multipers 2.3.3b6__cp313-cp313-macosx_10_13_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of multipers might be problematic. Click here for more details.

Files changed (183) hide show
  1. multipers/.dylibs/libc++.1.0.dylib +0 -0
  2. multipers/.dylibs/libtbb.12.16.dylib +0 -0
  3. multipers/__init__.py +33 -0
  4. multipers/_signed_measure_meta.py +453 -0
  5. multipers/_slicer_meta.py +211 -0
  6. multipers/array_api/__init__.py +45 -0
  7. multipers/array_api/numpy.py +41 -0
  8. multipers/array_api/torch.py +58 -0
  9. multipers/data/MOL2.py +458 -0
  10. multipers/data/UCR.py +18 -0
  11. multipers/data/__init__.py +1 -0
  12. multipers/data/graphs.py +466 -0
  13. multipers/data/immuno_regions.py +27 -0
  14. multipers/data/minimal_presentation_to_st_bf.py +0 -0
  15. multipers/data/pytorch2simplextree.py +91 -0
  16. multipers/data/shape3d.py +101 -0
  17. multipers/data/synthetic.py +113 -0
  18. multipers/distances.py +202 -0
  19. multipers/filtration_conversions.pxd +229 -0
  20. multipers/filtration_conversions.pxd.tp +84 -0
  21. multipers/filtrations/__init__.py +18 -0
  22. multipers/filtrations/density.py +574 -0
  23. multipers/filtrations/filtrations.py +361 -0
  24. multipers/filtrations.pxd +224 -0
  25. multipers/function_rips.cpython-313-darwin.so +0 -0
  26. multipers/function_rips.pyx +105 -0
  27. multipers/grids.cpython-313-darwin.so +0 -0
  28. multipers/grids.pyx +433 -0
  29. multipers/gudhi/Persistence_slices_interface.h +132 -0
  30. multipers/gudhi/Simplex_tree_interface.h +239 -0
  31. multipers/gudhi/Simplex_tree_multi_interface.h +551 -0
  32. multipers/gudhi/cubical_to_boundary.h +59 -0
  33. multipers/gudhi/gudhi/Bitmap_cubical_complex.h +450 -0
  34. multipers/gudhi/gudhi/Bitmap_cubical_complex_base.h +1070 -0
  35. multipers/gudhi/gudhi/Bitmap_cubical_complex_periodic_boundary_conditions_base.h +579 -0
  36. multipers/gudhi/gudhi/Debug_utils.h +45 -0
  37. multipers/gudhi/gudhi/Fields/Multi_field.h +484 -0
  38. multipers/gudhi/gudhi/Fields/Multi_field_operators.h +455 -0
  39. multipers/gudhi/gudhi/Fields/Multi_field_shared.h +450 -0
  40. multipers/gudhi/gudhi/Fields/Multi_field_small.h +531 -0
  41. multipers/gudhi/gudhi/Fields/Multi_field_small_operators.h +507 -0
  42. multipers/gudhi/gudhi/Fields/Multi_field_small_shared.h +531 -0
  43. multipers/gudhi/gudhi/Fields/Z2_field.h +355 -0
  44. multipers/gudhi/gudhi/Fields/Z2_field_operators.h +376 -0
  45. multipers/gudhi/gudhi/Fields/Zp_field.h +420 -0
  46. multipers/gudhi/gudhi/Fields/Zp_field_operators.h +400 -0
  47. multipers/gudhi/gudhi/Fields/Zp_field_shared.h +418 -0
  48. multipers/gudhi/gudhi/Flag_complex_edge_collapser.h +337 -0
  49. multipers/gudhi/gudhi/Matrix.h +2107 -0
  50. multipers/gudhi/gudhi/Multi_critical_filtration.h +1038 -0
  51. multipers/gudhi/gudhi/Multi_persistence/Box.h +174 -0
  52. multipers/gudhi/gudhi/Multi_persistence/Line.h +282 -0
  53. multipers/gudhi/gudhi/Off_reader.h +173 -0
  54. multipers/gudhi/gudhi/One_critical_filtration.h +1441 -0
  55. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix.h +769 -0
  56. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix_with_column_compression.h +686 -0
  57. multipers/gudhi/gudhi/Persistence_matrix/Boundary_matrix.h +842 -0
  58. multipers/gudhi/gudhi/Persistence_matrix/Chain_matrix.h +1350 -0
  59. multipers/gudhi/gudhi/Persistence_matrix/Id_to_index_overlay.h +1105 -0
  60. multipers/gudhi/gudhi/Persistence_matrix/Position_to_index_overlay.h +859 -0
  61. multipers/gudhi/gudhi/Persistence_matrix/RU_matrix.h +910 -0
  62. multipers/gudhi/gudhi/Persistence_matrix/allocators/entry_constructors.h +139 -0
  63. multipers/gudhi/gudhi/Persistence_matrix/base_pairing.h +230 -0
  64. multipers/gudhi/gudhi/Persistence_matrix/base_swap.h +211 -0
  65. multipers/gudhi/gudhi/Persistence_matrix/boundary_cell_position_to_id_mapper.h +60 -0
  66. multipers/gudhi/gudhi/Persistence_matrix/boundary_face_position_to_id_mapper.h +60 -0
  67. multipers/gudhi/gudhi/Persistence_matrix/chain_pairing.h +136 -0
  68. multipers/gudhi/gudhi/Persistence_matrix/chain_rep_cycles.h +190 -0
  69. multipers/gudhi/gudhi/Persistence_matrix/chain_vine_swap.h +616 -0
  70. multipers/gudhi/gudhi/Persistence_matrix/columns/chain_column_extra_properties.h +150 -0
  71. multipers/gudhi/gudhi/Persistence_matrix/columns/column_dimension_holder.h +106 -0
  72. multipers/gudhi/gudhi/Persistence_matrix/columns/column_utilities.h +219 -0
  73. multipers/gudhi/gudhi/Persistence_matrix/columns/entry_types.h +327 -0
  74. multipers/gudhi/gudhi/Persistence_matrix/columns/heap_column.h +1140 -0
  75. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_list_column.h +934 -0
  76. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_set_column.h +934 -0
  77. multipers/gudhi/gudhi/Persistence_matrix/columns/list_column.h +980 -0
  78. multipers/gudhi/gudhi/Persistence_matrix/columns/naive_vector_column.h +1092 -0
  79. multipers/gudhi/gudhi/Persistence_matrix/columns/row_access.h +192 -0
  80. multipers/gudhi/gudhi/Persistence_matrix/columns/set_column.h +921 -0
  81. multipers/gudhi/gudhi/Persistence_matrix/columns/small_vector_column.h +1093 -0
  82. multipers/gudhi/gudhi/Persistence_matrix/columns/unordered_set_column.h +1012 -0
  83. multipers/gudhi/gudhi/Persistence_matrix/columns/vector_column.h +1244 -0
  84. multipers/gudhi/gudhi/Persistence_matrix/matrix_dimension_holders.h +186 -0
  85. multipers/gudhi/gudhi/Persistence_matrix/matrix_row_access.h +164 -0
  86. multipers/gudhi/gudhi/Persistence_matrix/ru_pairing.h +156 -0
  87. multipers/gudhi/gudhi/Persistence_matrix/ru_rep_cycles.h +376 -0
  88. multipers/gudhi/gudhi/Persistence_matrix/ru_vine_swap.h +540 -0
  89. multipers/gudhi/gudhi/Persistent_cohomology/Field_Zp.h +118 -0
  90. multipers/gudhi/gudhi/Persistent_cohomology/Multi_field.h +173 -0
  91. multipers/gudhi/gudhi/Persistent_cohomology/Persistent_cohomology_column.h +128 -0
  92. multipers/gudhi/gudhi/Persistent_cohomology.h +745 -0
  93. multipers/gudhi/gudhi/Points_off_io.h +171 -0
  94. multipers/gudhi/gudhi/Simple_object_pool.h +69 -0
  95. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_iterators.h +463 -0
  96. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_node_explicit_storage.h +83 -0
  97. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_siblings.h +106 -0
  98. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_star_simplex_iterators.h +277 -0
  99. multipers/gudhi/gudhi/Simplex_tree/hooks_simplex_base.h +62 -0
  100. multipers/gudhi/gudhi/Simplex_tree/indexing_tag.h +27 -0
  101. multipers/gudhi/gudhi/Simplex_tree/serialization_utils.h +62 -0
  102. multipers/gudhi/gudhi/Simplex_tree/simplex_tree_options.h +157 -0
  103. multipers/gudhi/gudhi/Simplex_tree.h +2794 -0
  104. multipers/gudhi/gudhi/Simplex_tree_multi.h +152 -0
  105. multipers/gudhi/gudhi/distance_functions.h +62 -0
  106. multipers/gudhi/gudhi/graph_simplicial_complex.h +104 -0
  107. multipers/gudhi/gudhi/persistence_interval.h +253 -0
  108. multipers/gudhi/gudhi/persistence_matrix_options.h +170 -0
  109. multipers/gudhi/gudhi/reader_utils.h +367 -0
  110. multipers/gudhi/mma_interface_coh.h +256 -0
  111. multipers/gudhi/mma_interface_h0.h +223 -0
  112. multipers/gudhi/mma_interface_matrix.h +293 -0
  113. multipers/gudhi/naive_merge_tree.h +536 -0
  114. multipers/gudhi/scc_io.h +310 -0
  115. multipers/gudhi/truc.h +1403 -0
  116. multipers/io.cpython-313-darwin.so +0 -0
  117. multipers/io.pyx +644 -0
  118. multipers/ml/__init__.py +0 -0
  119. multipers/ml/accuracies.py +90 -0
  120. multipers/ml/invariants_with_persistable.py +79 -0
  121. multipers/ml/kernels.py +176 -0
  122. multipers/ml/mma.py +713 -0
  123. multipers/ml/one.py +472 -0
  124. multipers/ml/point_clouds.py +352 -0
  125. multipers/ml/signed_measures.py +1589 -0
  126. multipers/ml/sliced_wasserstein.py +461 -0
  127. multipers/ml/tools.py +113 -0
  128. multipers/mma_structures.cpython-313-darwin.so +0 -0
  129. multipers/mma_structures.pxd +128 -0
  130. multipers/mma_structures.pyx +2786 -0
  131. multipers/mma_structures.pyx.tp +1094 -0
  132. multipers/multi_parameter_rank_invariant/diff_helpers.h +84 -0
  133. multipers/multi_parameter_rank_invariant/euler_characteristic.h +97 -0
  134. multipers/multi_parameter_rank_invariant/function_rips.h +322 -0
  135. multipers/multi_parameter_rank_invariant/hilbert_function.h +769 -0
  136. multipers/multi_parameter_rank_invariant/persistence_slices.h +148 -0
  137. multipers/multi_parameter_rank_invariant/rank_invariant.h +369 -0
  138. multipers/multiparameter_edge_collapse.py +41 -0
  139. multipers/multiparameter_module_approximation/approximation.h +2330 -0
  140. multipers/multiparameter_module_approximation/combinatory.h +129 -0
  141. multipers/multiparameter_module_approximation/debug.h +107 -0
  142. multipers/multiparameter_module_approximation/euler_curves.h +0 -0
  143. multipers/multiparameter_module_approximation/format_python-cpp.h +286 -0
  144. multipers/multiparameter_module_approximation/heap_column.h +238 -0
  145. multipers/multiparameter_module_approximation/images.h +79 -0
  146. multipers/multiparameter_module_approximation/list_column.h +174 -0
  147. multipers/multiparameter_module_approximation/list_column_2.h +232 -0
  148. multipers/multiparameter_module_approximation/ru_matrix.h +347 -0
  149. multipers/multiparameter_module_approximation/set_column.h +135 -0
  150. multipers/multiparameter_module_approximation/structure_higher_dim_barcode.h +36 -0
  151. multipers/multiparameter_module_approximation/unordered_set_column.h +166 -0
  152. multipers/multiparameter_module_approximation/utilities.h +403 -0
  153. multipers/multiparameter_module_approximation/vector_column.h +223 -0
  154. multipers/multiparameter_module_approximation/vector_matrix.h +331 -0
  155. multipers/multiparameter_module_approximation/vineyards.h +464 -0
  156. multipers/multiparameter_module_approximation/vineyards_trajectories.h +649 -0
  157. multipers/multiparameter_module_approximation.cpython-313-darwin.so +0 -0
  158. multipers/multiparameter_module_approximation.pyx +235 -0
  159. multipers/pickle.py +90 -0
  160. multipers/plots.py +456 -0
  161. multipers/point_measure.cpython-313-darwin.so +0 -0
  162. multipers/point_measure.pyx +395 -0
  163. multipers/simplex_tree_multi.cpython-313-darwin.so +0 -0
  164. multipers/simplex_tree_multi.pxd +134 -0
  165. multipers/simplex_tree_multi.pyx +10840 -0
  166. multipers/simplex_tree_multi.pyx.tp +2009 -0
  167. multipers/slicer.cpython-313-darwin.so +0 -0
  168. multipers/slicer.pxd +3034 -0
  169. multipers/slicer.pxd.tp +234 -0
  170. multipers/slicer.pyx +20481 -0
  171. multipers/slicer.pyx.tp +1088 -0
  172. multipers/tensor/tensor.h +672 -0
  173. multipers/tensor.pxd +13 -0
  174. multipers/test.pyx +44 -0
  175. multipers/tests/__init__.py +62 -0
  176. multipers/torch/__init__.py +1 -0
  177. multipers/torch/diff_grids.py +240 -0
  178. multipers/torch/rips_density.py +310 -0
  179. multipers-2.3.3b6.dist-info/METADATA +128 -0
  180. multipers-2.3.3b6.dist-info/RECORD +183 -0
  181. multipers-2.3.3b6.dist-info/WHEEL +6 -0
  182. multipers-2.3.3b6.dist-info/licenses/LICENSE +21 -0
  183. multipers-2.3.3b6.dist-info/top_level.txt +1 -0
multipers/grids.pyx ADDED
@@ -0,0 +1,433 @@
1
+
2
+ from libc.stdint cimport intptr_t, int32_t, int64_t
3
+ from libcpp cimport bool,int, float
4
+
5
+ cimport numpy as cnp
6
+ import numpy as np
7
+ cnp.import_array()
8
+
9
+
10
+ from typing import Iterable,Literal,Optional
11
+ from itertools import product
12
+ from multipers.array_api import api_from_tensor, api_from_tensors
13
+ from multipers.array_api import numpy as npapi
14
+
15
+ available_strategies = ["regular","regular_closest", "regular_left", "partition", "quantile", "precomputed"]
16
+ Lstrategies = Literal["regular","regular_closest", "regular_left", "partition", "quantile", "precomputed"]
17
+
18
+ ctypedef fused some_int:
19
+ int32_t
20
+ int64_t
21
+
22
+ ctypedef fused some_float:
23
+ float
24
+ double
25
+
26
+ def sanitize_grid(grid, bool numpyfy=False):
27
+ if len(grid) == 0:
28
+ raise ValueError("empty filtration grid")
29
+ api = api_from_tensors(*grid)
30
+ if numpyfy:
31
+ grid = tuple(api.asnumpy(g) for g in grid)
32
+ else:
33
+ # copy here may not be necessary, but cheap
34
+ grid = tuple(api.astensor(g) for g in grid)
35
+ assert np.all([g.ndim==1 for g in grid])
36
+ return grid
37
+
38
+ def compute_grid(
39
+ x,
40
+ resolution:Optional[int|Iterable[int]]=None,
41
+ strategy:Lstrategies="exact",
42
+ bool unique=True,
43
+ some_float _q_factor=1.,
44
+ drop_quantiles=[0,0],
45
+ bool dense = False,
46
+ ):
47
+ """
48
+ Computes a grid from filtration values, using some strategy.
49
+
50
+ Input
51
+ -----
52
+
53
+ - `filtrations_values`: `Iterable[filtration of parameter for parameter]`
54
+ where `filtration_of_parameter` is a array[float, ndim=1]
55
+ - `resolution`:Optional[int|tuple[int]]
56
+ - `strategy`: either exact, regular, regular_closest, regular_left, partition, quantile, or precomputed.
57
+ - `unique`: if true, doesn't repeat values in the output grid.
58
+ - `drop_quantiles` : drop some filtration values according to these quantiles
59
+ Output
60
+ ------
61
+
62
+ Iterable[array[float, ndim=1]] : the 1d-grid for each parameter.
63
+ """
64
+
65
+ from multipers.slicer import is_slicer
66
+ from multipers.simplex_tree_multi import is_simplextree_multi
67
+ from multipers.mma_structures import is_mma
68
+
69
+ if resolution is not None and strategy == "exact":
70
+ raise ValueError("The 'exact' strategy does not support resolution.")
71
+ if strategy != "exact":
72
+ assert resolution is not None, "A resolution is required for non-exact strategies"
73
+
74
+
75
+ cdef bool is_numpy_compatible = True
76
+ if (is_slicer(x) or is_simplextree_multi(x)) and x.is_squeezed:
77
+ initial_grid = x.filtration_grid
78
+ api = api_from_tensors(*initial_grid)
79
+ elif is_slicer(x):
80
+ initial_grid = x.get_filtrations_values().T
81
+ api = npapi
82
+ elif is_simplextree_multi(x):
83
+ initial_grid = x.get_filtration_grid()
84
+ api = npapi
85
+ elif is_mma(x):
86
+ initial_grid = x.get_filtration_values()
87
+ api = npapi
88
+ elif isinstance(x, np.ndarray):
89
+ initial_grid = x
90
+ api = npapi
91
+ else:
92
+ x = tuple(x)
93
+ if len(x) == 0: return []
94
+ first = x[0]
95
+ ## is_sm, i.e., iterable tuple(pts,weights)
96
+ if isinstance(first, tuple) and getattr(first[0], "shape", None) is not None:
97
+ initial_grid = tuple(f[0].T for f in x)
98
+ api = api_from_tensors(*initial_grid)
99
+ initial_grid = api.cat(initial_grid, axis=1)
100
+ # if isinstance(initial_grid[0], np.ndarray):
101
+ # initial_grid = np.concatenate(initial_grid, axis=1)
102
+ # else:
103
+ # is_numpy_compatible = False
104
+ # import torch
105
+ # assert isinstance(first[0], torch.Tensor), "Only numpy and torch are supported ftm."
106
+ # initial_grid = torch.cat(initial_grid, axis=1)
107
+ ## is grid-like (num_params, num_pts)
108
+ else:
109
+ api = api_from_tensors(*x)
110
+ initial_grid = tuple(api.astensor(f) for f in x)
111
+ # elif isinstance(first,list) or isinstance(first, tuple) or isinstance(first, np.ndarray):
112
+ # initial_grid = tuple(f for f in x)
113
+ # else:
114
+ # is_numpy_compatible = False
115
+ # import torch
116
+ # assert isinstance(first, torch.Tensor), "Only numpy and torch are supported ftm."
117
+ # initial_grid = x
118
+
119
+ num_parameters = len(initial_grid)
120
+ try:
121
+ int(resolution)
122
+ resolution = [resolution]*num_parameters
123
+ except TypeError:
124
+ pass
125
+
126
+ if api is npapi:
127
+ return _compute_grid_numpy(
128
+ initial_grid,
129
+ resolution=resolution,
130
+ strategy = strategy,
131
+ unique = unique,
132
+ _q_factor=_q_factor,
133
+ drop_quantiles=drop_quantiles,
134
+ dense = dense,
135
+ )
136
+ from multipers.torch.diff_grids import get_grid
137
+ grid = get_grid(strategy)(initial_grid,resolution)
138
+ if dense:
139
+ grid = todense(grid)
140
+ return grid
141
+
142
+
143
+
144
+
145
+
146
+ def _compute_grid_numpy(
147
+ filtrations_values,
148
+ resolution=None,
149
+ strategy:Lstrategies="exact",
150
+ bool unique=True,
151
+ some_float _q_factor=1.,
152
+ drop_quantiles=[0,0],
153
+ bool dense = False,
154
+ ):
155
+ """
156
+ Computes a grid from filtration values, using some strategy.
157
+
158
+ Input
159
+ -----
160
+ - `filtrations_values`: `Iterable[filtration of parameter for parameter]`
161
+ where `filtration_of_parameter` is a array[float, ndim=1]
162
+ - `resolution`:Optional[int|tuple[int]]
163
+ - `strategy`: either exact, regular, regular_closest, regular_left, partition, quantile, or precomputed.
164
+ - `unique`: if true, doesn't repeat values in the output grid.
165
+ - `drop_quantiles` : drop some filtration values according to these quantiles
166
+ Output
167
+ ------
168
+ Iterable[array[float, ndim=1]] : the 1d-grid for each parameter.
169
+ """
170
+ num_parameters = len(filtrations_values)
171
+ try:
172
+ a,b=drop_quantiles
173
+ except:
174
+ a,b=drop_quantiles,drop_quantiles
175
+
176
+ if a != 0 or b != 0:
177
+ boxes = np.asarray([np.quantile(filtration, [a, b], axis=1, method='closest_observation') for filtration in filtrations_values])
178
+ min_filtration, max_filtration = np.min(boxes, axis=(0,1)), np.max(boxes, axis=(0,1)) # box, birth/death, filtration
179
+ filtrations_values = [
180
+ filtration[(m<filtration) * (filtration <M)]
181
+ for filtration, m,M in zip(filtrations_values, min_filtration, max_filtration)
182
+ ]
183
+
184
+ to_unique = lambda f : np.unique(f) if isinstance(f,np.ndarray) else f.unique()
185
+ ## match doesn't work with cython BUG
186
+ if strategy == "exact":
187
+ F=tuple(to_unique(f) for f in filtrations_values)
188
+ elif strategy == "quantile":
189
+ F = tuple(to_unique(f) for f in filtrations_values)
190
+ max_resolution = [min(len(f),r) for f,r in zip(F,resolution)]
191
+ F = tuple( np.quantile(f, q=np.linspace(0,1,num=int(r*_q_factor)), axis=0, method='closest_observation') for f,r in zip(F, resolution) )
192
+ if unique:
193
+ F = tuple(to_unique(f) for f in F)
194
+ if np.all(np.asarray(max_resolution) > np.asarray([len(f) for f in F])):
195
+ return _compute_grid_numpy(filtrations_values=filtrations_values, resolution=resolution, strategy="quantile",_q_factor=1.5*_q_factor)
196
+ elif strategy == "regular":
197
+ F = tuple(np.linspace(np.min(f),np.max(f),num=r, dtype=np.asarray(f).dtype) for f,r in zip(filtrations_values, resolution))
198
+ elif strategy == "regular_closest":
199
+ F = tuple(_todo_regular_closest(f,r, unique) for f,r in zip(filtrations_values, resolution))
200
+ elif strategy == "regular_left":
201
+ F = tuple(_todo_regular_left(f,r, unique) for f,r in zip(filtrations_values, resolution))
202
+ elif strategy == "torch_regular_closest":
203
+ F = tuple(_torch_regular_closest(f,r, unique) for f,r in zip(filtrations_values, resolution))
204
+ elif strategy == "partition":
205
+ F = tuple(_todo_partition(f,r, unique) for f,r in zip(filtrations_values, resolution))
206
+ elif strategy == "precomputed":
207
+ F=filtrations_values
208
+ else:
209
+ raise ValueError(f"Invalid strategy {strategy}. Pick something in {available_strategies}.")
210
+ if dense:
211
+ return todense(F)
212
+ return F
213
+
214
+ def todense(grid, bool product_order=False):
215
+ if len(grid) == 0:
216
+ return np.empty(0)
217
+ if not isinstance(grid[0], np.ndarray):
218
+ import torch
219
+ assert isinstance(grid[0], torch.Tensor)
220
+ from multipers.torch.diff_grids import todense
221
+ return todense(grid)
222
+ dtype = grid[0].dtype
223
+ if product_order:
224
+ return np.fromiter(product(*grid), dtype=np.dtype((dtype, len(grid))), count=np.prod([len(f) for f in grid]))
225
+ mesh = np.meshgrid(*grid)
226
+ coordinates = np.concatenate(tuple(stuff.ravel()[:,None] for stuff in mesh), axis=1, dtype=dtype)
227
+ return coordinates
228
+
229
+
230
+
231
+ ## TODO : optimize. Pykeops ?
232
+ def _todo_regular_closest(some_float[:] f, int r, bool unique):
233
+ f_array = np.asarray(f)
234
+ f_regular = np.linspace(np.min(f), np.max(f),num=r, dtype=f_array.dtype)
235
+ f_regular_closest = np.asarray([f[<int64_t>np.argmin(np.abs(f_array-f_regular[i]))] for i in range(r)])
236
+ if unique: f_regular_closest = np.unique(f_regular_closest)
237
+ return f_regular_closest
238
+
239
+ def _todo_regular_left(some_float[:] f, int r, bool unique):
240
+ sorted_f = np.sort(f)
241
+ f_regular = np.linspace(sorted_f[0],sorted_f[-1],num=r, dtype=sorted_f.dtype)
242
+ f_regular_closest = sorted_f[np.searchsorted(sorted_f,f_regular)]
243
+ if unique: f_regular_closest = np.unique(f_regular_closest)
244
+ return f_regular_closest
245
+
246
+ def _torch_regular_closest(f, int r, bool unique=True):
247
+ import torch
248
+ f_regular = torch.linspace(f.min(),f.max(), r, dtype=f.dtype)
249
+ f_regular_closest =torch.tensor([f[(f-x).abs().argmin()] for x in f_regular])
250
+ if unique: f_regular_closest = f_regular_closest.unique()
251
+ return f_regular_closest
252
+
253
+ def _todo_partition(some_float[:] data,int resolution, bool unique):
254
+ if data.shape[0] < resolution: resolution=data.shape[0]
255
+ k = data.shape[0] // resolution
256
+ partitions = np.partition(data, k)
257
+ f = partitions[[i*k for i in range(resolution)]]
258
+ if unique: f= np.unique(f)
259
+ return f
260
+
261
+
262
+ def compute_bounding_box(stuff, inflate = 0.):
263
+ r"""
264
+ Returns a array of shape (2, num_parameters)
265
+ such that for any filtration value $y$ of something in stuff,
266
+ then if (x,z) is the output of this function, we have
267
+ $x\le y \le z$.
268
+ """
269
+ box = np.array(compute_grid(stuff,strategy="regular",resolution=2)).T
270
+ if inflate:
271
+ box[0] -= inflate
272
+ box[1] += inflate
273
+ return box
274
+
275
+ def push_to_grid(some_float[:,:] points, grid, bool return_coordinate=False):
276
+ """
277
+ Given points and a grid (list of one parameter grids),
278
+ pushes the points onto the grid.
279
+ """
280
+ num_points, num_parameters = points.shape[0], points.shape[1]
281
+ cdef cnp.ndarray[int64_t,ndim=2] coordinates = np.empty((num_points, num_parameters),dtype=np.int64)
282
+ for parameter in range(num_parameters):
283
+ coordinates[:,parameter] = np.searchsorted(grid[parameter],points[:,parameter])
284
+ if return_coordinate:
285
+ return coordinates
286
+ out = np.empty((num_points,num_parameters), grid[0].dtype)
287
+ for parameter in range(num_parameters):
288
+ out[:,parameter] = grid[parameter][coordinates[:,parameter]]
289
+ return out
290
+
291
+
292
+ def coarsen_points(some_float[:,:] points, strategy="exact", int resolution=-1, bool coordinate=False):
293
+ grid = _compute_grid_numpy(points.T, strategy=strategy, resolution=resolution)
294
+ if coordinate:
295
+ return push_to_grid(points, grid, coordinate), grid
296
+ return push_to_grid(points, grid, coordinate)
297
+
298
+ def _inf_value(array):
299
+ if isinstance(array, type|np.dtype):
300
+ dtype = np.dtype(array) # torch types are not types
301
+ elif isinstance(array, np.ndarray):
302
+ dtype = np.dtype(array.dtype)
303
+ else:
304
+ import torch
305
+ if isinstance(array, torch.Tensor):
306
+ dtype=array.dtype
307
+ elif isinstance(array, torch.dtype):
308
+ dtype=array
309
+ else:
310
+ raise ValueError(f"unknown input of type {type(array)=} {array=}")
311
+
312
+ if isinstance(dtype, np.dtype):
313
+ if dtype.kind == 'f':
314
+ return np.asarray(np.inf,dtype=dtype)
315
+ if dtype.kind == 'i':
316
+ return np.iinfo(dtype).max
317
+ # torch only here.
318
+ if dtype.is_floating_point:
319
+ return torch.tensor(torch.inf, dtype=dtype)
320
+ else:
321
+ return torch.iinfo(dtype).max
322
+ raise ValueError(f"Dtype must be integer or floating like (got {dtype})")
323
+
324
+ def evaluate_in_grid(pts, grid, mass_default=None):
325
+ """
326
+ Input
327
+ -----
328
+ - pts: of the form array[int, ndim=2]
329
+ - grid of the form Iterable[array[float, ndim=1]]
330
+ """
331
+ assert pts.ndim == 2
332
+ first_filtration = grid[0]
333
+ dtype = first_filtration.dtype
334
+ if isinstance(first_filtration, np.ndarray):
335
+ if mass_default is not None:
336
+ grid = tuple(np.concatenate([g, [m]]) for g,m in zip(grid, mass_default))
337
+ def empty_like(x):
338
+ return np.empty_like(x, dtype=dtype)
339
+ else:
340
+ import torch
341
+ # assert isinstance(first_filtration, torch.Tensor), f"Invalid grid type. Got {type(grid[0])}, expected numpy or torch array."
342
+ if mass_default is not None:
343
+ grid = tuple(torch.cat([g, torch.tensor(m)[None]]) for g,m in zip(grid, mass_default))
344
+ def empty_like(x):
345
+ return torch.empty(x.shape,dtype=dtype)
346
+
347
+ coords=empty_like(pts)
348
+ cdef int dim = coords.shape[1]
349
+ pts_inf = _inf_value(pts)
350
+ coords_inf = _inf_value(coords)
351
+ idx = np.argwhere(pts == pts_inf)
352
+ pts[idx] == 0
353
+ for i in range(dim):
354
+ coords[:,i] = grid[i][pts[:,i]]
355
+ coords[idx] = coords_inf
356
+ return coords
357
+
358
+ def sm_in_grid(pts, weights, grid, mass_default=None):
359
+ """Given a measure whose points are coordinates,
360
+ pushes this measure in this grid.
361
+ Input
362
+ -----
363
+ - pts: of the form array[int, ndim=2]
364
+ - weights: array[int, ndim=1]
365
+ - grid of the form Iterable[array[float, ndim=1]]
366
+ - num_parameters: number of parameters
367
+ """
368
+ if pts.ndim != 2:
369
+ raise ValueError(f"invalid dirac locations. got {pts.ndim=} != 2")
370
+ if len(grid) == 0:
371
+ raise ValueError(f"Empty grid given. Got {grid=}")
372
+ cdef int num_parameters = pts.shape[1]
373
+ if mass_default is None:
374
+ api = api_from_tensors(*grid)
375
+ else:
376
+ api = api_from_tensors(*grid, mass_default)
377
+
378
+ _grid = list(grid)
379
+ _mass_default = None if mass_default is None else api.astensor(mass_default)
380
+ while len(_grid) < num_parameters:
381
+ _grid += [api.cat([
382
+ (gt:=api.astensor(g))[1:],
383
+ api.astensor(_inf_value(api.asnumpy(gt))).reshape(1)
384
+ ]) for g in grid]
385
+ if mass_default is not None:
386
+ _mass_default = api.cat([_mass_default,mass_default])
387
+ grid = tuple(_grid)
388
+ mass_default = _mass_default
389
+
390
+ coords = evaluate_in_grid(np.asarray(pts, dtype=int), grid, mass_default)
391
+ return (coords, weights)
392
+
393
+ # TODO : optimize with memoryviews / typing
394
+ def sms_in_grid(sms, grid, mass_default=None):
395
+ """Given a measure whose points are coordinates,
396
+ pushes this measure in this grid.
397
+ Input
398
+ -----
399
+ - sms: of the form (signed_measure_like for num_measures)
400
+ where signed_measure_like = tuple(array[int, ndim=2], array[int])
401
+ - grid of the form Iterable[array[float, ndim=1]]
402
+ """
403
+ sms = tuple(sm_in_grid(pts,weights,grid=grid, mass_default=mass_default) for pts,weights in sms)
404
+ return sms
405
+
406
+
407
+ def _push_pts_to_line(pts, basepoint, direction=None):
408
+ api = api_from_tensors(pts, basepoint)
409
+ pts = api.astensor(pts)
410
+ basepoint = api.astensor(basepoint)
411
+ num_parameters = basepoint.shape[0]
412
+ if direction is not None:
413
+ if not api.is_promotable(direction):
414
+ raise ValueError(f"Incompatible input types. Got {type(pts)=}, {type(basepoint)=}, {type(direction)=}")
415
+
416
+ direction = api.astensor(direction)
417
+ ok_idx = direction > 0
418
+ if ok_idx.sum() == 0:
419
+ raise ValueError(f"Got invalid direction {direction}")
420
+ zero_idx = None if ok_idx.all() else direction == 0
421
+ else:
422
+ direction = api.tensor([1], dtype=int)
423
+ ok_idx = slice(None)
424
+ zero_idx = None
425
+ xa = api.maxvalues(
426
+ (pts[:, ok_idx] - basepoint[ok_idx]) / direction[ok_idx], axis=1, keepdims=True
427
+ )
428
+ if zero_idx is not None:
429
+ xb = api.where(pts[:, zero_idx] <= basepoint[zero_idx], -np.inf, np.inf)
430
+ xs = api.maxvalues(api.cat([xa, xb], axis=1), axis=1, keepdims=True)
431
+ else:
432
+ xs = xa
433
+ return xs.squeeze()
@@ -0,0 +1,132 @@
1
+ #pragma once
2
+
3
+ #include "mma_interface_h0.h"
4
+ #include "mma_interface_matrix.h"
5
+ #include "mma_interface_coh.h"
6
+ #include <type_traits> // For static_assert
7
+ #include "truc.h"
8
+ #include <gudhi/Simplex_tree_multi.h>
9
+ #include <gudhi/One_critical_filtration.h>
10
+ #include <gudhi/Multi_critical_filtration.h>
11
+
12
+ template <typename Filtration>
13
+ using SimplexTreeMultiOptions = Gudhi::multi_persistence::Simplex_tree_options_multidimensional_filtration<Filtration>;
14
+
15
+ enum Column_types_strs { LIST, SET, HEAP, VECTOR, NAIVE_VECTOR, UNORDERED_SET, INTRUSIVE_LIST, INTRUSIVE_SET };
16
+
17
+ using Available_columns = Gudhi::persistence_matrix::Column_types;
18
+
19
+ template <Available_columns col>
20
+ using BackendOptionsWithVine = Gudhi::multiparameter::truc_interface::Multi_persistence_options<col>;
21
+ template <Available_columns col>
22
+ using BackendOptionsWithoutVine = Gudhi::multiparameter::truc_interface::No_vine_multi_persistence_options<col>;
23
+
24
+ template <Available_columns col>
25
+ using ClementBackendOptionsWithVine = Gudhi::multiparameter::truc_interface::Multi_persistence_Clement_options<col>;
26
+
27
+ using SimplicialStructure = Gudhi::multiparameter::truc_interface::SimplicialStructure;
28
+ using PresentationStructure = Gudhi::multiparameter::truc_interface::PresentationStructure;
29
+
30
+ template <Available_columns col, class Structure = SimplicialStructure>
31
+ using MatrixBackendNoVine =
32
+ Gudhi::multiparameter::truc_interface::Persistence_backend_matrix<BackendOptionsWithoutVine<col>, Structure>;
33
+
34
+ template <Available_columns col, class Structure = SimplicialStructure>
35
+ using MatrixBackendVine =
36
+ Gudhi::multiparameter::truc_interface::Persistence_backend_matrix<BackendOptionsWithVine<col>, Structure>;
37
+
38
+ template <Available_columns col, class Structure = SimplicialStructure>
39
+ using ClementMatrixBackendVine =
40
+ Gudhi::multiparameter::truc_interface::Persistence_backend_matrix<ClementBackendOptionsWithVine<col>, Structure>;
41
+ using GraphBackendVine = Gudhi::multiparameter::truc_interface::Persistence_backend_h0<SimplicialStructure>;
42
+
43
+ using Filtration_value = Gudhi::multi_filtration::One_critical_filtration<float>;
44
+
45
+ template <Available_columns col = Available_columns::INTRUSIVE_SET>
46
+ using SimplicialNoVineMatrixTruc =
47
+ Gudhi::multiparameter::truc_interface::Truc<MatrixBackendNoVine<col>, SimplicialStructure, Filtration_value>;
48
+
49
+ template <Available_columns col = Available_columns::INTRUSIVE_SET>
50
+ using GeneralVineTruc = Gudhi::multiparameter::truc_interface::
51
+ Truc<MatrixBackendVine<col, PresentationStructure>, PresentationStructure, Filtration_value>;
52
+
53
+ template <Available_columns col = Available_columns::INTRUSIVE_SET>
54
+ using GeneralNoVineTruc = Gudhi::multiparameter::truc_interface::
55
+ Truc<MatrixBackendNoVine<col, PresentationStructure>, PresentationStructure, Filtration_value>;
56
+
57
+ template <Available_columns col = Available_columns::INTRUSIVE_SET>
58
+ using GeneralVineClementTruc = Gudhi::multiparameter::truc_interface::
59
+ Truc<ClementMatrixBackendVine<col, PresentationStructure>, PresentationStructure, Filtration_value>;
60
+
61
+ template <Available_columns col = Available_columns::INTRUSIVE_SET>
62
+ using SimplicialVineMatrixTruc =
63
+ Gudhi::multiparameter::truc_interface::Truc<MatrixBackendVine<col>, SimplicialStructure, Filtration_value>;
64
+ using SimplicialVineGraphTruc =
65
+ Gudhi::multiparameter::truc_interface::Truc<GraphBackendVine, SimplicialStructure, Filtration_value>;
66
+
67
+ // multicrititcal
68
+ using Multi_critical_filtrationValue = Gudhi::multi_filtration::Multi_critical_filtration<float>;
69
+ template <Available_columns col = Available_columns::INTRUSIVE_SET>
70
+ using KCriticalVineTruc = Gudhi::multiparameter::truc_interface::
71
+ Truc<MatrixBackendVine<col, PresentationStructure>, PresentationStructure, Multi_critical_filtrationValue>;
72
+
73
+ template <bool is_vine, Available_columns col = Available_columns::INTRUSIVE_SET>
74
+ using Matrix_interface = std::conditional_t<is_vine,
75
+ MatrixBackendVine<col, PresentationStructure>,
76
+ MatrixBackendNoVine<col, PresentationStructure>>;
77
+
78
+ template <bool is_kcritical, typename value_type>
79
+ using filtration_options = std::conditional_t<is_kcritical,
80
+ Gudhi::multi_filtration::Multi_critical_filtration<value_type>,
81
+ Gudhi::multi_filtration::One_critical_filtration<value_type>>;
82
+
83
+ template <bool is_vine,
84
+ bool is_kcritical,
85
+ typename value_type,
86
+ Available_columns col = Available_columns::INTRUSIVE_SET>
87
+ using MatrixTrucPythonInterface = Gudhi::multiparameter::truc_interface::
88
+ Truc<Matrix_interface<is_vine, col>, PresentationStructure, filtration_options<is_kcritical, value_type>>;
89
+
90
+ enum class BackendsEnum { Matrix, Graph, Clement, GudhiCohomology };
91
+
92
+ // Create a template metafunction to simplify the type selection
93
+ template <BackendsEnum backend, bool is_vine, Available_columns col>
94
+ struct PersBackendOptsImpl;
95
+
96
+ template <bool is_vine, Available_columns col>
97
+ struct PersBackendOptsImpl<BackendsEnum::Matrix, is_vine, col> {
98
+ using type = Matrix_interface<is_vine, col>;
99
+ };
100
+
101
+ template <bool is_vine, Available_columns col>
102
+ struct PersBackendOptsImpl<BackendsEnum::Clement, is_vine, col> {
103
+ static_assert(is_vine, "Clement is vine");
104
+ using type = ClementMatrixBackendVine<col, PresentationStructure>;
105
+ };
106
+
107
+ template <bool is_vine, Available_columns col>
108
+ struct PersBackendOptsImpl<BackendsEnum::GudhiCohomology, is_vine, col> {
109
+ static_assert(!is_vine, "Gudhi is not vine");
110
+ using type = Gudhi::multiparameter::truc_interface::Persistence_backend_cohomology<PresentationStructure>;
111
+ };
112
+
113
+ template <bool is_vine, Available_columns col>
114
+ struct PersBackendOptsImpl<BackendsEnum::Graph, is_vine, col> {
115
+ static_assert(is_vine, "Graph backend requires is_vine to be true");
116
+ using type = GraphBackendVine;
117
+ };
118
+
119
+ // Helper alias to extract the type
120
+ template <BackendsEnum backend, bool is_vine, Available_columns col>
121
+ using PersBackendOpts = typename PersBackendOptsImpl<backend, is_vine, col>::type;
122
+
123
+ template <BackendsEnum backend>
124
+ using StructureStuff = std::conditional_t<backend == BackendsEnum::Graph, SimplicialStructure, PresentationStructure>;
125
+
126
+ template <BackendsEnum backend,
127
+ bool is_vine,
128
+ bool is_kcritical,
129
+ typename value_type,
130
+ Available_columns col = Available_columns::INTRUSIVE_SET>
131
+ using TrucPythonInterface = Gudhi::multiparameter::truc_interface::
132
+ Truc<PersBackendOpts<backend, is_vine, col>, StructureStuff<backend>, filtration_options<is_kcritical, value_type>>;