multipers 2.3.3b6__cp313-cp313-macosx_11_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of multipers might be problematic. Click here for more details.
- multipers/.dylibs/libc++.1.0.dylib +0 -0
- multipers/.dylibs/libtbb.12.16.dylib +0 -0
- multipers/__init__.py +33 -0
- multipers/_signed_measure_meta.py +453 -0
- multipers/_slicer_meta.py +211 -0
- multipers/array_api/__init__.py +45 -0
- multipers/array_api/numpy.py +41 -0
- multipers/array_api/torch.py +58 -0
- multipers/data/MOL2.py +458 -0
- multipers/data/UCR.py +18 -0
- multipers/data/__init__.py +1 -0
- multipers/data/graphs.py +466 -0
- multipers/data/immuno_regions.py +27 -0
- multipers/data/minimal_presentation_to_st_bf.py +0 -0
- multipers/data/pytorch2simplextree.py +91 -0
- multipers/data/shape3d.py +101 -0
- multipers/data/synthetic.py +113 -0
- multipers/distances.py +202 -0
- multipers/filtration_conversions.pxd +229 -0
- multipers/filtration_conversions.pxd.tp +84 -0
- multipers/filtrations/__init__.py +18 -0
- multipers/filtrations/density.py +574 -0
- multipers/filtrations/filtrations.py +361 -0
- multipers/filtrations.pxd +224 -0
- multipers/function_rips.cpython-313-darwin.so +0 -0
- multipers/function_rips.pyx +105 -0
- multipers/grids.cpython-313-darwin.so +0 -0
- multipers/grids.pyx +433 -0
- multipers/gudhi/Persistence_slices_interface.h +132 -0
- multipers/gudhi/Simplex_tree_interface.h +239 -0
- multipers/gudhi/Simplex_tree_multi_interface.h +551 -0
- multipers/gudhi/cubical_to_boundary.h +59 -0
- multipers/gudhi/gudhi/Bitmap_cubical_complex.h +450 -0
- multipers/gudhi/gudhi/Bitmap_cubical_complex_base.h +1070 -0
- multipers/gudhi/gudhi/Bitmap_cubical_complex_periodic_boundary_conditions_base.h +579 -0
- multipers/gudhi/gudhi/Debug_utils.h +45 -0
- multipers/gudhi/gudhi/Fields/Multi_field.h +484 -0
- multipers/gudhi/gudhi/Fields/Multi_field_operators.h +455 -0
- multipers/gudhi/gudhi/Fields/Multi_field_shared.h +450 -0
- multipers/gudhi/gudhi/Fields/Multi_field_small.h +531 -0
- multipers/gudhi/gudhi/Fields/Multi_field_small_operators.h +507 -0
- multipers/gudhi/gudhi/Fields/Multi_field_small_shared.h +531 -0
- multipers/gudhi/gudhi/Fields/Z2_field.h +355 -0
- multipers/gudhi/gudhi/Fields/Z2_field_operators.h +376 -0
- multipers/gudhi/gudhi/Fields/Zp_field.h +420 -0
- multipers/gudhi/gudhi/Fields/Zp_field_operators.h +400 -0
- multipers/gudhi/gudhi/Fields/Zp_field_shared.h +418 -0
- multipers/gudhi/gudhi/Flag_complex_edge_collapser.h +337 -0
- multipers/gudhi/gudhi/Matrix.h +2107 -0
- multipers/gudhi/gudhi/Multi_critical_filtration.h +1038 -0
- multipers/gudhi/gudhi/Multi_persistence/Box.h +174 -0
- multipers/gudhi/gudhi/Multi_persistence/Line.h +282 -0
- multipers/gudhi/gudhi/Off_reader.h +173 -0
- multipers/gudhi/gudhi/One_critical_filtration.h +1441 -0
- multipers/gudhi/gudhi/Persistence_matrix/Base_matrix.h +769 -0
- multipers/gudhi/gudhi/Persistence_matrix/Base_matrix_with_column_compression.h +686 -0
- multipers/gudhi/gudhi/Persistence_matrix/Boundary_matrix.h +842 -0
- multipers/gudhi/gudhi/Persistence_matrix/Chain_matrix.h +1350 -0
- multipers/gudhi/gudhi/Persistence_matrix/Id_to_index_overlay.h +1105 -0
- multipers/gudhi/gudhi/Persistence_matrix/Position_to_index_overlay.h +859 -0
- multipers/gudhi/gudhi/Persistence_matrix/RU_matrix.h +910 -0
- multipers/gudhi/gudhi/Persistence_matrix/allocators/entry_constructors.h +139 -0
- multipers/gudhi/gudhi/Persistence_matrix/base_pairing.h +230 -0
- multipers/gudhi/gudhi/Persistence_matrix/base_swap.h +211 -0
- multipers/gudhi/gudhi/Persistence_matrix/boundary_cell_position_to_id_mapper.h +60 -0
- multipers/gudhi/gudhi/Persistence_matrix/boundary_face_position_to_id_mapper.h +60 -0
- multipers/gudhi/gudhi/Persistence_matrix/chain_pairing.h +136 -0
- multipers/gudhi/gudhi/Persistence_matrix/chain_rep_cycles.h +190 -0
- multipers/gudhi/gudhi/Persistence_matrix/chain_vine_swap.h +616 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/chain_column_extra_properties.h +150 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/column_dimension_holder.h +106 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/column_utilities.h +219 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/entry_types.h +327 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/heap_column.h +1140 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_list_column.h +934 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_set_column.h +934 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/list_column.h +980 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/naive_vector_column.h +1092 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/row_access.h +192 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/set_column.h +921 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/small_vector_column.h +1093 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/unordered_set_column.h +1012 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/vector_column.h +1244 -0
- multipers/gudhi/gudhi/Persistence_matrix/matrix_dimension_holders.h +186 -0
- multipers/gudhi/gudhi/Persistence_matrix/matrix_row_access.h +164 -0
- multipers/gudhi/gudhi/Persistence_matrix/ru_pairing.h +156 -0
- multipers/gudhi/gudhi/Persistence_matrix/ru_rep_cycles.h +376 -0
- multipers/gudhi/gudhi/Persistence_matrix/ru_vine_swap.h +540 -0
- multipers/gudhi/gudhi/Persistent_cohomology/Field_Zp.h +118 -0
- multipers/gudhi/gudhi/Persistent_cohomology/Multi_field.h +173 -0
- multipers/gudhi/gudhi/Persistent_cohomology/Persistent_cohomology_column.h +128 -0
- multipers/gudhi/gudhi/Persistent_cohomology.h +745 -0
- multipers/gudhi/gudhi/Points_off_io.h +171 -0
- multipers/gudhi/gudhi/Simple_object_pool.h +69 -0
- multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_iterators.h +463 -0
- multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_node_explicit_storage.h +83 -0
- multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_siblings.h +106 -0
- multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_star_simplex_iterators.h +277 -0
- multipers/gudhi/gudhi/Simplex_tree/hooks_simplex_base.h +62 -0
- multipers/gudhi/gudhi/Simplex_tree/indexing_tag.h +27 -0
- multipers/gudhi/gudhi/Simplex_tree/serialization_utils.h +62 -0
- multipers/gudhi/gudhi/Simplex_tree/simplex_tree_options.h +157 -0
- multipers/gudhi/gudhi/Simplex_tree.h +2794 -0
- multipers/gudhi/gudhi/Simplex_tree_multi.h +152 -0
- multipers/gudhi/gudhi/distance_functions.h +62 -0
- multipers/gudhi/gudhi/graph_simplicial_complex.h +104 -0
- multipers/gudhi/gudhi/persistence_interval.h +253 -0
- multipers/gudhi/gudhi/persistence_matrix_options.h +170 -0
- multipers/gudhi/gudhi/reader_utils.h +367 -0
- multipers/gudhi/mma_interface_coh.h +256 -0
- multipers/gudhi/mma_interface_h0.h +223 -0
- multipers/gudhi/mma_interface_matrix.h +293 -0
- multipers/gudhi/naive_merge_tree.h +536 -0
- multipers/gudhi/scc_io.h +310 -0
- multipers/gudhi/truc.h +1403 -0
- multipers/io.cpython-313-darwin.so +0 -0
- multipers/io.pyx +644 -0
- multipers/ml/__init__.py +0 -0
- multipers/ml/accuracies.py +90 -0
- multipers/ml/invariants_with_persistable.py +79 -0
- multipers/ml/kernels.py +176 -0
- multipers/ml/mma.py +713 -0
- multipers/ml/one.py +472 -0
- multipers/ml/point_clouds.py +352 -0
- multipers/ml/signed_measures.py +1589 -0
- multipers/ml/sliced_wasserstein.py +461 -0
- multipers/ml/tools.py +113 -0
- multipers/mma_structures.cpython-313-darwin.so +0 -0
- multipers/mma_structures.pxd +128 -0
- multipers/mma_structures.pyx +2786 -0
- multipers/mma_structures.pyx.tp +1094 -0
- multipers/multi_parameter_rank_invariant/diff_helpers.h +84 -0
- multipers/multi_parameter_rank_invariant/euler_characteristic.h +97 -0
- multipers/multi_parameter_rank_invariant/function_rips.h +322 -0
- multipers/multi_parameter_rank_invariant/hilbert_function.h +769 -0
- multipers/multi_parameter_rank_invariant/persistence_slices.h +148 -0
- multipers/multi_parameter_rank_invariant/rank_invariant.h +369 -0
- multipers/multiparameter_edge_collapse.py +41 -0
- multipers/multiparameter_module_approximation/approximation.h +2330 -0
- multipers/multiparameter_module_approximation/combinatory.h +129 -0
- multipers/multiparameter_module_approximation/debug.h +107 -0
- multipers/multiparameter_module_approximation/euler_curves.h +0 -0
- multipers/multiparameter_module_approximation/format_python-cpp.h +286 -0
- multipers/multiparameter_module_approximation/heap_column.h +238 -0
- multipers/multiparameter_module_approximation/images.h +79 -0
- multipers/multiparameter_module_approximation/list_column.h +174 -0
- multipers/multiparameter_module_approximation/list_column_2.h +232 -0
- multipers/multiparameter_module_approximation/ru_matrix.h +347 -0
- multipers/multiparameter_module_approximation/set_column.h +135 -0
- multipers/multiparameter_module_approximation/structure_higher_dim_barcode.h +36 -0
- multipers/multiparameter_module_approximation/unordered_set_column.h +166 -0
- multipers/multiparameter_module_approximation/utilities.h +403 -0
- multipers/multiparameter_module_approximation/vector_column.h +223 -0
- multipers/multiparameter_module_approximation/vector_matrix.h +331 -0
- multipers/multiparameter_module_approximation/vineyards.h +464 -0
- multipers/multiparameter_module_approximation/vineyards_trajectories.h +649 -0
- multipers/multiparameter_module_approximation.cpython-313-darwin.so +0 -0
- multipers/multiparameter_module_approximation.pyx +235 -0
- multipers/pickle.py +90 -0
- multipers/plots.py +456 -0
- multipers/point_measure.cpython-313-darwin.so +0 -0
- multipers/point_measure.pyx +395 -0
- multipers/simplex_tree_multi.cpython-313-darwin.so +0 -0
- multipers/simplex_tree_multi.pxd +134 -0
- multipers/simplex_tree_multi.pyx +10840 -0
- multipers/simplex_tree_multi.pyx.tp +2009 -0
- multipers/slicer.cpython-313-darwin.so +0 -0
- multipers/slicer.pxd +3034 -0
- multipers/slicer.pxd.tp +234 -0
- multipers/slicer.pyx +20481 -0
- multipers/slicer.pyx.tp +1088 -0
- multipers/tensor/tensor.h +672 -0
- multipers/tensor.pxd +13 -0
- multipers/test.pyx +44 -0
- multipers/tests/__init__.py +62 -0
- multipers/torch/__init__.py +1 -0
- multipers/torch/diff_grids.py +240 -0
- multipers/torch/rips_density.py +310 -0
- multipers-2.3.3b6.dist-info/METADATA +128 -0
- multipers-2.3.3b6.dist-info/RECORD +183 -0
- multipers-2.3.3b6.dist-info/WHEEL +6 -0
- multipers-2.3.3b6.dist-info/licenses/LICENSE +21 -0
- multipers-2.3.3b6.dist-info/top_level.txt +1 -0
multipers/plots.py
ADDED
|
@@ -0,0 +1,456 @@
|
|
|
1
|
+
from typing import Optional
|
|
2
|
+
from warnings import warn
|
|
3
|
+
|
|
4
|
+
import matplotlib.colors as mcolors
|
|
5
|
+
import matplotlib.pyplot as plt
|
|
6
|
+
import numpy as np
|
|
7
|
+
from matplotlib.colors import ListedColormap
|
|
8
|
+
from numpy.typing import ArrayLike
|
|
9
|
+
|
|
10
|
+
from multipers.array_api import to_numpy
|
|
11
|
+
|
|
12
|
+
_custom_colors = [
|
|
13
|
+
"#03045e",
|
|
14
|
+
"#0077b6",
|
|
15
|
+
"#00b4d8",
|
|
16
|
+
"#90e0ef",
|
|
17
|
+
]
|
|
18
|
+
_cmap_ = ListedColormap(_custom_colors)
|
|
19
|
+
_cmap = mcolors.LinearSegmentedColormap.from_list(
|
|
20
|
+
"continuous_cmap", _cmap_.colors, N=256
|
|
21
|
+
)
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
def _plot_rectangle(rectangle: np.ndarray, weight, **plt_kwargs):
|
|
25
|
+
rectangle = np.asarray(rectangle)
|
|
26
|
+
x_axis = rectangle[[0, 2]]
|
|
27
|
+
y_axis = rectangle[[1, 3]]
|
|
28
|
+
color = "blue" if weight > 0 else "red"
|
|
29
|
+
plt.plot(x_axis, y_axis, c=color, **plt_kwargs)
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
def _plot_signed_measure_2(
|
|
33
|
+
pts, weights, temp_alpha=0.7, threshold=(np.inf, np.inf), **plt_kwargs
|
|
34
|
+
):
|
|
35
|
+
import matplotlib.colors
|
|
36
|
+
|
|
37
|
+
pts = np.clip(pts, a_min=-np.inf, a_max=np.asarray(threshold)[None, :])
|
|
38
|
+
weights = np.asarray(weights)
|
|
39
|
+
color_weights = np.array(weights, dtype=float)
|
|
40
|
+
neg_idx = weights < 0
|
|
41
|
+
pos_idx = weights > 0
|
|
42
|
+
if np.any(neg_idx):
|
|
43
|
+
current_weights = -weights[neg_idx]
|
|
44
|
+
min_weight = np.max(current_weights)
|
|
45
|
+
color_weights[neg_idx] /= min_weight
|
|
46
|
+
color_weights[neg_idx] -= 1
|
|
47
|
+
else:
|
|
48
|
+
min_weight = 0
|
|
49
|
+
|
|
50
|
+
if np.any(pos_idx):
|
|
51
|
+
current_weights = weights[pos_idx]
|
|
52
|
+
max_weight = np.max(current_weights)
|
|
53
|
+
color_weights[pos_idx] /= max_weight
|
|
54
|
+
color_weights[pos_idx] += 1
|
|
55
|
+
else:
|
|
56
|
+
max_weight = 1
|
|
57
|
+
|
|
58
|
+
bordeaux = np.array([0.70567316, 0.01555616, 0.15023281, 1])
|
|
59
|
+
light_bordeaux = np.array([0.70567316, 0.01555616, 0.15023281, temp_alpha])
|
|
60
|
+
bleu = np.array([0.2298057, 0.29871797, 0.75368315, 1])
|
|
61
|
+
light_bleu = np.array([0.2298057, 0.29871797, 0.75368315, temp_alpha])
|
|
62
|
+
norm = plt.Normalize(-2, 2)
|
|
63
|
+
cmap = matplotlib.colors.LinearSegmentedColormap.from_list(
|
|
64
|
+
"", [bordeaux, light_bordeaux, "white", light_bleu, bleu]
|
|
65
|
+
)
|
|
66
|
+
plt.scatter(
|
|
67
|
+
pts[:, 0], pts[:, 1], c=color_weights, cmap=cmap, norm=norm, **plt_kwargs
|
|
68
|
+
)
|
|
69
|
+
plt.scatter([], [], color=bleu, label="positive mass", **plt_kwargs)
|
|
70
|
+
plt.scatter([], [], color=bordeaux, label="negative mass", **plt_kwargs)
|
|
71
|
+
plt.legend()
|
|
72
|
+
|
|
73
|
+
|
|
74
|
+
def _plot_signed_measure_4(
|
|
75
|
+
pts,
|
|
76
|
+
weights,
|
|
77
|
+
x_smoothing: float = 1,
|
|
78
|
+
area_alpha: bool = True,
|
|
79
|
+
threshold=(np.inf, np.inf),
|
|
80
|
+
alpha=None,
|
|
81
|
+
**plt_kwargs, # ignored ftm
|
|
82
|
+
):
|
|
83
|
+
# compute the maximal rectangle area
|
|
84
|
+
pts = np.clip(pts, a_min=-np.inf, a_max=np.array((*threshold, *threshold))[None, :])
|
|
85
|
+
alpha_rescaling = 0
|
|
86
|
+
for rectangle, weight in zip(pts, weights):
|
|
87
|
+
if rectangle[2] >= x_smoothing * rectangle[0]:
|
|
88
|
+
alpha_rescaling = max(
|
|
89
|
+
alpha_rescaling,
|
|
90
|
+
(rectangle[2] / x_smoothing - rectangle[0])
|
|
91
|
+
* (rectangle[3] - rectangle[1]),
|
|
92
|
+
)
|
|
93
|
+
# draw the rectangles
|
|
94
|
+
for rectangle, weight in zip(pts, weights):
|
|
95
|
+
# draw only the rectangles that have not been reduced to the empty set
|
|
96
|
+
if rectangle[2] >= x_smoothing * rectangle[0]:
|
|
97
|
+
# make the alpha channel proportional to the rectangle's area
|
|
98
|
+
if area_alpha:
|
|
99
|
+
_plot_rectangle(
|
|
100
|
+
rectangle=[
|
|
101
|
+
rectangle[0],
|
|
102
|
+
rectangle[1],
|
|
103
|
+
rectangle[2] / x_smoothing,
|
|
104
|
+
rectangle[3],
|
|
105
|
+
],
|
|
106
|
+
weight=weight,
|
|
107
|
+
alpha=(
|
|
108
|
+
(rectangle[2] / x_smoothing - rectangle[0])
|
|
109
|
+
* (rectangle[3] - rectangle[1])
|
|
110
|
+
/ alpha_rescaling
|
|
111
|
+
if alpha is None
|
|
112
|
+
else alpha
|
|
113
|
+
),
|
|
114
|
+
**plt_kwargs,
|
|
115
|
+
)
|
|
116
|
+
else:
|
|
117
|
+
_plot_rectangle(
|
|
118
|
+
rectangle=[
|
|
119
|
+
rectangle[0],
|
|
120
|
+
rectangle[1],
|
|
121
|
+
rectangle[2] / x_smoothing,
|
|
122
|
+
rectangle[3],
|
|
123
|
+
],
|
|
124
|
+
weight=weight,
|
|
125
|
+
alpha=1 if alpha is None else alpha,
|
|
126
|
+
**plt_kwargs,
|
|
127
|
+
)
|
|
128
|
+
|
|
129
|
+
|
|
130
|
+
def plot_signed_measure(signed_measure, threshold=None, ax=None, **plt_kwargs):
|
|
131
|
+
if ax is None:
|
|
132
|
+
ax = plt.gca()
|
|
133
|
+
else:
|
|
134
|
+
plt.sca(ax)
|
|
135
|
+
pts, weights = signed_measure
|
|
136
|
+
pts = to_numpy(pts)
|
|
137
|
+
weights = to_numpy(weights)
|
|
138
|
+
num_pts = pts.shape[0]
|
|
139
|
+
num_parameters = pts.shape[1]
|
|
140
|
+
if threshold is None:
|
|
141
|
+
if num_pts == 0:
|
|
142
|
+
threshold = (np.inf, np.inf)
|
|
143
|
+
else:
|
|
144
|
+
if num_parameters == 4:
|
|
145
|
+
pts_ = np.concatenate([pts[:, :2], pts[:, 2:]], axis=0)
|
|
146
|
+
else:
|
|
147
|
+
pts_ = pts
|
|
148
|
+
threshold = np.max(np.ma.masked_invalid(pts_), axis=0)
|
|
149
|
+
threshold = np.max(
|
|
150
|
+
[threshold, [plt.gca().get_xlim()[1], plt.gca().get_ylim()[1]]], axis=0
|
|
151
|
+
)
|
|
152
|
+
|
|
153
|
+
assert num_parameters in (2, 4)
|
|
154
|
+
if num_parameters == 2:
|
|
155
|
+
_plot_signed_measure_2(
|
|
156
|
+
pts=pts, weights=weights, threshold=threshold, **plt_kwargs
|
|
157
|
+
)
|
|
158
|
+
else:
|
|
159
|
+
_plot_signed_measure_4(
|
|
160
|
+
pts=pts, weights=weights, threshold=threshold, **plt_kwargs
|
|
161
|
+
)
|
|
162
|
+
|
|
163
|
+
|
|
164
|
+
def plot_signed_measures(signed_measures, threshold=None, size=4):
|
|
165
|
+
num_degrees = len(signed_measures)
|
|
166
|
+
if num_degrees <= 1:
|
|
167
|
+
axes = [plt.gca()]
|
|
168
|
+
else:
|
|
169
|
+
fig, axes = plt.subplots(
|
|
170
|
+
nrows=1, ncols=num_degrees, figsize=(num_degrees * size, size)
|
|
171
|
+
)
|
|
172
|
+
for ax, signed_measure in zip(axes, signed_measures):
|
|
173
|
+
plot_signed_measure(signed_measure=signed_measure, ax=ax, threshold=threshold)
|
|
174
|
+
plt.tight_layout()
|
|
175
|
+
|
|
176
|
+
|
|
177
|
+
def plot_surface(
|
|
178
|
+
grid,
|
|
179
|
+
hf,
|
|
180
|
+
fig=None,
|
|
181
|
+
ax=None,
|
|
182
|
+
cmap: Optional[str] = None,
|
|
183
|
+
discrete_surface: bool = False,
|
|
184
|
+
has_negative_values: bool = False,
|
|
185
|
+
contour: bool = True,
|
|
186
|
+
**plt_args,
|
|
187
|
+
):
|
|
188
|
+
import matplotlib
|
|
189
|
+
|
|
190
|
+
if ax is None:
|
|
191
|
+
ax = plt.gca()
|
|
192
|
+
else:
|
|
193
|
+
plt.sca(ax)
|
|
194
|
+
if hf.ndim == 3 and hf.shape[0] == 1:
|
|
195
|
+
hf = hf[0]
|
|
196
|
+
assert hf.ndim == 2, "Can only plot a 2d surface"
|
|
197
|
+
fig = plt.gcf() if fig is None else fig
|
|
198
|
+
if cmap is None:
|
|
199
|
+
if discrete_surface:
|
|
200
|
+
cmap = matplotlib.colormaps["gray_r"]
|
|
201
|
+
else:
|
|
202
|
+
cmap = _cmap
|
|
203
|
+
if discrete_surface:
|
|
204
|
+
if has_negative_values:
|
|
205
|
+
bounds = np.arange(-5, 6, 1, dtype=int)
|
|
206
|
+
else:
|
|
207
|
+
bounds = np.arange(0, 11, 1, dtype=int)
|
|
208
|
+
norm = matplotlib.colors.BoundaryNorm(bounds, cmap.N, extend="max")
|
|
209
|
+
im = ax.pcolormesh(grid[0], grid[1], hf.T, cmap=cmap, norm=norm, **plt_args)
|
|
210
|
+
cbar = fig.colorbar(
|
|
211
|
+
matplotlib.cm.ScalarMappable(cmap=cmap, norm=norm),
|
|
212
|
+
spacing="proportional",
|
|
213
|
+
ax=ax,
|
|
214
|
+
)
|
|
215
|
+
cbar.set_ticks(ticks=bounds, labels=bounds)
|
|
216
|
+
return im
|
|
217
|
+
|
|
218
|
+
if contour:
|
|
219
|
+
levels = plt_args.pop("levels", 20)
|
|
220
|
+
im = ax.contourf(grid[0], grid[1], hf.T, cmap=cmap, levels=levels, **plt_args)
|
|
221
|
+
else:
|
|
222
|
+
im = ax.pcolormesh(grid[0], grid[1], hf.T, cmap=cmap, **plt_args)
|
|
223
|
+
return im
|
|
224
|
+
|
|
225
|
+
|
|
226
|
+
def plot_surfaces(HF, size=4, **plt_args):
|
|
227
|
+
grid, hf = HF
|
|
228
|
+
assert (
|
|
229
|
+
hf.ndim == 3
|
|
230
|
+
), f"Found hf.shape = {hf.shape}, expected ndim = 3 : degree, 2-parameter surface."
|
|
231
|
+
num_degrees = hf.shape[0]
|
|
232
|
+
fig, axes = plt.subplots(
|
|
233
|
+
nrows=1, ncols=num_degrees, figsize=(num_degrees * size, size)
|
|
234
|
+
)
|
|
235
|
+
if num_degrees == 1:
|
|
236
|
+
axes = [axes]
|
|
237
|
+
for ax, hf_of_degree in zip(axes, hf):
|
|
238
|
+
plot_surface(grid=grid, hf=hf_of_degree, fig=fig, ax=ax, **plt_args)
|
|
239
|
+
plt.tight_layout()
|
|
240
|
+
|
|
241
|
+
|
|
242
|
+
def _rectangle(x, y, color, alpha):
|
|
243
|
+
"""
|
|
244
|
+
Defines a rectangle patch in the format {z | x ≤ z ≤ y} with color and alpha
|
|
245
|
+
"""
|
|
246
|
+
from matplotlib.patches import Rectangle as RectanglePatch
|
|
247
|
+
|
|
248
|
+
return RectanglePatch(
|
|
249
|
+
x, max(y[0] - x[0], 0), max(y[1] - x[1], 0), color=color, alpha=alpha
|
|
250
|
+
)
|
|
251
|
+
|
|
252
|
+
|
|
253
|
+
def _d_inf(a, b):
|
|
254
|
+
a = np.asarray(a)
|
|
255
|
+
b = np.asarray(b)
|
|
256
|
+
return np.min(np.abs(b - a))
|
|
257
|
+
|
|
258
|
+
|
|
259
|
+
def plot2d_PyModule(
|
|
260
|
+
corners,
|
|
261
|
+
box,
|
|
262
|
+
*,
|
|
263
|
+
dimension=-1,
|
|
264
|
+
separated=False,
|
|
265
|
+
min_persistence=0,
|
|
266
|
+
alpha=None,
|
|
267
|
+
verbose=False,
|
|
268
|
+
save=False,
|
|
269
|
+
dpi=200,
|
|
270
|
+
shapely=True,
|
|
271
|
+
xlabel=None,
|
|
272
|
+
ylabel=None,
|
|
273
|
+
cmap=None,
|
|
274
|
+
):
|
|
275
|
+
import matplotlib
|
|
276
|
+
|
|
277
|
+
try:
|
|
278
|
+
from shapely import union_all
|
|
279
|
+
from shapely.geometry import Polygon as _Polygon
|
|
280
|
+
from shapely.geometry import box as _rectangle_box
|
|
281
|
+
|
|
282
|
+
shapely = True and shapely
|
|
283
|
+
except ImportError:
|
|
284
|
+
shapely = False
|
|
285
|
+
warn(
|
|
286
|
+
"Shapely not installed. Fallbacking to matplotlib. The plots may be inacurate."
|
|
287
|
+
)
|
|
288
|
+
if alpha is None:
|
|
289
|
+
alpha = 0.8 if shapely else 1
|
|
290
|
+
if not shapely and alpha != 1:
|
|
291
|
+
warn("Opacity without shapely will lead to incorect plots.")
|
|
292
|
+
cmap = (
|
|
293
|
+
matplotlib.colormaps["Spectral"] if cmap is None else matplotlib.colormaps[cmap]
|
|
294
|
+
)
|
|
295
|
+
box = list(box)
|
|
296
|
+
if not (separated):
|
|
297
|
+
# fig, ax = plt.subplots()
|
|
298
|
+
ax = plt.gca()
|
|
299
|
+
ax.set(xlim=[box[0][0], box[1][0]], ylim=[box[0][1], box[1][1]])
|
|
300
|
+
n_summands = len(corners)
|
|
301
|
+
for i in range(n_summands):
|
|
302
|
+
trivial_summand = True
|
|
303
|
+
list_of_rect = []
|
|
304
|
+
for birth in corners[i][0]:
|
|
305
|
+
if len(birth) == 1:
|
|
306
|
+
birth = np.asarray([birth[0]] * 2)
|
|
307
|
+
birth = np.asarray(birth).clip(min=box[0])
|
|
308
|
+
for death in corners[i][1]:
|
|
309
|
+
if len(death) == 1:
|
|
310
|
+
death = np.asarray([death[0]] * 2)
|
|
311
|
+
death = np.asarray(death).clip(max=box[1])
|
|
312
|
+
if death[1] > birth[1] and death[0] > birth[0]:
|
|
313
|
+
if trivial_summand and _d_inf(birth, death) > min_persistence:
|
|
314
|
+
trivial_summand = False
|
|
315
|
+
if shapely:
|
|
316
|
+
list_of_rect.append(
|
|
317
|
+
_rectangle_box(birth[0], birth[1], death[0], death[1])
|
|
318
|
+
)
|
|
319
|
+
else:
|
|
320
|
+
list_of_rect.append(
|
|
321
|
+
_rectangle(birth, death, cmap(i / n_summands), alpha)
|
|
322
|
+
)
|
|
323
|
+
if not (trivial_summand):
|
|
324
|
+
if separated:
|
|
325
|
+
fig, ax = plt.subplots()
|
|
326
|
+
ax.set(xlim=[box[0][0], box[1][0]], ylim=[box[0][1], box[1][1]])
|
|
327
|
+
if shapely:
|
|
328
|
+
summand_shape = union_all(list_of_rect)
|
|
329
|
+
if type(summand_shape) is _Polygon:
|
|
330
|
+
xs, ys = summand_shape.exterior.xy
|
|
331
|
+
ax.fill(xs, ys, alpha=alpha, fc=cmap(i / n_summands), ec="None")
|
|
332
|
+
else:
|
|
333
|
+
for polygon in summand_shape.geoms:
|
|
334
|
+
xs, ys = polygon.exterior.xy
|
|
335
|
+
ax.fill(xs, ys, alpha=alpha, fc=cmap(i / n_summands), ec="None")
|
|
336
|
+
else:
|
|
337
|
+
for rectangle in list_of_rect:
|
|
338
|
+
ax.add_patch(rectangle)
|
|
339
|
+
if separated:
|
|
340
|
+
if xlabel:
|
|
341
|
+
plt.xlabel(xlabel)
|
|
342
|
+
if ylabel:
|
|
343
|
+
plt.ylabel(ylabel)
|
|
344
|
+
if dimension >= 0:
|
|
345
|
+
plt.title(rf"$H_{dimension}$ $2$-persistence")
|
|
346
|
+
if not (separated):
|
|
347
|
+
if xlabel is not None:
|
|
348
|
+
plt.xlabel(xlabel)
|
|
349
|
+
if ylabel is not None:
|
|
350
|
+
plt.ylabel(ylabel)
|
|
351
|
+
if dimension >= 0:
|
|
352
|
+
plt.title(rf"$H_{dimension}$ $2$-persistence")
|
|
353
|
+
return
|
|
354
|
+
|
|
355
|
+
|
|
356
|
+
def plot_simplicial_complex(
|
|
357
|
+
st, pts: ArrayLike, x: float, y: float, mma=None, degree=None
|
|
358
|
+
):
|
|
359
|
+
"""
|
|
360
|
+
Scatters the points, with the simplices in the filtration at coordinates (x,y).
|
|
361
|
+
if an mma module is given, plots it in a second axis
|
|
362
|
+
"""
|
|
363
|
+
if mma is not None:
|
|
364
|
+
fig, (a, b) = plt.subplots(ncols=2, figsize=(15, 5))
|
|
365
|
+
plt.sca(a)
|
|
366
|
+
plot_simplicial_complex(st, pts, x, y)
|
|
367
|
+
plt.sca(b)
|
|
368
|
+
mma.plot(degree=degree)
|
|
369
|
+
box = mma.get_box()
|
|
370
|
+
a, b, c, d = box.ravel()
|
|
371
|
+
mma.plot(degree=1, min_persistence=0.01)
|
|
372
|
+
plt.vlines(x, b, d, color="k", linestyle="--")
|
|
373
|
+
plt.hlines(y, a, c, color="k", linestyle="--")
|
|
374
|
+
plt.scatter([x], [y], c="r", zorder=10)
|
|
375
|
+
plt.text(x + 0.01 * (b - a), y + 0.01 * (d - c), f"({x},{y})")
|
|
376
|
+
return
|
|
377
|
+
|
|
378
|
+
pts = np.asarray(pts)
|
|
379
|
+
values = np.array([-f[1] for s, f in st.get_skeleton(0)])
|
|
380
|
+
qs = np.quantile(values, np.linspace(0, 1, 100))
|
|
381
|
+
|
|
382
|
+
def color_idx(d):
|
|
383
|
+
return np.searchsorted(qs, d) / 100
|
|
384
|
+
|
|
385
|
+
from matplotlib.pyplot import get_cmap
|
|
386
|
+
|
|
387
|
+
def color(d):
|
|
388
|
+
return get_cmap("viridis")([0, color_idx(d), 1])[1]
|
|
389
|
+
|
|
390
|
+
cols_pc = np.asarray([color(v) for v in values])
|
|
391
|
+
ax = plt.gca()
|
|
392
|
+
for s, f in st: # simplexe, filtration
|
|
393
|
+
density = -f[1]
|
|
394
|
+
if len(s) <= 1 or f[0] > x or density < -y: # simplexe = point
|
|
395
|
+
continue
|
|
396
|
+
if len(s) == 2: # simplexe = segment
|
|
397
|
+
xx = np.array([pts[a, 0] for a in s])
|
|
398
|
+
yy = np.array([pts[a, 1] for a in s])
|
|
399
|
+
plt.plot(xx, yy, c=color(density), alpha=1, zorder=10 * density, lw=1.5)
|
|
400
|
+
if len(s) == 3: # simplexe = triangle
|
|
401
|
+
xx = np.array([pts[a, 0] for a in s])
|
|
402
|
+
yy = np.array([pts[a, 1] for a in s])
|
|
403
|
+
_c = color(density)
|
|
404
|
+
ax.fill(xx, yy, c=_c, alpha=0.3, zorder=0)
|
|
405
|
+
out = plt.scatter(pts[:, 0], pts[:, 1], c=cols_pc, zorder=10, s=10)
|
|
406
|
+
ax.set_aspect(1)
|
|
407
|
+
return out
|
|
408
|
+
|
|
409
|
+
|
|
410
|
+
def plot_point_cloud(
|
|
411
|
+
pts,
|
|
412
|
+
function,
|
|
413
|
+
x,
|
|
414
|
+
y,
|
|
415
|
+
mma=None,
|
|
416
|
+
degree=None,
|
|
417
|
+
ball_alpha=0.3,
|
|
418
|
+
point_cmap="viridis",
|
|
419
|
+
color_bias=1,
|
|
420
|
+
ball_color=None,
|
|
421
|
+
point_size=20,
|
|
422
|
+
):
|
|
423
|
+
if mma is not None:
|
|
424
|
+
fig, (a, b) = plt.subplots(ncols=2, figsize=(15, 5))
|
|
425
|
+
plt.sca(a)
|
|
426
|
+
plot_point_cloud(pts, function, x, y)
|
|
427
|
+
plt.sca(b)
|
|
428
|
+
mma.plot(degree=degree)
|
|
429
|
+
box = mma.get_box()
|
|
430
|
+
a, b, c, d = box.ravel()
|
|
431
|
+
mma.plot(degree=1, min_persistence=0.01)
|
|
432
|
+
plt.vlines(x, b, d, color="k", linestyle="--")
|
|
433
|
+
plt.hlines(y, a, c, color="k", linestyle="--")
|
|
434
|
+
plt.scatter([x], [y], c="r", zorder=10)
|
|
435
|
+
plt.text(x + 0.01 * (b - a), y + 0.01 * (d - c), f"({x},{y})")
|
|
436
|
+
return
|
|
437
|
+
values = -function
|
|
438
|
+
qs = np.quantile(values, np.linspace(0, 1, 100))
|
|
439
|
+
|
|
440
|
+
def color_idx(d):
|
|
441
|
+
return np.searchsorted(qs, d * color_bias) / 100
|
|
442
|
+
|
|
443
|
+
from matplotlib.collections import PatchCollection
|
|
444
|
+
from matplotlib.pyplot import get_cmap
|
|
445
|
+
|
|
446
|
+
def color(d):
|
|
447
|
+
return get_cmap(point_cmap)([0, color_idx(d), 1])[1]
|
|
448
|
+
|
|
449
|
+
_colors = np.array([color(v) for v in values])
|
|
450
|
+
ax = plt.gca()
|
|
451
|
+
idx = function <= y
|
|
452
|
+
circles = [plt.Circle(pt, x) for pt, c in zip(pts[idx], function)]
|
|
453
|
+
pc = PatchCollection(circles, alpha=ball_alpha, color=ball_color)
|
|
454
|
+
ax.add_collection(pc)
|
|
455
|
+
plt.scatter(*pts.T, c=_colors, s=point_size)
|
|
456
|
+
ax.set_aspect(1)
|
|
Binary file
|