multipers 2.3.3b6__cp312-cp312-macosx_11_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of multipers might be problematic. Click here for more details.

Files changed (183) hide show
  1. multipers/.dylibs/libc++.1.0.dylib +0 -0
  2. multipers/.dylibs/libtbb.12.16.dylib +0 -0
  3. multipers/__init__.py +33 -0
  4. multipers/_signed_measure_meta.py +453 -0
  5. multipers/_slicer_meta.py +211 -0
  6. multipers/array_api/__init__.py +45 -0
  7. multipers/array_api/numpy.py +41 -0
  8. multipers/array_api/torch.py +58 -0
  9. multipers/data/MOL2.py +458 -0
  10. multipers/data/UCR.py +18 -0
  11. multipers/data/__init__.py +1 -0
  12. multipers/data/graphs.py +466 -0
  13. multipers/data/immuno_regions.py +27 -0
  14. multipers/data/minimal_presentation_to_st_bf.py +0 -0
  15. multipers/data/pytorch2simplextree.py +91 -0
  16. multipers/data/shape3d.py +101 -0
  17. multipers/data/synthetic.py +113 -0
  18. multipers/distances.py +202 -0
  19. multipers/filtration_conversions.pxd +229 -0
  20. multipers/filtration_conversions.pxd.tp +84 -0
  21. multipers/filtrations/__init__.py +18 -0
  22. multipers/filtrations/density.py +574 -0
  23. multipers/filtrations/filtrations.py +361 -0
  24. multipers/filtrations.pxd +224 -0
  25. multipers/function_rips.cpython-312-darwin.so +0 -0
  26. multipers/function_rips.pyx +105 -0
  27. multipers/grids.cpython-312-darwin.so +0 -0
  28. multipers/grids.pyx +433 -0
  29. multipers/gudhi/Persistence_slices_interface.h +132 -0
  30. multipers/gudhi/Simplex_tree_interface.h +239 -0
  31. multipers/gudhi/Simplex_tree_multi_interface.h +551 -0
  32. multipers/gudhi/cubical_to_boundary.h +59 -0
  33. multipers/gudhi/gudhi/Bitmap_cubical_complex.h +450 -0
  34. multipers/gudhi/gudhi/Bitmap_cubical_complex_base.h +1070 -0
  35. multipers/gudhi/gudhi/Bitmap_cubical_complex_periodic_boundary_conditions_base.h +579 -0
  36. multipers/gudhi/gudhi/Debug_utils.h +45 -0
  37. multipers/gudhi/gudhi/Fields/Multi_field.h +484 -0
  38. multipers/gudhi/gudhi/Fields/Multi_field_operators.h +455 -0
  39. multipers/gudhi/gudhi/Fields/Multi_field_shared.h +450 -0
  40. multipers/gudhi/gudhi/Fields/Multi_field_small.h +531 -0
  41. multipers/gudhi/gudhi/Fields/Multi_field_small_operators.h +507 -0
  42. multipers/gudhi/gudhi/Fields/Multi_field_small_shared.h +531 -0
  43. multipers/gudhi/gudhi/Fields/Z2_field.h +355 -0
  44. multipers/gudhi/gudhi/Fields/Z2_field_operators.h +376 -0
  45. multipers/gudhi/gudhi/Fields/Zp_field.h +420 -0
  46. multipers/gudhi/gudhi/Fields/Zp_field_operators.h +400 -0
  47. multipers/gudhi/gudhi/Fields/Zp_field_shared.h +418 -0
  48. multipers/gudhi/gudhi/Flag_complex_edge_collapser.h +337 -0
  49. multipers/gudhi/gudhi/Matrix.h +2107 -0
  50. multipers/gudhi/gudhi/Multi_critical_filtration.h +1038 -0
  51. multipers/gudhi/gudhi/Multi_persistence/Box.h +174 -0
  52. multipers/gudhi/gudhi/Multi_persistence/Line.h +282 -0
  53. multipers/gudhi/gudhi/Off_reader.h +173 -0
  54. multipers/gudhi/gudhi/One_critical_filtration.h +1441 -0
  55. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix.h +769 -0
  56. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix_with_column_compression.h +686 -0
  57. multipers/gudhi/gudhi/Persistence_matrix/Boundary_matrix.h +842 -0
  58. multipers/gudhi/gudhi/Persistence_matrix/Chain_matrix.h +1350 -0
  59. multipers/gudhi/gudhi/Persistence_matrix/Id_to_index_overlay.h +1105 -0
  60. multipers/gudhi/gudhi/Persistence_matrix/Position_to_index_overlay.h +859 -0
  61. multipers/gudhi/gudhi/Persistence_matrix/RU_matrix.h +910 -0
  62. multipers/gudhi/gudhi/Persistence_matrix/allocators/entry_constructors.h +139 -0
  63. multipers/gudhi/gudhi/Persistence_matrix/base_pairing.h +230 -0
  64. multipers/gudhi/gudhi/Persistence_matrix/base_swap.h +211 -0
  65. multipers/gudhi/gudhi/Persistence_matrix/boundary_cell_position_to_id_mapper.h +60 -0
  66. multipers/gudhi/gudhi/Persistence_matrix/boundary_face_position_to_id_mapper.h +60 -0
  67. multipers/gudhi/gudhi/Persistence_matrix/chain_pairing.h +136 -0
  68. multipers/gudhi/gudhi/Persistence_matrix/chain_rep_cycles.h +190 -0
  69. multipers/gudhi/gudhi/Persistence_matrix/chain_vine_swap.h +616 -0
  70. multipers/gudhi/gudhi/Persistence_matrix/columns/chain_column_extra_properties.h +150 -0
  71. multipers/gudhi/gudhi/Persistence_matrix/columns/column_dimension_holder.h +106 -0
  72. multipers/gudhi/gudhi/Persistence_matrix/columns/column_utilities.h +219 -0
  73. multipers/gudhi/gudhi/Persistence_matrix/columns/entry_types.h +327 -0
  74. multipers/gudhi/gudhi/Persistence_matrix/columns/heap_column.h +1140 -0
  75. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_list_column.h +934 -0
  76. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_set_column.h +934 -0
  77. multipers/gudhi/gudhi/Persistence_matrix/columns/list_column.h +980 -0
  78. multipers/gudhi/gudhi/Persistence_matrix/columns/naive_vector_column.h +1092 -0
  79. multipers/gudhi/gudhi/Persistence_matrix/columns/row_access.h +192 -0
  80. multipers/gudhi/gudhi/Persistence_matrix/columns/set_column.h +921 -0
  81. multipers/gudhi/gudhi/Persistence_matrix/columns/small_vector_column.h +1093 -0
  82. multipers/gudhi/gudhi/Persistence_matrix/columns/unordered_set_column.h +1012 -0
  83. multipers/gudhi/gudhi/Persistence_matrix/columns/vector_column.h +1244 -0
  84. multipers/gudhi/gudhi/Persistence_matrix/matrix_dimension_holders.h +186 -0
  85. multipers/gudhi/gudhi/Persistence_matrix/matrix_row_access.h +164 -0
  86. multipers/gudhi/gudhi/Persistence_matrix/ru_pairing.h +156 -0
  87. multipers/gudhi/gudhi/Persistence_matrix/ru_rep_cycles.h +376 -0
  88. multipers/gudhi/gudhi/Persistence_matrix/ru_vine_swap.h +540 -0
  89. multipers/gudhi/gudhi/Persistent_cohomology/Field_Zp.h +118 -0
  90. multipers/gudhi/gudhi/Persistent_cohomology/Multi_field.h +173 -0
  91. multipers/gudhi/gudhi/Persistent_cohomology/Persistent_cohomology_column.h +128 -0
  92. multipers/gudhi/gudhi/Persistent_cohomology.h +745 -0
  93. multipers/gudhi/gudhi/Points_off_io.h +171 -0
  94. multipers/gudhi/gudhi/Simple_object_pool.h +69 -0
  95. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_iterators.h +463 -0
  96. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_node_explicit_storage.h +83 -0
  97. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_siblings.h +106 -0
  98. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_star_simplex_iterators.h +277 -0
  99. multipers/gudhi/gudhi/Simplex_tree/hooks_simplex_base.h +62 -0
  100. multipers/gudhi/gudhi/Simplex_tree/indexing_tag.h +27 -0
  101. multipers/gudhi/gudhi/Simplex_tree/serialization_utils.h +62 -0
  102. multipers/gudhi/gudhi/Simplex_tree/simplex_tree_options.h +157 -0
  103. multipers/gudhi/gudhi/Simplex_tree.h +2794 -0
  104. multipers/gudhi/gudhi/Simplex_tree_multi.h +152 -0
  105. multipers/gudhi/gudhi/distance_functions.h +62 -0
  106. multipers/gudhi/gudhi/graph_simplicial_complex.h +104 -0
  107. multipers/gudhi/gudhi/persistence_interval.h +253 -0
  108. multipers/gudhi/gudhi/persistence_matrix_options.h +170 -0
  109. multipers/gudhi/gudhi/reader_utils.h +367 -0
  110. multipers/gudhi/mma_interface_coh.h +256 -0
  111. multipers/gudhi/mma_interface_h0.h +223 -0
  112. multipers/gudhi/mma_interface_matrix.h +293 -0
  113. multipers/gudhi/naive_merge_tree.h +536 -0
  114. multipers/gudhi/scc_io.h +310 -0
  115. multipers/gudhi/truc.h +1403 -0
  116. multipers/io.cpython-312-darwin.so +0 -0
  117. multipers/io.pyx +644 -0
  118. multipers/ml/__init__.py +0 -0
  119. multipers/ml/accuracies.py +90 -0
  120. multipers/ml/invariants_with_persistable.py +79 -0
  121. multipers/ml/kernels.py +176 -0
  122. multipers/ml/mma.py +713 -0
  123. multipers/ml/one.py +472 -0
  124. multipers/ml/point_clouds.py +352 -0
  125. multipers/ml/signed_measures.py +1589 -0
  126. multipers/ml/sliced_wasserstein.py +461 -0
  127. multipers/ml/tools.py +113 -0
  128. multipers/mma_structures.cpython-312-darwin.so +0 -0
  129. multipers/mma_structures.pxd +128 -0
  130. multipers/mma_structures.pyx +2786 -0
  131. multipers/mma_structures.pyx.tp +1094 -0
  132. multipers/multi_parameter_rank_invariant/diff_helpers.h +84 -0
  133. multipers/multi_parameter_rank_invariant/euler_characteristic.h +97 -0
  134. multipers/multi_parameter_rank_invariant/function_rips.h +322 -0
  135. multipers/multi_parameter_rank_invariant/hilbert_function.h +769 -0
  136. multipers/multi_parameter_rank_invariant/persistence_slices.h +148 -0
  137. multipers/multi_parameter_rank_invariant/rank_invariant.h +369 -0
  138. multipers/multiparameter_edge_collapse.py +41 -0
  139. multipers/multiparameter_module_approximation/approximation.h +2330 -0
  140. multipers/multiparameter_module_approximation/combinatory.h +129 -0
  141. multipers/multiparameter_module_approximation/debug.h +107 -0
  142. multipers/multiparameter_module_approximation/euler_curves.h +0 -0
  143. multipers/multiparameter_module_approximation/format_python-cpp.h +286 -0
  144. multipers/multiparameter_module_approximation/heap_column.h +238 -0
  145. multipers/multiparameter_module_approximation/images.h +79 -0
  146. multipers/multiparameter_module_approximation/list_column.h +174 -0
  147. multipers/multiparameter_module_approximation/list_column_2.h +232 -0
  148. multipers/multiparameter_module_approximation/ru_matrix.h +347 -0
  149. multipers/multiparameter_module_approximation/set_column.h +135 -0
  150. multipers/multiparameter_module_approximation/structure_higher_dim_barcode.h +36 -0
  151. multipers/multiparameter_module_approximation/unordered_set_column.h +166 -0
  152. multipers/multiparameter_module_approximation/utilities.h +403 -0
  153. multipers/multiparameter_module_approximation/vector_column.h +223 -0
  154. multipers/multiparameter_module_approximation/vector_matrix.h +331 -0
  155. multipers/multiparameter_module_approximation/vineyards.h +464 -0
  156. multipers/multiparameter_module_approximation/vineyards_trajectories.h +649 -0
  157. multipers/multiparameter_module_approximation.cpython-312-darwin.so +0 -0
  158. multipers/multiparameter_module_approximation.pyx +235 -0
  159. multipers/pickle.py +90 -0
  160. multipers/plots.py +456 -0
  161. multipers/point_measure.cpython-312-darwin.so +0 -0
  162. multipers/point_measure.pyx +395 -0
  163. multipers/simplex_tree_multi.cpython-312-darwin.so +0 -0
  164. multipers/simplex_tree_multi.pxd +134 -0
  165. multipers/simplex_tree_multi.pyx +10840 -0
  166. multipers/simplex_tree_multi.pyx.tp +2009 -0
  167. multipers/slicer.cpython-312-darwin.so +0 -0
  168. multipers/slicer.pxd +3034 -0
  169. multipers/slicer.pxd.tp +234 -0
  170. multipers/slicer.pyx +20481 -0
  171. multipers/slicer.pyx.tp +1088 -0
  172. multipers/tensor/tensor.h +672 -0
  173. multipers/tensor.pxd +13 -0
  174. multipers/test.pyx +44 -0
  175. multipers/tests/__init__.py +62 -0
  176. multipers/torch/__init__.py +1 -0
  177. multipers/torch/diff_grids.py +240 -0
  178. multipers/torch/rips_density.py +310 -0
  179. multipers-2.3.3b6.dist-info/METADATA +128 -0
  180. multipers-2.3.3b6.dist-info/RECORD +183 -0
  181. multipers-2.3.3b6.dist-info/WHEEL +6 -0
  182. multipers-2.3.3b6.dist-info/licenses/LICENSE +21 -0
  183. multipers-2.3.3b6.dist-info/top_level.txt +1 -0
@@ -0,0 +1,461 @@
1
+ # This code was written by Mathieu Carrière.
2
+
3
+ import numpy as np
4
+ from sklearn.base import BaseEstimator, TransformerMixin
5
+ from sklearn.metrics import pairwise_distances, pairwise_kernels
6
+ from joblib import Parallel, delayed
7
+
8
+
9
+ def _pairwise(fallback, skipdiag, X, Y, metric, n_jobs):
10
+ if Y is not None:
11
+ return fallback(X, Y, metric=metric, n_jobs=n_jobs)
12
+ triu = np.triu_indices(len(X), k=skipdiag)
13
+ tril = (triu[1], triu[0])
14
+ par = Parallel(n_jobs=n_jobs, prefer="threads")
15
+ d = par(delayed(metric)([triu[0][i]], [triu[1][i]])
16
+ for i in range(len(triu[0])))
17
+ m = np.empty((len(X), len(X)))
18
+ m[triu] = d
19
+ m[tril] = d
20
+ if skipdiag:
21
+ np.fill_diagonal(m, 0)
22
+ return m
23
+
24
+
25
+ def _sklearn_wrapper(metric, X, Y, **kwargs):
26
+ """
27
+ This function is a wrapper for any metric between two signed measures that takes two numpy arrays of shapes (nxD) and (mxD) as arguments.
28
+ """
29
+ if Y is None:
30
+
31
+ def flat_metric(a, b):
32
+ return metric(X[int(a[0])], X[int(b[0])], **kwargs)
33
+ else:
34
+
35
+ def flat_metric(a, b):
36
+ return metric(X[int(a[0])], Y[int(b[0])], **kwargs)
37
+
38
+ return flat_metric
39
+
40
+
41
+ def _compute_signed_measure_parts(X):
42
+ """
43
+ This is a function for separating the positive and negative points of a list of signed measures. This function can be used as a preprocessing step in order to speed up the running time for computing all pairwise (sliced) Wasserstein distances on a list of signed measures.
44
+
45
+ Parameters:
46
+ X (list of n tuples): list of signed measures.
47
+
48
+ Returns:
49
+ list of n pairs of numpy arrays of shape (num x dimension): list of positive and negative signed measures.
50
+ """
51
+ XX = []
52
+ for C, M in X:
53
+ pos_idxs = np.argwhere(M > 0).ravel()
54
+ neg_idxs = np.setdiff1d(np.arange(len(M)), pos_idxs)
55
+ XX.append(
56
+ [
57
+ np.repeat(C[pos_idxs], M[pos_idxs], axis=0),
58
+ np.repeat(C[neg_idxs], -M[neg_idxs], axis=0),
59
+ ]
60
+ )
61
+ return XX
62
+
63
+
64
+ def _compute_signed_measure_projections(X, num_directions, scales):
65
+ """
66
+ This is a function for projecting the points of a list of signed measures onto a fixed number of lines sampled uniformly. This function can be used as a preprocessing step in order to speed up the running time for computing all pairwise sliced Wasserstein distances on a list of signed measures.
67
+
68
+ Parameters:
69
+ X (list of n tuples): list of signed measures.
70
+ num_directions (int): number of lines evenly sampled from [-pi/2,pi/2] in order to approximate and speed up the distance computation.
71
+ scales (array of shape D): scales associated to the dimensions.
72
+
73
+ Returns:
74
+ list of n pairs of numpy arrays of shape (num x num_directions): list of positive and negative projected signed measures.
75
+ """
76
+ dimension = X[0][0].shape[1]
77
+ np.random.seed(42)
78
+ thetas = np.random.normal(0, 1, [num_directions, dimension])
79
+ lines = (thetas / np.linalg.norm(thetas, axis=1)[:, None]).T
80
+ weights = (
81
+ np.linalg.norm(np.multiply(scales[:, None], lines), axis=0)
82
+ if scales is not None
83
+ else np.ones(num_directions)
84
+ )
85
+ XX = []
86
+ for C, M in X:
87
+ pos_idxs = np.argwhere(M > 0).ravel()
88
+ neg_idxs = np.setdiff1d(np.arange(len(M)), pos_idxs)
89
+ XX.append(
90
+ [
91
+ np.matmul(np.repeat(C[pos_idxs], M[pos_idxs], axis=0), lines),
92
+ np.matmul(np.repeat(C[neg_idxs], -M[neg_idxs], axis=0), lines),
93
+ weights,
94
+ ]
95
+ )
96
+ return XX
97
+
98
+
99
+ def pairwise_signed_measure_distances(
100
+ X, Y=None, metric="sliced_wasserstein", n_jobs=None, **kwargs
101
+ ):
102
+ """
103
+ This function computes the distance matrix between two lists of signed measures given as numpy arrays of shape (nxD).
104
+
105
+ Parameters:
106
+ X (list of n tuples): first list of signed measures.
107
+ Y (list of m tuples): second list of signed measures (optional). If None, pairwise distances are computed from the first list only.
108
+ metric: distance to use. It can be either a string ("sliced_wasserstein", "wasserstein") or a function taking two tuples as inputs. If it is a function, make sure that it is symmetric and that it outputs 0 if called on the same two tuples.
109
+ n_jobs (int): number of jobs to use for the computation. This uses joblib.Parallel(prefer="threads"), so metrics that do not release the GIL may not scale unless run inside a `joblib.parallel_backend <https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend>`_ block.
110
+ **kwargs: optional keyword parameters. Any further parameters are passed directly to the distance function. See the docs of the various distance classes in this module.
111
+
112
+ Returns:
113
+ numpy array of shape (nxm): distance matrix
114
+ """
115
+ XX = np.reshape(np.arange(len(X)), [-1, 1])
116
+ YY = None if Y is None or Y is X else np.reshape(
117
+ np.arange(len(Y)), [-1, 1])
118
+ if metric == "sliced_wasserstein":
119
+ Xproj = _compute_signed_measure_projections(X, **kwargs)
120
+ Yproj = None if Y is None else _compute_signed_measure_projections(
121
+ Y, **kwargs)
122
+ return _pairwise(
123
+ pairwise_distances,
124
+ True,
125
+ XX,
126
+ YY,
127
+ metric=_sklearn_wrapper(
128
+ _sliced_wasserstein_distance_on_projections, Xproj, Yproj
129
+ ),
130
+ n_jobs=n_jobs,
131
+ )
132
+ elif metric == "wasserstein":
133
+ Xproj = _compute_signed_measure_parts(X)
134
+ Yproj = None if Y is None else _compute_signed_measure_parts(Y)
135
+ return _pairwise(
136
+ pairwise_distances,
137
+ True,
138
+ XX,
139
+ YY,
140
+ metric=_sklearn_wrapper(
141
+ _wasserstein_distance_on_parts(**kwargs), Xproj, Yproj
142
+ ),
143
+ n_jobs=n_jobs,
144
+ )
145
+ else:
146
+ return _pairwise(
147
+ pairwise_distances,
148
+ True,
149
+ XX,
150
+ YY,
151
+ metric=_sklearn_wrapper(metric, X, Y, **kwargs),
152
+ n_jobs=n_jobs,
153
+ )
154
+
155
+
156
+ def _wasserstein_distance_on_parts(ground_norm=1, epsilon=1.0):
157
+ """
158
+ This is a function for computing the Wasserstein distance between two signed measures that have already been separated into their positive and negative parts.
159
+
160
+ Parameters:
161
+ meas1: pair of (n x dimension) numpy.arrays containing the points of the positive and negative parts of the first measure.
162
+ meas2: pair of (m x dimension) numpy.arrays containing the points of the positive and negative parts of the second measure.
163
+
164
+ Returns:
165
+ float: the sliced Wasserstein distance between the projected signed measures.
166
+ """
167
+
168
+ def metric(meas1, meas2):
169
+ meas1_plus, meas1_minus = meas1[0], meas1[1]
170
+ meas2_plus, meas2_minus = meas2[0], meas2[1]
171
+ num_pts = len(meas1_plus) + len(meas2_minus)
172
+ meas_t1 = np.vstack([meas1_plus, meas2_minus])
173
+ meas_t2 = np.vstack([meas2_plus, meas1_minus])
174
+ import ot
175
+
176
+ if epsilon > 0:
177
+ wass = ot.sinkhorn2(
178
+ 1 / num_pts * np.ones(num_pts),
179
+ 1 / num_pts * np.ones(num_pts),
180
+ pairwise_distances(
181
+ meas_t1, meas_t2, metric="minkowski", p=ground_norm),
182
+ epsilon,
183
+ )
184
+ return wass[0]
185
+ else:
186
+ wass = ot.lp.emd2(
187
+ [],
188
+ [],
189
+ np.ascontiguousarray(
190
+ pairwise_distances(
191
+ meas_t1, meas_t2, metric="minkowski", p=ground_norm
192
+ ),
193
+ dtype=np.float64,
194
+ ),
195
+ )
196
+ return wass
197
+
198
+ return metric
199
+
200
+
201
+ def _sliced_wasserstein_distance_on_projections(meas1, meas2, scales=None):
202
+ """
203
+ This is a function for computing the sliced Wasserstein distance between two signed measures that have already been projected onto some lines. It simply amounts to comparing the sorted projections with the 1-norm, and averaging over the lines. See http://proceedings.mlr.press/v70/carriere17a.html for more details.
204
+
205
+ Parameters:
206
+ meas1: pair of (n x number_of_lines) numpy.arrays containing the projected points of the positive and negative parts of the first measure.
207
+ meas2: pair of (m x number_of_lines) numpy.arrays containing the projected points of the positive and negative parts of the second measure.
208
+ scales (array of shape D): scales associated to the dimensions.
209
+
210
+ Returns:
211
+ float: the sliced Wasserstein distance between the projected signed measures.
212
+ """
213
+ # assert np.array_equal( meas1[2], meas2[2] )
214
+ weights = meas1[2]
215
+ meas1_plus, meas1_minus = meas1[0], meas1[1]
216
+ meas2_plus, meas2_minus = meas2[0], meas2[1]
217
+ A = np.sort(np.vstack([meas1_plus, meas2_minus]), axis=0)
218
+ B = np.sort(np.vstack([meas2_plus, meas1_minus]), axis=0)
219
+ L1 = np.sum(np.abs(A - B), axis=0)
220
+ return np.mean(np.multiply(L1, weights))
221
+
222
+
223
+ def _sliced_wasserstein_distance(meas1, meas2, num_directions, scales=None):
224
+ """
225
+ This is a function for computing the sliced Wasserstein distance from two signed measures. The Sliced Wasserstein distance is computed by projecting the signed measures onto lines, comparing the projections with the 1-norm, and finally averaging over the lines. See http://proceedings.mlr.press/v70/carriere17a.html for more details.
226
+
227
+ Parameters:
228
+ meas1: ((n x D), (n)) tuple with numpy.array encoding the (finite points of the) first measure and their multiplicities. Must not contain essential points (i.e. with infinite coordinate).
229
+ meas2: ((m x D), (m)) tuple encoding the second measure.
230
+ num_directions (int): number of lines evenly sampled from [-pi/2,pi/2] in order to approximate and speed up the distance computation.
231
+ scales (array of shape D): scales associated to the dimensions.
232
+
233
+ Returns:
234
+ float: the sliced Wasserstein distance between signed measures.
235
+ """
236
+ C1, M1 = meas1[0], meas1[1]
237
+ C2, M2 = meas2[0], meas2[1]
238
+ dimension = C1.shape[1]
239
+ C1_plus_idxs, C2_plus_idxs = (
240
+ np.argwhere(M1 > 0).ravel(),
241
+ np.argwhere(M2 > 0).ravel(),
242
+ )
243
+ C1_minus_idxs, C2_minus_idxs = (
244
+ np.setdiff1d(np.arange(len(M1)), C1_plus_idxs),
245
+ np.setdiff1d(np.arange(len(M2)), C2_plus_idxs),
246
+ )
247
+ np.random.seed(42)
248
+ thetas = np.random.normal(0, 1, [num_directions, dimension])
249
+ lines = (thetas / np.linalg.norm(thetas, axis=1)[:, None]).T
250
+ weights = (
251
+ np.linalg.norm(np.multiply(scales[:, None], lines), axis=0)
252
+ if scales is not None
253
+ else np.ones(num_directions)
254
+ )
255
+ approx1 = np.matmul(
256
+ np.vstack(
257
+ [
258
+ np.repeat(C1[C1_plus_idxs], M1[C1_plus_idxs], axis=0),
259
+ np.repeat(C2[C2_minus_idxs], -M2[C2_minus_idxs], axis=0),
260
+ ]
261
+ ),
262
+ lines,
263
+ )
264
+ approx2 = np.matmul(
265
+ np.vstack(
266
+ [
267
+ np.repeat(C2[C2_plus_idxs], M2[C2_plus_idxs], axis=0),
268
+ np.repeat(C1[C1_minus_idxs], -M1[C1_minus_idxs], axis=0),
269
+ ]
270
+ ),
271
+ lines,
272
+ )
273
+ A = np.sort(approx1, axis=0)
274
+ B = np.sort(approx2, axis=0)
275
+ L1 = np.sum(np.abs(A - B), axis=0)
276
+ return np.mean(np.multiply(L1, weights))
277
+
278
+
279
+ def _wasserstein_distance(meas1, meas2, epsilon, ground_norm):
280
+ """
281
+ This is a function for computing the Wasserstein distance from two signed measures.
282
+
283
+ Parameters:
284
+ meas1: ((n x D), (n)) tuple with numpy.array encoding the (finite points of the) first measure and their multiplicities. Must not contain essential points (i.e. with infinite coordinate).
285
+ meas2: ((m x D), (m)) tuple encoding the second measure.
286
+ epsilon (float): entropy regularization parameter.
287
+ ground_norm (int): norm to use for ground metric cost.
288
+
289
+ Returns:
290
+ float: the Wasserstein distance between signed measures.
291
+ """
292
+ C1, M1 = meas1[0], meas1[1]
293
+ C2, M2 = meas2[0], meas2[1]
294
+ C1_plus_idxs, C2_plus_idxs = (
295
+ np.argwhere(M1 > 0).ravel(),
296
+ np.argwhere(M2 > 0).ravel(),
297
+ )
298
+ C1_minus_idxs, C2_minus_idxs = (
299
+ np.setdiff1d(np.arange(len(M1)), C1_plus_idxs),
300
+ np.setdiff1d(np.arange(len(M2)), C2_plus_idxs),
301
+ )
302
+ approx1 = np.vstack(
303
+ [
304
+ np.repeat(C1[C1_plus_idxs], M1[C1_plus_idxs], axis=0),
305
+ np.repeat(C2[C2_minus_idxs], -M2[C2_minus_idxs], axis=0),
306
+ ]
307
+ )
308
+ approx2 = np.vstack(
309
+ [
310
+ np.repeat(C2[C2_plus_idxs], M2[C2_plus_idxs], axis=0),
311
+ np.repeat(C1[C1_minus_idxs], -M1[C1_minus_idxs], axis=0),
312
+ ]
313
+ )
314
+ num_pts = len(approx1)
315
+ import ot
316
+
317
+ if epsilon > 0:
318
+ wass = ot.sinkhorn2(
319
+ 1 / num_pts * np.ones(num_pts),
320
+ 1 / num_pts * np.ones(num_pts),
321
+ pairwise_distances(
322
+ approx1, approx2, metric="minkowski", p=ground_norm),
323
+ epsilon,
324
+ )
325
+ return wass[0]
326
+ else:
327
+ wass = ot.lp.emd2(
328
+ 1 / num_pts * np.ones(num_pts),
329
+ 1 / num_pts * np.ones(num_pts),
330
+ pairwise_distances(
331
+ approx1, approx2, metric="minkowski", p=ground_norm),
332
+ )
333
+ return wass
334
+
335
+
336
+ class SlicedWassersteinDistance(BaseEstimator, TransformerMixin):
337
+ """
338
+ This is a class for computing the sliced Wasserstein distance matrix from a list of signed measures. The Sliced Wasserstein distance is computed by projecting the signed measures onto lines, comparing the projections with the 1-norm, and finally integrating over all possible lines. See http://proceedings.mlr.press/v70/carriere17a.html for more details.
339
+ """
340
+
341
+ def __init__(self, num_directions=10, scales=None, n_jobs=None):
342
+ """
343
+ Constructor for the SlicedWassersteinDistance class.
344
+
345
+ Parameters:
346
+ num_directions (int): number of lines evenly sampled in order to approximate and speed up the distance computation (default 10).
347
+ scales (array of shape D): scales associated to the dimensions.
348
+ n_jobs (int): number of jobs to use for the computation. See :func:`pairwise_signed_measure_distances` for details.
349
+ """
350
+ self.num_directions = num_directions
351
+ self.scales = scales
352
+ self.n_jobs = n_jobs
353
+
354
+ def fit(self, X, y=None):
355
+ """
356
+ Fit the SlicedWassersteinDistance class on a list of signed measures: signed measures are projected onto the different lines. The measures themselves are then stored in numpy arrays, called **measures_**.
357
+
358
+ Parameters:
359
+ X (list of tuples): input signed measures.
360
+ y (n x 1 array): signed measure labels (unused).
361
+ """
362
+ self.measures_ = X
363
+ return self
364
+
365
+ def transform(self, X):
366
+ """
367
+ Compute all sliced Wasserstein distances between the signed measures that were stored after calling the fit() method, and a given list of (possibly different) signed measures.
368
+
369
+ Parameters:
370
+ X (list of tuples): input signed measures.
371
+
372
+ Returns:
373
+ numpy array of shape (number of measures in **measures**) x (number of measures in X): matrix of pairwise sliced Wasserstein distances.
374
+ """
375
+ return pairwise_signed_measure_distances(
376
+ X,
377
+ self.measures_,
378
+ metric="sliced_wasserstein",
379
+ num_directions=self.num_directions,
380
+ scales=self.scales,
381
+ n_jobs=self.n_jobs,
382
+ )
383
+
384
+ def __call__(self, meas1, meas2):
385
+ """
386
+ Apply SlicedWassersteinDistance on a single pair of signed measures and outputs the result.
387
+
388
+ Parameters:
389
+ meas1: ((n x D), (n)) tuple with numpy.array encoding the (finite points of the) first measure and their multiplicities. Must not contain essential points (i.e. with infinite coordinate).
390
+ meas2: ((m x D), (m)) tuple encoding the second measure.
391
+
392
+ Returns:
393
+ float: sliced Wasserstein distance.
394
+ """
395
+ return _sliced_wasserstein_distance(
396
+ meas1, meas2, num_directions=self.num_directions, scales=self.scales
397
+ )
398
+
399
+
400
+ class WassersteinDistance(BaseEstimator, TransformerMixin):
401
+ """
402
+ This is a class for computing the Wasserstein distance matrix from a list of signed measures.
403
+ """
404
+
405
+ def __init__(self, epsilon=1.0, ground_norm=1, n_jobs=None):
406
+ """
407
+ Constructor for the WassersteinDistance class.
408
+
409
+ Parameters:
410
+ epsilon (float): entropy regularization parameter.
411
+ ground_norm (int): norm to use for ground metric cost.
412
+ n_jobs (int): number of jobs to use for the computation. See :func:`pairwise_signed_measure_distances` for details.
413
+ """
414
+ self.epsilon = epsilon
415
+ self.ground_norm = ground_norm
416
+ self.n_jobs = n_jobs
417
+
418
+ def fit(self, X, y=None):
419
+ """
420
+ Fit the WassersteinDistance class on a list of signed measures. The measures themselves are then stored in numpy arrays, called **measures_**.
421
+
422
+ Parameters:
423
+ X (list of tuples): input signed measures.
424
+ y (n x 1 array): signed measure labels (unused).
425
+ """
426
+ self.measures_ = X
427
+ return self
428
+
429
+ def transform(self, X):
430
+ """
431
+ Compute all Wasserstein distances between the signed measures that were stored after calling the fit() method, and a given list of (possibly different) signed measures.
432
+
433
+ Parameters:
434
+ X (list of tuples): input signed measures.
435
+
436
+ Returns:
437
+ numpy array of shape (number of measures in **measures**) x (number of measures in X): matrix of pairwise Wasserstein distances.
438
+ """
439
+ return pairwise_signed_measure_distances(
440
+ X,
441
+ self.measures_,
442
+ metric="wasserstein",
443
+ epsilon=self.epsilon,
444
+ ground_norm=self.ground_norm,
445
+ n_jobs=self.n_jobs,
446
+ )
447
+
448
+ def __call__(self, meas1, meas2):
449
+ """
450
+ Apply WassersteinDistance on a single pair of signed measures and outputs the result.
451
+
452
+ Parameters:
453
+ meas1: ((n x D), (n)) tuple with numpy.array encoding the (finite points of the) first measure and their multiplicities. Must not contain essential points (i.e. with infinite coordinate).
454
+ meas2: ((m x D), (m)) tuple encoding the second measure.
455
+
456
+ Returns:
457
+ float: Wasserstein distance.
458
+ """
459
+ return _wasserstein_distance(
460
+ meas1, meas2, epsilon=self.epsilon, ground_norm=self.ground_norm
461
+ )
multipers/ml/tools.py ADDED
@@ -0,0 +1,113 @@
1
+ from types import FunctionType
2
+ from typing import Iterable
3
+
4
+ import numpy as np
5
+ from joblib import Parallel, delayed
6
+ from sklearn.base import BaseEstimator, TransformerMixin
7
+
8
+ import multipers as mp
9
+ from multipers.simplex_tree_multi import SimplexTreeMulti
10
+
11
+
12
+ def get_simplex_tree_from_delayed(x) -> mp.SimplexTreeMulti:
13
+ f, args, kwargs = x
14
+ return f(*args, **kwargs)
15
+
16
+
17
+ def get_simplextree(x) -> mp.SimplexTreeMulti:
18
+ if isinstance(x, mp.SimplexTreeMulti):
19
+ return x
20
+ if len(x) == 3 and isinstance(x[0], FunctionType):
21
+ return get_simplex_tree_from_delayed(x)
22
+ else:
23
+ raise TypeError("Not a valid SimplexTree !")
24
+
25
+
26
+ def filtration_grid_to_coordinates(F, return_resolution):
27
+ # computes the mesh as a coordinate list
28
+ mesh = np.meshgrid(*F)
29
+ coordinates = np.concatenate([stuff.flatten()[:, None] for stuff in mesh], axis=1)
30
+ if return_resolution:
31
+ return coordinates, tuple(len(f) for f in F)
32
+ return coordinates
33
+
34
+
35
+ def get_filtration_weights_grid(
36
+ num_parameters: int = 2,
37
+ resolution: int | Iterable[int] = 3,
38
+ *,
39
+ min: float = 0,
40
+ max: float = 20,
41
+ dtype=float,
42
+ remove_homothetie: bool = True,
43
+ weights=None,
44
+ ):
45
+ """
46
+ Provides a grid of weights, for filtration rescaling.
47
+ - num parameter : the dimension of the grid tensor
48
+ - resolution : the size of each coordinate
49
+ - min : minimum weight
50
+ - max : maximum weight
51
+ - weights : custom weights (instead of linspace between min and max)
52
+ - dtype : the type of the grid values (useful for int weights)
53
+ """
54
+ from itertools import product
55
+
56
+ # if isinstance(resolution, int):
57
+ try:
58
+ float(resolution)
59
+ resolution = [resolution] * num_parameters
60
+ except:
61
+ pass
62
+ if weights is None:
63
+ weights = [
64
+ np.linspace(start=min, stop=max, num=r, dtype=dtype) for r in resolution
65
+ ]
66
+ try:
67
+ float(weights[0]) # same weights for each filtrations
68
+ weights = [weights] * num_parameters
69
+ except:
70
+ None
71
+ out = np.asarray(list(product(*weights)))
72
+ if remove_homothetie:
73
+ _, indices = np.unique(
74
+ [x / x.max() for x in out if x.max() != 0], axis=0, return_index=True
75
+ )
76
+ out = out[indices]
77
+ return list(out)
78
+
79
+
80
+ class SimplexTreeEdgeCollapser(BaseEstimator, TransformerMixin):
81
+ def __init__(
82
+ self,
83
+ num_collapses: int = 0,
84
+ full: bool = False,
85
+ max_dimension: int | None = None,
86
+ n_jobs: int = 1,
87
+ ) -> None:
88
+ super().__init__()
89
+ self.full = full
90
+ self.num_collapses = num_collapses
91
+ self.max_dimension = max_dimension
92
+ self.n_jobs = n_jobs
93
+ return
94
+
95
+ def fit(self, X: np.ndarray | list, y=None):
96
+ return self
97
+
98
+ def transform(self, X):
99
+ edges_list = Parallel(n_jobs=-1, prefer="threads")(
100
+ delayed(mp.SimplextreeMulti.get_edge_list)(x) for x in X
101
+ )
102
+ collapsed_edge_lists = Parallel(n_jobs=self.n_jobs)(
103
+ delayed(mp._collapse_edge_list)(
104
+ edges, full=self.full, num=self.num_collapses
105
+ )
106
+ for edges in edges_list
107
+ )
108
+ collapsed_simplextrees = Parallel(n_jobs=-1, prefer="threads")(
109
+ delayed(mp.SimplexTreeMulti._reconstruct_from_edge_list)(
110
+ collapsed_edge_lists, swap=True, expand_dim=self.max_dimension
111
+ )
112
+ )
113
+ return collapsed_simplextrees