multipers 2.3.1__cp313-cp313-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of multipers might be problematic. Click here for more details.

Files changed (182) hide show
  1. multipers/__init__.py +33 -0
  2. multipers/_signed_measure_meta.py +430 -0
  3. multipers/_slicer_meta.py +211 -0
  4. multipers/data/MOL2.py +458 -0
  5. multipers/data/UCR.py +18 -0
  6. multipers/data/__init__.py +1 -0
  7. multipers/data/graphs.py +466 -0
  8. multipers/data/immuno_regions.py +27 -0
  9. multipers/data/minimal_presentation_to_st_bf.py +0 -0
  10. multipers/data/pytorch2simplextree.py +91 -0
  11. multipers/data/shape3d.py +101 -0
  12. multipers/data/synthetic.py +113 -0
  13. multipers/distances.py +198 -0
  14. multipers/filtration_conversions.pxd +229 -0
  15. multipers/filtration_conversions.pxd.tp +84 -0
  16. multipers/filtrations/__init__.py +18 -0
  17. multipers/filtrations/density.py +563 -0
  18. multipers/filtrations/filtrations.py +289 -0
  19. multipers/filtrations.pxd +224 -0
  20. multipers/function_rips.cp313-win_amd64.pyd +0 -0
  21. multipers/function_rips.pyx +105 -0
  22. multipers/grids.cp313-win_amd64.pyd +0 -0
  23. multipers/grids.pyx +350 -0
  24. multipers/gudhi/Persistence_slices_interface.h +132 -0
  25. multipers/gudhi/Simplex_tree_interface.h +239 -0
  26. multipers/gudhi/Simplex_tree_multi_interface.h +516 -0
  27. multipers/gudhi/cubical_to_boundary.h +59 -0
  28. multipers/gudhi/gudhi/Bitmap_cubical_complex.h +450 -0
  29. multipers/gudhi/gudhi/Bitmap_cubical_complex_base.h +1070 -0
  30. multipers/gudhi/gudhi/Bitmap_cubical_complex_periodic_boundary_conditions_base.h +579 -0
  31. multipers/gudhi/gudhi/Debug_utils.h +45 -0
  32. multipers/gudhi/gudhi/Fields/Multi_field.h +484 -0
  33. multipers/gudhi/gudhi/Fields/Multi_field_operators.h +455 -0
  34. multipers/gudhi/gudhi/Fields/Multi_field_shared.h +450 -0
  35. multipers/gudhi/gudhi/Fields/Multi_field_small.h +531 -0
  36. multipers/gudhi/gudhi/Fields/Multi_field_small_operators.h +507 -0
  37. multipers/gudhi/gudhi/Fields/Multi_field_small_shared.h +531 -0
  38. multipers/gudhi/gudhi/Fields/Z2_field.h +355 -0
  39. multipers/gudhi/gudhi/Fields/Z2_field_operators.h +376 -0
  40. multipers/gudhi/gudhi/Fields/Zp_field.h +420 -0
  41. multipers/gudhi/gudhi/Fields/Zp_field_operators.h +400 -0
  42. multipers/gudhi/gudhi/Fields/Zp_field_shared.h +418 -0
  43. multipers/gudhi/gudhi/Flag_complex_edge_collapser.h +337 -0
  44. multipers/gudhi/gudhi/Matrix.h +2107 -0
  45. multipers/gudhi/gudhi/Multi_critical_filtration.h +1038 -0
  46. multipers/gudhi/gudhi/Multi_persistence/Box.h +171 -0
  47. multipers/gudhi/gudhi/Multi_persistence/Line.h +282 -0
  48. multipers/gudhi/gudhi/Off_reader.h +173 -0
  49. multipers/gudhi/gudhi/One_critical_filtration.h +1433 -0
  50. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix.h +769 -0
  51. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix_with_column_compression.h +686 -0
  52. multipers/gudhi/gudhi/Persistence_matrix/Boundary_matrix.h +842 -0
  53. multipers/gudhi/gudhi/Persistence_matrix/Chain_matrix.h +1350 -0
  54. multipers/gudhi/gudhi/Persistence_matrix/Id_to_index_overlay.h +1105 -0
  55. multipers/gudhi/gudhi/Persistence_matrix/Position_to_index_overlay.h +859 -0
  56. multipers/gudhi/gudhi/Persistence_matrix/RU_matrix.h +910 -0
  57. multipers/gudhi/gudhi/Persistence_matrix/allocators/entry_constructors.h +139 -0
  58. multipers/gudhi/gudhi/Persistence_matrix/base_pairing.h +230 -0
  59. multipers/gudhi/gudhi/Persistence_matrix/base_swap.h +211 -0
  60. multipers/gudhi/gudhi/Persistence_matrix/boundary_cell_position_to_id_mapper.h +60 -0
  61. multipers/gudhi/gudhi/Persistence_matrix/boundary_face_position_to_id_mapper.h +60 -0
  62. multipers/gudhi/gudhi/Persistence_matrix/chain_pairing.h +136 -0
  63. multipers/gudhi/gudhi/Persistence_matrix/chain_rep_cycles.h +190 -0
  64. multipers/gudhi/gudhi/Persistence_matrix/chain_vine_swap.h +616 -0
  65. multipers/gudhi/gudhi/Persistence_matrix/columns/chain_column_extra_properties.h +150 -0
  66. multipers/gudhi/gudhi/Persistence_matrix/columns/column_dimension_holder.h +106 -0
  67. multipers/gudhi/gudhi/Persistence_matrix/columns/column_utilities.h +219 -0
  68. multipers/gudhi/gudhi/Persistence_matrix/columns/entry_types.h +327 -0
  69. multipers/gudhi/gudhi/Persistence_matrix/columns/heap_column.h +1140 -0
  70. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_list_column.h +934 -0
  71. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_set_column.h +934 -0
  72. multipers/gudhi/gudhi/Persistence_matrix/columns/list_column.h +980 -0
  73. multipers/gudhi/gudhi/Persistence_matrix/columns/naive_vector_column.h +1092 -0
  74. multipers/gudhi/gudhi/Persistence_matrix/columns/row_access.h +192 -0
  75. multipers/gudhi/gudhi/Persistence_matrix/columns/set_column.h +921 -0
  76. multipers/gudhi/gudhi/Persistence_matrix/columns/small_vector_column.h +1093 -0
  77. multipers/gudhi/gudhi/Persistence_matrix/columns/unordered_set_column.h +1012 -0
  78. multipers/gudhi/gudhi/Persistence_matrix/columns/vector_column.h +1244 -0
  79. multipers/gudhi/gudhi/Persistence_matrix/matrix_dimension_holders.h +186 -0
  80. multipers/gudhi/gudhi/Persistence_matrix/matrix_row_access.h +164 -0
  81. multipers/gudhi/gudhi/Persistence_matrix/ru_pairing.h +156 -0
  82. multipers/gudhi/gudhi/Persistence_matrix/ru_rep_cycles.h +376 -0
  83. multipers/gudhi/gudhi/Persistence_matrix/ru_vine_swap.h +540 -0
  84. multipers/gudhi/gudhi/Persistent_cohomology/Field_Zp.h +118 -0
  85. multipers/gudhi/gudhi/Persistent_cohomology/Multi_field.h +173 -0
  86. multipers/gudhi/gudhi/Persistent_cohomology/Persistent_cohomology_column.h +128 -0
  87. multipers/gudhi/gudhi/Persistent_cohomology.h +745 -0
  88. multipers/gudhi/gudhi/Points_off_io.h +171 -0
  89. multipers/gudhi/gudhi/Simple_object_pool.h +69 -0
  90. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_iterators.h +463 -0
  91. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_node_explicit_storage.h +83 -0
  92. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_siblings.h +106 -0
  93. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_star_simplex_iterators.h +277 -0
  94. multipers/gudhi/gudhi/Simplex_tree/hooks_simplex_base.h +62 -0
  95. multipers/gudhi/gudhi/Simplex_tree/indexing_tag.h +27 -0
  96. multipers/gudhi/gudhi/Simplex_tree/serialization_utils.h +62 -0
  97. multipers/gudhi/gudhi/Simplex_tree/simplex_tree_options.h +157 -0
  98. multipers/gudhi/gudhi/Simplex_tree.h +2794 -0
  99. multipers/gudhi/gudhi/Simplex_tree_multi.h +152 -0
  100. multipers/gudhi/gudhi/distance_functions.h +62 -0
  101. multipers/gudhi/gudhi/graph_simplicial_complex.h +104 -0
  102. multipers/gudhi/gudhi/persistence_interval.h +253 -0
  103. multipers/gudhi/gudhi/persistence_matrix_options.h +170 -0
  104. multipers/gudhi/gudhi/reader_utils.h +367 -0
  105. multipers/gudhi/mma_interface_coh.h +256 -0
  106. multipers/gudhi/mma_interface_h0.h +223 -0
  107. multipers/gudhi/mma_interface_matrix.h +291 -0
  108. multipers/gudhi/naive_merge_tree.h +536 -0
  109. multipers/gudhi/scc_io.h +310 -0
  110. multipers/gudhi/truc.h +957 -0
  111. multipers/io.cp313-win_amd64.pyd +0 -0
  112. multipers/io.pyx +714 -0
  113. multipers/ml/__init__.py +0 -0
  114. multipers/ml/accuracies.py +90 -0
  115. multipers/ml/invariants_with_persistable.py +79 -0
  116. multipers/ml/kernels.py +176 -0
  117. multipers/ml/mma.py +713 -0
  118. multipers/ml/one.py +472 -0
  119. multipers/ml/point_clouds.py +352 -0
  120. multipers/ml/signed_measures.py +1589 -0
  121. multipers/ml/sliced_wasserstein.py +461 -0
  122. multipers/ml/tools.py +113 -0
  123. multipers/mma_structures.cp313-win_amd64.pyd +0 -0
  124. multipers/mma_structures.pxd +127 -0
  125. multipers/mma_structures.pyx +2742 -0
  126. multipers/mma_structures.pyx.tp +1083 -0
  127. multipers/multi_parameter_rank_invariant/diff_helpers.h +84 -0
  128. multipers/multi_parameter_rank_invariant/euler_characteristic.h +97 -0
  129. multipers/multi_parameter_rank_invariant/function_rips.h +322 -0
  130. multipers/multi_parameter_rank_invariant/hilbert_function.h +769 -0
  131. multipers/multi_parameter_rank_invariant/persistence_slices.h +148 -0
  132. multipers/multi_parameter_rank_invariant/rank_invariant.h +369 -0
  133. multipers/multiparameter_edge_collapse.py +41 -0
  134. multipers/multiparameter_module_approximation/approximation.h +2298 -0
  135. multipers/multiparameter_module_approximation/combinatory.h +129 -0
  136. multipers/multiparameter_module_approximation/debug.h +107 -0
  137. multipers/multiparameter_module_approximation/euler_curves.h +0 -0
  138. multipers/multiparameter_module_approximation/format_python-cpp.h +286 -0
  139. multipers/multiparameter_module_approximation/heap_column.h +238 -0
  140. multipers/multiparameter_module_approximation/images.h +79 -0
  141. multipers/multiparameter_module_approximation/list_column.h +174 -0
  142. multipers/multiparameter_module_approximation/list_column_2.h +232 -0
  143. multipers/multiparameter_module_approximation/ru_matrix.h +347 -0
  144. multipers/multiparameter_module_approximation/set_column.h +135 -0
  145. multipers/multiparameter_module_approximation/structure_higher_dim_barcode.h +36 -0
  146. multipers/multiparameter_module_approximation/unordered_set_column.h +166 -0
  147. multipers/multiparameter_module_approximation/utilities.h +403 -0
  148. multipers/multiparameter_module_approximation/vector_column.h +223 -0
  149. multipers/multiparameter_module_approximation/vector_matrix.h +331 -0
  150. multipers/multiparameter_module_approximation/vineyards.h +464 -0
  151. multipers/multiparameter_module_approximation/vineyards_trajectories.h +649 -0
  152. multipers/multiparameter_module_approximation.cp313-win_amd64.pyd +0 -0
  153. multipers/multiparameter_module_approximation.pyx +218 -0
  154. multipers/pickle.py +90 -0
  155. multipers/plots.py +342 -0
  156. multipers/point_measure.cp313-win_amd64.pyd +0 -0
  157. multipers/point_measure.pyx +322 -0
  158. multipers/simplex_tree_multi.cp313-win_amd64.pyd +0 -0
  159. multipers/simplex_tree_multi.pxd +133 -0
  160. multipers/simplex_tree_multi.pyx +10402 -0
  161. multipers/simplex_tree_multi.pyx.tp +1947 -0
  162. multipers/slicer.cp313-win_amd64.pyd +0 -0
  163. multipers/slicer.pxd +2552 -0
  164. multipers/slicer.pxd.tp +218 -0
  165. multipers/slicer.pyx +16530 -0
  166. multipers/slicer.pyx.tp +931 -0
  167. multipers/tbb12.dll +0 -0
  168. multipers/tbbbind_2_5.dll +0 -0
  169. multipers/tbbmalloc.dll +0 -0
  170. multipers/tbbmalloc_proxy.dll +0 -0
  171. multipers/tensor/tensor.h +672 -0
  172. multipers/tensor.pxd +13 -0
  173. multipers/test.pyx +44 -0
  174. multipers/tests/__init__.py +57 -0
  175. multipers/torch/__init__.py +1 -0
  176. multipers/torch/diff_grids.py +217 -0
  177. multipers/torch/rips_density.py +310 -0
  178. multipers-2.3.1.dist-info/LICENSE +21 -0
  179. multipers-2.3.1.dist-info/METADATA +144 -0
  180. multipers-2.3.1.dist-info/RECORD +182 -0
  181. multipers-2.3.1.dist-info/WHEEL +5 -0
  182. multipers-2.3.1.dist-info/top_level.txt +1 -0
@@ -0,0 +1,144 @@
1
+ Metadata-Version: 2.2
2
+ Name: multipers
3
+ Version: 2.3.1
4
+ Summary: Multiparameter Topological Persistence for Machine Learning
5
+ Author-email: David Loiseaux <david.lapous@proton.me>, Hannah Schreiber <hannah.schreiber@inria.fr>
6
+ Maintainer-email: David Loiseaux <david.lapous@proton.me>
7
+ License: MIT License
8
+
9
+ Copyright (c) 2023 David Loiseaux
10
+
11
+ Permission is hereby granted, free of charge, to any person obtaining a copy
12
+ of this software and associated documentation files (the "Software"), to deal
13
+ in the Software without restriction, including without limitation the rights
14
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
15
+ copies of the Software, and to permit persons to whom the Software is
16
+ furnished to do so, subject to the following conditions:
17
+
18
+ The above copyright notice and this permission notice shall be included in all
19
+ copies or substantial portions of the Software.
20
+
21
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
22
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
23
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
24
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
25
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
26
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
27
+ SOFTWARE.
28
+
29
+ Project-URL: source, https://github.com/DavidLapous/multipers
30
+ Project-URL: download, https://pypi.org/project/multipers/#files
31
+ Project-URL: tracker, https://github.com/DavidLapous/multipers/issues
32
+ Project-URL: release notes, https://github.com/DavidLapous/multipers/releases
33
+ Keywords: TDA,Persistence,Multiparameter,sklearn
34
+ Classifier: Development Status :: 5 - Production/Stable
35
+ Classifier: Programming Language :: Python :: 3.10
36
+ Classifier: Programming Language :: Python :: 3.11
37
+ Classifier: Programming Language :: Python :: 3.12
38
+ Classifier: Programming Language :: Python :: Implementation :: CPython
39
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
40
+ Classifier: Topic :: Scientific/Engineering :: Mathematics
41
+ Classifier: Topic :: Scientific/Engineering :: Visualization
42
+ Classifier: Topic :: Software Development :: Libraries :: Python Modules
43
+ Classifier: License :: OSI Approved :: MIT License
44
+ Requires-Python: >=3.10
45
+ Description-Content-Type: text/markdown
46
+ License-File: LICENSE
47
+ Requires-Dist: numpy
48
+ Requires-Dist: gudhi>=3.8
49
+ Requires-Dist: tqdm
50
+ Requires-Dist: scipy
51
+ Requires-Dist: joblib
52
+ Requires-Dist: matplotlib
53
+ Requires-Dist: scikit-learn
54
+ Requires-Dist: filtration-domination
55
+ Requires-Dist: pykeops
56
+ Requires-Dist: pot
57
+
58
+ # multipers : Multiparameter Persistence for Machine Learning
59
+ [![DOI](https://joss.theoj.org/papers/10.21105/joss.06773/status.svg)](https://doi.org/10.21105/joss.06773) [![Documentation](https://img.shields.io/badge/Documentation-website-blue)](https://davidlapous.github.io/multipers) [![Build, test](https://github.com/DavidLapous/multipers/actions/workflows/python_PR.yml/badge.svg)](https://github.com/DavidLapous/multipers/actions/workflows/python_PR.yml)
60
+ <br>
61
+ Scikit-style PyTorch-autodiff multiparameter persistent homology python library.
62
+ This library aims to provide easy to use and performant strategies for applied multiparameter topology.
63
+ <br> Meant to be integrated in the [Gudhi](https://gudhi.inria.fr/) library.
64
+
65
+ ## Compiled packages
66
+ | Source | Version | Downloads | Platforms |
67
+ | --- | --- | --- | --- |
68
+ | [![Conda Recipe](https://img.shields.io/badge/conda-recipe-green.svg)](https://anaconda.org/conda-forge/multipers)| [![Conda Version](https://img.shields.io/conda/vn/conda-forge/multipers.svg)](https://anaconda.org/conda-forge/multipers) | [![Conda Downloads](https://img.shields.io/conda/dn/conda-forge/multipers.svg)](https://anaconda.org/conda-forge/multipers) |[![Conda Platforms](https://img.shields.io/conda/pn/conda-forge/multipers.svg)](https://anaconda.org/conda-forge/multipers) |
69
+ | [![pip Recipe](https://img.shields.io/badge/pip-package-green.svg)](https:///pypi.org/project/multipers) | [![PyPI](https://img.shields.io/pypi/v/multipers?color=green)](https://pypi.org/project/multipers) | [![ pip downloads](https://static.pepy.tech/badge/multipers)](https://pepy.tech/project/multipers) | |
70
+
71
+
72
+
73
+ ## Quick start
74
+ This library allows computing several representations from "geometrical datasets", e.g., point clouds, images, graphs, that have multiple scales.
75
+ We provide some *nice* pictures in the [documentation](https://davidlapous.github.io/multipers/index.html).
76
+ A non-exhaustive list of features can be found in the **Features** section.
77
+
78
+ This library is available on pip and conda-forge for (reasonably up to date) Linux, macOS and Windows, via
79
+ ```sh
80
+ pip install multipers
81
+ ```
82
+ or
83
+ ```sh
84
+ conda install multipers -c conda-forge
85
+ ```
86
+
87
+ Windows support is experimental, and some core dependencies are not available on Windows.
88
+ We hence recommend Windows user to use [WSL](https://learn.microsoft.com/en-us/windows/wsl/).
89
+ <br>
90
+ A documentation and building instructions are available
91
+ [here](https://davidlapous.github.io/multipers/compilation.html).
92
+
93
+
94
+ ## Features, and linked projects
95
+ This library features a bunch of different functions and helpers. See below for a non-exhaustive list.
96
+ <br>Filled box refers to implemented or interfaced code.
97
+ - [x] [[Multiparameter Module Approximation]](https://arxiv.org/abs/2206.02026) provides the multiparameter simplicial structure, as well as technics for approximating modules, via interval-decomposable modules. It is also very useful for visualization.
98
+ - [x] [[Stable Vectorization of Multiparameter Persistent Homology using Signed Barcodes as Measures, NeurIPS2023]](https://proceedings.neurips.cc/paper_files/paper/2023/hash/d75c474bc01735929a1fab5d0de3b189-Abstract-Conference.html) provides fast representations of multiparameter persistence modules, by using their signed barcodes decompositions encoded into signed measures. Implemented decompositions : Euler surfaces, Hilbert function, rank invariant (i.e. rectangles). It also provides representation technics for Machine Learning, i.e., Sliced Wasserstein kernels, and Vectorizations.
99
+ - [x] [[A Framework for Fast and Stable Representations of Multiparameter Persistent Homology Decompositions, NeurIPS2023]](https://proceedings.neurips.cc/paper_files/paper/2023/hash/702b67152ec4435795f681865b67999c-Abstract-Conference.html) Provides a vectorization framework for interval decomposable modules, for Machine Learning. Currently implemented as an extension of MMA.
100
+ - [x] [[Differentiability and Optimization of Multiparameter Persistent Homology, ICML2024]](https://proceedings.mlr.press/v235/scoccola24a.html) An approach to compute a (clarke) gradient for any reasonable multiparameter persistent invariant. Currently, any `multipers` computation is auto-differentiable using this strategy, provided that the input are pytorch gradient capable tensor.
101
+ - [x] [[Multiparameter Persistence Landscapes, JMLR]](https://jmlr.org/papers/v21/19-054.html) A vectorization technic for multiparameter persistence modules.
102
+ - [x] [[Filtration-Domination in Bifiltered Graphs, ALENEX2023]](https://doi.org/10.1137/1.9781611977561.ch3) Allows for 2-parameter edge collapses for 1-critical clique complexes. Very useful to speed up, e.g., Rips-Codensity bifiltrations.
103
+ - [x] [[Chunk Reduction for Multi-Parameter Persistent Homology, SOCG2019]](https://doi.org/10.4230/LIPIcs.SoCG.2019.37) Multi-filtration preprocessing algorithm for homology computations.
104
+ - [x] [[Computing Minimal Presentations and Bigraded Betti Numbers of 2-Parameter Persistent Homology, JAAG]](https://doi.org/10.1137/20M1388425) Minimal presentation of multiparameter persistence modules, using [mpfree](https://bitbucket.org/mkerber/mpfree/src/master/). Hilbert, Rank Decomposition Signed Measures, and MMA decompositions can be computed using the mpfree backend.
105
+ - [x] [[Delaunay Bifiltrations of Functions on Point Clouds, SODA2024]](https://epubs.siam.org/doi/10.1137/1.9781611977912.173) Provides an alternative to function rips bifiltrations, using Delaunay complexes. Very good alternative to Rips-Density like bifiltrations.
106
+ - [x] [[Delaunay Core Bifiltration]](https://arxiv.org/abs/2405.01214) Bifiltration for point clouds, taking into account the density. Similar to Rips-Density.
107
+ - [x] [[Rivet]](https://github.com/rivetTDA/rivet) Interactive two parameter persistence
108
+ - [x] [[Kernel Operations on the GPU, with Autodiff, without Memory Overflows, JMLR]](http://jmlr.org/papers/v22/20-275.html) Although not linked, at first glance, to persistence in any way, this library allows computing blazingly fast signed measures convolutions (and more!) with custom kernels.
109
+ - [ ] [Backend only] [[Projected distances for multi-parameter persistence modules]](https://arxiv.org/abs/2206.08818) Provides a strategy to estimate the convolution distance between multiparameter persistence module using projected barcodes. Implementation is a WIP.
110
+ - [ ] [Partial, and experimental] [[Efficient Two-Parameter Persistence Computation via Cohomology, SoCG2023]](https://doi.org/10.4230/LIPIcs.SoCG.2023.15) Minimal presentations for 2-parameter persistence algorithm.
111
+
112
+ If I missed something, or you want to add something, feel free to open an issue.
113
+
114
+ ## Authors
115
+ [David Loiseaux](https://davidlapous.github.io/),<br>
116
+ [Hannah Schreiber](https://github.com/hschreiber) (Persistence backend code),<br>
117
+ [Luis Scoccola](https://luisscoccola.com/)
118
+ (Möbius inversion in python, degree-rips using [persistable](https://github.com/LuisScoccola/persistable) and [RIVET](https://github.com/rivetTDA/rivet/)),<br>
119
+ [Mathieu Carrière](https://www-sop.inria.fr/members/Mathieu.Carriere/) (Sliced Wasserstein),<br>
120
+ [Odin Hoff Gardå](https://odinhg.github.io/) (Delaunay Core bifiltration).<br>
121
+
122
+ ## Citation
123
+ Please cite this library when using it in scientific publications;
124
+ you can use the following journal bibtex entry
125
+ ```bib
126
+ @article{multipers,
127
+ title = {Multipers: {{Multiparameter Persistence}} for {{Machine Learning}}},
128
+ shorttitle = {Multipers},
129
+ author = {Loiseaux, David and Schreiber, Hannah},
130
+ year = {2024},
131
+ month = nov,
132
+ journal = {Journal of Open Source Software},
133
+ volume = {9},
134
+ number = {103},
135
+ pages = {6773},
136
+ issn = {2475-9066},
137
+ doi = {10.21105/joss.06773},
138
+ langid = {english},
139
+ }
140
+ ```
141
+ ## Contributions
142
+ Feel free to contribute, report a bug on a pipeline, or ask for documentation by opening an issue.<br>
143
+ In particular, if you have a nice example or application that is not taken care in the documentation (see the `./docs/notebooks/` folder), please contact me to add it there.
144
+
@@ -0,0 +1,182 @@
1
+ multipers/__init__.py,sha256=y4BfbXAY2M2yZYob758IegZHwIbRgmKrph6lwe6WR6Q,733
2
+ multipers/_signed_measure_meta.py,sha256=kS_AhjZrk5hMXN9me0EJy6c29LmTlufo_DnaIf0neRQ,16663
3
+ multipers/_slicer_meta.py,sha256=mjIGR-B6HnQLSiMowEQ8EWQkD_IF3bBnDVzvwrZugZ4,7203
4
+ multipers/distances.py,sha256=am3_SqSkGB9N59grxb_EZt-KYqqKln0WiR4Wia6N_LA,6067
5
+ multipers/filtration_conversions.pxd,sha256=Je7a3F4zS1PQn6Ul1YCXgA6p39X2FouStru-XtN-aOw,10800
6
+ multipers/filtration_conversions.pxd.tp,sha256=_9tUvZVUA7J_RUM3q7BxY48fYgDHCUA7Xhy4nBfLLs0,3309
7
+ multipers/filtrations.pxd,sha256=08ONkZNCjs8Nme8lcD9myPz-K662sA-EDpSwzgC2_ts,9461
8
+ multipers/function_rips.cp313-win_amd64.pyd,sha256=QfU7fed2sMChVBYk--cKt20vUd_dVObn5hgZNgT__Io,346624
9
+ multipers/function_rips.pyx,sha256=j5NjbK3YrAv_2s8YHB1JB0k6m9NC7RQCSFlJe-w_kgE,5252
10
+ multipers/grids.cp313-win_amd64.pyd,sha256=rWlCWu-TsXiI-RLfuBUgXXz8Q5rwUf87rL3qmWFUbgE,505344
11
+ multipers/grids.pyx,sha256=uYVue79CiUK1yiL3kHI9h9lx3w1atZZx1KmWE7lYGp0,13733
12
+ multipers/io.cp313-win_amd64.pyd,sha256=4wf1HeKNVDg-3IeGDAroF_sX1T2Gm1eBROyFFFsUO9s,248320
13
+ multipers/io.pyx,sha256=cKCmkaurybQ_a1evQFTtONIjAUGYwhx8KhYdPkDhjvE,25482
14
+ multipers/mma_structures.cp313-win_amd64.pyd,sha256=9r703dLVTX4TB4wLUd8C9CrXJ1xujYHW27OJnmt1yPo,1329664
15
+ multipers/mma_structures.pxd,sha256=u-t_xEsLUYwLFt1v3TzKN8AcrP1V02pQRpYDw7PLpYw,6499
16
+ multipers/mma_structures.pyx,sha256=RZWdsKBtB2cHDH9-jwUtDMPd968eCmp921Wu6BZZgow,108578
17
+ multipers/mma_structures.pyx.tp,sha256=CW67g5yfG5UETdTfr-7PiTwDRkA-JteyJaPyeOrr970,42060
18
+ multipers/multiparameter_edge_collapse.py,sha256=MFt0eKQQSv2354omeIqOmzASYTKIMsYdxZHFZauQr8g,1229
19
+ multipers/multiparameter_module_approximation.cp313-win_amd64.pyd,sha256=Gldjuc-lXuPg8u9NvGCTm14iFUNxjuYPUa-4OqI9-tM,476160
20
+ multipers/multiparameter_module_approximation.pyx,sha256=RAsN76_FNMtUUVqbTMU-Tpf5G8_OeZn_gslP7IWODiI,8611
21
+ multipers/pickle.py,sha256=YYVt4iHiD16E1x5Yn_4mX6P5P8rKi56pNGjJo5IzPhc,2579
22
+ multipers/plots.py,sha256=_h4-fVYIu5TXkjmeQypMxthkRhl2be_hQvc8Pg1hnlc,11136
23
+ multipers/point_measure.cp313-win_amd64.pyd,sha256=s0T4Fg1MER2RB2im1mga9DKk6kX3_n94C5aRmwUj0to,595968
24
+ multipers/point_measure.pyx,sha256=7IjakgrAmGVv57MBb8BEHRwsSGxJgxTu_Iar6zOW2_A,11951
25
+ multipers/simplex_tree_multi.cp313-win_amd64.pyd,sha256=ajhViKh_Evsir5bgPbr8J_MA0DiYHBArupq_I8PYw38,3611648
26
+ multipers/simplex_tree_multi.pxd,sha256=B7beQwO_qgbxF_xK55B0ics3cW_REktm7cXY2Vl3NqY,6559
27
+ multipers/simplex_tree_multi.pyx,sha256=mQ51gpmRBWR-0VhWqA0A3yI4TXmD53w7Omn-IpNF4VM,481685
28
+ multipers/simplex_tree_multi.pyx.tp,sha256=xHFikEmTFtTRyZqiF94Ma81f7Y_NyD7NHi1PflrOu8Q,86960
29
+ multipers/slicer.cp313-win_amd64.pyd,sha256=4M3ow0hLKDWiBX5TxyVXYi2z0__ITg6zVF2QCvIzAN0,9007616
30
+ multipers/slicer.pxd,sha256=sXKvuR5tcwuSeJaEmLv4LZhDnm9tlWjU1lB3B7ct154,160250
31
+ multipers/slicer.pxd.tp,sha256=WdNAzZaxxfwro8puyZkZMjZl4ugsYpjBdDKWgNallNA,9457
32
+ multipers/slicer.pyx,sha256=FXFZhHS2oEpMxKTPAas59i0nePHniy5oLDomaru3L7A,714555
33
+ multipers/slicer.pyx.tp,sha256=WiWOwZ5-R510ftEvCaNEQ6ekNSN_S9dRiIDbTkGXCYA,37913
34
+ multipers/tbb12.dll,sha256=jutngDNBx2TW92tVYsfuHD8Sre0oO-rh4iK2edc1SGA,337920
35
+ multipers/tbbbind_2_5.dll,sha256=-ywrB_hirPeygmtj_VhROzkQcw70G94x4JTgBdkUaUQ,23040
36
+ multipers/tbbmalloc.dll,sha256=4uOK-Y2zeptYOLEh1bu-Yz8htiG4gtF_agyanMJO-tA,112640
37
+ multipers/tbbmalloc_proxy.dll,sha256=iWWmLmm2bxDnyPQUry1kvhkgQspLyLmIjYD-k4Z9Hk0,31232
38
+ multipers/tensor.pxd,sha256=MSmaMU0sOP9CHLmg4dym7nOGaI1S4cOdM01TQ9flI54,417
39
+ multipers/test.pyx,sha256=-g7WU-jKrZK8H0c-6eAPsfrApjvTKrUoswVYFu8LoV4,1798
40
+ multipers/data/MOL2.py,sha256=nLZHy2OSFN9Z2uJKsbqWOEG2R7G-uH6dCLHG48UjvR4,15428
41
+ multipers/data/UCR.py,sha256=PuT8l3i26y0goBzIESwdgJAe6YFCyDiWSoxECcP5rhs,798
42
+ multipers/data/__init__.py,sha256=w7uUe4LOHbdbKU4R8MNs7em65wZJN0v5ukoG1otFanQ,24
43
+ multipers/data/graphs.py,sha256=wef36QXuzi2EMQJi6W_sEB3JnShfSAbfylP6-2rLSUA,16346
44
+ multipers/data/immuno_regions.py,sha256=BNN81DOwdu6sJTkaSeziAYyx0jd0kuZZB5Se0Fo95vA,903
45
+ multipers/data/minimal_presentation_to_st_bf.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
46
+ multipers/data/pytorch2simplextree.py,sha256=cvOJTUleK_qEbcpygRD77GuQl_0qDsSjjD6e6UFUDD0,3048
47
+ multipers/data/shape3d.py,sha256=AE-vvjKrhKxOwMo-lurUsFqqLjIg5obo-RTbRZF_5Mk,3893
48
+ multipers/data/synthetic.py,sha256=RvLWIBE5j99kJSt-D7cnPGI3c7skD4p8_qofJbMIXM0,3078
49
+ multipers/filtrations/__init__.py,sha256=Lg0EHe2cxT32UQAg0kr_Vpua-xPBZxGol8VIfz8UwWk,319
50
+ multipers/filtrations/density.py,sha256=p-p-qSmrwVvolXkAZrf35XIus6mN-dF1CHNuEd7JGGQ,19272
51
+ multipers/filtrations/filtrations.py,sha256=GY_JIkVfRwP71-BN79ac0Pn4tpniLtIkOcqCJCG-23w,10899
52
+ multipers/gudhi/Persistence_slices_interface.h,sha256=QnUeCCKi9K8CfqI3W5i3Ra1Jy2Z1IIivr3MIpnBsnYU,6562
53
+ multipers/gudhi/Simplex_tree_interface.h,sha256=kkq8pE3jKGLY1dK7sYpb_uERHaWGurrRXfaw_ygs-mY,10217
54
+ multipers/gudhi/Simplex_tree_multi_interface.h,sha256=kDardleivWhlkEC9HSPDM75WPbnEW3IUur_BEiWeJ4U,23529
55
+ multipers/gudhi/cubical_to_boundary.h,sha256=ELRnPe8czj9XlGNb2fLszu7EzU6itgS2vq03eVP31aU,1955
56
+ multipers/gudhi/mma_interface_coh.h,sha256=JljD7lVwxxywxjgbK3PU4FZhLK9XUuEXuWOPDQvURWI,8433
57
+ multipers/gudhi/mma_interface_h0.h,sha256=puuKUcEndfv6012bSf1r0KVIJTvcsH2FOKLYc5oLwSg,7596
58
+ multipers/gudhi/mma_interface_matrix.h,sha256=SHCN4DDS5W7FQ0v07giolsisTzBtA3R1nfE4Spo9i6A,11080
59
+ multipers/gudhi/naive_merge_tree.h,sha256=iYrizGLZgCm_Dr-eNp4avfHLnXtyzlEslpzME4XPfek,18854
60
+ multipers/gudhi/scc_io.h,sha256=KB-j1CQGbJ9VLeh5VUJN9GbhxDTwbEv0Q3pQzYLjzkY,11507
61
+ multipers/gudhi/truc.h,sha256=OZsiGGOH7iLgGz4VHiUPTkeCwvo2gHwbDyLJ0BbOxDI,37695
62
+ multipers/gudhi/gudhi/Bitmap_cubical_complex.h,sha256=EdKBo5TQM8tCvap6_Lw2w-2kDOx4p10tQRXqKYcUs28,16159
63
+ multipers/gudhi/gudhi/Bitmap_cubical_complex_base.h,sha256=62rgpvCQhAA7hpKSxRAKDO9uLZK2txxjf953kQA56eM,44544
64
+ multipers/gudhi/gudhi/Bitmap_cubical_complex_periodic_boundary_conditions_base.h,sha256=TJTN_RWANVEl5A4NeZYAfVzwLiP474J1vl16Pn1QqJE,25829
65
+ multipers/gudhi/gudhi/Debug_utils.h,sha256=aps-ljywN_mfNSVmx2LB1lMJ7-RrzfMr5LScXBTFZ5M,1590
66
+ multipers/gudhi/gudhi/Flag_complex_edge_collapser.h,sha256=DQ_wyOG3z09jX6sq_79oTxZM_Z5Hi_zIZ_LL1EFMLAw,13247
67
+ multipers/gudhi/gudhi/Matrix.h,sha256=bxCmhdWbxATmrw36GgKkIgZZM9xkCZPz4cJNNDG8qoI,115997
68
+ multipers/gudhi/gudhi/Multi_critical_filtration.h,sha256=RDbMBMJtccxX1EtM59bVgL7uucjUUvFZhYb23kphpV8,42589
69
+ multipers/gudhi/gudhi/Off_reader.h,sha256=Owwc7wgQzOgq4URfA3V5c9v_8IY6ODKXeZefjFk8Kok,4871
70
+ multipers/gudhi/gudhi/One_critical_filtration.h,sha256=1dnE5fzNsfFgT4HqkrDFxm-AeOgBcQImHkVDye_TqA8,53398
71
+ multipers/gudhi/gudhi/Persistent_cohomology.h,sha256=UEy1ae9YBamWICDwA120lolIYlt14ExZjr7VFJZaCzI,30725
72
+ multipers/gudhi/gudhi/Points_off_io.h,sha256=kdLw8d8c-zwLl-l5W7BE4lhTLr40FV4gkGo33sU-tbs,5226
73
+ multipers/gudhi/gudhi/Simple_object_pool.h,sha256=Dc_bn6g5rCMg_wZtKNzueJPKfFh1SI-QO-HKAI_74jM,1809
74
+ multipers/gudhi/gudhi/Simplex_tree.h,sha256=9ZKe20WVAH1bDjjVIbWm7LafPywOUtpk9l7_J9aw4r8,127544
75
+ multipers/gudhi/gudhi/Simplex_tree_multi.h,sha256=pKbSPkpwOFAhUDeUJXDhBrC9Sri7BTSoTrUg1Pbr9uY,6446
76
+ multipers/gudhi/gudhi/distance_functions.h,sha256=r9AZnpO0--xqrAT_XSNPdhy_i3J1iL5qfRISMyF9g34,1901
77
+ multipers/gudhi/gudhi/graph_simplicial_complex.h,sha256=Wuy5qOkx592qKsweovOaD2TwW4k7iu8ro3o5F-VnThI,3772
78
+ multipers/gudhi/gudhi/persistence_interval.h,sha256=tHigFcO1w0djVr5r_2iSL69bdFPz8ahZLxCu_FyWu0Q,10869
79
+ multipers/gudhi/gudhi/persistence_matrix_options.h,sha256=hYGbuSL-BCiLgw7zgvmwxEazNm-9Jdtm2ZWLFbawgls,6543
80
+ multipers/gudhi/gudhi/reader_utils.h,sha256=2JFkAZtqptxkUDwIA78GG-GYktzjrNlTIFoUNdsYIxM,11568
81
+ multipers/gudhi/gudhi/Fields/Multi_field.h,sha256=Ku3D2xNgYlZibQhjCUwM8uZNvTm8UpuGKMK1G6vt18Y,15953
82
+ multipers/gudhi/gudhi/Fields/Multi_field_operators.h,sha256=0sNrwDAUZICFtlk_1u1cAIiL27TwXgG2Dqy_QL8BfkM,15995
83
+ multipers/gudhi/gudhi/Fields/Multi_field_shared.h,sha256=D19HU02Tbg9yxri8nlLa8uhNzZbstB3V4MnVkwrbkP4,15266
84
+ multipers/gudhi/gudhi/Fields/Multi_field_small.h,sha256=I9ZvSG3Zq0zicmjU_Ai4KIbThHv4XFsbZ7eHn4MghEY,18872
85
+ multipers/gudhi/gudhi/Fields/Multi_field_small_operators.h,sha256=-nTJTnYlM8wMcNqm7-Q_C1RiZNIujnmRXSfeUT5QgCY,18465
86
+ multipers/gudhi/gudhi/Fields/Multi_field_small_shared.h,sha256=nv8XOHznngmzF1T8TTQln3Nz-QMrZPce47UHsjuGyOw,19418
87
+ multipers/gudhi/gudhi/Fields/Z2_field.h,sha256=qboccGW5OuIOc282JSLb4RMEPB8gCYit0W91A9vxiMI,11041
88
+ multipers/gudhi/gudhi/Fields/Z2_field_operators.h,sha256=8xfZf6_yLzM8qEexfAjoj2teAjTEpKOIIqohH5ffZTA,14211
89
+ multipers/gudhi/gudhi/Fields/Zp_field.h,sha256=gy8DafW6z8m4yjLCwonBwEpMnsWprvZU7xOyscZ_Aw0,13156
90
+ multipers/gudhi/gudhi/Fields/Zp_field_operators.h,sha256=xFVPchEYpGs5snzf5iXUUbFgXGvyrHroOd-t6fo3bgg,13506
91
+ multipers/gudhi/gudhi/Fields/Zp_field_shared.h,sha256=XfEw_DmUKpffcoQlmCphutipzQwgIaV4DPot0dWhM9s,14032
92
+ multipers/gudhi/gudhi/Multi_persistence/Box.h,sha256=Xbga3BoM51WVNJNmx57oJ-GAVtTxlIfOQI34yOuwNbA,5874
93
+ multipers/gudhi/gudhi/Multi_persistence/Line.h,sha256=SVVebEUBf0MMxTn48iNBVf3LO7bVOuaR5UQOH0OWUHA,10149
94
+ multipers/gudhi/gudhi/Persistence_matrix/Base_matrix.h,sha256=rTTtRJa9cu37oXsX9qPwWZkI4y5-NKuphBow1B3VtH8,32784
95
+ multipers/gudhi/gudhi/Persistence_matrix/Base_matrix_with_column_compression.h,sha256=-i3IoKX-BGdU1LmseLGJW4K9_teUkdEuMgAJQQlLexk,29830
96
+ multipers/gudhi/gudhi/Persistence_matrix/Boundary_matrix.h,sha256=k-sZtAlKxTT9LZ_glfRJgKADV9NLItGAk0A9skrJmYc,36102
97
+ multipers/gudhi/gudhi/Persistence_matrix/Chain_matrix.h,sha256=-bBMu8dvuZ0nkCsoz0Ur07Cu3Ic_SS7o-Yxp0d4v3m4,61526
98
+ multipers/gudhi/gudhi/Persistence_matrix/Id_to_index_overlay.h,sha256=JezmS6JX7h__MeNrMc06lN2bmrGoS_kn2NoPN89hwOY,55404
99
+ multipers/gudhi/gudhi/Persistence_matrix/Position_to_index_overlay.h,sha256=747kscocPiznAoegqWHfA6JfwyRyxRX4uWZiP8mez00,43537
100
+ multipers/gudhi/gudhi/Persistence_matrix/RU_matrix.h,sha256=GV8F68AoTqtKV_HeQ1tZd_L0ZFMA-4Y6W1JWb6g3b_w,39661
101
+ multipers/gudhi/gudhi/Persistence_matrix/base_pairing.h,sha256=usE3EqYsYaRf0FizQ_j_bF73Vk5B68ldX5GeSn1bK6Y,8602
102
+ multipers/gudhi/gudhi/Persistence_matrix/base_swap.h,sha256=ebHV32i18JjOlWSDQBCkTdhlRMLmAkIsluxSzfiT5hE,7258
103
+ multipers/gudhi/gudhi/Persistence_matrix/boundary_cell_position_to_id_mapper.h,sha256=-XInkObR0afjZL0RVDNVVEQHvHb8YL1Dy7y-M2gQwP0,1679
104
+ multipers/gudhi/gudhi/Persistence_matrix/boundary_face_position_to_id_mapper.h,sha256=eZiKEF6zxs-XwjDQSwZe_J5FVqc6IiGov8mvd432tk0,1644
105
+ multipers/gudhi/gudhi/Persistence_matrix/chain_pairing.h,sha256=dn7MayXXYHtesAaAdGWcBOzYjbSWCVWYigGk1b4hvVY,4076
106
+ multipers/gudhi/gudhi/Persistence_matrix/chain_rep_cycles.h,sha256=suWnK1K-5V9Pl_TLI6PQq2WGGF8ab3Nj3W2h6OyEtLg,7142
107
+ multipers/gudhi/gudhi/Persistence_matrix/chain_vine_swap.h,sha256=2I0FPNTgfJmy48QU1C-IHqOFPkMAfMXzN_in8_-NNQk,23387
108
+ multipers/gudhi/gudhi/Persistence_matrix/matrix_dimension_holders.h,sha256=Awu_hijrr-wk6rc4bupfVZSQgI8VNZbmy4j1_da8L-o,5989
109
+ multipers/gudhi/gudhi/Persistence_matrix/matrix_row_access.h,sha256=Q_s_g032cL1DqizuPnDGt05fOknZbopRSOa3TEn26HE,5492
110
+ multipers/gudhi/gudhi/Persistence_matrix/ru_pairing.h,sha256=2_0cVl7t06SzNfvPs2NYLq8Ou42MN7BOfRnfU9c2a2c,5356
111
+ multipers/gudhi/gudhi/Persistence_matrix/ru_rep_cycles.h,sha256=Bg4Z8vZFG-3RYn3YWy6DhlH1nrXGuLgYUdaKRf5FeOk,13493
112
+ multipers/gudhi/gudhi/Persistence_matrix/ru_vine_swap.h,sha256=8B3T9HeCnqYZ1dGsebASMKv1ozkKqzxEPzdWoSq1afs,21006
113
+ multipers/gudhi/gudhi/Persistence_matrix/allocators/entry_constructors.h,sha256=6B8OYMx84OM4hYLo3fQajVLpJtZAtg265X0_2VUrL1w,3462
114
+ multipers/gudhi/gudhi/Persistence_matrix/columns/chain_column_extra_properties.h,sha256=IcThu4W9enezz8SOb9cODeIFLvdScw3vXs0CHUJ2X7c,5490
115
+ multipers/gudhi/gudhi/Persistence_matrix/columns/column_dimension_holder.h,sha256=sH6Rq4BnyWR8vwq3aLpnRdX_OZPMEuRinVoW8FD3Zi0,3178
116
+ multipers/gudhi/gudhi/Persistence_matrix/columns/column_utilities.h,sha256=FU5IbYxnNBfkZZTNwGCg043EF0VETsb69fTQptrhrI0,9098
117
+ multipers/gudhi/gudhi/Persistence_matrix/columns/entry_types.h,sha256=e0nJWpg6ZsRsb-LEfji_kzOcE2k_Hp-mF86oPdCPgdw,10058
118
+ multipers/gudhi/gudhi/Persistence_matrix/columns/heap_column.h,sha256=YVFgVN2dxJLfTaYrXdt03oaKPEQoq1taey048OMPPEI,40454
119
+ multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_list_column.h,sha256=T8l-C9vj7e-wiIPy7hVX71GpdVBinqVtR0etZ2Ffc3U,36374
120
+ multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_set_column.h,sha256=iobpvFkLA6b066RN8yV8QcwsM9RrrzFpSu2r6KxN8uo,36234
121
+ multipers/gudhi/gudhi/Persistence_matrix/columns/list_column.h,sha256=tfp06z949Nqr_qvQhL8iBJ55anPMXbagw5-k5bw5GFU,37180
122
+ multipers/gudhi/gudhi/Persistence_matrix/columns/naive_vector_column.h,sha256=U50XP5IvFGO33TfY6VZwL8SgkBzmIOoTC-yvM24ZTqU,41671
123
+ multipers/gudhi/gudhi/Persistence_matrix/columns/row_access.h,sha256=3d1ZA-c7Mb_pm_hkT85Q9cAdvhvligtpqzuPqpPrLWo,6012
124
+ multipers/gudhi/gudhi/Persistence_matrix/columns/set_column.h,sha256=qY9EBZ9Gx1Z118ULDPf4tC6QAnnReIsDkONlYHWY36U,34584
125
+ multipers/gudhi/gudhi/Persistence_matrix/columns/small_vector_column.h,sha256=TINBMl_t9DUm5RzSiPqwK5mpt48hNSYoHtT2-7K7mow,41738
126
+ multipers/gudhi/gudhi/Persistence_matrix/columns/unordered_set_column.h,sha256=AOiewRpMc_Eyx_6zkEfqoLYNVWn2aTLyIT2WMpHTims,38260
127
+ multipers/gudhi/gudhi/Persistence_matrix/columns/vector_column.h,sha256=rpUdcd2O6choZqjrTJMO_569-K1H5gf9DlKpYS2E2io,48090
128
+ multipers/gudhi/gudhi/Persistent_cohomology/Field_Zp.h,sha256=ui3kgxOgWZBQbIDe5ki_TocRX_0Ao_7TDQIdBIZc1XI,3399
129
+ multipers/gudhi/gudhi/Persistent_cohomology/Multi_field.h,sha256=S-jpKT5KlZ1X--LfNGTyfmoULNpu29hZUz9_lttxEYY,5678
130
+ multipers/gudhi/gudhi/Persistent_cohomology/Persistent_cohomology_column.h,sha256=0JQzCsQGLc3uiQuC_2a8W9-2drqv2gLgazP4wbeJAFk,3967
131
+ multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_iterators.h,sha256=jWWhKjtJ8o4W_-Qe5Zj1J5u71M3q7gr4TuhAMqjZGRg,15115
132
+ multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_node_explicit_storage.h,sha256=XuIAdwbEFOCrMCZBie-ev8r_Ezf_PcaRMQIaro51mvE,2710
133
+ multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_siblings.h,sha256=025PQPFTqHet0IGY6U87dDlQIGItnt-mK35QWvcbv_c,3028
134
+ multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_star_simplex_iterators.h,sha256=Lqe8CKNwfzJoR6AqEUSuLP_cpHrnExP_TQp_zf4Jark,11174
135
+ multipers/gudhi/gudhi/Simplex_tree/hooks_simplex_base.h,sha256=HDs4C5QU92Nmbw025_PxgI3GblcXy_C7N1V2bFsSgz0,2404
136
+ multipers/gudhi/gudhi/Simplex_tree/indexing_tag.h,sha256=qadCFWwXgyw53icvnYktqqCGPa1TIwm2fNFNRM3NVwY,720
137
+ multipers/gudhi/gudhi/Simplex_tree/serialization_utils.h,sha256=dzQfXvRCgObVLRU0hpieqOJ0gQmagerUmfkuSL1RCn0,2076
138
+ multipers/gudhi/gudhi/Simplex_tree/simplex_tree_options.h,sha256=h0rr_PiwPeH7GyG3qLEiluA6z1d6Qrbfo64XFM0coLE,5536
139
+ multipers/ml/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
140
+ multipers/ml/accuracies.py,sha256=4KfH7EB6-3KjXhOcleHcCP_2OOA6mC9v7DI7MSA2PnU,2940
141
+ multipers/ml/invariants_with_persistable.py,sha256=HL0_IIrcJdAmCIqcyHPg0PNLle_pa2esnGQJsK2hnHc,2261
142
+ multipers/ml/kernels.py,sha256=XWfvKY68-c9E-MpRzdNqGzGD6K24Aizx95TkiSeAtIY,6175
143
+ multipers/ml/mma.py,sha256=jW-kUQ7PuqWHrEhEwLGaYn64Rt2lgN45tFla0T4GGQc,23962
144
+ multipers/ml/one.py,sha256=np5jM8gywm65TsK1yeZ1BDWqP-Ym-7hz4brTXI_0imk,20119
145
+ multipers/ml/point_clouds.py,sha256=nTkSjSzQy6S10-sZ0uwBp_Fs2EIWleB7yHncK2b_xLg,13770
146
+ multipers/ml/signed_measures.py,sha256=5uZf00gLqaOkWZ13rXW5H32bicnHm9-BedBYY7hayA0,58206
147
+ multipers/ml/sliced_wasserstein.py,sha256=jgq4ND3EWwwJBopqRvfJLsoOptiMHjS3zEAENBmPJDc,18644
148
+ multipers/ml/tools.py,sha256=DOPcqmvZP2bA7M08GrwccdebwDq1HEwYdhNRGT7eZMI,3453
149
+ multipers/multi_parameter_rank_invariant/diff_helpers.h,sha256=wMCOhAewWd6-lulLND0y8M0MZoru6zn_8J3qfXDjLds,3477
150
+ multipers/multi_parameter_rank_invariant/euler_characteristic.h,sha256=gLzz-VCY2xPW11Fmi1kG_On33h7EHFmW1TdsVWdzovA,3295
151
+ multipers/multi_parameter_rank_invariant/function_rips.h,sha256=aUox99Y4X5kRgQ-nfpDApX2VC5iV0NJMyLBV-C7glo0,13505
152
+ multipers/multi_parameter_rank_invariant/hilbert_function.h,sha256=S_LRkNSU_bjjcPRS1pWpVHWOLMFQIAYa9dbAhwz0W8c,36412
153
+ multipers/multi_parameter_rank_invariant/persistence_slices.h,sha256=oVMsNkn_VB5lQ_2qsKw5ydPoHnMuGbtvrIN_ga7XnGQ,5986
154
+ multipers/multi_parameter_rank_invariant/rank_invariant.h,sha256=-W_ai4I_wkAIodU3Ubgvuc5cD_VLJzB4479EsVSynsM,16371
155
+ multipers/multiparameter_module_approximation/approximation.h,sha256=qjgFEjd8jjzxoOMkiYWGHvJN6-ZOqz0aSuXwIb6s3sI,95440
156
+ multipers/multiparameter_module_approximation/combinatory.h,sha256=Ck-VKQ56wsXCgQvIbpfTnBOweSBRm4rnChLfHf6JWlc,3605
157
+ multipers/multiparameter_module_approximation/debug.h,sha256=yy7miaqw-Lj8u1yMB9HmtJL02abf3K6JlqS6LbkUVfI,2692
158
+ multipers/multiparameter_module_approximation/euler_curves.h,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
159
+ multipers/multiparameter_module_approximation/format_python-cpp.h,sha256=wi0fiN6c5qtX1WJBC5M_kunRcuU3mCN7H0sUiKzQoGg,10708
160
+ multipers/multiparameter_module_approximation/heap_column.h,sha256=iiVNmCeiARGWsSmxOyvYlakBoA3CYTUrH-ZjEyt_a8g,5882
161
+ multipers/multiparameter_module_approximation/images.h,sha256=wXMYU3Bz991RC2LZ0QlQ880tNyOKdiUHsmn0c4u56kg,2215
162
+ multipers/multiparameter_module_approximation/list_column.h,sha256=kYCK_Jw6T-BJrFhFoGt8NAr1rIBqhYSZVQ8jnUS5Y8w,4153
163
+ multipers/multiparameter_module_approximation/list_column_2.h,sha256=BztipH-96RJlK73op5yb6BqqoOwfO_aATjZrPzSR_lc,5989
164
+ multipers/multiparameter_module_approximation/ru_matrix.h,sha256=7YBAEZGhEMye7_st5sG6Ll9MsC0nKQpGbSsRmrwh6FQ,10970
165
+ multipers/multiparameter_module_approximation/set_column.h,sha256=pfDKCaNkYhKuTbaEag1-GbnfR4x5wMbFox9xPIxpZJQ,3024
166
+ multipers/multiparameter_module_approximation/structure_higher_dim_barcode.h,sha256=FkettGH77x9Nog7556Eq3uWo2eDjDOJksGBGfxR5BQ8,1187
167
+ multipers/multiparameter_module_approximation/unordered_set_column.h,sha256=Pd0q_2e2BVuzlQNx8BD-XFS6OxZ66Km4kU4XF8r1s3A,4563
168
+ multipers/multiparameter_module_approximation/utilities.h,sha256=lvbZUaOP6MrMhj1cJZpIsKqgjk09SKaYpnmdlM89Q_k,15034
169
+ multipers/multiparameter_module_approximation/vector_column.h,sha256=P4HSGc-w4kdx9LCQu9Uw4u4HT7R1_vL4y7K1aSobky0,5696
170
+ multipers/multiparameter_module_approximation/vector_matrix.h,sha256=0-iIA-Xk_Bz2kBYXM3-SgBzyM0QQ7RqV1WgTbGe-qXM,10378
171
+ multipers/multiparameter_module_approximation/vineyards.h,sha256=6wN_k4CFO1BCVoT8Cc60Wi__v4C2bvFec7rpq-GPb4w,14694
172
+ multipers/multiparameter_module_approximation/vineyards_trajectories.h,sha256=ZZ4E0gmmuHNyUD_rKioISrlWhHNLW_dhlsCWGvzHW2o,25292
173
+ multipers/tensor/tensor.h,sha256=x2WknRJ_GzqYkBYnkJdVfjNJ197moRLFMy7oBmN1ITA,25261
174
+ multipers/tests/__init__.py,sha256=19BXYlQxgBzj7OpMP6v6JYNZZi2y9afvD1Wvodwcb1E,1656
175
+ multipers/torch/__init__.py,sha256=OLxIiZ389uCqehpUxBPUI_x1SYu531onc4tiTscAuIw,27
176
+ multipers/torch/diff_grids.py,sha256=8d0UhiWeMrb471nMKkwrRgGQO_u2kCtRjYYn5I-BFkQ,6745
177
+ multipers/torch/rips_density.py,sha256=H-kmSzY8hXhmVn15Oltc71DHs1IUHg5oPRgNyWW8L4Q,11706
178
+ multipers-2.3.1.dist-info/LICENSE,sha256=UsQRnvlo_9wpQS9DNt52GEraERHwK2GIRwuqr2Yv5JI,1071
179
+ multipers-2.3.1.dist-info/METADATA,sha256=gN2bFiv-a8tAkXkhfrX95eZAbNSaZtMEhGtpNsgYrA0,10945
180
+ multipers-2.3.1.dist-info/WHEEL,sha256=4oNF-ClUxXRX55MBZicDC2_sTLjRbJdXNr8x18QuDzw,101
181
+ multipers-2.3.1.dist-info/top_level.txt,sha256=L9e0AGmhRzrNw9FpuUx-zlqi5NcBOmrI9wYY8kYWr8A,10
182
+ multipers-2.3.1.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ Wheel-Version: 1.0
2
+ Generator: setuptools (75.8.2)
3
+ Root-Is-Purelib: false
4
+ Tag: cp313-cp313-win_amd64
5
+
@@ -0,0 +1 @@
1
+ multipers