mxlpy 0.22.0__py3-none-any.whl → 0.23.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
mxlpy/units.py CHANGED
@@ -36,6 +36,7 @@ from sympy.physics.units import (
36
36
  watt,
37
37
  weber,
38
38
  )
39
+ from sympy.physics.units.quantities import Quantity
39
40
 
40
41
  __all__ = [
41
42
  "ampere",
@@ -126,3 +127,7 @@ sievert = joule / kilogram # type: ignore
126
127
  lumen = candela * steradian # type: ignore
127
128
  dimensionless = None
128
129
  item = 1 # pseudounit for one thing
130
+
131
+ # Plant units
132
+ mol_chl = Quantity("mol_chl", abbrev="mol_chl")
133
+ mmol_mol_chl = mmol / mol_chl
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mxlpy
3
- Version: 0.22.0
3
+ Version: 0.23.0
4
4
  Summary: A package to build metabolic models
5
5
  Author-email: Marvin van Aalst <marvin.vanaalst@gmail.com>
6
6
  Maintainer-email: Marvin van Aalst <marvin.vanaalst@gmail.com>
@@ -22,6 +22,7 @@ Classifier: Programming Language :: Python :: 3.11
22
22
  Classifier: Topic :: Scientific/Engineering
23
23
  Classifier: Topic :: Software Development
24
24
  Requires-Python: >=3.12
25
+ Requires-Dist: diffrax>=0.7.0
25
26
  Requires-Dist: dill>=0.3.9
26
27
  Requires-Dist: latexify-py>=0.4.4
27
28
  Requires-Dist: lazy-import>=0.2.2
@@ -32,6 +33,7 @@ Requires-Dist: numpy>=2.1.2
32
33
  Requires-Dist: pandas>=2.2.3
33
34
  Requires-Dist: parameteriser>=0.1.0
34
35
  Requires-Dist: pebble>=5.0.7
36
+ Requires-Dist: pysbml>=0.2.0
35
37
  Requires-Dist: python-libsbml>=5.20.4
36
38
  Requires-Dist: salib>=1.5.1
37
39
  Requires-Dist: scipy>=1.14.1
@@ -42,6 +44,7 @@ Requires-Dist: tabulate>=0.9.0
42
44
  Requires-Dist: toml>=0.10.2
43
45
  Requires-Dist: tqdm>=4.66.6
44
46
  Requires-Dist: typing-extensions>=4.12.2
47
+ Requires-Dist: wadler-lindig>=0.1.7
45
48
  Provides-Extra: keras
46
49
  Requires-Dist: keras>=3.9.2; extra == 'keras'
47
50
  Provides-Extra: tensorflow
@@ -1,36 +1,37 @@
1
- mxlpy/__init__.py,sha256=GlBZ-WmSoMgVIeAyVqtEJiRe_jLar84bjbg_FlAr2vw,4477
2
- mxlpy/carousel.py,sha256=o72YKzfPCDhT5oHhow4oNvIShG-i3-Z0UMEQLt2iE5A,4699
3
- mxlpy/compare.py,sha256=PJbb_R9GTGrkcEpGNpUfwZpZbUmZHNjsMQ_5qPAxVNo,7746
1
+ mxlpy/__init__.py,sha256=XQc1WNOxUzRbM8s7hO4p6r7dFsru0BCcedJITawqIo0,4574
2
+ mxlpy/carousel.py,sha256=nYWEdxDd7lm5INfZjpwaEhYqysg9e4EH9Ubcl6bPca8,4721
3
+ mxlpy/compare.py,sha256=o-tUxHJrzzVsQkiKPCFD_4bpqsWrvBMyOPoBQ1Dl420,7746
4
4
  mxlpy/distributions.py,sha256=ce6RTqn19YzMMec-u09fSIUA8A92M6rehCuHuXWcX7A,8734
5
5
  mxlpy/fit.py,sha256=3hGUqJ2tOOToZLMMaJw5M9b6_UlUJwT_MhUvfPmRBd8,22355
6
6
  mxlpy/fns.py,sha256=NLxYwa3ylS7SkISBjw_TgQSKEm7WnkZF9wPigX_ZCAM,13915
7
7
  mxlpy/identify.py,sha256=G-Zyr_l-K2mDtIV1xGrQ52QJxoBYqRoNA5RW6GpbNjs,2213
8
- mxlpy/label_map.py,sha256=kNzqDVp5X6T4uod-y79d6cItOd7_9jmpojDA1TSPRoE,17872
8
+ mxlpy/label_map.py,sha256=PwYanfg07hC0ayyOOP72RFlCQNvhCTbpOhW6kZZ2GUU,17826
9
9
  mxlpy/linear_label_map.py,sha256=6Ye6IziWGKkYD_5z3FmTVwnJ2T9SvVGN3U4CfXjXseo,10320
10
- mxlpy/mc.py,sha256=AvvnyNIEvaB9gJyd0RtaFs_uVhZ7Xh2FpljHH04YRkc,17217
11
- mxlpy/mca.py,sha256=BRNbisYijT2SUT6VdIpIh3Id3VgL3NTtycn0VARDWlE,9375
12
- mxlpy/model.py,sha256=GD1FGppxDJwvEx4ehcQeOx3qkqr8PxDTQ0TwoixBvKI,71617
10
+ mxlpy/mc.py,sha256=6n6VAuSVcXinqcWxNJAioMYpBmSAB40WItPloK1vmBM,17017
11
+ mxlpy/mca.py,sha256=IoOHJbjPnAEDqKk64OjFjgRPX5K_aE9D4RrCJ1xFIkw,9457
12
+ mxlpy/model.py,sha256=tAz_Rbe_S1Ho-k_14gBxmE9RMYo2xJUWYkdLYUyMKHg,79072
13
13
  mxlpy/parallel.py,sha256=yLQLw5O4vnPVp_Zmtw1UhPWtB3483foimxQB-TwFKPg,5016
14
14
  mxlpy/parameterise.py,sha256=IgbvfEnkmaqVq_5GgFjHqApGUN9CJrsVD3Fr7pg9iFA,758
15
15
  mxlpy/paths.py,sha256=TK2wO4N9lG-UV1JGfeB64q48JVDbwqIUj63rl55MKuQ,1022
16
- mxlpy/plot.py,sha256=PA7tAmy2XXACxBLtdnfpxKUFRzi-lnCQjr7gw_nzxKU,32544
16
+ mxlpy/plot.py,sha256=oZq8NqycdiJwqEm7FVpNTBkjGYgPBEbqDqZxbrvUtDI,32662
17
17
  mxlpy/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
18
18
  mxlpy/report.py,sha256=v597yzKecgtoNmlNZ_nVhBCa3czNw0tksOK5mLtAQvE,10631
19
- mxlpy/scan.py,sha256=WARFQgFwOsO2PzC1d2rGDfgDjYV8cYwc196IB2rzrzY,19416
20
- mxlpy/simulator.py,sha256=so7Dax42EKppeBUTxWWKxYhdAFKS2jAgWzS04fXuFpY,27751
21
- mxlpy/types.py,sha256=Z697aAiJ3Dp2nvMvdm60Z8rEhQjKKgrYHa1riZpY-QE,12994
22
- mxlpy/units.py,sha256=WHtP9s90VR8rUpPLsQ_eQeiW3wMPEryMvLpsDfu0tEo,1946
19
+ mxlpy/scan.py,sha256=DI5R_xKEUV28FTXqxYz41lQFkAXHE41R_S-ztHPeCoM,13676
20
+ mxlpy/simulator.py,sha256=NaD0UxvEqiRUp8dZqW4su1Xc9QzHwa9XqGGAIgGV6D0,16559
21
+ mxlpy/types.py,sha256=FpNZT5ZkhFHYSVA1LS7eZ3ljpzK0_fHo5h48nregR6w,31440
22
+ mxlpy/units.py,sha256=4bKXkCYsONUVWRdzV7aVcWFQSA6sxilebgXXFUEKw_c,2091
23
23
  mxlpy/experimental/__init__.py,sha256=kZTE-92OErpHzNRqmgSQYH4CGXrogGJ5EL35XGZQ81M,206
24
24
  mxlpy/experimental/diff.py,sha256=g5hKvFsEUdEk5OGQ_aQuCxLAnenD_jG4G__EcVfKsx4,9104
25
- mxlpy/integrators/__init__.py,sha256=OLdcNCDIOiD1Z2LO143YtD47cMadNJt0app41nLAx5o,456
26
- mxlpy/integrators/int_assimulo.py,sha256=8gLR1D4zJ-TnJ9DTkfkqA2uVE0H2w_npZhZ8RoWZOX8,5013
27
- mxlpy/integrators/int_scipy.py,sha256=82nU6cN4PjPoTEXSK5GuFxG89EnnKBHbjG8A9YDPKnc,4749
25
+ mxlpy/integrators/__init__.py,sha256=TKo2dkJqdW3_n7YrmF6k3kEjr8_kr3-7MDaLu-zFWRg,533
26
+ mxlpy/integrators/int_assimulo.py,sha256=1cvR8cOBdrl_DQs9v0o7wItSG5iyYqwZVh7EO0fg3ro,5021
27
+ mxlpy/integrators/int_diffrax.py,sha256=q_8NZgIZ6T-SRRcI8kSjEb6l-DbXqPv6rjj9KApkQac,3326
28
+ mxlpy/integrators/int_scipy.py,sha256=xKyisVN1jW5hxmVD2K_RpoQ2MwNrMxSGODsAEgEt6_I,4922
28
29
  mxlpy/meta/__init__.py,sha256=_Bec5aPJ6YyAkxUXlsQtAy_2VzX0tPGVSj-eGACqrXc,404
29
30
  mxlpy/meta/codegen_latex.py,sha256=i4tPvk2-toAYqtf4TynuE9sfUSHUp21AMUgjgFEB0uo,23215
30
- mxlpy/meta/codegen_model.py,sha256=LT767mzniKgAAtMTbejGcl6YmivNa3J1wZjEsH6iX9M,5067
31
- mxlpy/meta/codegen_mxlpy.py,sha256=Yx6GtsHUup4bIrEyMw9FYE60Y35xAK81IC-r0EdZDEM,3576
32
- mxlpy/meta/source_tools.py,sha256=imdNbGfDjmEEI7gLWm3BFUfB1xwhW4Lt6mhKvE0PhLw,20735
33
- mxlpy/meta/sympy_tools.py,sha256=TJSCFK9yuxwNrUHbZrcayo_g1UQWmiUiw4Z5V_pUye4,2853
31
+ mxlpy/meta/codegen_model.py,sha256=mRpK7pTPYTIMmJAqno7TA6vg5poSQThGWP43_zHU7as,5124
32
+ mxlpy/meta/codegen_mxlpy.py,sha256=asXGAY0fr5sUSRw7LlBUoFgTkXcJt9M6LZtVqsiF4RU,7869
33
+ mxlpy/meta/source_tools.py,sha256=dqP2dP8OLloBY8pLPuQl2uVB6GfDDn52u8vhPOTei1M,22302
34
+ mxlpy/meta/sympy_tools.py,sha256=XaRXdyXiiiOHBXatxoRTRKwy7BaM9I0lL6PE5HP33wE,3016
34
35
  mxlpy/nn/__init__.py,sha256=Qjr-ERsY2lbD75sFBOhCUwEasQDSJKcpBn_kReLZ6oA,633
35
36
  mxlpy/nn/_keras.py,sha256=-5zjHRu8OjSiZeuBSIZFyB63uBsNNH5o9y4kBcPnhx8,2263
36
37
  mxlpy/nn/_torch.py,sha256=GUJmLU282VU4O-fs3Sz90SEaAnfuXN2MPlBr_tHmvn4,5775
@@ -39,11 +40,9 @@ mxlpy/npe/_keras.py,sha256=ytvXMPK9KUCGOzTQm08_SgafiMb-MOIUdZQV7JjAO40,9721
39
40
  mxlpy/npe/_torch.py,sha256=v3joh6lFJJxvYJj--wzmKXL9UMTaIN3h6hPNq0uX9NU,11250
40
41
  mxlpy/sbml/__init__.py,sha256=Mt97CddpLi3wIrA1b_5cagLmDdNxAVF_S7QV57Pzw8s,226
41
42
  mxlpy/sbml/_data.py,sha256=yYli7ZQ1_pnH9kt5EmcuHM0moQoa43rrFVdrseXlG0o,1136
42
- mxlpy/sbml/_export.py,sha256=DibzxWLsHQeI4rmvhpV0AfbDmud3lIcfcdm5BV51-PE,20538
43
- mxlpy/sbml/_import.py,sha256=aCxNKEO6qaZRc7XWFwzOLE1PV0hXFstJbD-SkLjef2k,22082
44
- mxlpy/sbml/_mathml.py,sha256=oaU9q5yb9jvDGxDJrqOkbOiurCB1Vv_P99oUwJ7v1VE,24437
43
+ mxlpy/sbml/_export.py,sha256=0R34btB5COKD1gsWisdlWdEbJ-BUrjb78s6sWnm5Ph4,20945
44
+ mxlpy/sbml/_import.py,sha256=_4MR54YyVkIh9eVAiSMd7yijhHC_ds-3v7M_C4Zn8BY,3565
45
45
  mxlpy/sbml/_name_conversion.py,sha256=93muW47M7qJoE227HKHmThWpPeWsXDN9eM8cRH2pqPs,1340
46
- mxlpy/sbml/_unit_conversion.py,sha256=dW_I6_Ou09ccwnp6LIdrPriIQnQUK5lJcjzM2Fawm6U,1927
47
46
  mxlpy/surrogates/__init__.py,sha256=cz9qr0ToYSutIK45IvKrMe1mPP7Lj0I_V0HYGixfpZU,916
48
47
  mxlpy/surrogates/_keras.py,sha256=r2pR3iTJOaMqtATbsCm5CF94TYG9b-9cKljc8kMOplQ,3852
49
48
  mxlpy/surrogates/_poly.py,sha256=z2g3JTdVyQJ8dIiXP4BOun_yMZOrlYpPNvQ0wmFYDTk,3672
@@ -52,7 +51,7 @@ mxlpy/surrogates/_torch.py,sha256=gU0secuRBYgewhNqZmSo6_Xf804dSzwWwIYmdKA7y60,63
52
51
  mxlpy/symbolic/__init__.py,sha256=_vM5YM5I6OH0QDbFt9uGYKO8Z5Vly0wbGuvUScVrPRU,258
53
52
  mxlpy/symbolic/strikepy.py,sha256=tzo3uvPpXLDex09hWTuitVzuTNwbgl7jWGjD8g6a8iI,20033
54
53
  mxlpy/symbolic/symbolic_model.py,sha256=cKfWoktvFmXjuo8egE7gXKrKBq2iBUiy_BcIKIvvz8A,3026
55
- mxlpy-0.22.0.dist-info/METADATA,sha256=LsEH4wwslk1cTqQzL_JvkHvPlk5zdfnNebzUzPPhHeY,4601
56
- mxlpy-0.22.0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
57
- mxlpy-0.22.0.dist-info/licenses/LICENSE,sha256=lHX9Eu70g3Iv1aOxXTWNHa3vq9vaVYSPQx4jOLYmDpw,1096
58
- mxlpy-0.22.0.dist-info/RECORD,,
54
+ mxlpy-0.23.0.dist-info/METADATA,sha256=80ODNl3NCffUmuu_mJmvUmld7uNm390vMtlhNx2Soes,4696
55
+ mxlpy-0.23.0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
56
+ mxlpy-0.23.0.dist-info/licenses/LICENSE,sha256=lHX9Eu70g3Iv1aOxXTWNHa3vq9vaVYSPQx4jOLYmDpw,1096
57
+ mxlpy-0.23.0.dist-info/RECORD,,