myawesomepkg 0.1.2__py3-none-any.whl → 0.1.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,287 @@
1
+ # -*- coding: utf-8 -*-
2
+ """TSA_Practical_No_1.ipynb
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1-xNPJwhkAO4KzKFMvXII92dc9Y_VTQ8H
8
+
9
+ **Practical No 1:**
10
+ **Aim: Handling timeseries data**
11
+
12
+ a. Import timeseries data
13
+
14
+ b. Visualizing timeseries data using various plot
15
+
16
+ # **A. Load and Explore Time Series Data**
17
+ """
18
+
19
+ from pandas import read_csv
20
+ series = read_csv('/content/daily-total-female-births.csv', header=0, index_col=0, parse_dates=True)
21
+ print(type(series))
22
+ print(series.head())
23
+
24
+ """The arguments to the **readcsv()** function. We provide it a number of hints to ensure the data is loaded as a Series.
25
+
26
+ 1. **header=0:** We must specify the header information at row 0.
27
+ 2. **parse_dates=True:** We give the function a hint that data in the first column contains dates that need to be parsed.
28
+ 3. **index_col=0:** We hint that the first column contains the index information for the time series.
29
+ 4. **squeeze=True:** We hint that we only have one data column and that we are interested in a Series and not a DataFrame.
30
+
31
+ You can use the **head()** function to peek at the first 5 records or specify the first n number of records to review
32
+ """
33
+
34
+ print(series.head(10))
35
+
36
+ """**Number of Observations**
37
+ You can get the dimensionality of your Series using the size parameter.
38
+ """
39
+
40
+ print(series.size)
41
+
42
+ """ **Querying By Time**
43
+ You can slice, dice, and query your series using the time index. For example, you can access all observations in January as follows:
44
+
45
+ **series.loc[]**
46
+
47
+ Access a group of rows and columns by label(s) or a boolean array.
48
+ .loc[] is primarily label based, but may also be used with a boolean array.
49
+ """
50
+
51
+ print(series.loc["1959-01"])
52
+
53
+ """**Descriptive Statistics**
54
+ Calculating descriptive statistics on your time series can help get an idea of the distribution and
55
+ spread of values.
56
+ The **describe()** function creates
57
+ a 7 number summary of the loaded time series including mean, standard deviation, median,
58
+ minimum, and maximum of the observations
59
+ """
60
+
61
+ print(series.describe())
62
+
63
+ """# **B. Data Visualization**
64
+ Visualization plays an important role in time series analysis and forecasting. Plots of the raw
65
+ sample data can provide valuable diagnostics to identify temporal structures like trends, cycles,
66
+ and seasonality that can influence the choice of model. A problem is that many novices in the
67
+ field of time series forecasting stop with line plots.
68
+
69
+ Different types of visualizations that you can use on your own time series data. They are:
70
+ 1. Line Plots.
71
+ 2. Histograms and Density Plots.
72
+ 3. Box and Whisker Plots.
73
+ 4. Heat Maps.
74
+ 5. Lag Plots or Scatter Plots.
75
+ 6. Autocorrelation Plots.
76
+
77
+ **Minimum Daily Temperatures Dataset**
78
+ We will use the Minimum Daily Temperatures dataset as an example. This dataset
79
+ describes the minimum daily temperatures over 10 years (1981-1990) in the city Melbourne,
80
+ Australia.
81
+ """
82
+
83
+ from pandas import read_csv
84
+ from matplotlib import pyplot
85
+ series = read_csv('daily-min-temperatures.csv', header=0, index_col=0,parse_dates=True)
86
+ print(series.head())
87
+ series=series.squeeze()
88
+ type(series)
89
+ print(series.describe())
90
+
91
+ """**Line Plot**
92
+ The first, and perhaps most popular, visualization for time series is the line plot. In this plot,
93
+ time is shown on the x-axis with observation values along the y-axis. Below is an example of
94
+ visualizing the Pandas Series of the Minimum Daily Temperatures dataset directly as a line
95
+ plot.
96
+ """
97
+
98
+ series.plot()
99
+ pyplot.show()
100
+
101
+ """Changing the style of the line to
102
+ be black dots instead of a connected line (the style=’k.’ argument).
103
+ """
104
+
105
+ series.plot(style='k.')
106
+ pyplot.show()
107
+
108
+ series.plot(style='k--')
109
+ pyplot.show()
110
+
111
+ """It can be helpful to compare line plots for the same interval, such as from day-to-day,
112
+ month-to-month, and year-to-year. The Minimum Daily Temperatures dataset spans 10
113
+ years. We can group data by year and create a line plot for each year for direct comparison. The example below shows how to do this. First the observations are grouped by year (series.groupby(Grouper(freq=’A’))).
114
+
115
+ A **Grouper** allows the user to specify a groupby instruction for an object.
116
+
117
+ This specification will select a column via the key parameter, or if the level and/or axis parameters are given, a level of the index of the target object.
118
+
119
+ If axis and/or level are passed as keywords to both Grouper and groupby, the values passed to Grouper take precedence
120
+
121
+ The groups are then enumerated and the observations for each year are stored as columns
122
+ in a new DataFrame. Finally, a plot of this contrived DataFrame is created with each column
123
+ visualized as a subplot with legends removed to cut back on the clutter.
124
+
125
+ The **squeeze()** method converts a single column DataFrame into a Series.
126
+ """
127
+
128
+ from pandas import read_csv
129
+ from pandas import DataFrame
130
+ from pandas import Grouper
131
+ from matplotlib import pyplot
132
+ series = read_csv('/content/daily-min-temperatures.csv', header=0, index_col=0, parse_dates=True)
133
+ #print(series.head())
134
+
135
+ series=series.squeeze()
136
+ #print(series.head())
137
+ groups = series.groupby(Grouper(freq='A'))
138
+ #print(groups)
139
+ years = DataFrame()
140
+ #print(years)
141
+ for name, group in groups:
142
+ years[name.year] = group.values
143
+ print(years)
144
+ years.plot(subplots=True, legend=False)
145
+ pyplot.show()
146
+
147
+ """**Histogram and Density Plots**
148
+
149
+ Another important visualization is of the distribution of observations themselves. This means a
150
+ plot of the values without the temporal ordering. Some linear time series forecasting methods
151
+ assume a well-behaved distribution of observations (i.e. a bell curve or normal distribution).
152
+ This can be explicitly checked using tools like statistical hypothesis tests. But plots can provide
153
+ a useful first check of the distribution of observations both on raw observations and after any
154
+ type of data transform has been performed.
155
+ The example below creates a histogram plot of the observations in the Minimum Daily
156
+ Temperatures dataset. A histogram groups values into bins, and the frequency or count of
157
+ observations in each bin can provide insight into the underlying distribution of the observations. Histograms and density plots provide insight into the distribution of all observations, but we
158
+ may be interested in the distribution of values by time interval.
159
+ """
160
+
161
+ series.hist()
162
+ pyplot.show()
163
+
164
+ """Generate Kernel Density Estimate plot using Gaussian kernels."""
165
+
166
+ series.plot(kind='kde')
167
+ pyplot.show()
168
+
169
+ years.boxplot()
170
+ pyplot.show()
171
+
172
+ """**Box and Whisker Plots by Interval**
173
+
174
+ Another type of plot that is
175
+ useful to summarize the distribution of observations is the box and whisker plot. This plot
176
+ draws a box around the 25th and 75th percentiles of the data that captures the middle 50% of
177
+ observations. A line is drawn at the 50th percentile (the median) and whiskers are drawn above
178
+ and below the box to summarize the general extents of the observations. Dots are drawn for
179
+ outliers outside the whiskers or extents of the data.
180
+
181
+ Box and whisker plots can be created and compared for each interval in a time series, such
182
+ as years, months, or days. Below is an example of grouping the Minimum Daily Temperatures
183
+ dataset by years, as was done above in the plot example. A box and whisker plot is then created
184
+ for each year and lined up side-by-side for direct comparison.
185
+
186
+ Within an interval,
187
+ it can help to spot outliers (dots above or below the whiskers). Across intervals, in this case
188
+ years, we can look for multiple year trends, seasonality, and other structural information that
189
+ could be modeled
190
+ """
191
+
192
+ from pandas import read_csv
193
+ from pandas import DataFrame
194
+ from pandas import Grouper
195
+ from matplotlib import pyplot
196
+ series = read_csv('daily-min-temperatures.csv', header=0, index_col=0, parse_dates=True)
197
+ series=series.squeeze()
198
+ groups = series.groupby(Grouper(freq='A'))
199
+ years = DataFrame()
200
+ for name, group in groups:
201
+ years[name.year] = group.values
202
+ years.boxplot()
203
+ pyplot.show()
204
+
205
+ """**Heat Maps**
206
+ A matrix of numbers can be plotted as a surface, where the values in each cell of the matrix are
207
+ assigned a unique color. This is called a heatmap, as larger values can be drawn with warmer
208
+ colors (yellows and reds) and smaller values can be drawn with cooler colors (blues and greens).
209
+ Like the box and whisker plots, we can compare observations between intervals using a heat
210
+ map.
211
+ In the case of the Minimum Daily Temperatures, the observations can be arranged into a
212
+ matrix of year-columns and day-rows, with minimum temperature in the cell for each day. A
213
+ heat map of this matrix can then be plotted. Below is an example of creating a heatmap of
214
+ the Minimum Daily Temperatures data. The matshow() function from the Matplotlib library
215
+ is used as no heatmap support is provided directly in Pandas. For convenience, the matrix is rotated (transposed) so that each row represents one year and each column one day. This
216
+ provides a more intuitive, left-to-right layout of the data.
217
+
218
+ """
219
+
220
+ from pandas import read_csv
221
+ from pandas import DataFrame
222
+ from pandas import Grouper
223
+ from matplotlib import pyplot
224
+ series = read_csv('daily-min-temperatures.csv', header=0, index_col=0, parse_dates=True)
225
+ series=series.squeeze()
226
+ groups = series.groupby(Grouper(freq='A'))
227
+ years = DataFrame()
228
+ for name, group in groups:
229
+ years[name.year] = group.values
230
+ years = years.T
231
+ print(years)
232
+ pyplot.matshow(years, interpolation=None, aspect='auto')
233
+ pyplot.show()
234
+
235
+ """The plot shows the cooler minimum temperatures in the middle days of the years and
236
+ the warmer minimum temperatures in the start and ends of the years, and all the fading and
237
+ complexity in between.
238
+
239
+ **Lag Scatter Plots**
240
+ Time series modeling assumes a relationship between an observation and the previous observation.
241
+ Previous observations in a time series are called lags, with the observation at the previous timestep called lag=1, the observation at two time steps ago lag=2, and so on. A useful type of plot
242
+ to explore the relationship between each observation and a lag of that observation is called the
243
+ scatter plot. Pandas has a built-in function for exactly this called the lag plot. It plots the
244
+ observation at time t on the x-axis and the observation at the next time step (t+1) on the
245
+ y-axis.
246
+
247
+ If the points cluster along a diagonal line from the bottom-left to the top-right of the plot,
248
+ it suggests a positive correlation relationship.
249
+ ˆ If the points cluster along a diagonal line from the top-left to the bottom-right, it suggests
250
+ a negative correlation relationship.
251
+ ˆ Either relationship is good as they can be modeled.
252
+
253
+ More points tighter in to the diagonal line suggests a stronger relationship and more spread
254
+ from the line suggests a weaker relationship. A ball in the middle or a spread across the plot
255
+ suggests a weak or no relationship.
256
+ """
257
+
258
+ from pandas.plotting import lag_plot
259
+ lag_plot(series)
260
+ pyplot.show()
261
+
262
+ """The plot created from running the example shows a relatively strong positive correlation
263
+ between observations and their lag1 values
264
+
265
+ **Autocorrelation Plots**
266
+ We can quantify the strength and type of relationship between observations and their lags. In
267
+ statistics, this is called correlation, and when calculated against lag values in time series, it is
268
+ called autocorrelation (self-correlation). A correlation value calculated between two groups of
269
+ numbers, such as observations and their lag=1 values, results in a number between -1 and 1.
270
+ The sign of this number indicates a negative or positive correlation respectively. A value close to
271
+ zero suggests a weak correlation, whereas a value closer to -1 or 1 indicates a strong correlation.
272
+ Correlation values, called correlation coefficients, can be calculated for each observation and
273
+ different lag values. Once calculated, a plot can be created to help better understand how this
274
+ relationship changes over the lag. This type of plot is called an autocorrelation plot and Pandas provides this capability built in, called the autocorrelation plot() function.
275
+ """
276
+
277
+ from pandas.plotting import autocorrelation_plot
278
+ autocorrelation_plot(series)
279
+ pyplot.show()
280
+
281
+ """The resulting plot shows lag along the x-axis and the correlation on the y-axis. Dotted lines
282
+ are provided that indicate any correlation values above those lines are statistically significant
283
+ (meaningful). We can see that for the Minimum Daily Temperatures dataset we see cycles of
284
+ strong negative and positive correlation. This captures the relationship of an observation with
285
+ past observations in the same and opposite seasons or times of year. Sine waves like those seen
286
+ in this example are a strong sign of seasonality in the dataset
287
+ """
@@ -0,0 +1,121 @@
1
+ # -*- coding: utf-8 -*-
2
+ """TSA_Practical No 2.ipynb
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1X2scZpqK4F_dqV8QohehZCIZswnttekq
8
+
9
+ **Practical No 2**
10
+ **Aim: Implementing timeseries components**
11
+ 1. Seasonality
12
+ 2. Trend
13
+ 3. Pattern
14
+ 4. Cyclic
15
+
16
+ **random.normal(loc=0.0, scale=1.0, size=None)**
17
+
18
+ Draw random samples from a normal (Gaussian) distribution.
19
+
20
+ **Parameters:**
21
+ loc: float or array_like of floats
22
+ Mean (“centre”) of the distribution.
23
+
24
+ scale: float or array_like of floats
25
+ Standard deviation (spread or “width”) of the distribution. Must be non-negative.
26
+
27
+ size: int or tuple of ints, optional
28
+ Output shape.
29
+ """
30
+
31
+ import numpy as np
32
+ import matplotlib.pyplot as plt
33
+
34
+ # Upward Trend
35
+ t = np.arange(0, 10, 0.1)
36
+ data = t + np.random.normal(0, 0.5, len(t))
37
+ plt.plot(t, data, label='Upward Trend')
38
+
39
+ # Downward Trend
40
+ t = np.arange(0, 10, 0.1)
41
+ data = -t + np.random.normal(0, 0.5, len(t))
42
+ plt.plot(t, data, label='Downward Trend')
43
+
44
+ # Horizontal Trend
45
+ t = np.arange(0, 10, 0.1)
46
+ data = np.zeros(len(t)) + np.random.normal(0, 0.5, len(t))
47
+ plt.plot(t, data, label='Horizontal Trend')
48
+
49
+ # Non-linear Trend
50
+ t = np.arange(0, 10, 0.1)
51
+ data = t**2 + np.random.normal(0, 0.5, len(t))
52
+ plt.plot(t, data, label='Non-linear Trend')
53
+
54
+ plt.legend()
55
+ plt.show()
56
+
57
+ import numpy as np
58
+ import matplotlib.pyplot as plt
59
+
60
+ # generate sample data with different types of seasonality
61
+ np.random.seed(1)
62
+ time = np.arange(0, 366)
63
+
64
+ # weekly seasonality
65
+ weekly_seasonality = np.sin(2 * np.pi * time / 7)
66
+ weekly_data = 5 + weekly_seasonality
67
+
68
+ # monthly seasonality
69
+ monthly_seasonality = np.sin(2 * np.pi * time / 30)
70
+ monthly_data = 5 + monthly_seasonality
71
+
72
+ # annual seasonality
73
+ annual_seasonality = np.sin(2 * np.pi * time / 365)
74
+ annual_data = 5 + annual_seasonality
75
+
76
+ # plot the data
77
+ plt.figure(figsize=(12, 8))
78
+ plt.plot(time, weekly_data,label='Weekly Seasonality')
79
+ plt.plot(time, monthly_data,label='Monthly Seasonality')
80
+ plt.plot(time, annual_data,label='Annual Seasonality')
81
+ plt.legend(loc='upper left')
82
+ plt.show()
83
+
84
+ import numpy as np
85
+ import matplotlib.pyplot as plt
86
+
87
+ # Generate sample data with cyclic patterns
88
+ np.random.seed(1)
89
+ time = np.array([0, 30, 60, 90, 120,
90
+ 150, 180, 210, 240,
91
+ 270, 300, 330])
92
+ data = 10 * np.sin(2 * np.pi * time / 50) + 20 * np.sin(2 * np.pi * time / 100)
93
+
94
+ # Plot the data
95
+ plt.figure(figsize=(12, 8))
96
+ plt.plot(time, data, label='Cyclic Data')
97
+ plt.legend(loc='upper left')
98
+ plt.xlabel('Time (days)')
99
+ plt.ylabel('Value')
100
+ plt.title('Cyclic Time Series Data')
101
+ plt.show()
102
+
103
+ import numpy as np
104
+ import matplotlib.pyplot as plt
105
+
106
+ # Generate sample time series data
107
+ np.random.seed(1)
108
+ time = np.arange(0, 100)
109
+ #data = 5 * np.sin(2 * np.pi * time / 20) + 2 * time
110
+ data=np.sin(2 * np.pi * time / 30)+time
111
+
112
+ # Introduce irregularities by adding random noise
113
+ irregularities = np.random.normal(0, 5, len(data))
114
+ irregular_data = data + irregularities
115
+
116
+ # Plot the original data and the data with irregularities
117
+ plt.figure(figsize=(12, 8))
118
+ plt.plot(time, data, label='Original Data')
119
+ plt.plot(time, irregular_data,label='Data with Irregularities')
120
+ plt.legend(loc='upper left')
121
+ plt.show()
@@ -0,0 +1,12 @@
1
+ Metadata-Version: 2.1
2
+ Name: myawesomepkg
3
+ Version: 0.1.4
4
+ Summary: A simple greeting library
5
+ Author: Your Name
6
+ Author-email: your.email@example.com
7
+ Classifier: Programming Language :: Python :: 3
8
+ Classifier: License :: OSI Approved :: MIT License
9
+ Classifier: Operating System :: OS Independent
10
+ Requires-Python: >=3.6
11
+ Description-Content-Type: text/markdown
12
+
@@ -0,0 +1,25 @@
1
+ myawesomepkg/__init__.py,sha256=gNi6noitr9U8Cfc2UcldtL4tyZk6QHS6MU8OKJOElCA,29
2
+ myawesomepkg/core.py,sha256=BrAMNx-AdBpoqCAJ_In7Z5ZJC3AZaseEg79JUzs16gs,52
3
+ myawesomepkg/TSAPY1/Practical No 1.py,sha256=gqBPwTi8BuG3D1CnFAzjPeyey5iEhDryoYWq1Wxc218,3140
4
+ myawesomepkg/TSAPY1/Practical No 2.py,sha256=MF4a-5P_YX86uRPQPYhq3XxbBDJihFkuljAV2wN4qPc,2897
5
+ myawesomepkg/TSAPY1/Practical No 3.py,sha256=x9mKHk0r9F_08geny0DsWU8VZqLDr0RjhxqAaAEaJuM,4994
6
+ myawesomepkg/TSAPY1/Practical No 4 A.py,sha256=Mhdni1p1TPNSrK4SebO4vomVpJogmydFIsxKaMNAxwE,5575
7
+ myawesomepkg/TSAPY1/Practical No 4 B.py,sha256=Nm9IDkRsyZkHzTNgkbaQjGX36kQyMqF6KPSxlIA7bho,2211
8
+ myawesomepkg/TSAPY1/Practical No 5.py,sha256=UKIMzwpI2AAgQ7AdsGCMk1yjUSHna9fAx-rR-kI6N8k,1211
9
+ myawesomepkg/TSAPY1/Practical No 6.py,sha256=SR3Z_D83Mj6xZu1_6aMWrLDBebcvLaJl4vWXHw2lTx0,1061
10
+ myawesomepkg/TSAPY1/Practical No 7.py,sha256=oOokK-GegBum3v884JtbgBjqZJRKCngOuo2u7qopz1Q,2060
11
+ myawesomepkg/TSAPY1/Practical No 8.py,sha256=Qmm--XEXDrsOi8z7NyfwU-2ubjXkYvxf_L--Z7CMjIA,2070
12
+ myawesomepkg/TSAPY1/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
13
+ myawesomepkg/TSAPY1/practical_no_3.py,sha256=UL3Q7uG9C8E8vqj3Oz2ZPeqeQsqFkbhZj5PIHNZPXj0,5772
14
+ myawesomepkg/TSAPY1/practical_no_4.py,sha256=d-eLgQqIOVbJppMa_G26TybLV7XKN945KgAwFGAzHGc,6688
15
+ myawesomepkg/TSAPY1/practical_no_4b.py,sha256=3b4FcycuTR-hBgYSdTII1C8fM80NRiXImW5aMIa08TI,2078
16
+ myawesomepkg/TSAPY1/practical_no_5_ac_and_pca.py,sha256=yGV47-sRLODerprs3Jz9dyppfiFE6jo0aml5Qvk3swg,1305
17
+ myawesomepkg/TSAPY1/practical_no_6.py,sha256=LdkeIQzDqbFMkxZzvlvDDIqKcT8jERm0rrDboQk3QWI,1229
18
+ myawesomepkg/TSAPY1/practical_no_7.py,sha256=2QPJ2jBVxW2UHe1tq-ftoyBmv3uUxuGVmXEXe6e7Wi0,2175
19
+ myawesomepkg/TSAPY1/practical_no_8.py,sha256=oVL2pA30SXkVoRZrp7iAwIzJFc-fvlXw5FZXjnxvPDs,2096
20
+ myawesomepkg/TSAPY1/tsa_practical_no_1.py,sha256=70woXKISzeKysib6pWmvUbGUpGec7E2cFpfdwXxenZM,12517
21
+ myawesomepkg/TSAPY1/tsa_practical_no_2.py,sha256=ebS05HTVVuJHn92-wNzaU_wgADq6UTY2dsgZ9I736FQ,3167
22
+ myawesomepkg-0.1.4.dist-info/METADATA,sha256=KGO_AcGa3q3BfLIcNVY-LaWawIQWqoK6qHwhnrfjKvE,368
23
+ myawesomepkg-0.1.4.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
24
+ myawesomepkg-0.1.4.dist-info/top_level.txt,sha256=Pngzshta5k3nST58NluFg5L7yoZth2MPR0huoroI7ao,13
25
+ myawesomepkg-0.1.4.dist-info/RECORD,,
myawesomepkg/d.py DELETED
@@ -1,36 +0,0 @@
1
- import math
2
- n=int(input("Enter no of input neurons:"))
3
-
4
- print("enter input")
5
- inputs=[]
6
-
7
- for i in range(0,n):
8
- x=float(input())
9
- inputs.append(x)
10
- print(inputs)
11
-
12
- print("enter weight")
13
- weights=[]
14
-
15
- for i in range(0,n):
16
- w=float(input())
17
- weights.append(w)
18
- print(weights)
19
-
20
- print(" the net input is calculated as Yin=x1w1+x2w2+x3w3")
21
-
22
- Yin=[]
23
- for i in range(0,n):
24
- Yin.append(inputs[i]*weights[i])
25
- ynet=round(sum(Yin),3)
26
-
27
- print("net input for y neuron",ynet)
28
-
29
- print("apply activation function over net input, Binary function")
30
-
31
- y=round(1/(1+math.exp(-ynet)),3)
32
- print(y)
33
-
34
- print("apply activation function over net input, Bipolar function")
35
- y=round((2/(1+math.exp(-ynet)))-1,3)
36
- print(y)
@@ -1,7 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: myawesomepkg
3
- Version: 0.1.2
4
- Summary: A simple greeting library
5
- Author: Your Name
6
- Requires-Python: >=3.6
7
-
@@ -1,7 +0,0 @@
1
- myawesomepkg/__init__.py,sha256=gNi6noitr9U8Cfc2UcldtL4tyZk6QHS6MU8OKJOElCA,29
2
- myawesomepkg/core.py,sha256=BrAMNx-AdBpoqCAJ_In7Z5ZJC3AZaseEg79JUzs16gs,52
3
- myawesomepkg/d.py,sha256=9MYJrjyoIJxsjdkXwUNzEbTHIVTyYd8M9OsBJ4bLRXE,729
4
- myawesomepkg-0.1.2.dist-info/METADATA,sha256=DB4TiUNmfQyWXgRIUD9uKr0b2wAvYfZvyB8bzDNnmzY,140
5
- myawesomepkg-0.1.2.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
6
- myawesomepkg-0.1.2.dist-info/top_level.txt,sha256=Pngzshta5k3nST58NluFg5L7yoZth2MPR0huoroI7ao,13
7
- myawesomepkg-0.1.2.dist-info/RECORD,,