cursor' type).\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
9109
+ static const char __pyx_k_Execute_a_SQL_statement_and_fetc_5[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `<tuple>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[dict]>`: The fetched result.\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
9110
+ static const char __pyx_k_Execute_a_SQL_statement_and_fetc_6[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `<DataFrame>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<DataFrame>`: The fetched result.\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
9111
+ static const char __pyx_k_Execute_a_SQL_statement_and_fetc_7[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `tuple[tuple]` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: The fetched result.\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
9112
+ static const char __pyx_k_Execute_a_SQL_statement_and_fetc_8[] = "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `tuple` or `DataFrame` (depends on 'cursor' type)\n will be returned as the execution result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: The fetched result (depends on 'cursor' type).\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ";
9113
9113
  static const char __pyx_k_Execute_a_SQL_statement_param_st_2[] = "Execute a SQL statement.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param reusable: `<bool>` Whether the 'conn' (if provided) is reusable after query execution. Defaults to `True`.\n - If `True`, the connection will return back to the Server pool,\n waiting for the next query.\n - If `False`, after returned to the Server pool, the connection\n will be closed and released. This is useful for certain types\n of statements, such as `CREATE TEMPORARY TABLE` and `LOCK TABLES`,\n where it's desirable to ensure the connection is closed at the end\n to release (potential) resources.\n\n :param cursor: `<type[Cursor/SSCursor]>` The `Cursor` class to use for query execution. Defaults to `Cursor`.\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involve""s a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table that does not exist, instead of\n raising an error, `0` will be returned as the execution result.\n\n :raises: Subclass of `QueryError`.\n :return `<int>`: Number of rows affected by the query.\n\n ### Example:\n >>> await db.execute_query(\n \"UPDATE db.user SET name = %s WHERE id = %s;\",\n args=('john', 1), # muti-rows: arge=[('john', 1), ('jackson', 2)]\n conn=None,\n reusable=True,\n cursor=Cursor,\n resolve_absent_table=False,\n timeout=None,\n warnings=True,\n )\n ";
9114
9114
  static const char __pyx_k_Incompatible_checksums_0x_x_vs_0_2[] = "Incompatible checksums (0x%x vs (0x810996b, 0x1377fc1, 0x48ef66f) = (_charset, _collate, _columns, _db, _db_pfix, _engine, _fname, _fname_pfix, _indexes, _initiated, _initiated_tables, _is_timetable, _name, _name_format, _name_pfix, _regex, _server, _syntax, _syntax_val, _temp_id, _time_format, _time_unit, _type))";
9115
9115
  static const char __pyx_k_Incompatible_checksums_0x_x_vs_0_3[] = "Incompatible checksums (0x%x vs (0x2600b8a, 0x5944b53, 0xfaf6ec5) = (_db, _dict, _instances, _items, _length, _names, _names_set, _regex_fnames, _regex_names))";
@@ -20753,7 +20753,7 @@ static CYTHON_INLINE PyObject *__pyx_f_11mysqlengine_8database_get_tables_names(
20753
20753
  return __pyx_r;
20754
20754
  }
20755
20755
 
20756
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":245
20756
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":245
20757
20757
  *
20758
20758
  * @property
20759
20759
  * cdef inline PyObject* base(self) nogil: # <<<<<<<<<<<<<<
@@ -20764,7 +20764,7 @@ static CYTHON_INLINE PyObject *__pyx_f_11mysqlengine_8database_get_tables_names(
20764
20764
  static CYTHON_INLINE PyObject *__pyx_f_5numpy_7ndarray_4base_base(PyArrayObject *__pyx_v_self) {
20765
20765
  PyObject *__pyx_r;
20766
20766
 
20767
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":248
20767
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":248
20768
20768
  * """Returns a borrowed reference to the object owning the data/memory.
20769
20769
  * """
20770
20770
  * return PyArray_BASE(self) # <<<<<<<<<<<<<<
@@ -20774,7 +20774,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_7ndarray_4base_base(PyArrayObject
20774
20774
  __pyx_r = PyArray_BASE(__pyx_v_self);
20775
20775
  goto __pyx_L0;
20776
20776
 
20777
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":245
20777
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":245
20778
20778
  *
20779
20779
  * @property
20780
20780
  * cdef inline PyObject* base(self) nogil: # <<<<<<<<<<<<<<
@@ -20787,7 +20787,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_7ndarray_4base_base(PyArrayObject
20787
20787
  return __pyx_r;
20788
20788
  }
20789
20789
 
20790
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":251
20790
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":251
20791
20791
  *
20792
20792
  * @property
20793
20793
  * cdef inline dtype descr(self): # <<<<<<<<<<<<<<
@@ -20801,7 +20801,7 @@ static CYTHON_INLINE PyArray_Descr *__pyx_f_5numpy_7ndarray_5descr_descr(PyArray
20801
20801
  PyArray_Descr *__pyx_t_1;
20802
20802
  __Pyx_RefNannySetupContext("descr", 1);
20803
20803
 
20804
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":254
20804
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":254
20805
20805
  * """Returns an owned reference to the dtype of the array.
20806
20806
  * """
20807
20807
  * return <dtype>PyArray_DESCR(self) # <<<<<<<<<<<<<<
@@ -20814,7 +20814,7 @@ static CYTHON_INLINE PyArray_Descr *__pyx_f_5numpy_7ndarray_5descr_descr(PyArray
20814
20814
  __pyx_r = ((PyArray_Descr *)__pyx_t_1);
20815
20815
  goto __pyx_L0;
20816
20816
 
20817
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":251
20817
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":251
20818
20818
  *
20819
20819
  * @property
20820
20820
  * cdef inline dtype descr(self): # <<<<<<<<<<<<<<
@@ -20829,7 +20829,7 @@ static CYTHON_INLINE PyArray_Descr *__pyx_f_5numpy_7ndarray_5descr_descr(PyArray
20829
20829
  return __pyx_r;
20830
20830
  }
20831
20831
 
20832
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":257
20832
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":257
20833
20833
  *
20834
20834
  * @property
20835
20835
  * cdef inline int ndim(self) nogil: # <<<<<<<<<<<<<<
@@ -20840,7 +20840,7 @@ static CYTHON_INLINE PyArray_Descr *__pyx_f_5numpy_7ndarray_5descr_descr(PyArray
20840
20840
  static CYTHON_INLINE int __pyx_f_5numpy_7ndarray_4ndim_ndim(PyArrayObject *__pyx_v_self) {
20841
20841
  int __pyx_r;
20842
20842
 
20843
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":260
20843
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":260
20844
20844
  * """Returns the number of dimensions in the array.
20845
20845
  * """
20846
20846
  * return PyArray_NDIM(self) # <<<<<<<<<<<<<<
@@ -20850,7 +20850,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_7ndarray_4ndim_ndim(PyArrayObject *__pyx
20850
20850
  __pyx_r = PyArray_NDIM(__pyx_v_self);
20851
20851
  goto __pyx_L0;
20852
20852
 
20853
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":257
20853
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":257
20854
20854
  *
20855
20855
  * @property
20856
20856
  * cdef inline int ndim(self) nogil: # <<<<<<<<<<<<<<
@@ -20863,7 +20863,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_7ndarray_4ndim_ndim(PyArrayObject *__pyx
20863
20863
  return __pyx_r;
20864
20864
  }
20865
20865
 
20866
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":263
20866
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":263
20867
20867
  *
20868
20868
  * @property
20869
20869
  * cdef inline npy_intp *shape(self) nogil: # <<<<<<<<<<<<<<
@@ -20874,7 +20874,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_7ndarray_4ndim_ndim(PyArrayObject *__pyx
20874
20874
  static CYTHON_INLINE npy_intp *__pyx_f_5numpy_7ndarray_5shape_shape(PyArrayObject *__pyx_v_self) {
20875
20875
  npy_intp *__pyx_r;
20876
20876
 
20877
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":268
20877
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":268
20878
20878
  * Can return NULL for 0-dimensional arrays.
20879
20879
  * """
20880
20880
  * return PyArray_DIMS(self) # <<<<<<<<<<<<<<
@@ -20884,7 +20884,7 @@ static CYTHON_INLINE npy_intp *__pyx_f_5numpy_7ndarray_5shape_shape(PyArrayObjec
20884
20884
  __pyx_r = PyArray_DIMS(__pyx_v_self);
20885
20885
  goto __pyx_L0;
20886
20886
 
20887
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":263
20887
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":263
20888
20888
  *
20889
20889
  * @property
20890
20890
  * cdef inline npy_intp *shape(self) nogil: # <<<<<<<<<<<<<<
@@ -20897,7 +20897,7 @@ static CYTHON_INLINE npy_intp *__pyx_f_5numpy_7ndarray_5shape_shape(PyArrayObjec
20897
20897
  return __pyx_r;
20898
20898
  }
20899
20899
 
20900
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":271
20900
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":271
20901
20901
  *
20902
20902
  * @property
20903
20903
  * cdef inline npy_intp *strides(self) nogil: # <<<<<<<<<<<<<<
@@ -20908,7 +20908,7 @@ static CYTHON_INLINE npy_intp *__pyx_f_5numpy_7ndarray_5shape_shape(PyArrayObjec
20908
20908
  static CYTHON_INLINE npy_intp *__pyx_f_5numpy_7ndarray_7strides_strides(PyArrayObject *__pyx_v_self) {
20909
20909
  npy_intp *__pyx_r;
20910
20910
 
20911
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":275
20911
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":275
20912
20912
  * The number of elements matches the number of dimensions of the array (ndim).
20913
20913
  * """
20914
20914
  * return PyArray_STRIDES(self) # <<<<<<<<<<<<<<
@@ -20918,7 +20918,7 @@ static CYTHON_INLINE npy_intp *__pyx_f_5numpy_7ndarray_7strides_strides(PyArrayO
20918
20918
  __pyx_r = PyArray_STRIDES(__pyx_v_self);
20919
20919
  goto __pyx_L0;
20920
20920
 
20921
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":271
20921
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":271
20922
20922
  *
20923
20923
  * @property
20924
20924
  * cdef inline npy_intp *strides(self) nogil: # <<<<<<<<<<<<<<
@@ -20931,7 +20931,7 @@ static CYTHON_INLINE npy_intp *__pyx_f_5numpy_7ndarray_7strides_strides(PyArrayO
20931
20931
  return __pyx_r;
20932
20932
  }
20933
20933
 
20934
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":278
20934
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":278
20935
20935
  *
20936
20936
  * @property
20937
20937
  * cdef inline npy_intp size(self) nogil: # <<<<<<<<<<<<<<
@@ -20942,7 +20942,7 @@ static CYTHON_INLINE npy_intp *__pyx_f_5numpy_7ndarray_7strides_strides(PyArrayO
20942
20942
  static CYTHON_INLINE npy_intp __pyx_f_5numpy_7ndarray_4size_size(PyArrayObject *__pyx_v_self) {
20943
20943
  npy_intp __pyx_r;
20944
20944
 
20945
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":281
20945
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":281
20946
20946
  * """Returns the total size (in number of elements) of the array.
20947
20947
  * """
20948
20948
  * return PyArray_SIZE(self) # <<<<<<<<<<<<<<
@@ -20952,7 +20952,7 @@ static CYTHON_INLINE npy_intp __pyx_f_5numpy_7ndarray_4size_size(PyArrayObject *
20952
20952
  __pyx_r = PyArray_SIZE(__pyx_v_self);
20953
20953
  goto __pyx_L0;
20954
20954
 
20955
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":278
20955
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":278
20956
20956
  *
20957
20957
  * @property
20958
20958
  * cdef inline npy_intp size(self) nogil: # <<<<<<<<<<<<<<
@@ -20965,7 +20965,7 @@ static CYTHON_INLINE npy_intp __pyx_f_5numpy_7ndarray_4size_size(PyArrayObject *
20965
20965
  return __pyx_r;
20966
20966
  }
20967
20967
 
20968
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":284
20968
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":284
20969
20969
  *
20970
20970
  * @property
20971
20971
  * cdef inline char* data(self) nogil: # <<<<<<<<<<<<<<
@@ -20976,7 +20976,7 @@ static CYTHON_INLINE npy_intp __pyx_f_5numpy_7ndarray_4size_size(PyArrayObject *
20976
20976
  static CYTHON_INLINE char *__pyx_f_5numpy_7ndarray_4data_data(PyArrayObject *__pyx_v_self) {
20977
20977
  char *__pyx_r;
20978
20978
 
20979
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":290
20979
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":290
20980
20980
  * of `PyArray_DATA()` instead, which returns a 'void*'.
20981
20981
  * """
20982
20982
  * return PyArray_BYTES(self) # <<<<<<<<<<<<<<
@@ -20986,7 +20986,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy_7ndarray_4data_data(PyArrayObject *__p
20986
20986
  __pyx_r = PyArray_BYTES(__pyx_v_self);
20987
20987
  goto __pyx_L0;
20988
20988
 
20989
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":284
20989
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":284
20990
20990
  *
20991
20991
  * @property
20992
20992
  * cdef inline char* data(self) nogil: # <<<<<<<<<<<<<<
@@ -20999,7 +20999,7 @@ static CYTHON_INLINE char *__pyx_f_5numpy_7ndarray_4data_data(PyArrayObject *__p
20999
20999
  return __pyx_r;
21000
21000
  }
21001
21001
 
21002
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":773
21002
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":773
21003
21003
  * ctypedef npy_cdouble complex_t
21004
21004
  *
21005
21005
  * cdef inline object PyArray_MultiIterNew1(a): # <<<<<<<<<<<<<<
@@ -21016,7 +21016,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew1(PyObject *__
21016
21016
  int __pyx_clineno = 0;
21017
21017
  __Pyx_RefNannySetupContext("PyArray_MultiIterNew1", 1);
21018
21018
 
21019
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":774
21019
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":774
21020
21020
  *
21021
21021
  * cdef inline object PyArray_MultiIterNew1(a):
21022
21022
  * return PyArray_MultiIterNew(1, <void*>a) # <<<<<<<<<<<<<<
@@ -21030,7 +21030,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew1(PyObject *__
21030
21030
  __pyx_t_1 = 0;
21031
21031
  goto __pyx_L0;
21032
21032
 
21033
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":773
21033
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":773
21034
21034
  * ctypedef npy_cdouble complex_t
21035
21035
  *
21036
21036
  * cdef inline object PyArray_MultiIterNew1(a): # <<<<<<<<<<<<<<
@@ -21049,7 +21049,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew1(PyObject *__
21049
21049
  return __pyx_r;
21050
21050
  }
21051
21051
 
21052
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":776
21052
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":776
21053
21053
  * return PyArray_MultiIterNew(1, <void*>a)
21054
21054
  *
21055
21055
  * cdef inline object PyArray_MultiIterNew2(a, b): # <<<<<<<<<<<<<<
@@ -21066,7 +21066,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew2(PyObject *__
21066
21066
  int __pyx_clineno = 0;
21067
21067
  __Pyx_RefNannySetupContext("PyArray_MultiIterNew2", 1);
21068
21068
 
21069
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":777
21069
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":777
21070
21070
  *
21071
21071
  * cdef inline object PyArray_MultiIterNew2(a, b):
21072
21072
  * return PyArray_MultiIterNew(2, <void*>a, <void*>b) # <<<<<<<<<<<<<<
@@ -21080,7 +21080,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew2(PyObject *__
21080
21080
  __pyx_t_1 = 0;
21081
21081
  goto __pyx_L0;
21082
21082
 
21083
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":776
21083
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":776
21084
21084
  * return PyArray_MultiIterNew(1, <void*>a)
21085
21085
  *
21086
21086
  * cdef inline object PyArray_MultiIterNew2(a, b): # <<<<<<<<<<<<<<
@@ -21099,7 +21099,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew2(PyObject *__
21099
21099
  return __pyx_r;
21100
21100
  }
21101
21101
 
21102
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":779
21102
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":779
21103
21103
  * return PyArray_MultiIterNew(2, <void*>a, <void*>b)
21104
21104
  *
21105
21105
  * cdef inline object PyArray_MultiIterNew3(a, b, c): # <<<<<<<<<<<<<<
@@ -21116,7 +21116,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew3(PyObject *__
21116
21116
  int __pyx_clineno = 0;
21117
21117
  __Pyx_RefNannySetupContext("PyArray_MultiIterNew3", 1);
21118
21118
 
21119
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":780
21119
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":780
21120
21120
  *
21121
21121
  * cdef inline object PyArray_MultiIterNew3(a, b, c):
21122
21122
  * return PyArray_MultiIterNew(3, <void*>a, <void*>b, <void*> c) # <<<<<<<<<<<<<<
@@ -21130,7 +21130,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew3(PyObject *__
21130
21130
  __pyx_t_1 = 0;
21131
21131
  goto __pyx_L0;
21132
21132
 
21133
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":779
21133
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":779
21134
21134
  * return PyArray_MultiIterNew(2, <void*>a, <void*>b)
21135
21135
  *
21136
21136
  * cdef inline object PyArray_MultiIterNew3(a, b, c): # <<<<<<<<<<<<<<
@@ -21149,7 +21149,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew3(PyObject *__
21149
21149
  return __pyx_r;
21150
21150
  }
21151
21151
 
21152
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":782
21152
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":782
21153
21153
  * return PyArray_MultiIterNew(3, <void*>a, <void*>b, <void*> c)
21154
21154
  *
21155
21155
  * cdef inline object PyArray_MultiIterNew4(a, b, c, d): # <<<<<<<<<<<<<<
@@ -21166,7 +21166,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew4(PyObject *__
21166
21166
  int __pyx_clineno = 0;
21167
21167
  __Pyx_RefNannySetupContext("PyArray_MultiIterNew4", 1);
21168
21168
 
21169
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":783
21169
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":783
21170
21170
  *
21171
21171
  * cdef inline object PyArray_MultiIterNew4(a, b, c, d):
21172
21172
  * return PyArray_MultiIterNew(4, <void*>a, <void*>b, <void*>c, <void*> d) # <<<<<<<<<<<<<<
@@ -21180,7 +21180,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew4(PyObject *__
21180
21180
  __pyx_t_1 = 0;
21181
21181
  goto __pyx_L0;
21182
21182
 
21183
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":782
21183
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":782
21184
21184
  * return PyArray_MultiIterNew(3, <void*>a, <void*>b, <void*> c)
21185
21185
  *
21186
21186
  * cdef inline object PyArray_MultiIterNew4(a, b, c, d): # <<<<<<<<<<<<<<
@@ -21199,7 +21199,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew4(PyObject *__
21199
21199
  return __pyx_r;
21200
21200
  }
21201
21201
 
21202
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":785
21202
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":785
21203
21203
  * return PyArray_MultiIterNew(4, <void*>a, <void*>b, <void*>c, <void*> d)
21204
21204
  *
21205
21205
  * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): # <<<<<<<<<<<<<<
@@ -21216,7 +21216,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew5(PyObject *__
21216
21216
  int __pyx_clineno = 0;
21217
21217
  __Pyx_RefNannySetupContext("PyArray_MultiIterNew5", 1);
21218
21218
 
21219
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":786
21219
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":786
21220
21220
  *
21221
21221
  * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e):
21222
21222
  * return PyArray_MultiIterNew(5, <void*>a, <void*>b, <void*>c, <void*> d, <void*> e) # <<<<<<<<<<<<<<
@@ -21230,7 +21230,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew5(PyObject *__
21230
21230
  __pyx_t_1 = 0;
21231
21231
  goto __pyx_L0;
21232
21232
 
21233
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":785
21233
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":785
21234
21234
  * return PyArray_MultiIterNew(4, <void*>a, <void*>b, <void*>c, <void*> d)
21235
21235
  *
21236
21236
  * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): # <<<<<<<<<<<<<<
@@ -21249,7 +21249,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew5(PyObject *__
21249
21249
  return __pyx_r;
21250
21250
  }
21251
21251
 
21252
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":788
21252
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":788
21253
21253
  * return PyArray_MultiIterNew(5, <void*>a, <void*>b, <void*>c, <void*> d, <void*> e)
21254
21254
  *
21255
21255
  * cdef inline tuple PyDataType_SHAPE(dtype d): # <<<<<<<<<<<<<<
@@ -21263,7 +21263,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyDataType_SHAPE(PyArray_Descr *__
21263
21263
  int __pyx_t_1;
21264
21264
  __Pyx_RefNannySetupContext("PyDataType_SHAPE", 1);
21265
21265
 
21266
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":789
21266
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":789
21267
21267
  *
21268
21268
  * cdef inline tuple PyDataType_SHAPE(dtype d):
21269
21269
  * if PyDataType_HASSUBARRAY(d): # <<<<<<<<<<<<<<
@@ -21273,7 +21273,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyDataType_SHAPE(PyArray_Descr *__
21273
21273
  __pyx_t_1 = PyDataType_HASSUBARRAY(__pyx_v_d);
21274
21274
  if (__pyx_t_1) {
21275
21275
 
21276
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":790
21276
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":790
21277
21277
  * cdef inline tuple PyDataType_SHAPE(dtype d):
21278
21278
  * if PyDataType_HASSUBARRAY(d):
21279
21279
  * return <tuple>d.subarray.shape # <<<<<<<<<<<<<<
@@ -21285,7 +21285,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyDataType_SHAPE(PyArray_Descr *__
21285
21285
  __pyx_r = ((PyObject*)__pyx_v_d->subarray->shape);
21286
21286
  goto __pyx_L0;
21287
21287
 
21288
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":789
21288
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":789
21289
21289
  *
21290
21290
  * cdef inline tuple PyDataType_SHAPE(dtype d):
21291
21291
  * if PyDataType_HASSUBARRAY(d): # <<<<<<<<<<<<<<
@@ -21294,7 +21294,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyDataType_SHAPE(PyArray_Descr *__
21294
21294
  */
21295
21295
  }
21296
21296
 
21297
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":792
21297
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":792
21298
21298
  * return <tuple>d.subarray.shape
21299
21299
  * else:
21300
21300
  * return () # <<<<<<<<<<<<<<
@@ -21308,7 +21308,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyDataType_SHAPE(PyArray_Descr *__
21308
21308
  goto __pyx_L0;
21309
21309
  }
21310
21310
 
21311
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":788
21311
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":788
21312
21312
  * return PyArray_MultiIterNew(5, <void*>a, <void*>b, <void*>c, <void*> d, <void*> e)
21313
21313
  *
21314
21314
  * cdef inline tuple PyDataType_SHAPE(dtype d): # <<<<<<<<<<<<<<
@@ -21323,7 +21323,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyDataType_SHAPE(PyArray_Descr *__
21323
21323
  return __pyx_r;
21324
21324
  }
21325
21325
 
21326
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":967
21326
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":967
21327
21327
  * int _import_umath() except -1
21328
21328
  *
21329
21329
  * cdef inline void set_array_base(ndarray arr, object base): # <<<<<<<<<<<<<<
@@ -21337,7 +21337,7 @@ static CYTHON_INLINE void __pyx_f_5numpy_set_array_base(PyArrayObject *__pyx_v_a
21337
21337
  const char *__pyx_filename = NULL;
21338
21338
  int __pyx_clineno = 0;
21339
21339
 
21340
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":968
21340
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":968
21341
21341
  *
21342
21342
  * cdef inline void set_array_base(ndarray arr, object base):
21343
21343
  * Py_INCREF(base) # important to do this before stealing the reference below! # <<<<<<<<<<<<<<
@@ -21346,7 +21346,7 @@ static CYTHON_INLINE void __pyx_f_5numpy_set_array_base(PyArrayObject *__pyx_v_a
21346
21346
  */
21347
21347
  Py_INCREF(__pyx_v_base);
21348
21348
 
21349
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":969
21349
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":969
21350
21350
  * cdef inline void set_array_base(ndarray arr, object base):
21351
21351
  * Py_INCREF(base) # important to do this before stealing the reference below!
21352
21352
  * PyArray_SetBaseObject(arr, base) # <<<<<<<<<<<<<<
@@ -21355,7 +21355,7 @@ static CYTHON_INLINE void __pyx_f_5numpy_set_array_base(PyArrayObject *__pyx_v_a
21355
21355
  */
21356
21356
  __pyx_t_1 = PyArray_SetBaseObject(__pyx_v_arr, __pyx_v_base); if (unlikely(__pyx_t_1 == ((int)-1))) __PYX_ERR(7, 969, __pyx_L1_error)
21357
21357
 
21358
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":967
21358
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":967
21359
21359
  * int _import_umath() except -1
21360
21360
  *
21361
21361
  * cdef inline void set_array_base(ndarray arr, object base): # <<<<<<<<<<<<<<
@@ -21370,7 +21370,7 @@ static CYTHON_INLINE void __pyx_f_5numpy_set_array_base(PyArrayObject *__pyx_v_a
21370
21370
  __pyx_L0:;
21371
21371
  }
21372
21372
 
21373
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":971
21373
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":971
21374
21374
  * PyArray_SetBaseObject(arr, base)
21375
21375
  *
21376
21376
  * cdef inline object get_array_base(ndarray arr): # <<<<<<<<<<<<<<
@@ -21385,7 +21385,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__py
21385
21385
  int __pyx_t_1;
21386
21386
  __Pyx_RefNannySetupContext("get_array_base", 1);
21387
21387
 
21388
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":972
21388
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":972
21389
21389
  *
21390
21390
  * cdef inline object get_array_base(ndarray arr):
21391
21391
  * base = PyArray_BASE(arr) # <<<<<<<<<<<<<<
@@ -21394,7 +21394,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__py
21394
21394
  */
21395
21395
  __pyx_v_base = PyArray_BASE(__pyx_v_arr);
21396
21396
 
21397
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":973
21397
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":973
21398
21398
  * cdef inline object get_array_base(ndarray arr):
21399
21399
  * base = PyArray_BASE(arr)
21400
21400
  * if base is NULL: # <<<<<<<<<<<<<<
@@ -21404,7 +21404,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__py
21404
21404
  __pyx_t_1 = (__pyx_v_base == NULL);
21405
21405
  if (__pyx_t_1) {
21406
21406
 
21407
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":974
21407
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":974
21408
21408
  * base = PyArray_BASE(arr)
21409
21409
  * if base is NULL:
21410
21410
  * return None # <<<<<<<<<<<<<<
@@ -21415,7 +21415,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__py
21415
21415
  __pyx_r = Py_None; __Pyx_INCREF(Py_None);
21416
21416
  goto __pyx_L0;
21417
21417
 
21418
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":973
21418
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":973
21419
21419
  * cdef inline object get_array_base(ndarray arr):
21420
21420
  * base = PyArray_BASE(arr)
21421
21421
  * if base is NULL: # <<<<<<<<<<<<<<
@@ -21424,7 +21424,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__py
21424
21424
  */
21425
21425
  }
21426
21426
 
21427
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":975
21427
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":975
21428
21428
  * if base is NULL:
21429
21429
  * return None
21430
21430
  * return <object>base # <<<<<<<<<<<<<<
@@ -21436,7 +21436,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__py
21436
21436
  __pyx_r = ((PyObject *)__pyx_v_base);
21437
21437
  goto __pyx_L0;
21438
21438
 
21439
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":971
21439
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":971
21440
21440
  * PyArray_SetBaseObject(arr, base)
21441
21441
  *
21442
21442
  * cdef inline object get_array_base(ndarray arr): # <<<<<<<<<<<<<<
@@ -21451,7 +21451,7 @@ static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__py
21451
21451
  return __pyx_r;
21452
21452
  }
21453
21453
 
21454
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":979
21454
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":979
21455
21455
  * # Versions of the import_* functions which are more suitable for
21456
21456
  * # Cython code.
21457
21457
  * cdef inline int import_array() except -1: # <<<<<<<<<<<<<<
@@ -21475,7 +21475,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) {
21475
21475
  int __pyx_clineno = 0;
21476
21476
  __Pyx_RefNannySetupContext("import_array", 1);
21477
21477
 
21478
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":980
21478
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":980
21479
21479
  * # Cython code.
21480
21480
  * cdef inline int import_array() except -1:
21481
21481
  * try: # <<<<<<<<<<<<<<
@@ -21491,7 +21491,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) {
21491
21491
  __Pyx_XGOTREF(__pyx_t_3);
21492
21492
  /*try:*/ {
21493
21493
 
21494
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":981
21494
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":981
21495
21495
  * cdef inline int import_array() except -1:
21496
21496
  * try:
21497
21497
  * __pyx_import_array() # <<<<<<<<<<<<<<
@@ -21500,7 +21500,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) {
21500
21500
  */
21501
21501
  __pyx_t_4 = _import_array(); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(7, 981, __pyx_L3_error)
21502
21502
 
21503
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":980
21503
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":980
21504
21504
  * # Cython code.
21505
21505
  * cdef inline int import_array() except -1:
21506
21506
  * try: # <<<<<<<<<<<<<<
@@ -21514,7 +21514,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) {
21514
21514
  goto __pyx_L8_try_end;
21515
21515
  __pyx_L3_error:;
21516
21516
 
21517
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":982
21517
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":982
21518
21518
  * try:
21519
21519
  * __pyx_import_array()
21520
21520
  * except Exception: # <<<<<<<<<<<<<<
@@ -21529,7 +21529,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) {
21529
21529
  __Pyx_XGOTREF(__pyx_t_6);
21530
21530
  __Pyx_XGOTREF(__pyx_t_7);
21531
21531
 
21532
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":983
21532
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":983
21533
21533
  * __pyx_import_array()
21534
21534
  * except Exception:
21535
21535
  * raise ImportError("numpy.core.multiarray failed to import") # <<<<<<<<<<<<<<
@@ -21544,7 +21544,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) {
21544
21544
  }
21545
21545
  goto __pyx_L5_except_error;
21546
21546
 
21547
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":980
21547
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":980
21548
21548
  * # Cython code.
21549
21549
  * cdef inline int import_array() except -1:
21550
21550
  * try: # <<<<<<<<<<<<<<
@@ -21560,7 +21560,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) {
21560
21560
  __pyx_L8_try_end:;
21561
21561
  }
21562
21562
 
21563
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":979
21563
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":979
21564
21564
  * # Versions of the import_* functions which are more suitable for
21565
21565
  * # Cython code.
21566
21566
  * cdef inline int import_array() except -1: # <<<<<<<<<<<<<<
@@ -21583,7 +21583,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) {
21583
21583
  return __pyx_r;
21584
21584
  }
21585
21585
 
21586
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":985
21586
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":985
21587
21587
  * raise ImportError("numpy.core.multiarray failed to import")
21588
21588
  *
21589
21589
  * cdef inline int import_umath() except -1: # <<<<<<<<<<<<<<
@@ -21607,7 +21607,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) {
21607
21607
  int __pyx_clineno = 0;
21608
21608
  __Pyx_RefNannySetupContext("import_umath", 1);
21609
21609
 
21610
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":986
21610
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":986
21611
21611
  *
21612
21612
  * cdef inline int import_umath() except -1:
21613
21613
  * try: # <<<<<<<<<<<<<<
@@ -21623,7 +21623,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) {
21623
21623
  __Pyx_XGOTREF(__pyx_t_3);
21624
21624
  /*try:*/ {
21625
21625
 
21626
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":987
21626
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":987
21627
21627
  * cdef inline int import_umath() except -1:
21628
21628
  * try:
21629
21629
  * _import_umath() # <<<<<<<<<<<<<<
@@ -21632,7 +21632,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) {
21632
21632
  */
21633
21633
  __pyx_t_4 = _import_umath(); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(7, 987, __pyx_L3_error)
21634
21634
 
21635
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":986
21635
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":986
21636
21636
  *
21637
21637
  * cdef inline int import_umath() except -1:
21638
21638
  * try: # <<<<<<<<<<<<<<
@@ -21646,7 +21646,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) {
21646
21646
  goto __pyx_L8_try_end;
21647
21647
  __pyx_L3_error:;
21648
21648
 
21649
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":988
21649
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":988
21650
21650
  * try:
21651
21651
  * _import_umath()
21652
21652
  * except Exception: # <<<<<<<<<<<<<<
@@ -21661,7 +21661,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) {
21661
21661
  __Pyx_XGOTREF(__pyx_t_6);
21662
21662
  __Pyx_XGOTREF(__pyx_t_7);
21663
21663
 
21664
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":989
21664
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":989
21665
21665
  * _import_umath()
21666
21666
  * except Exception:
21667
21667
  * raise ImportError("numpy.core.umath failed to import") # <<<<<<<<<<<<<<
@@ -21676,7 +21676,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) {
21676
21676
  }
21677
21677
  goto __pyx_L5_except_error;
21678
21678
 
21679
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":986
21679
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":986
21680
21680
  *
21681
21681
  * cdef inline int import_umath() except -1:
21682
21682
  * try: # <<<<<<<<<<<<<<
@@ -21692,7 +21692,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) {
21692
21692
  __pyx_L8_try_end:;
21693
21693
  }
21694
21694
 
21695
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":985
21695
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":985
21696
21696
  * raise ImportError("numpy.core.multiarray failed to import")
21697
21697
  *
21698
21698
  * cdef inline int import_umath() except -1: # <<<<<<<<<<<<<<
@@ -21715,7 +21715,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) {
21715
21715
  return __pyx_r;
21716
21716
  }
21717
21717
 
21718
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":991
21718
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":991
21719
21719
  * raise ImportError("numpy.core.umath failed to import")
21720
21720
  *
21721
21721
  * cdef inline int import_ufunc() except -1: # <<<<<<<<<<<<<<
@@ -21739,7 +21739,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) {
21739
21739
  int __pyx_clineno = 0;
21740
21740
  __Pyx_RefNannySetupContext("import_ufunc", 1);
21741
21741
 
21742
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":992
21742
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":992
21743
21743
  *
21744
21744
  * cdef inline int import_ufunc() except -1:
21745
21745
  * try: # <<<<<<<<<<<<<<
@@ -21755,7 +21755,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) {
21755
21755
  __Pyx_XGOTREF(__pyx_t_3);
21756
21756
  /*try:*/ {
21757
21757
 
21758
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":993
21758
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":993
21759
21759
  * cdef inline int import_ufunc() except -1:
21760
21760
  * try:
21761
21761
  * _import_umath() # <<<<<<<<<<<<<<
@@ -21764,7 +21764,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) {
21764
21764
  */
21765
21765
  __pyx_t_4 = _import_umath(); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(7, 993, __pyx_L3_error)
21766
21766
 
21767
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":992
21767
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":992
21768
21768
  *
21769
21769
  * cdef inline int import_ufunc() except -1:
21770
21770
  * try: # <<<<<<<<<<<<<<
@@ -21778,7 +21778,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) {
21778
21778
  goto __pyx_L8_try_end;
21779
21779
  __pyx_L3_error:;
21780
21780
 
21781
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":994
21781
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":994
21782
21782
  * try:
21783
21783
  * _import_umath()
21784
21784
  * except Exception: # <<<<<<<<<<<<<<
@@ -21793,7 +21793,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) {
21793
21793
  __Pyx_XGOTREF(__pyx_t_6);
21794
21794
  __Pyx_XGOTREF(__pyx_t_7);
21795
21795
 
21796
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":995
21796
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":995
21797
21797
  * _import_umath()
21798
21798
  * except Exception:
21799
21799
  * raise ImportError("numpy.core.umath failed to import") # <<<<<<<<<<<<<<
@@ -21808,7 +21808,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) {
21808
21808
  }
21809
21809
  goto __pyx_L5_except_error;
21810
21810
 
21811
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":992
21811
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":992
21812
21812
  *
21813
21813
  * cdef inline int import_ufunc() except -1:
21814
21814
  * try: # <<<<<<<<<<<<<<
@@ -21824,7 +21824,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) {
21824
21824
  __pyx_L8_try_end:;
21825
21825
  }
21826
21826
 
21827
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":991
21827
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":991
21828
21828
  * raise ImportError("numpy.core.umath failed to import")
21829
21829
  *
21830
21830
  * cdef inline int import_ufunc() except -1: # <<<<<<<<<<<<<<
@@ -21847,7 +21847,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) {
21847
21847
  return __pyx_r;
21848
21848
  }
21849
21849
 
21850
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":998
21850
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":998
21851
21851
  *
21852
21852
  *
21853
21853
  * cdef inline bint is_timedelta64_object(object obj): # <<<<<<<<<<<<<<
@@ -21858,7 +21858,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) {
21858
21858
  static CYTHON_INLINE int __pyx_f_5numpy_is_timedelta64_object(PyObject *__pyx_v_obj) {
21859
21859
  int __pyx_r;
21860
21860
 
21861
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":1010
21861
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":1010
21862
21862
  * bool
21863
21863
  * """
21864
21864
  * return PyObject_TypeCheck(obj, &PyTimedeltaArrType_Type) # <<<<<<<<<<<<<<
@@ -21868,7 +21868,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_is_timedelta64_object(PyObject *__pyx_v_
21868
21868
  __pyx_r = PyObject_TypeCheck(__pyx_v_obj, (&PyTimedeltaArrType_Type));
21869
21869
  goto __pyx_L0;
21870
21870
 
21871
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":998
21871
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":998
21872
21872
  *
21873
21873
  *
21874
21874
  * cdef inline bint is_timedelta64_object(object obj): # <<<<<<<<<<<<<<
@@ -21881,7 +21881,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_is_timedelta64_object(PyObject *__pyx_v_
21881
21881
  return __pyx_r;
21882
21882
  }
21883
21883
 
21884
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":1013
21884
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":1013
21885
21885
  *
21886
21886
  *
21887
21887
  * cdef inline bint is_datetime64_object(object obj): # <<<<<<<<<<<<<<
@@ -21892,7 +21892,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_is_timedelta64_object(PyObject *__pyx_v_
21892
21892
  static CYTHON_INLINE int __pyx_f_5numpy_is_datetime64_object(PyObject *__pyx_v_obj) {
21893
21893
  int __pyx_r;
21894
21894
 
21895
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":1025
21895
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":1025
21896
21896
  * bool
21897
21897
  * """
21898
21898
  * return PyObject_TypeCheck(obj, &PyDatetimeArrType_Type) # <<<<<<<<<<<<<<
@@ -21902,7 +21902,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_is_datetime64_object(PyObject *__pyx_v_o
21902
21902
  __pyx_r = PyObject_TypeCheck(__pyx_v_obj, (&PyDatetimeArrType_Type));
21903
21903
  goto __pyx_L0;
21904
21904
 
21905
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":1013
21905
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":1013
21906
21906
  *
21907
21907
  *
21908
21908
  * cdef inline bint is_datetime64_object(object obj): # <<<<<<<<<<<<<<
@@ -21915,7 +21915,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_is_datetime64_object(PyObject *__pyx_v_o
21915
21915
  return __pyx_r;
21916
21916
  }
21917
21917
 
21918
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":1028
21918
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":1028
21919
21919
  *
21920
21920
  *
21921
21921
  * cdef inline npy_datetime get_datetime64_value(object obj) nogil: # <<<<<<<<<<<<<<
@@ -21926,7 +21926,7 @@ static CYTHON_INLINE int __pyx_f_5numpy_is_datetime64_object(PyObject *__pyx_v_o
21926
21926
  static CYTHON_INLINE npy_datetime __pyx_f_5numpy_get_datetime64_value(PyObject *__pyx_v_obj) {
21927
21927
  npy_datetime __pyx_r;
21928
21928
 
21929
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":1035
21929
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":1035
21930
21930
  * also needed. That can be found using `get_datetime64_unit`.
21931
21931
  * """
21932
21932
  * return (<PyDatetimeScalarObject*>obj).obval # <<<<<<<<<<<<<<
@@ -21936,7 +21936,7 @@ static CYTHON_INLINE npy_datetime __pyx_f_5numpy_get_datetime64_value(PyObject *
21936
21936
  __pyx_r = ((PyDatetimeScalarObject *)__pyx_v_obj)->obval;
21937
21937
  goto __pyx_L0;
21938
21938
 
21939
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":1028
21939
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":1028
21940
21940
  *
21941
21941
  *
21942
21942
  * cdef inline npy_datetime get_datetime64_value(object obj) nogil: # <<<<<<<<<<<<<<
@@ -21949,7 +21949,7 @@ static CYTHON_INLINE npy_datetime __pyx_f_5numpy_get_datetime64_value(PyObject *
21949
21949
  return __pyx_r;
21950
21950
  }
21951
21951
 
21952
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":1038
21952
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":1038
21953
21953
  *
21954
21954
  *
21955
21955
  * cdef inline npy_timedelta get_timedelta64_value(object obj) nogil: # <<<<<<<<<<<<<<
@@ -21960,7 +21960,7 @@ static CYTHON_INLINE npy_datetime __pyx_f_5numpy_get_datetime64_value(PyObject *
21960
21960
  static CYTHON_INLINE npy_timedelta __pyx_f_5numpy_get_timedelta64_value(PyObject *__pyx_v_obj) {
21961
21961
  npy_timedelta __pyx_r;
21962
21962
 
21963
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":1042
21963
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":1042
21964
21964
  * returns the int64 value underlying scalar numpy timedelta64 object
21965
21965
  * """
21966
21966
  * return (<PyTimedeltaScalarObject*>obj).obval # <<<<<<<<<<<<<<
@@ -21970,7 +21970,7 @@ static CYTHON_INLINE npy_timedelta __pyx_f_5numpy_get_timedelta64_value(PyObject
21970
21970
  __pyx_r = ((PyTimedeltaScalarObject *)__pyx_v_obj)->obval;
21971
21971
  goto __pyx_L0;
21972
21972
 
21973
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":1038
21973
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":1038
21974
21974
  *
21975
21975
  *
21976
21976
  * cdef inline npy_timedelta get_timedelta64_value(object obj) nogil: # <<<<<<<<<<<<<<
@@ -21983,7 +21983,7 @@ static CYTHON_INLINE npy_timedelta __pyx_f_5numpy_get_timedelta64_value(PyObject
21983
21983
  return __pyx_r;
21984
21984
  }
21985
21985
 
21986
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":1045
21986
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":1045
21987
21987
  *
21988
21988
  *
21989
21989
  * cdef inline NPY_DATETIMEUNIT get_datetime64_unit(object obj) nogil: # <<<<<<<<<<<<<<
@@ -21994,7 +21994,7 @@ static CYTHON_INLINE npy_timedelta __pyx_f_5numpy_get_timedelta64_value(PyObject
21994
21994
  static CYTHON_INLINE NPY_DATETIMEUNIT __pyx_f_5numpy_get_datetime64_unit(PyObject *__pyx_v_obj) {
21995
21995
  NPY_DATETIMEUNIT __pyx_r;
21996
21996
 
21997
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":1049
21997
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":1049
21998
21998
  * returns the unit part of the dtype for a numpy datetime64 object.
21999
21999
  * """
22000
22000
  * return <NPY_DATETIMEUNIT>(<PyDatetimeScalarObject*>obj).obmeta.base # <<<<<<<<<<<<<<
@@ -22002,7 +22002,7 @@ static CYTHON_INLINE NPY_DATETIMEUNIT __pyx_f_5numpy_get_datetime64_unit(PyObjec
22002
22002
  __pyx_r = ((NPY_DATETIMEUNIT)((PyDatetimeScalarObject *)__pyx_v_obj)->obmeta.base);
22003
22003
  goto __pyx_L0;
22004
22004
 
22005
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":1045
22005
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":1045
22006
22006
  *
22007
22007
  *
22008
22008
  * cdef inline NPY_DATETIMEUNIT get_datetime64_unit(object obj) nogil: # <<<<<<<<<<<<<<
@@ -29752,7 +29752,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
29752
29752
  PyObject *__pyx_args, PyObject *__pyx_kwds
29753
29753
  #endif
29754
29754
  ); /*proto*/
29755
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_37fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table that do""es not exist, instead of\n raising an error, an empty `<tuple>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[dict[str, Any]]>`: The fetched result.\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
29755
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_37fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `<tuple>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[dict[str, Any]]>`: The fetched result.\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
29756
29756
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_38fetch_query = {"fetch_query", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_38fetch_query, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_37fetch_query};
29757
29757
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_38fetch_query(PyObject *__pyx_v_self,
29758
29758
  #if CYTHON_METH_FASTCALL
@@ -30085,7 +30085,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
30085
30085
  PyObject *__pyx_args, PyObject *__pyx_kwds
30086
30086
  #endif
30087
30087
  ); /*proto*/
30088
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_40fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table that do""es not exist, instead of\n raising an error, an empty `<DataFrame>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<DataFrame>`: The fetched result.\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
30088
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_40fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `<DataFrame>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<DataFrame>`: The fetched result.\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
30089
30089
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_41fetch_query = {"fetch_query", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_41fetch_query, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_40fetch_query};
30090
30090
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_41fetch_query(PyObject *__pyx_v_self,
30091
30091
  #if CYTHON_METH_FASTCALL
@@ -30418,7 +30418,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
30418
30418
  PyObject *__pyx_args, PyObject *__pyx_kwds
30419
30419
  #endif
30420
30420
  ); /*proto*/
30421
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_43fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table that do""es not exist, instead of\n raising an error, an empty `tuple[tuple]` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: The fetched result.\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
30421
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_43fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `tuple[tuple]` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: The fetched result.\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
30422
30422
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_44fetch_query = {"fetch_query", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_44fetch_query, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_43fetch_query};
30423
30423
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_44fetch_query(PyObject *__pyx_v_self,
30424
30424
  #if CYTHON_METH_FASTCALL
@@ -30751,7 +30751,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
30751
30751
  PyObject *__pyx_args, PyObject *__pyx_kwds
30752
30752
  #endif
30753
30753
  ); /*proto*/
30754
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_46fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table that do""es not exist, instead of\n raising an error, an empty `tuple` or `DataFrame` (depends on 'cursor' type)\n will be returned as the execution result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: The fetched result (depends on 'cursor' type).\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
30754
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_46fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `tuple` or `DataFrame` (depends on 'cursor' type)\n will be returned as the execution result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: The fetched result (depends on 'cursor' type).\n\n Example:\n >>> await db.user.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
30755
30755
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_47fetch_query = {"fetch_query", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_47fetch_query, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_46fetch_query};
30756
30756
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_47fetch_query(PyObject *__pyx_v_self,
30757
30757
  #if CYTHON_METH_FASTCALL
@@ -40443,7 +40443,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_5Table_105generator25(__pyx_Co
40443
40443
 
40444
40444
  /* Python wrapper */
40445
40445
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_104information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
40446
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_103information, "Select table information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[dict]>`: Table information..\n ");
40446
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_103information, "Select table information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[dict]>`: Table information..\n ");
40447
40447
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_104information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_104information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_103information};
40448
40448
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_104information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
40449
40449
  CYTHON_UNUSED PyObject *__pyx_v_cursor = 0;
@@ -40610,7 +40610,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_5Table_108generator26(__pyx_Co
40610
40610
 
40611
40611
  /* Python wrapper */
40612
40612
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_107information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
40613
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_106information, "Select table information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<DataFrame>`: Table information.\n ");
40613
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_106information, "Select table information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<DataFrame>`: Table information.\n ");
40614
40614
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_107information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_107information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_106information};
40615
40615
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_107information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
40616
40616
  CYTHON_UNUSED PyObject *__pyx_v_cursor = 0;
@@ -40777,7 +40777,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_5Table_111generator27(__pyx_Co
40777
40777
 
40778
40778
  /* Python wrapper */
40779
40779
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_110information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
40780
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_109information, "Select table information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: Table information.\n ");
40780
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_109information, "Select table information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: Table information.\n ");
40781
40781
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_110information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_110information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_109information};
40782
40782
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_110information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
40783
40783
  CYTHON_UNUSED PyObject *__pyx_v_cursor = 0;
@@ -40944,7 +40944,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_5Table_114generator28(__pyx_Co
40944
40944
 
40945
40945
  /* Python wrapper */
40946
40946
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_113information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
40947
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_112information, "Select table information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Table information (depends on 'cursor' type).\n ");
40947
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_112information, "Select table information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Table information (depends on 'cursor' type).\n ");
40948
40948
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_113information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_113information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_112information};
40949
40949
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_113information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
40950
40950
  PyObject *__pyx_v_cursor = 0;
@@ -42335,7 +42335,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
42335
42335
  PyObject *__pyx_args, PyObject *__pyx_kwds
42336
42336
  #endif
42337
42337
  ); /*proto*/
42338
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_115describe, "`DESCRIBE` the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[dict]>`: Table description.\n ");
42338
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_115describe, "`DESCRIBE` the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[dict]>`: Table description.\n ");
42339
42339
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_116describe = {"describe", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_116describe, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_115describe};
42340
42340
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_116describe(PyObject *__pyx_v_self,
42341
42341
  #if CYTHON_METH_FASTCALL
@@ -42519,7 +42519,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
42519
42519
  PyObject *__pyx_args, PyObject *__pyx_kwds
42520
42520
  #endif
42521
42521
  ); /*proto*/
42522
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_118describe, "`DESCRIBE` the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<DataFrame>`: Table description.\n ");
42522
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_118describe, "`DESCRIBE` the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<DataFrame>`: Table description.\n ");
42523
42523
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_119describe = {"describe", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_119describe, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_118describe};
42524
42524
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_119describe(PyObject *__pyx_v_self,
42525
42525
  #if CYTHON_METH_FASTCALL
@@ -42703,7 +42703,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
42703
42703
  PyObject *__pyx_args, PyObject *__pyx_kwds
42704
42704
  #endif
42705
42705
  ); /*proto*/
42706
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_121describe, "`DESCRIBE` the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: Table description.\n ");
42706
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_121describe, "`DESCRIBE` the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: Table description.\n ");
42707
42707
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_122describe = {"describe", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_122describe, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_121describe};
42708
42708
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_122describe(PyObject *__pyx_v_self,
42709
42709
  #if CYTHON_METH_FASTCALL
@@ -42887,7 +42887,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
42887
42887
  PyObject *__pyx_args, PyObject *__pyx_kwds
42888
42888
  #endif
42889
42889
  ); /*proto*/
42890
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_124describe, "`DESCRIBE` the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Table description (depends on 'cursor' type).\n ");
42890
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_124describe, "`DESCRIBE` the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Table description (depends on 'cursor' type).\n ");
42891
42891
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_125describe = {"describe", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_125describe, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_124describe};
42892
42892
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_125describe(PyObject *__pyx_v_self,
42893
42893
  #if CYTHON_METH_FASTCALL
@@ -43139,7 +43139,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
43139
43139
  PyObject *__pyx_args, PyObject *__pyx_kwds
43140
43140
  #endif
43141
43141
  ); /*proto*/
43142
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_127_describe, "(Base method, internal use only). `DESCRIBE` the table.\n\n :param name: `<str>` Name of the table.\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Table description (depends on 'cursor' type).\n ");
43142
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_127_describe, "(Base method, internal use only). `DESCRIBE` the table.\n\n :param name: `<str>` Name of the table.\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Table description (depends on 'cursor' type).\n ");
43143
43143
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_128_describe = {"_describe", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_128_describe, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_127_describe};
43144
43144
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_128_describe(PyObject *__pyx_v_self,
43145
43145
  #if CYTHON_METH_FASTCALL
@@ -52743,7 +52743,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
52743
52743
  PyObject *__pyx_args, PyObject *__pyx_kwds
52744
52744
  #endif
52745
52745
  ); /*proto*/
52746
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_166show_index, "`SHOW INDEX` from the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[dict]>`: Index information.\n ");
52746
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_166show_index, "`SHOW INDEX` from the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[dict]>`: Index information.\n ");
52747
52747
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_167show_index = {"show_index", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_167show_index, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_166show_index};
52748
52748
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_167show_index(PyObject *__pyx_v_self,
52749
52749
  #if CYTHON_METH_FASTCALL
@@ -52927,7 +52927,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
52927
52927
  PyObject *__pyx_args, PyObject *__pyx_kwds
52928
52928
  #endif
52929
52929
  ); /*proto*/
52930
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_169show_index, "`SHOW INDEX` from the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<DataFrame>`: Index information.\n ");
52930
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_169show_index, "`SHOW INDEX` from the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<DataFrame>`: Index information.\n ");
52931
52931
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_170show_index = {"show_index", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_170show_index, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_169show_index};
52932
52932
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_170show_index(PyObject *__pyx_v_self,
52933
52933
  #if CYTHON_METH_FASTCALL
@@ -53111,7 +53111,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
53111
53111
  PyObject *__pyx_args, PyObject *__pyx_kwds
53112
53112
  #endif
53113
53113
  ); /*proto*/
53114
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_172show_index, "`SHOW INDEX` from the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: Index information.\n ");
53114
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_172show_index, "`SHOW INDEX` from the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: Index information.\n ");
53115
53115
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_173show_index = {"show_index", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_173show_index, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_172show_index};
53116
53116
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_173show_index(PyObject *__pyx_v_self,
53117
53117
  #if CYTHON_METH_FASTCALL
@@ -53295,7 +53295,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
53295
53295
  PyObject *__pyx_args, PyObject *__pyx_kwds
53296
53296
  #endif
53297
53297
  ); /*proto*/
53298
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_175show_index, "`SHOW INDEX` from the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Index information (depends on 'cursor' type).\n ");
53298
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_175show_index, "`SHOW INDEX` from the table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Index information (depends on 'cursor' type).\n ");
53299
53299
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_176show_index = {"show_index", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_176show_index, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_175show_index};
53300
53300
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_176show_index(PyObject *__pyx_v_self,
53301
53301
  #if CYTHON_METH_FASTCALL
@@ -53547,7 +53547,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
53547
53547
  PyObject *__pyx_args, PyObject *__pyx_kwds
53548
53548
  #endif
53549
53549
  ); /*proto*/
53550
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_178_show_index, "(Base method, internal use only). `SHOW INDEX` from the table.\n\n :param name: `<str>` Name of the table.\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Index information (depends on 'cursor' type).\n ");
53550
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_5Table_178_show_index, "(Base method, internal use only). `SHOW INDEX` from the table.\n\n :param name: `<str>` Name of the table.\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Index information (depends on 'cursor' type).\n ");
53551
53551
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_5Table_179_show_index = {"_show_index", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_5Table_179_show_index, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_5Table_178_show_index};
53552
53552
  static PyObject *__pyx_pw_11mysqlengine_8database_5Table_179_show_index(PyObject *__pyx_v_self,
53553
53553
  #if CYTHON_METH_FASTCALL
@@ -85923,7 +85923,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_9TimeTable_55generator70(__pyx
85923
85923
 
85924
85924
  /* Python wrapper */
85925
85925
  static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_54information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
85926
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_53information, "Select all sub-tables information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[dict]>`: All sub-tables information.\n ");
85926
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_53information, "Select all sub-tables information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[dict]>`: All sub-tables information.\n ");
85927
85927
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_54information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_54information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_53information};
85928
85928
  static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_54information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
85929
85929
  CYTHON_UNUSED PyObject *__pyx_v_cursor = 0;
@@ -86090,7 +86090,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_9TimeTable_58generator71(__pyx
86090
86090
 
86091
86091
  /* Python wrapper */
86092
86092
  static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_57information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
86093
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_56information, "Select all sub-tables information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<DataFrame>`: All sub-tables information.\n ");
86093
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_56information, "Select all sub-tables information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<DataFrame>`: All sub-tables information.\n ");
86094
86094
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_57information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_57information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_56information};
86095
86095
  static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_57information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
86096
86096
  CYTHON_UNUSED PyObject *__pyx_v_cursor = 0;
@@ -86257,7 +86257,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_9TimeTable_61generator72(__pyx
86257
86257
 
86258
86258
  /* Python wrapper */
86259
86259
  static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_60information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
86260
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_59information, "Select all sub-tables information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: All sub-tables information.\n ");
86260
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_59information, "Select all sub-tables information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: All sub-tables information.\n ");
86261
86261
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_60information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_60information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_59information};
86262
86262
  static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_60information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
86263
86263
  CYTHON_UNUSED PyObject *__pyx_v_cursor = 0;
@@ -86424,7 +86424,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_9TimeTable_64generator73(__pyx
86424
86424
 
86425
86425
  /* Python wrapper */
86426
86426
  static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_63information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
86427
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_62information, "Select all sub-tables information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: All sub-tables information (depends on 'cursor' type).\n ");
86427
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_62information, "Select all sub-tables information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'table_name', 'table_catalog', 'table_schema', 'table_type', 'engine', 'version',\n - 'row_format', 'table_rows', 'avg_row_length', 'data_length', 'max_data_length',\n - 'index_length', 'data_free', 'auto_increment', 'create_time', 'update_time',\n - 'check_time', 'table_collation', 'checksum', 'create_options', 'table_comment'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'table_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: All sub-tables information (depends on 'cursor' type).\n ");
86428
86428
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_63information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_63information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_62information};
86429
86429
  static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_63information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
86430
86430
  PyObject *__pyx_v_cursor = 0;
@@ -87815,7 +87815,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
87815
87815
  PyObject *__pyx_args, PyObject *__pyx_kwds
87816
87816
  #endif
87817
87817
  ); /*proto*/
87818
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_65describe, "`DESCRIBE` a sub-table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[dict]>`: Table description.\n ");
87818
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_65describe, "`DESCRIBE` a sub-table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[dict]>`: Table description.\n ");
87819
87819
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_66describe = {"describe", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_66describe, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_65describe};
87820
87820
  static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_66describe(PyObject *__pyx_v_self,
87821
87821
  #if CYTHON_METH_FASTCALL
@@ -87999,7 +87999,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
87999
87999
  PyObject *__pyx_args, PyObject *__pyx_kwds
88000
88000
  #endif
88001
88001
  ); /*proto*/
88002
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_68describe, "`DESCRIBE` a sub-table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<DataFrame>`: Table description.\n ");
88002
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_68describe, "`DESCRIBE` a sub-table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<DataFrame>`: Table description.\n ");
88003
88003
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_69describe = {"describe", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_69describe, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_68describe};
88004
88004
  static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_69describe(PyObject *__pyx_v_self,
88005
88005
  #if CYTHON_METH_FASTCALL
@@ -88183,7 +88183,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
88183
88183
  PyObject *__pyx_args, PyObject *__pyx_kwds
88184
88184
  #endif
88185
88185
  ); /*proto*/
88186
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_71describe, "`DESCRIBE` a sub-table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: Table description.\n ");
88186
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_71describe, "`DESCRIBE` a sub-table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: Table description.\n ");
88187
88187
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_72describe = {"describe", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_72describe, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_71describe};
88188
88188
  static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_72describe(PyObject *__pyx_v_self,
88189
88189
  #if CYTHON_METH_FASTCALL
@@ -88367,7 +88367,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
88367
88367
  PyObject *__pyx_args, PyObject *__pyx_kwds
88368
88368
  #endif
88369
88369
  ); /*proto*/
88370
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_74describe, "`DESCRIBE` a sub-table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Table description (depends on 'cursor' type).\n ");
88370
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_74describe, "`DESCRIBE` a sub-table.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Table description (depends on 'cursor' type).\n ");
88371
88371
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_75describe = {"describe", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_75describe, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_74describe};
88372
88372
  static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_75describe(PyObject *__pyx_v_self,
88373
88373
  #if CYTHON_METH_FASTCALL
@@ -92192,7 +92192,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
92192
92192
  PyObject *__pyx_args, PyObject *__pyx_kwds
92193
92193
  #endif
92194
92194
  ); /*proto*/
92195
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_95show_index, "`SHOW INDEX` of the TimeTable.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[dict]>`: Index information.\n ");
92195
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_95show_index, "`SHOW INDEX` of the TimeTable.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[dict]>`: Index information.\n ");
92196
92196
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_96show_index = {"show_index", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_96show_index, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_95show_index};
92197
92197
  static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_96show_index(PyObject *__pyx_v_self,
92198
92198
  #if CYTHON_METH_FASTCALL
@@ -92376,7 +92376,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
92376
92376
  PyObject *__pyx_args, PyObject *__pyx_kwds
92377
92377
  #endif
92378
92378
  ); /*proto*/
92379
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_98show_index, "`SHOW INDEX` of the TimeTable.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<DataFrame>`: Index information.\n ");
92379
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_98show_index, "`SHOW INDEX` of the TimeTable.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<DataFrame>`: Index information.\n ");
92380
92380
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_99show_index = {"show_index", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_99show_index, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_98show_index};
92381
92381
  static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_99show_index(PyObject *__pyx_v_self,
92382
92382
  #if CYTHON_METH_FASTCALL
@@ -92560,7 +92560,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
92560
92560
  PyObject *__pyx_args, PyObject *__pyx_kwds
92561
92561
  #endif
92562
92562
  ); /*proto*/
92563
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_101show_index, "`SHOW INDEX` of the TimeTable.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: Index information.\n ");
92563
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_101show_index, "`SHOW INDEX` of the TimeTable.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: Index information.\n ");
92564
92564
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_102show_index = {"show_index", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_102show_index, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_101show_index};
92565
92565
  static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_102show_index(PyObject *__pyx_v_self,
92566
92566
  #if CYTHON_METH_FASTCALL
@@ -92744,7 +92744,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
92744
92744
  PyObject *__pyx_args, PyObject *__pyx_kwds
92745
92745
  #endif
92746
92746
  ); /*proto*/
92747
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_104show_index, "`SHOW INDEX` of the TimeTable.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Index information (depends on 'cursor' type).\n ");
92747
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_9TimeTable_104show_index, "`SHOW INDEX` of the TimeTable.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Index information (depends on 'cursor' type).\n ");
92748
92748
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_9TimeTable_105show_index = {"show_index", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_9TimeTable_105show_index, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_9TimeTable_104show_index};
92749
92749
  static PyObject *__pyx_pw_11mysqlengine_8database_9TimeTable_105show_index(PyObject *__pyx_v_self,
92750
92750
  #if CYTHON_METH_FASTCALL
@@ -116059,7 +116059,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
116059
116059
  PyObject *__pyx_args, PyObject *__pyx_kwds
116060
116060
  #endif
116061
116061
  ); /*proto*/
116062
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_26fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table that do""es not exist, instead of\n raising an error, an empty `<tuple>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[dict]>`: The fetched result.\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
116062
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_26fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `<tuple>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[dict]>`: The fetched result.\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
116063
116063
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_8Database_27fetch_query = {"fetch_query", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_8Database_27fetch_query, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_8Database_26fetch_query};
116064
116064
  static PyObject *__pyx_pw_11mysqlengine_8database_8Database_27fetch_query(PyObject *__pyx_v_self,
116065
116065
  #if CYTHON_METH_FASTCALL
@@ -116392,7 +116392,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
116392
116392
  PyObject *__pyx_args, PyObject *__pyx_kwds
116393
116393
  #endif
116394
116394
  ); /*proto*/
116395
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_29fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table that do""es not exist, instead of\n raising an error, an empty `<DataFrame>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<DataFrame>`: The fetched result.\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
116395
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_29fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `<DataFrame>` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<DataFrame>`: The fetched result.\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
116396
116396
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_8Database_30fetch_query = {"fetch_query", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_8Database_30fetch_query, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_8Database_29fetch_query};
116397
116397
  static PyObject *__pyx_pw_11mysqlengine_8database_8Database_30fetch_query(PyObject *__pyx_v_self,
116398
116398
  #if CYTHON_METH_FASTCALL
@@ -116725,7 +116725,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
116725
116725
  PyObject *__pyx_args, PyObject *__pyx_kwds
116726
116726
  #endif
116727
116727
  ); /*proto*/
116728
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_32fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table that do""es not exist, instead of\n raising an error, an empty `tuple[tuple]` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: The fetched result.\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
116728
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_32fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `tuple[tuple]` will be returned as the execution\n result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: The fetched result.\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
116729
116729
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_8Database_33fetch_query = {"fetch_query", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_8Database_33fetch_query, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_8Database_32fetch_query};
116730
116730
  static PyObject *__pyx_pw_11mysqlengine_8database_8Database_33fetch_query(PyObject *__pyx_v_self,
116731
116731
  #if CYTHON_METH_FASTCALL
@@ -117058,7 +117058,7 @@ PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
117058
117058
  PyObject *__pyx_args, PyObject *__pyx_kwds
117059
117059
  #endif
117060
117060
  ); /*proto*/
117061
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_35fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table that do""es not exist, instead of\n raising an error, an empty `tuple` or `DataFrame` (depends on 'cursor' type)\n will be returned as the execution result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: The fetched result (depends on 'cursor' type).\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
117061
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_35fetch_query, "Execute a SQL statement and fetch the result.\n\n :param stmt: `<str>` The plain SQL statement to be executed.\n :param args: `<list/tuple>` Arguments for the `'%s'` placeholders in 'stmt'. Defaults to `None`.\n :param conn: `<Connection>` Specific connection to execute this query. Defaults to `None`.\n - If provided, the conn will be used to execute the SQL 'stmt'.\n This parameter is typically used within the `acquire()` or\n `transaction()` context.\n - If `None`, a temporary conn will be acquired from the Server pool\n to execute the `stmt`. After execution, the temporary conn will\n execute `COMMIT` and release back to the Server pool.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :param timeout: `<int>` Query execution timeout in seconds. Dafaults to `None`.\n - If set to `None` or `0`, `tables.server.query_timeout` will be used\n as the default timeout.\n - `SQLQueryTimeoutError` will be raised when the timeout is reached.\n\n :param warnings: `<bool>` Whether to issue any SQL related warnings. Defaults to `True`.\n\n :param resolve_absent_table: `<bool>` Whether to resolve absent table. Defaults to `False`.\n - If `True`, when `stmt` involves a table that does not exist, an attempt\n will be made to create the missing table (if it belongs to the current\n database). If creation failed, an `SQLQueryProgrammingError` will be\n raised; otherwise, an `SQLQueryTableDontExistsError` will be raised.\n - If `False`, when `stmt` involves a table tha""t does not exist, instead of\n raising an error, an empty `tuple` or `DataFrame` (depends on 'cursor' type)\n will be returned as the execution result.\n\n :raises: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: The fetched result (depends on 'cursor' type).\n\n Example:\n >>> await db.fetch_query(\n \"SELECT name, price FROM db.user WHERE id = %s\",\n args=(1,), # does not support multi-rows arguments.\n conn=None,\n cursor=DictCursor,\n resolve_absent_table=False,\n timeout=10,\n warnings=True,\n )\n ");
117062
117062
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_8Database_36fetch_query = {"fetch_query", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_11mysqlengine_8database_8Database_36fetch_query, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_8Database_35fetch_query};
117063
117063
  static PyObject *__pyx_pw_11mysqlengine_8database_8Database_36fetch_query(PyObject *__pyx_v_self,
117064
117064
  #if CYTHON_METH_FASTCALL
@@ -128946,7 +128946,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_8Database_73generator111(__pyx
128946
128946
 
128947
128947
  /* Python wrapper */
128948
128948
  static PyObject *__pyx_pw_11mysqlengine_8database_8Database_72information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
128949
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_71information, "Select database information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'catelog_name', 'schema_name', 'default_character_set_name',\n - 'default_collation_name', 'sql_path', 'default_encryption'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'schema_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[dict]>`: Database information.\n ");
128949
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_71information, "Select database information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'catelog_name', 'schema_name', 'default_character_set_name',\n - 'default_collation_name', 'sql_path', 'default_encryption'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'schema_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[dict]>`: Database information.\n ");
128950
128950
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_8Database_72information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_8Database_72information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_8Database_71information};
128951
128951
  static PyObject *__pyx_pw_11mysqlengine_8database_8Database_72information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
128952
128952
  CYTHON_UNUSED PyObject *__pyx_v_cursor = 0;
@@ -129113,7 +129113,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_8Database_76generator112(__pyx
129113
129113
 
129114
129114
  /* Python wrapper */
129115
129115
  static PyObject *__pyx_pw_11mysqlengine_8database_8Database_75information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
129116
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_74information, "Select database information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'catelog_name', 'schema_name', 'default_character_set_name',\n - 'default_collation_name', 'sql_path', 'default_encryption'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'schema_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<DataFrame>`: Database information.\n ");
129116
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_74information, "Select database information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'catelog_name', 'schema_name', 'default_character_set_name',\n - 'default_collation_name', 'sql_path', 'default_encryption'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'schema_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<DataFrame>`: Database information.\n ");
129117
129117
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_8Database_75information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_8Database_75information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_8Database_74information};
129118
129118
  static PyObject *__pyx_pw_11mysqlengine_8database_8Database_75information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
129119
129119
  CYTHON_UNUSED PyObject *__pyx_v_cursor = 0;
@@ -129280,7 +129280,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_8Database_79generator113(__pyx
129280
129280
 
129281
129281
  /* Python wrapper */
129282
129282
  static PyObject *__pyx_pw_11mysqlengine_8database_8Database_78information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
129283
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_77information, "Select database information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'catelog_name', 'schema_name', 'default_character_set_name',\n - 'default_collation_name', 'sql_path', 'default_encryption'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'schema_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: Database information.\n ");
129283
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_77information, "Select database information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'catelog_name', 'schema_name', 'default_character_set_name',\n - 'default_collation_name', 'sql_path', 'default_encryption'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'schema_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple[tuple]>`: Database information.\n ");
129284
129284
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_8Database_78information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_8Database_78information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_8Database_77information};
129285
129285
  static PyObject *__pyx_pw_11mysqlengine_8database_8Database_78information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
129286
129286
  CYTHON_UNUSED PyObject *__pyx_v_cursor = 0;
@@ -129447,7 +129447,7 @@ static PyObject *__pyx_gb_11mysqlengine_8database_8Database_82generator114(__pyx
129447
129447
 
129448
129448
  /* Python wrapper */
129449
129449
  static PyObject *__pyx_pw_11mysqlengine_8database_8Database_81information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
129450
- PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_80information, "Select database information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'catelog_name', 'schema_name', 'default_character_set_name',\n - 'default_collation_name', 'sql_path', 'default_encryption'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'schema_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `pandas.DataFrame`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[Any]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Database information.\n ");
129450
+ PyDoc_STRVAR(__pyx_doc_11mysqlengine_8database_8Database_80information, "Select database information from `INFORMATION_SCHEMA`.\n\n Available information options:\n - 'catelog_name', 'schema_name', 'default_character_set_name',\n - 'default_collation_name', 'sql_path', 'default_encryption'\n\n :param info: `<str>` The information to be selected.\n - If not specified, defaults to `'schema_name'`.\n - Use `'*'` to select all information.\n\n :param cursor: `<type[Cursor]>` The `Cursor` class to use for query execution. Defaults to `DictCursor`.\n - `DictCursor/SSDictCursor`: Fetch result as `<tuple[dict]>`.\n - `DfCursor/SSDfCursor`: Fetch result as `<pandas.DataFrame>`.\n - `Cursor/SSCursor`: Fetch result as `<tuple[tuple]>` (without column names).\n\n :raise: Subclass of `QueryError`.\n :return `<tuple/DataFrame>`: Database information.\n ");
129451
129451
  static PyMethodDef __pyx_mdef_11mysqlengine_8database_8Database_81information = {"information", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_11mysqlengine_8database_8Database_81information, METH_VARARGS|METH_KEYWORDS, __pyx_doc_11mysqlengine_8database_8Database_80information};
129452
129452
  static PyObject *__pyx_pw_11mysqlengine_8database_8Database_81information(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
129453
129453
  PyObject *__pyx_v_cursor = 0;
@@ -167991,7 +167991,7 @@ static CYTHON_SMALL_CODE int __Pyx_InitCachedConstants(void) {
167991
167991
  __Pyx_GOTREF(__pyx_tuple__6);
167992
167992
  __Pyx_GIVEREF(__pyx_tuple__6);
167993
167993
 
167994
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":983
167994
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":983
167995
167995
  * __pyx_import_array()
167996
167996
  * except Exception:
167997
167997
  * raise ImportError("numpy.core.multiarray failed to import") # <<<<<<<<<<<<<<
@@ -168002,7 +168002,7 @@ static CYTHON_SMALL_CODE int __Pyx_InitCachedConstants(void) {
168002
168002
  __Pyx_GOTREF(__pyx_tuple__7);
168003
168003
  __Pyx_GIVEREF(__pyx_tuple__7);
168004
168004
 
168005
- /* "../tmp/pip-build-env-qxqp7070/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":989
168005
+ /* "../tmp/pip-build-env-oh_p7v02/overlay/lib/python3.11/site-packages/numpy/__init__.cython-30.pxd":989
168006
168006
  * _import_umath()
168007
168007
  * except Exception:
168008
168008
  * raise ImportError("numpy.core.umath failed to import") # <<<<<<<<<<<<<<