multipers 2.3.1__cp313-cp313-manylinux_2_34_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of multipers might be problematic. Click here for more details.

Files changed (179) hide show
  1. multipers/__init__.py +33 -0
  2. multipers/_signed_measure_meta.py +430 -0
  3. multipers/_slicer_meta.py +211 -0
  4. multipers/data/MOL2.py +458 -0
  5. multipers/data/UCR.py +18 -0
  6. multipers/data/__init__.py +1 -0
  7. multipers/data/graphs.py +466 -0
  8. multipers/data/immuno_regions.py +27 -0
  9. multipers/data/minimal_presentation_to_st_bf.py +0 -0
  10. multipers/data/pytorch2simplextree.py +91 -0
  11. multipers/data/shape3d.py +101 -0
  12. multipers/data/synthetic.py +113 -0
  13. multipers/distances.py +198 -0
  14. multipers/filtration_conversions.pxd +229 -0
  15. multipers/filtration_conversions.pxd.tp +84 -0
  16. multipers/filtrations/__init__.py +18 -0
  17. multipers/filtrations/density.py +563 -0
  18. multipers/filtrations/filtrations.py +289 -0
  19. multipers/filtrations.pxd +224 -0
  20. multipers/function_rips.cpython-313-x86_64-linux-gnu.so +0 -0
  21. multipers/function_rips.pyx +105 -0
  22. multipers/grids.cpython-313-x86_64-linux-gnu.so +0 -0
  23. multipers/grids.pyx +350 -0
  24. multipers/gudhi/Persistence_slices_interface.h +132 -0
  25. multipers/gudhi/Simplex_tree_interface.h +239 -0
  26. multipers/gudhi/Simplex_tree_multi_interface.h +516 -0
  27. multipers/gudhi/cubical_to_boundary.h +59 -0
  28. multipers/gudhi/gudhi/Bitmap_cubical_complex.h +450 -0
  29. multipers/gudhi/gudhi/Bitmap_cubical_complex_base.h +1070 -0
  30. multipers/gudhi/gudhi/Bitmap_cubical_complex_periodic_boundary_conditions_base.h +579 -0
  31. multipers/gudhi/gudhi/Debug_utils.h +45 -0
  32. multipers/gudhi/gudhi/Fields/Multi_field.h +484 -0
  33. multipers/gudhi/gudhi/Fields/Multi_field_operators.h +455 -0
  34. multipers/gudhi/gudhi/Fields/Multi_field_shared.h +450 -0
  35. multipers/gudhi/gudhi/Fields/Multi_field_small.h +531 -0
  36. multipers/gudhi/gudhi/Fields/Multi_field_small_operators.h +507 -0
  37. multipers/gudhi/gudhi/Fields/Multi_field_small_shared.h +531 -0
  38. multipers/gudhi/gudhi/Fields/Z2_field.h +355 -0
  39. multipers/gudhi/gudhi/Fields/Z2_field_operators.h +376 -0
  40. multipers/gudhi/gudhi/Fields/Zp_field.h +420 -0
  41. multipers/gudhi/gudhi/Fields/Zp_field_operators.h +400 -0
  42. multipers/gudhi/gudhi/Fields/Zp_field_shared.h +418 -0
  43. multipers/gudhi/gudhi/Flag_complex_edge_collapser.h +337 -0
  44. multipers/gudhi/gudhi/Matrix.h +2107 -0
  45. multipers/gudhi/gudhi/Multi_critical_filtration.h +1038 -0
  46. multipers/gudhi/gudhi/Multi_persistence/Box.h +171 -0
  47. multipers/gudhi/gudhi/Multi_persistence/Line.h +282 -0
  48. multipers/gudhi/gudhi/Off_reader.h +173 -0
  49. multipers/gudhi/gudhi/One_critical_filtration.h +1433 -0
  50. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix.h +769 -0
  51. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix_with_column_compression.h +686 -0
  52. multipers/gudhi/gudhi/Persistence_matrix/Boundary_matrix.h +842 -0
  53. multipers/gudhi/gudhi/Persistence_matrix/Chain_matrix.h +1350 -0
  54. multipers/gudhi/gudhi/Persistence_matrix/Id_to_index_overlay.h +1105 -0
  55. multipers/gudhi/gudhi/Persistence_matrix/Position_to_index_overlay.h +859 -0
  56. multipers/gudhi/gudhi/Persistence_matrix/RU_matrix.h +910 -0
  57. multipers/gudhi/gudhi/Persistence_matrix/allocators/entry_constructors.h +139 -0
  58. multipers/gudhi/gudhi/Persistence_matrix/base_pairing.h +230 -0
  59. multipers/gudhi/gudhi/Persistence_matrix/base_swap.h +211 -0
  60. multipers/gudhi/gudhi/Persistence_matrix/boundary_cell_position_to_id_mapper.h +60 -0
  61. multipers/gudhi/gudhi/Persistence_matrix/boundary_face_position_to_id_mapper.h +60 -0
  62. multipers/gudhi/gudhi/Persistence_matrix/chain_pairing.h +136 -0
  63. multipers/gudhi/gudhi/Persistence_matrix/chain_rep_cycles.h +190 -0
  64. multipers/gudhi/gudhi/Persistence_matrix/chain_vine_swap.h +616 -0
  65. multipers/gudhi/gudhi/Persistence_matrix/columns/chain_column_extra_properties.h +150 -0
  66. multipers/gudhi/gudhi/Persistence_matrix/columns/column_dimension_holder.h +106 -0
  67. multipers/gudhi/gudhi/Persistence_matrix/columns/column_utilities.h +219 -0
  68. multipers/gudhi/gudhi/Persistence_matrix/columns/entry_types.h +327 -0
  69. multipers/gudhi/gudhi/Persistence_matrix/columns/heap_column.h +1140 -0
  70. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_list_column.h +934 -0
  71. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_set_column.h +934 -0
  72. multipers/gudhi/gudhi/Persistence_matrix/columns/list_column.h +980 -0
  73. multipers/gudhi/gudhi/Persistence_matrix/columns/naive_vector_column.h +1092 -0
  74. multipers/gudhi/gudhi/Persistence_matrix/columns/row_access.h +192 -0
  75. multipers/gudhi/gudhi/Persistence_matrix/columns/set_column.h +921 -0
  76. multipers/gudhi/gudhi/Persistence_matrix/columns/small_vector_column.h +1093 -0
  77. multipers/gudhi/gudhi/Persistence_matrix/columns/unordered_set_column.h +1012 -0
  78. multipers/gudhi/gudhi/Persistence_matrix/columns/vector_column.h +1244 -0
  79. multipers/gudhi/gudhi/Persistence_matrix/matrix_dimension_holders.h +186 -0
  80. multipers/gudhi/gudhi/Persistence_matrix/matrix_row_access.h +164 -0
  81. multipers/gudhi/gudhi/Persistence_matrix/ru_pairing.h +156 -0
  82. multipers/gudhi/gudhi/Persistence_matrix/ru_rep_cycles.h +376 -0
  83. multipers/gudhi/gudhi/Persistence_matrix/ru_vine_swap.h +540 -0
  84. multipers/gudhi/gudhi/Persistent_cohomology/Field_Zp.h +118 -0
  85. multipers/gudhi/gudhi/Persistent_cohomology/Multi_field.h +173 -0
  86. multipers/gudhi/gudhi/Persistent_cohomology/Persistent_cohomology_column.h +128 -0
  87. multipers/gudhi/gudhi/Persistent_cohomology.h +745 -0
  88. multipers/gudhi/gudhi/Points_off_io.h +171 -0
  89. multipers/gudhi/gudhi/Simple_object_pool.h +69 -0
  90. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_iterators.h +463 -0
  91. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_node_explicit_storage.h +83 -0
  92. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_siblings.h +106 -0
  93. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_star_simplex_iterators.h +277 -0
  94. multipers/gudhi/gudhi/Simplex_tree/hooks_simplex_base.h +62 -0
  95. multipers/gudhi/gudhi/Simplex_tree/indexing_tag.h +27 -0
  96. multipers/gudhi/gudhi/Simplex_tree/serialization_utils.h +62 -0
  97. multipers/gudhi/gudhi/Simplex_tree/simplex_tree_options.h +157 -0
  98. multipers/gudhi/gudhi/Simplex_tree.h +2794 -0
  99. multipers/gudhi/gudhi/Simplex_tree_multi.h +152 -0
  100. multipers/gudhi/gudhi/distance_functions.h +62 -0
  101. multipers/gudhi/gudhi/graph_simplicial_complex.h +104 -0
  102. multipers/gudhi/gudhi/persistence_interval.h +253 -0
  103. multipers/gudhi/gudhi/persistence_matrix_options.h +170 -0
  104. multipers/gudhi/gudhi/reader_utils.h +367 -0
  105. multipers/gudhi/mma_interface_coh.h +256 -0
  106. multipers/gudhi/mma_interface_h0.h +223 -0
  107. multipers/gudhi/mma_interface_matrix.h +291 -0
  108. multipers/gudhi/naive_merge_tree.h +536 -0
  109. multipers/gudhi/scc_io.h +310 -0
  110. multipers/gudhi/truc.h +957 -0
  111. multipers/io.cpython-313-x86_64-linux-gnu.so +0 -0
  112. multipers/io.pyx +714 -0
  113. multipers/ml/__init__.py +0 -0
  114. multipers/ml/accuracies.py +90 -0
  115. multipers/ml/invariants_with_persistable.py +79 -0
  116. multipers/ml/kernels.py +176 -0
  117. multipers/ml/mma.py +713 -0
  118. multipers/ml/one.py +472 -0
  119. multipers/ml/point_clouds.py +352 -0
  120. multipers/ml/signed_measures.py +1589 -0
  121. multipers/ml/sliced_wasserstein.py +461 -0
  122. multipers/ml/tools.py +113 -0
  123. multipers/mma_structures.cpython-313-x86_64-linux-gnu.so +0 -0
  124. multipers/mma_structures.pxd +127 -0
  125. multipers/mma_structures.pyx +2742 -0
  126. multipers/mma_structures.pyx.tp +1083 -0
  127. multipers/multi_parameter_rank_invariant/diff_helpers.h +84 -0
  128. multipers/multi_parameter_rank_invariant/euler_characteristic.h +97 -0
  129. multipers/multi_parameter_rank_invariant/function_rips.h +322 -0
  130. multipers/multi_parameter_rank_invariant/hilbert_function.h +769 -0
  131. multipers/multi_parameter_rank_invariant/persistence_slices.h +148 -0
  132. multipers/multi_parameter_rank_invariant/rank_invariant.h +369 -0
  133. multipers/multiparameter_edge_collapse.py +41 -0
  134. multipers/multiparameter_module_approximation/approximation.h +2298 -0
  135. multipers/multiparameter_module_approximation/combinatory.h +129 -0
  136. multipers/multiparameter_module_approximation/debug.h +107 -0
  137. multipers/multiparameter_module_approximation/euler_curves.h +0 -0
  138. multipers/multiparameter_module_approximation/format_python-cpp.h +286 -0
  139. multipers/multiparameter_module_approximation/heap_column.h +238 -0
  140. multipers/multiparameter_module_approximation/images.h +79 -0
  141. multipers/multiparameter_module_approximation/list_column.h +174 -0
  142. multipers/multiparameter_module_approximation/list_column_2.h +232 -0
  143. multipers/multiparameter_module_approximation/ru_matrix.h +347 -0
  144. multipers/multiparameter_module_approximation/set_column.h +135 -0
  145. multipers/multiparameter_module_approximation/structure_higher_dim_barcode.h +36 -0
  146. multipers/multiparameter_module_approximation/unordered_set_column.h +166 -0
  147. multipers/multiparameter_module_approximation/utilities.h +403 -0
  148. multipers/multiparameter_module_approximation/vector_column.h +223 -0
  149. multipers/multiparameter_module_approximation/vector_matrix.h +331 -0
  150. multipers/multiparameter_module_approximation/vineyards.h +464 -0
  151. multipers/multiparameter_module_approximation/vineyards_trajectories.h +649 -0
  152. multipers/multiparameter_module_approximation.cpython-313-x86_64-linux-gnu.so +0 -0
  153. multipers/multiparameter_module_approximation.pyx +218 -0
  154. multipers/pickle.py +90 -0
  155. multipers/plots.py +342 -0
  156. multipers/point_measure.cpython-313-x86_64-linux-gnu.so +0 -0
  157. multipers/point_measure.pyx +322 -0
  158. multipers/simplex_tree_multi.cpython-313-x86_64-linux-gnu.so +0 -0
  159. multipers/simplex_tree_multi.pxd +133 -0
  160. multipers/simplex_tree_multi.pyx +10402 -0
  161. multipers/simplex_tree_multi.pyx.tp +1947 -0
  162. multipers/slicer.cpython-313-x86_64-linux-gnu.so +0 -0
  163. multipers/slicer.pxd +2552 -0
  164. multipers/slicer.pxd.tp +218 -0
  165. multipers/slicer.pyx +16530 -0
  166. multipers/slicer.pyx.tp +931 -0
  167. multipers/tensor/tensor.h +672 -0
  168. multipers/tensor.pxd +13 -0
  169. multipers/test.pyx +44 -0
  170. multipers/tests/__init__.py +57 -0
  171. multipers/torch/__init__.py +1 -0
  172. multipers/torch/diff_grids.py +217 -0
  173. multipers/torch/rips_density.py +310 -0
  174. multipers-2.3.1.dist-info/LICENSE +21 -0
  175. multipers-2.3.1.dist-info/METADATA +144 -0
  176. multipers-2.3.1.dist-info/RECORD +179 -0
  177. multipers-2.3.1.dist-info/WHEEL +5 -0
  178. multipers-2.3.1.dist-info/top_level.txt +1 -0
  179. multipers.libs/libtbb-f2c6754f.so.12.14 +0 -0
@@ -0,0 +1,218 @@
1
+ """!
2
+ @package mma
3
+ @brief Files containing the C++ cythonized functions.
4
+ @author David Loiseaux
5
+ @copyright Copyright (c) 2022 Inria.
6
+ """
7
+
8
+ # distutils: language = c++
9
+
10
+ ###########################################################################
11
+ ## PYTHON LIBRARIES
12
+ import gudhi as gd
13
+ import numpy as np
14
+ from typing import List
15
+ from joblib import Parallel, delayed
16
+ import sys
17
+
18
+ ###########################################################################
19
+ ## CPP CLASSES
20
+ from libc.stdint cimport intptr_t
21
+ from libc.stdint cimport uintptr_t
22
+
23
+ ###########################################################################
24
+ ## CYTHON TYPES
25
+ from libcpp.vector cimport vector
26
+ from libcpp.utility cimport pair
27
+ #from libcpp.list cimport list as clist
28
+ from libcpp cimport bool
29
+ from libcpp cimport int
30
+ from typing import Iterable,Optional, Literal
31
+ from cython.operator import dereference
32
+ #########################################################################
33
+ ## Multipersistence Module Approximation Classes
34
+ from multipers.mma_structures cimport *
35
+ from multipers.filtrations cimport *
36
+ from multipers.filtration_conversions cimport *
37
+ cimport numpy as cnp
38
+
39
+
40
+ #########################################################################
41
+ ## Small hack for typing
42
+ from multipers.simplex_tree_multi import is_simplextree_multi, SimplexTreeMulti_type
43
+ from multipers.slicer import Slicer_type, is_slicer
44
+ from multipers.mma_structures import *
45
+ from multipers.mma_structures import PyModule_type
46
+ from typing import Union
47
+ from multipers.slicer cimport _multiparameter_module_approximation_f32, _multiparameter_module_approximation_f64
48
+
49
+
50
+
51
+ def module_approximation_from_slicer(
52
+ slicer:Slicer_type,
53
+ box:Optional[np.ndarray]=None,
54
+ max_error=-1,
55
+ bool complete=True,
56
+ bool threshold=False,
57
+ bool verbose=False,
58
+ list[float] direction = [],
59
+ )->PyModule_type:
60
+
61
+ cdef Module[float] mod_f32
62
+ cdef Module[double] mod_f64
63
+ cdef intptr_t ptr
64
+ if not slicer.is_vine:
65
+ print(r"Got a non-vine slicer as an input. Use `vineyard=True` to remove this copy.", file=sys.stderr)
66
+ from multipers._slicer_meta import Slicer
67
+ slicer = Slicer(slicer, vineyard=True, backend="matrix")
68
+ direction_ = np.asarray(direction, dtype=slicer.dtype)
69
+ if slicer.dtype == np.float32:
70
+ approx_mod = PyModule_f32()
71
+ if box is None:
72
+ box = slicer.filtration_bounds()
73
+ mod_f32 = _multiparameter_module_approximation_f32(slicer,_py21c_f32(direction_), max_error,Box[float](box),threshold, complete, verbose)
74
+ ptr = <intptr_t>(&mod_f32)
75
+ elif slicer.dtype == np.float64:
76
+ approx_mod = PyModule_f64()
77
+ if box is None:
78
+ box = slicer.filtration_bounds()
79
+ mod_f64 = _multiparameter_module_approximation_f64(slicer,_py21c_f64(direction_), max_error,Box[double](box),threshold, complete, verbose)
80
+ ptr = <intptr_t>(&mod_f64)
81
+ else:
82
+ raise ValueError(f"Slicer must be float-like. Got {slicer.dtype}.")
83
+
84
+ approx_mod._set_from_ptr(ptr)
85
+
86
+ return approx_mod
87
+
88
+ def module_approximation(
89
+ input:Union[SimplexTreeMulti_type,Slicer_type, tuple],
90
+ box:Optional[np.ndarray]=None,
91
+ float max_error=-1,
92
+ int nlines=557,
93
+ slicer_backend:Literal["matrix","clement","graph"]="matrix",
94
+ minpres:Optional[Literal["mpfree"]]=None,
95
+ degree:Optional[int]=None,
96
+ bool complete=True,
97
+ bool threshold=False,
98
+ bool verbose=False,
99
+ bool ignore_warning=False,
100
+ id="",
101
+ list[float] direction = [],
102
+ list[int] swap_box_coords = [],
103
+ *,
104
+ int n_jobs = -1,
105
+ )->PyModule_type:
106
+ """Computes an interval module approximation of a multiparameter filtration.
107
+
108
+ Parameters
109
+ ----------
110
+ input: SimplexTreeMulti or Slicer-like.
111
+ Holds the multifiltered complex.
112
+ max_error: positive float
113
+ Trade-off between approximation and computational complexity.
114
+ Upper bound of the module approximation, in bottleneck distance,
115
+ for interval-decomposable modules.
116
+ nlines: int = 200
117
+ Alternative to max_error;
118
+ specifies the number of persistence computation used for the approximation.
119
+ box : (Optional) pair of list of floats
120
+ Defines a rectangle on which to compute the approximation.
121
+ Format : [x,y], This defines a rectangle on which we draw the lines,
122
+ uniformly drawn (with a max_error step).
123
+ The first line is `x`.
124
+ **Warning**: For custom boxes, and directions, you **must** ensure
125
+ that the first line captures a generic barcode.
126
+ direction: float[:] = []
127
+ If given, the line are drawn with this angle.
128
+ **Warning**: You must ensure that the first line, defined by box,
129
+ captures a generic barcode.
130
+ slicer_backend: Either "matrix","clement", or "graph".
131
+ If a simplextree is given, it is first converted to this structure,
132
+ with different choices of backends.
133
+ minpres: (Optional) "mpfree" only for the moment.
134
+ If given, and the input is a simplextree,
135
+ computes a minimal presentation before starting the computation.
136
+ A degree has to be given.
137
+ degree: int Only required when minpres is given.
138
+ Homological degree of the minimal degree.
139
+ threshold: bool
140
+ When true, intersects the module support with the box,
141
+ i.e. no more infinite summands.
142
+ verbose: bool
143
+ Prints C++ infos.
144
+ ignore_warning : bool
145
+ Unless set to true, prevents computing on more than 10k lines.
146
+ Useful to prevent a segmentation fault due to "infinite" recursion.
147
+ Returns
148
+ -------
149
+ PyModule
150
+ An interval decomposable module approximation of the module defined by the
151
+ homology of this multi-filtration.
152
+ """
153
+ if isinstance(input, tuple) or isinstance(input, list):
154
+ assert all(s.is_minpres for s in input), "Modules cannot be merged unless they are minimal presentations."
155
+ assert np.unique([s.minpres_degree for s in input]).shape[0] == len(input), "Multiple modules are at the same degree, cannot merge modules"
156
+ if len(input) == 0:
157
+ return PyModule_f64()
158
+ if n_jobs <= 1:
159
+ modules = tuple(module_approximation(slicer, box, max_error, nlines, slicer_backend, minpres, degree, complete, threshold, verbose, ignore_warning, id, direction, swap_box_coords) for slicer in input)
160
+ else:
161
+ modules = tuple(Parallel(n_jobs=n_jobs, prefer="threads")(
162
+ delayed(module_approximation)(slicer, box, max_error, nlines, slicer_backend, minpres, degree, complete, threshold, verbose, ignore_warning, id, direction, swap_box_coords)
163
+ for slicer in input
164
+ ))
165
+ mod = PyModule_f64().set_box(PyBox_f64(*modules[0].get_box()))
166
+ for i,m in enumerate(modules):
167
+ mod.merge(m, input[i].minpres_degree)
168
+ return mod
169
+ if len(input) == 0:
170
+ return PyModule_f64()
171
+ if box is None:
172
+ if is_simplextree_multi(input):
173
+ box = input.filtration_bounds()
174
+ else:
175
+ box = input.filtration_bounds()
176
+ box = np.asarray(box)
177
+
178
+ # empty coords
179
+ zero_idx = box[1] == box[0]
180
+ if np.any(zero_idx):
181
+ box[1] += zero_idx
182
+
183
+ for i in swap_box_coords:
184
+ box[0,i], box[1,i] = box[1,i], box[0,i]
185
+ num_parameters = box.shape[1]
186
+ if num_parameters <=0:
187
+ num_parameters = box.shape[1]
188
+ assert len(direction) == 0 or len(direction) == len(box[0]), f"Invalid line direction, has to be 0 or {num_parameters=}"
189
+
190
+ prod = sum(np.abs(box[1] - box[0])[:i].prod() * np.abs(box[1] - box[0])[i+1:].prod() for i in range(0,num_parameters))
191
+
192
+ if max_error <= 0:
193
+ max_error = (prod/nlines)**(1/(num_parameters-1))
194
+
195
+ if not ignore_warning and prod >= 10_000:
196
+ raise ValueError(f"""
197
+ Warning : the number of lines (around {np.round(prod)}) may be too high.
198
+ Try to increase the precision parameter, or set `ignore_warning=True` to compute this module.
199
+ Returning the trivial module."""
200
+ )
201
+ if is_simplextree_multi(input):
202
+ from multipers._slicer_meta import Slicer
203
+ input = Slicer(input,backend=slicer_backend, vineyard=True)
204
+ assert is_slicer(input), "First argument must be a simplextree or a slicer !"
205
+ return module_approximation_from_slicer(
206
+ slicer=input,
207
+ box=box,
208
+ max_error=max_error,
209
+ complete=complete,
210
+ threshold=threshold,
211
+ verbose=verbose,
212
+ direction=direction,
213
+ )
214
+
215
+
216
+
217
+
218
+
multipers/pickle.py ADDED
@@ -0,0 +1,90 @@
1
+ import numpy as np
2
+
3
+
4
+ def save_with_axis(path: str, signed_measures):
5
+ np.savez(
6
+ path,
7
+ **{
8
+ f"{i}_{axis}_{degree}": np.c_[
9
+ sm_of_degree[0], sm_of_degree[1][:, np.newaxis]
10
+ ]
11
+ for i, sm in enumerate(signed_measures)
12
+ for axis, sm_of_axis in enumerate(sm)
13
+ for degree, sm_of_degree in enumerate(sm_of_axis)
14
+ },
15
+ )
16
+
17
+
18
+ def save_without_axis(path: str, signed_measures):
19
+ np.savez(
20
+ path,
21
+ **{
22
+ f"{i}_{degree}": np.c_[sm_of_degree[0], sm_of_degree[1][:, np.newaxis]]
23
+ for i, sm in enumerate(signed_measures)
24
+ for degree, sm_of_degree in enumerate(sm)
25
+ },
26
+ )
27
+
28
+
29
+ def get_sm_with_axis(sms, idx, axis, degree):
30
+ sm = sms[f"{idx}_{axis}_{degree}"]
31
+ return (sm[:, :-1], sm[:, -1])
32
+
33
+
34
+ def get_sm_without_axis(sms, idx, degree):
35
+ sm = sms[f"{idx}_{degree}"]
36
+ return (sm[:, :-1], sm[:, -1])
37
+
38
+
39
+ def load_without_axis(sms):
40
+ indices = np.array(
41
+ [[int(i) for i in key.split("_")] for key in sms.keys()], dtype=int
42
+ )
43
+ num_data, num_degrees = indices.max(axis=0) + 1
44
+ signed_measures_reconstructed = [
45
+ [get_sm_without_axis(sms, idx, degree) for degree in range(num_degrees)]
46
+ for idx in range(num_data)
47
+ ]
48
+ return signed_measures_reconstructed
49
+
50
+
51
+ # test : np.all([np.array_equal(a[0],b[0]) and np.array_equal(a[1],b[1]) and len(a) == len(b) == 2 for x,y in zip(signed_measures_reconstructed,signed_measures_reconstructed) for a,b in zip(x,y)])
52
+
53
+
54
+ def load_with_axis(sms):
55
+ indices = np.array(
56
+ [[int(i) for i in key.split("_")] for key in sms.keys()], dtype=int
57
+ )
58
+ num_data, num_axis, num_degrees = indices.max(axis=0) + 1
59
+ signed_measures_reconstructed = [
60
+ [
61
+ [get_sm_with_axis(sms, idx, axis, degree) for degree in range(num_degrees)]
62
+ for axis in range(num_axis)
63
+ ]
64
+ for idx in range(num_data)
65
+ ]
66
+ return signed_measures_reconstructed
67
+
68
+
69
+ def save(path: str, signed_measures):
70
+ if isinstance(signed_measures[0][0], tuple):
71
+ save_without_axis(path=path, signed_measures=signed_measures)
72
+ else:
73
+ save_with_axis(path=path, signed_measures=signed_measures)
74
+
75
+
76
+ def load(path: str):
77
+ sms = np.load(path)
78
+ item = None
79
+ for i in sms.keys():
80
+ item = i
81
+ break
82
+ n = len(item.split("_"))
83
+ match n:
84
+ case 2:
85
+ return load_without_axis(sms)
86
+ case 3:
87
+ return load_with_axis(sms)
88
+ case _:
89
+ raise Exception("Invalid Signed Measure !")
90
+
multipers/plots.py ADDED
@@ -0,0 +1,342 @@
1
+ from typing import Optional
2
+
3
+ import matplotlib.pyplot as plt
4
+ import numpy as np
5
+
6
+ try:
7
+ import torch
8
+ istensor = torch.is_tensor
9
+ except ImportError:
10
+ istensor = lambda x: False
11
+
12
+ def _plot_rectangle(rectangle: np.ndarray, weight, **plt_kwargs):
13
+ rectangle = np.asarray(rectangle)
14
+ x_axis = rectangle[[0, 2]]
15
+ y_axis = rectangle[[1, 3]]
16
+ color = "blue" if weight > 0 else "red"
17
+ plt.plot(x_axis, y_axis, c=color, **plt_kwargs)
18
+
19
+
20
+ def _plot_signed_measure_2(
21
+ pts, weights, temp_alpha=0.7, threshold=(np.inf, np.inf), **plt_kwargs
22
+ ):
23
+ import matplotlib.colors
24
+
25
+ pts = np.clip(pts, a_min=-np.inf, a_max=np.asarray(threshold)[None, :])
26
+ weights = np.asarray(weights)
27
+ color_weights = np.array(weights, dtype=float)
28
+ neg_idx = weights < 0
29
+ pos_idx = weights > 0
30
+ if np.any(neg_idx):
31
+ current_weights = -weights[neg_idx]
32
+ min_weight = np.max(current_weights)
33
+ color_weights[neg_idx] /= min_weight
34
+ color_weights[neg_idx] -= 1
35
+ else:
36
+ min_weight = 0
37
+
38
+ if np.any(pos_idx):
39
+ current_weights = weights[pos_idx]
40
+ max_weight = np.max(current_weights)
41
+ color_weights[pos_idx] /= max_weight
42
+ color_weights[pos_idx] += 1
43
+ else:
44
+ max_weight = 1
45
+
46
+ bordeaux = np.array([0.70567316, 0.01555616, 0.15023281, 1])
47
+ light_bordeaux = np.array([0.70567316, 0.01555616, 0.15023281, temp_alpha])
48
+ bleu = np.array([0.2298057, 0.29871797, 0.75368315, 1])
49
+ light_bleu = np.array([0.2298057, 0.29871797, 0.75368315, temp_alpha])
50
+ norm = plt.Normalize(-2, 2)
51
+ cmap = matplotlib.colors.LinearSegmentedColormap.from_list(
52
+ "", [bordeaux, light_bordeaux, "white", light_bleu, bleu]
53
+ )
54
+ plt.scatter(
55
+ pts[:, 0], pts[:, 1], c=color_weights, cmap=cmap, norm=norm, **plt_kwargs
56
+ )
57
+ plt.scatter([], [], color=bleu, label="positive mass", **plt_kwargs)
58
+ plt.scatter([], [], color=bordeaux, label="negative mass", **plt_kwargs)
59
+ plt.legend()
60
+
61
+
62
+ def _plot_signed_measure_4(
63
+ pts,
64
+ weights,
65
+ x_smoothing: float = 1,
66
+ area_alpha: bool = True,
67
+ threshold=(np.inf, np.inf),
68
+ alpha=None,
69
+ **plt_kwargs, # ignored ftm
70
+ ):
71
+ # compute the maximal rectangle area
72
+ pts = np.clip(pts, a_min=-np.inf, a_max=np.array((*threshold, *threshold))[None, :])
73
+ alpha_rescaling = 0
74
+ for rectangle, weight in zip(pts, weights):
75
+ if rectangle[2] > x_smoothing * rectangle[0]:
76
+ alpha_rescaling = max(
77
+ alpha_rescaling,
78
+ (rectangle[2] / x_smoothing - rectangle[0])
79
+ * (rectangle[3] - rectangle[1]),
80
+ )
81
+ # draw the rectangles
82
+ for rectangle, weight in zip(pts, weights):
83
+ # draw only the rectangles that have not been reduced to the empty set
84
+ if rectangle[2] > x_smoothing * rectangle[0]:
85
+ # make the alpha channel proportional to the rectangle's area
86
+ if area_alpha:
87
+ _plot_rectangle(
88
+ rectangle=[
89
+ rectangle[0],
90
+ rectangle[1],
91
+ rectangle[2] / x_smoothing,
92
+ rectangle[3],
93
+ ],
94
+ weight=weight,
95
+ alpha=(
96
+ (rectangle[2] / x_smoothing - rectangle[0])
97
+ * (rectangle[3] - rectangle[1])
98
+ / alpha_rescaling
99
+ if alpha is None
100
+ else alpha
101
+ ),
102
+ **plt_kwargs,
103
+ )
104
+ else:
105
+ _plot_rectangle(
106
+ rectangle=[
107
+ rectangle[0],
108
+ rectangle[1],
109
+ rectangle[2] / x_smoothing,
110
+ rectangle[3],
111
+ ],
112
+ weight=weight,
113
+ alpha=1 if alpha is None else alpha,
114
+ **plt_kwargs,
115
+ )
116
+
117
+
118
+ def plot_signed_measure(signed_measure, threshold=None, ax=None, **plt_kwargs):
119
+ if ax is None:
120
+ ax = plt.gca()
121
+ else:
122
+ plt.sca(ax)
123
+ pts, weights = signed_measure
124
+ if istensor(pts):
125
+ pts = pts.detach().numpy()
126
+ if istensor(weights):
127
+ weights = weights.detach().numpy()
128
+ pts = np.asarray(pts)
129
+ num_pts = pts.shape[0]
130
+ num_parameters = pts.shape[1]
131
+ if threshold is None:
132
+ if num_pts == 0:
133
+ threshold = (np.inf, np.inf)
134
+ else:
135
+ if num_parameters == 4:
136
+ pts_ = np.concatenate([pts[:, :2], pts[:, 2:]], axis=0)
137
+ else:
138
+ pts_ = pts
139
+ threshold = np.max(np.ma.masked_invalid(pts_), axis=0)
140
+ if isinstance(pts, np.ndarray):
141
+ pass
142
+ else:
143
+ import torch
144
+
145
+ if isinstance(pts, torch.Tensor):
146
+ pts = pts.detach().numpy()
147
+ else:
148
+ raise Exception("Invalid measure type.")
149
+
150
+ assert num_parameters in (2, 4)
151
+ if num_parameters == 2:
152
+ _plot_signed_measure_2(
153
+ pts=pts, weights=weights, threshold=threshold, **plt_kwargs
154
+ )
155
+ else:
156
+ _plot_signed_measure_4(
157
+ pts=pts, weights=weights, threshold=threshold, **plt_kwargs
158
+ )
159
+
160
+
161
+ def plot_signed_measures(signed_measures, threshold=None, size=4):
162
+ num_degrees = len(signed_measures)
163
+ if num_degrees <= 1:
164
+ axes = [plt.gca()]
165
+ else:
166
+ fig, axes = plt.subplots(
167
+ nrows=1, ncols=num_degrees, figsize=(num_degrees * size, size)
168
+ )
169
+ for ax, signed_measure in zip(axes, signed_measures):
170
+ plot_signed_measure(signed_measure=signed_measure, ax=ax, threshold=threshold)
171
+ plt.tight_layout()
172
+
173
+
174
+ def plot_surface(
175
+ grid,
176
+ hf,
177
+ fig=None,
178
+ ax=None,
179
+ cmap: Optional[str] = None,
180
+ discrete_surface=False,
181
+ has_negative_values=False,
182
+ **plt_args,
183
+ ):
184
+ import matplotlib
185
+
186
+ if ax is None:
187
+ ax = plt.gca()
188
+ else:
189
+ plt.sca(ax)
190
+ if hf.ndim == 3 and hf.shape[0] == 1:
191
+ hf = hf[0]
192
+ assert hf.ndim == 2, "Can only plot a 2d surface"
193
+ fig = plt.gcf() if fig is None else fig
194
+ if cmap is None:
195
+ if discrete_surface:
196
+ cmap = matplotlib.colormaps["gray_r"]
197
+ else:
198
+ cmap = matplotlib.colormaps["plasma"]
199
+ if discrete_surface:
200
+ if has_negative_values:
201
+ bounds = np.arange(-5, 6, 1, dtype=int)
202
+ else:
203
+ bounds = np.arange(0, 11, 1, dtype=int)
204
+ norm = matplotlib.colors.BoundaryNorm(bounds, cmap.N, extend="max")
205
+ im = ax.pcolormesh(grid[0], grid[1], hf.T, cmap=cmap, norm=norm, **plt_args)
206
+ cbar = fig.colorbar(
207
+ matplotlib.cm.ScalarMappable(cmap=cmap, norm=norm),
208
+ spacing="proportional",
209
+ ax=ax,
210
+ )
211
+ cbar.set_ticks(ticks=bounds, labels=bounds)
212
+ return im
213
+ im = ax.pcolormesh(grid[0], grid[1], hf.T, cmap=cmap, **plt_args)
214
+ return im
215
+
216
+
217
+ def plot_surfaces(HF, size=4, **plt_args):
218
+ grid, hf = HF
219
+ assert (
220
+ hf.ndim == 3
221
+ ), f"Found hf.shape = {hf.shape}, expected ndim = 3 : degree, 2-parameter surface."
222
+ num_degrees = hf.shape[0]
223
+ fig, axes = plt.subplots(
224
+ nrows=1, ncols=num_degrees, figsize=(num_degrees * size, size)
225
+ )
226
+ if num_degrees == 1:
227
+ axes = [axes]
228
+ for ax, hf_of_degree in zip(axes, hf):
229
+ plot_surface(grid=grid, hf=hf_of_degree, fig=fig, ax=ax, **plt_args)
230
+ plt.tight_layout()
231
+
232
+
233
+ def _rectangle(x, y, color, alpha):
234
+ """
235
+ Defines a rectangle patch in the format {z | x  ≤ z ≤ y} with color and alpha
236
+ """
237
+ from matplotlib.patches import Rectangle as RectanglePatch
238
+
239
+ return RectanglePatch(
240
+ x, max(y[0] - x[0], 0), max(y[1] - x[1], 0), color=color, alpha=alpha
241
+ )
242
+
243
+
244
+ def _d_inf(a, b):
245
+ a = np.asarray(a)
246
+ b = np.asarray(b)
247
+ return np.min(np.abs(b - a))
248
+
249
+
250
+ def plot2d_PyModule(
251
+ corners,
252
+ box,
253
+ *,
254
+ dimension=-1,
255
+ separated=False,
256
+ min_persistence=0,
257
+ alpha=.8,
258
+ verbose=False,
259
+ save=False,
260
+ dpi=200,
261
+ shapely=True,
262
+ xlabel=None,
263
+ ylabel=None,
264
+ cmap=None,
265
+ ):
266
+ import matplotlib
267
+
268
+ try:
269
+ from shapely import union_all
270
+ from shapely.geometry import Polygon as _Polygon
271
+ from shapely.geometry import box as _rectangle_box
272
+
273
+ shapely = True and shapely
274
+ except ImportError:
275
+ from warnings import warn
276
+
277
+ shapely = False
278
+ warn(
279
+ "Shapely not installed. Fallbacking to matplotlib. The plots may be inacurate."
280
+ )
281
+ cmap = (
282
+ matplotlib.colormaps["Spectral"] if cmap is None else matplotlib.colormaps[cmap]
283
+ )
284
+ box = list(box)
285
+ if not (separated):
286
+ # fig, ax = plt.subplots()
287
+ ax = plt.gca()
288
+ ax.set(xlim=[box[0][0], box[1][0]], ylim=[box[0][1], box[1][1]])
289
+ n_summands = len(corners)
290
+ for i in range(n_summands):
291
+ trivial_summand = True
292
+ list_of_rect = []
293
+ for birth in corners[i][0]:
294
+ if len(birth) == 1:
295
+ birth = np.asarray([birth[0]] * 2)
296
+ birth = np.asarray(birth).clip(min=box[0])
297
+ for death in corners[i][1]:
298
+ if len(death) == 1:
299
+ death = np.asarray([death[0]] * 2)
300
+ death = np.asarray(death).clip(max=box[1])
301
+ if death[1] > birth[1] and death[0] > birth[0]:
302
+ if trivial_summand and _d_inf(birth, death) > min_persistence:
303
+ trivial_summand = False
304
+ if shapely:
305
+ list_of_rect.append(
306
+ _rectangle_box(birth[0], birth[1], death[0], death[1])
307
+ )
308
+ else:
309
+ list_of_rect.append(
310
+ _rectangle(birth, death, cmap(i / n_summands), alpha)
311
+ )
312
+ if not (trivial_summand):
313
+ if separated:
314
+ fig, ax = plt.subplots()
315
+ ax.set(xlim=[box[0][0], box[1][0]], ylim=[box[0][1], box[1][1]])
316
+ if shapely:
317
+ summand_shape = union_all(list_of_rect)
318
+ if type(summand_shape) is _Polygon:
319
+ xs, ys = summand_shape.exterior.xy
320
+ ax.fill(xs, ys, alpha=alpha, fc=cmap(i / n_summands), ec="None")
321
+ else:
322
+ for polygon in summand_shape.geoms:
323
+ xs, ys = polygon.exterior.xy
324
+ ax.fill(xs, ys, alpha=alpha, fc=cmap(i / n_summands), ec="None")
325
+ else:
326
+ for rectangle in list_of_rect:
327
+ ax.add_patch(rectangle)
328
+ if separated:
329
+ if xlabel:
330
+ plt.xlabel(xlabel)
331
+ if ylabel:
332
+ plt.ylabel(ylabel)
333
+ if dimension >= 0:
334
+ plt.title(rf"$H_{dimension}$ $2$-persistence")
335
+ if not (separated):
336
+ if xlabel is not None:
337
+ plt.xlabel(xlabel)
338
+ if ylabel is not None:
339
+ plt.ylabel(ylabel)
340
+ if dimension >= 0:
341
+ plt.title(rf"$H_{dimension}$ $2$-persistence")
342
+ return