multipers 2.3.1__cp313-cp313-macosx_13_0_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of multipers might be problematic. Click here for more details.

Files changed (180) hide show
  1. multipers/.dylibs/libc++.1.0.dylib +0 -0
  2. multipers/.dylibs/libtbb.12.14.dylib +0 -0
  3. multipers/__init__.py +33 -0
  4. multipers/_signed_measure_meta.py +430 -0
  5. multipers/_slicer_meta.py +211 -0
  6. multipers/data/MOL2.py +458 -0
  7. multipers/data/UCR.py +18 -0
  8. multipers/data/__init__.py +1 -0
  9. multipers/data/graphs.py +466 -0
  10. multipers/data/immuno_regions.py +27 -0
  11. multipers/data/minimal_presentation_to_st_bf.py +0 -0
  12. multipers/data/pytorch2simplextree.py +91 -0
  13. multipers/data/shape3d.py +101 -0
  14. multipers/data/synthetic.py +113 -0
  15. multipers/distances.py +198 -0
  16. multipers/filtration_conversions.pxd +229 -0
  17. multipers/filtration_conversions.pxd.tp +84 -0
  18. multipers/filtrations/__init__.py +18 -0
  19. multipers/filtrations/density.py +563 -0
  20. multipers/filtrations/filtrations.py +289 -0
  21. multipers/filtrations.pxd +224 -0
  22. multipers/function_rips.cpython-313-darwin.so +0 -0
  23. multipers/function_rips.pyx +105 -0
  24. multipers/grids.cpython-313-darwin.so +0 -0
  25. multipers/grids.pyx +350 -0
  26. multipers/gudhi/Persistence_slices_interface.h +132 -0
  27. multipers/gudhi/Simplex_tree_interface.h +239 -0
  28. multipers/gudhi/Simplex_tree_multi_interface.h +516 -0
  29. multipers/gudhi/cubical_to_boundary.h +59 -0
  30. multipers/gudhi/gudhi/Bitmap_cubical_complex.h +450 -0
  31. multipers/gudhi/gudhi/Bitmap_cubical_complex_base.h +1070 -0
  32. multipers/gudhi/gudhi/Bitmap_cubical_complex_periodic_boundary_conditions_base.h +579 -0
  33. multipers/gudhi/gudhi/Debug_utils.h +45 -0
  34. multipers/gudhi/gudhi/Fields/Multi_field.h +484 -0
  35. multipers/gudhi/gudhi/Fields/Multi_field_operators.h +455 -0
  36. multipers/gudhi/gudhi/Fields/Multi_field_shared.h +450 -0
  37. multipers/gudhi/gudhi/Fields/Multi_field_small.h +531 -0
  38. multipers/gudhi/gudhi/Fields/Multi_field_small_operators.h +507 -0
  39. multipers/gudhi/gudhi/Fields/Multi_field_small_shared.h +531 -0
  40. multipers/gudhi/gudhi/Fields/Z2_field.h +355 -0
  41. multipers/gudhi/gudhi/Fields/Z2_field_operators.h +376 -0
  42. multipers/gudhi/gudhi/Fields/Zp_field.h +420 -0
  43. multipers/gudhi/gudhi/Fields/Zp_field_operators.h +400 -0
  44. multipers/gudhi/gudhi/Fields/Zp_field_shared.h +418 -0
  45. multipers/gudhi/gudhi/Flag_complex_edge_collapser.h +337 -0
  46. multipers/gudhi/gudhi/Matrix.h +2107 -0
  47. multipers/gudhi/gudhi/Multi_critical_filtration.h +1038 -0
  48. multipers/gudhi/gudhi/Multi_persistence/Box.h +171 -0
  49. multipers/gudhi/gudhi/Multi_persistence/Line.h +282 -0
  50. multipers/gudhi/gudhi/Off_reader.h +173 -0
  51. multipers/gudhi/gudhi/One_critical_filtration.h +1433 -0
  52. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix.h +769 -0
  53. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix_with_column_compression.h +686 -0
  54. multipers/gudhi/gudhi/Persistence_matrix/Boundary_matrix.h +842 -0
  55. multipers/gudhi/gudhi/Persistence_matrix/Chain_matrix.h +1350 -0
  56. multipers/gudhi/gudhi/Persistence_matrix/Id_to_index_overlay.h +1105 -0
  57. multipers/gudhi/gudhi/Persistence_matrix/Position_to_index_overlay.h +859 -0
  58. multipers/gudhi/gudhi/Persistence_matrix/RU_matrix.h +910 -0
  59. multipers/gudhi/gudhi/Persistence_matrix/allocators/entry_constructors.h +139 -0
  60. multipers/gudhi/gudhi/Persistence_matrix/base_pairing.h +230 -0
  61. multipers/gudhi/gudhi/Persistence_matrix/base_swap.h +211 -0
  62. multipers/gudhi/gudhi/Persistence_matrix/boundary_cell_position_to_id_mapper.h +60 -0
  63. multipers/gudhi/gudhi/Persistence_matrix/boundary_face_position_to_id_mapper.h +60 -0
  64. multipers/gudhi/gudhi/Persistence_matrix/chain_pairing.h +136 -0
  65. multipers/gudhi/gudhi/Persistence_matrix/chain_rep_cycles.h +190 -0
  66. multipers/gudhi/gudhi/Persistence_matrix/chain_vine_swap.h +616 -0
  67. multipers/gudhi/gudhi/Persistence_matrix/columns/chain_column_extra_properties.h +150 -0
  68. multipers/gudhi/gudhi/Persistence_matrix/columns/column_dimension_holder.h +106 -0
  69. multipers/gudhi/gudhi/Persistence_matrix/columns/column_utilities.h +219 -0
  70. multipers/gudhi/gudhi/Persistence_matrix/columns/entry_types.h +327 -0
  71. multipers/gudhi/gudhi/Persistence_matrix/columns/heap_column.h +1140 -0
  72. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_list_column.h +934 -0
  73. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_set_column.h +934 -0
  74. multipers/gudhi/gudhi/Persistence_matrix/columns/list_column.h +980 -0
  75. multipers/gudhi/gudhi/Persistence_matrix/columns/naive_vector_column.h +1092 -0
  76. multipers/gudhi/gudhi/Persistence_matrix/columns/row_access.h +192 -0
  77. multipers/gudhi/gudhi/Persistence_matrix/columns/set_column.h +921 -0
  78. multipers/gudhi/gudhi/Persistence_matrix/columns/small_vector_column.h +1093 -0
  79. multipers/gudhi/gudhi/Persistence_matrix/columns/unordered_set_column.h +1012 -0
  80. multipers/gudhi/gudhi/Persistence_matrix/columns/vector_column.h +1244 -0
  81. multipers/gudhi/gudhi/Persistence_matrix/matrix_dimension_holders.h +186 -0
  82. multipers/gudhi/gudhi/Persistence_matrix/matrix_row_access.h +164 -0
  83. multipers/gudhi/gudhi/Persistence_matrix/ru_pairing.h +156 -0
  84. multipers/gudhi/gudhi/Persistence_matrix/ru_rep_cycles.h +376 -0
  85. multipers/gudhi/gudhi/Persistence_matrix/ru_vine_swap.h +540 -0
  86. multipers/gudhi/gudhi/Persistent_cohomology/Field_Zp.h +118 -0
  87. multipers/gudhi/gudhi/Persistent_cohomology/Multi_field.h +173 -0
  88. multipers/gudhi/gudhi/Persistent_cohomology/Persistent_cohomology_column.h +128 -0
  89. multipers/gudhi/gudhi/Persistent_cohomology.h +745 -0
  90. multipers/gudhi/gudhi/Points_off_io.h +171 -0
  91. multipers/gudhi/gudhi/Simple_object_pool.h +69 -0
  92. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_iterators.h +463 -0
  93. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_node_explicit_storage.h +83 -0
  94. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_siblings.h +106 -0
  95. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_star_simplex_iterators.h +277 -0
  96. multipers/gudhi/gudhi/Simplex_tree/hooks_simplex_base.h +62 -0
  97. multipers/gudhi/gudhi/Simplex_tree/indexing_tag.h +27 -0
  98. multipers/gudhi/gudhi/Simplex_tree/serialization_utils.h +62 -0
  99. multipers/gudhi/gudhi/Simplex_tree/simplex_tree_options.h +157 -0
  100. multipers/gudhi/gudhi/Simplex_tree.h +2794 -0
  101. multipers/gudhi/gudhi/Simplex_tree_multi.h +152 -0
  102. multipers/gudhi/gudhi/distance_functions.h +62 -0
  103. multipers/gudhi/gudhi/graph_simplicial_complex.h +104 -0
  104. multipers/gudhi/gudhi/persistence_interval.h +253 -0
  105. multipers/gudhi/gudhi/persistence_matrix_options.h +170 -0
  106. multipers/gudhi/gudhi/reader_utils.h +367 -0
  107. multipers/gudhi/mma_interface_coh.h +256 -0
  108. multipers/gudhi/mma_interface_h0.h +223 -0
  109. multipers/gudhi/mma_interface_matrix.h +291 -0
  110. multipers/gudhi/naive_merge_tree.h +536 -0
  111. multipers/gudhi/scc_io.h +310 -0
  112. multipers/gudhi/truc.h +957 -0
  113. multipers/io.cpython-313-darwin.so +0 -0
  114. multipers/io.pyx +714 -0
  115. multipers/ml/__init__.py +0 -0
  116. multipers/ml/accuracies.py +90 -0
  117. multipers/ml/invariants_with_persistable.py +79 -0
  118. multipers/ml/kernels.py +176 -0
  119. multipers/ml/mma.py +713 -0
  120. multipers/ml/one.py +472 -0
  121. multipers/ml/point_clouds.py +352 -0
  122. multipers/ml/signed_measures.py +1589 -0
  123. multipers/ml/sliced_wasserstein.py +461 -0
  124. multipers/ml/tools.py +113 -0
  125. multipers/mma_structures.cpython-313-darwin.so +0 -0
  126. multipers/mma_structures.pxd +127 -0
  127. multipers/mma_structures.pyx +2742 -0
  128. multipers/mma_structures.pyx.tp +1083 -0
  129. multipers/multi_parameter_rank_invariant/diff_helpers.h +84 -0
  130. multipers/multi_parameter_rank_invariant/euler_characteristic.h +97 -0
  131. multipers/multi_parameter_rank_invariant/function_rips.h +322 -0
  132. multipers/multi_parameter_rank_invariant/hilbert_function.h +769 -0
  133. multipers/multi_parameter_rank_invariant/persistence_slices.h +148 -0
  134. multipers/multi_parameter_rank_invariant/rank_invariant.h +369 -0
  135. multipers/multiparameter_edge_collapse.py +41 -0
  136. multipers/multiparameter_module_approximation/approximation.h +2298 -0
  137. multipers/multiparameter_module_approximation/combinatory.h +129 -0
  138. multipers/multiparameter_module_approximation/debug.h +107 -0
  139. multipers/multiparameter_module_approximation/euler_curves.h +0 -0
  140. multipers/multiparameter_module_approximation/format_python-cpp.h +286 -0
  141. multipers/multiparameter_module_approximation/heap_column.h +238 -0
  142. multipers/multiparameter_module_approximation/images.h +79 -0
  143. multipers/multiparameter_module_approximation/list_column.h +174 -0
  144. multipers/multiparameter_module_approximation/list_column_2.h +232 -0
  145. multipers/multiparameter_module_approximation/ru_matrix.h +347 -0
  146. multipers/multiparameter_module_approximation/set_column.h +135 -0
  147. multipers/multiparameter_module_approximation/structure_higher_dim_barcode.h +36 -0
  148. multipers/multiparameter_module_approximation/unordered_set_column.h +166 -0
  149. multipers/multiparameter_module_approximation/utilities.h +403 -0
  150. multipers/multiparameter_module_approximation/vector_column.h +223 -0
  151. multipers/multiparameter_module_approximation/vector_matrix.h +331 -0
  152. multipers/multiparameter_module_approximation/vineyards.h +464 -0
  153. multipers/multiparameter_module_approximation/vineyards_trajectories.h +649 -0
  154. multipers/multiparameter_module_approximation.cpython-313-darwin.so +0 -0
  155. multipers/multiparameter_module_approximation.pyx +218 -0
  156. multipers/pickle.py +90 -0
  157. multipers/plots.py +342 -0
  158. multipers/point_measure.cpython-313-darwin.so +0 -0
  159. multipers/point_measure.pyx +322 -0
  160. multipers/simplex_tree_multi.cpython-313-darwin.so +0 -0
  161. multipers/simplex_tree_multi.pxd +133 -0
  162. multipers/simplex_tree_multi.pyx +10402 -0
  163. multipers/simplex_tree_multi.pyx.tp +1947 -0
  164. multipers/slicer.cpython-313-darwin.so +0 -0
  165. multipers/slicer.pxd +2552 -0
  166. multipers/slicer.pxd.tp +218 -0
  167. multipers/slicer.pyx +16530 -0
  168. multipers/slicer.pyx.tp +931 -0
  169. multipers/tensor/tensor.h +672 -0
  170. multipers/tensor.pxd +13 -0
  171. multipers/test.pyx +44 -0
  172. multipers/tests/__init__.py +57 -0
  173. multipers/torch/__init__.py +1 -0
  174. multipers/torch/diff_grids.py +217 -0
  175. multipers/torch/rips_density.py +310 -0
  176. multipers-2.3.1.dist-info/LICENSE +21 -0
  177. multipers-2.3.1.dist-info/METADATA +144 -0
  178. multipers-2.3.1.dist-info/RECORD +180 -0
  179. multipers-2.3.1.dist-info/WHEEL +6 -0
  180. multipers-2.3.1.dist-info/top_level.txt +1 -0
multipers/grids.pyx ADDED
@@ -0,0 +1,350 @@
1
+
2
+ from libc.stdint cimport intptr_t, int32_t, int64_t
3
+ from libcpp cimport bool,int,long, float
4
+
5
+ cimport numpy as cnp
6
+ import numpy as np
7
+ cnp.import_array()
8
+
9
+
10
+ from typing import Iterable,Literal,Optional
11
+ from itertools import product
12
+
13
+
14
+ available_strategies = ["regular","regular_closest", "regular_left", "partition", "quantile", "precomputed"]
15
+ Lstrategies = Literal["regular","regular_closest", "regular_left", "partition", "quantile", "precomputed"]
16
+
17
+ ctypedef fused some_int:
18
+ int32_t
19
+ int64_t
20
+ int
21
+ long
22
+
23
+ ctypedef fused some_float:
24
+ float
25
+ double
26
+
27
+
28
+ def compute_grid(
29
+ x,
30
+ resolution:Optional[int|Iterable[int]]=None,
31
+ strategy:Lstrategies="exact",
32
+ bool unique=True,
33
+ some_float _q_factor=1.,
34
+ drop_quantiles=[0,0],
35
+ bool dense = False,
36
+ ):
37
+ """
38
+ Computes a grid from filtration values, using some strategy.
39
+
40
+ Input
41
+ -----
42
+
43
+ - `filtrations_values`: `Iterable[filtration of parameter for parameter]`
44
+ where `filtration_of_parameter` is a array[float, ndim=1]
45
+ - `resolution`:Optional[int|tuple[int]]
46
+ - `strategy`: either exact, regular, regular_closest, regular_left, partition, quantile, or precomputed.
47
+ - `unique`: if true, doesn't repeat values in the output grid.
48
+ - `drop_quantiles` : drop some filtration values according to these quantiles
49
+ Output
50
+ ------
51
+
52
+ Iterable[array[float, ndim=1]] : the 1d-grid for each parameter.
53
+ """
54
+
55
+ from multipers.slicer import is_slicer
56
+ from multipers.simplex_tree_multi import is_simplextree_multi
57
+ from multipers.mma_structures import is_mma
58
+
59
+ if resolution is not None and strategy == "exact":
60
+ raise ValueError("The 'exact' strategy does not support resolution.")
61
+ if strategy != "exact":
62
+ assert resolution is not None, "A resolution is required for non-exact strategies"
63
+
64
+
65
+ cdef bool is_numpy_compatible = True
66
+ if is_slicer(x):
67
+ initial_grid = x.get_filtrations_values().T
68
+ elif is_simplextree_multi(x):
69
+ initial_grid = x.get_filtration_grid()
70
+ elif is_mma(x):
71
+ initial_grid = x.get_filtration_values()
72
+ elif isinstance(x, np.ndarray):
73
+ initial_grid = x
74
+ else:
75
+ x = tuple(x)
76
+ if len(x) == 0: return []
77
+ first = x[0]
78
+ ## is_sm, i.e., iterable tuple(pts,weights)
79
+ if isinstance(x[0], tuple) and getattr(x[0][0], "shape", None) is not None:
80
+ initial_grid = tuple(f[0].T for f in x)
81
+ if isinstance(initial_grid[0], np.ndarray):
82
+ initial_grid = np.concatenate(initial_grid, axis=1)
83
+ else:
84
+ is_numpy_compatbile = False
85
+ import torch
86
+ assert isinstance(first[0], torch.Tensor), "Only numpy and torch are supported ftm."
87
+ initial_grid = torch.cat(initial_grid, axis=1)
88
+ ## is grid-like (num_params, num_pts)
89
+ elif isinstance(first,list) or isinstance(first, tuple) or isinstance(first, np.ndarray):
90
+ initial_grid = tuple(f for f in x)
91
+ else:
92
+ is_numpy_compatible = False
93
+ import torch
94
+ assert isinstance(first, torch.Tensor), "Only numpy and torch are supported ftm."
95
+ initial_grid = x
96
+ if is_numpy_compatible:
97
+ return _compute_grid_numpy(
98
+ initial_grid,
99
+ resolution=resolution,
100
+ strategy = strategy,
101
+ unique = unique,
102
+ _q_factor=_q_factor,
103
+ drop_quantiles=drop_quantiles,
104
+ dense = dense,
105
+ )
106
+ from multipers.torch.diff_grids import get_grid
107
+ return get_grid(strategy)(initial_grid,resolution)
108
+
109
+
110
+
111
+
112
+
113
+
114
+ def _compute_grid_numpy(
115
+ filtrations_values,
116
+ resolution=None,
117
+ strategy:Lstrategies="exact",
118
+ bool unique=True,
119
+ some_float _q_factor=1.,
120
+ drop_quantiles=[0,0],
121
+ bool dense = False,
122
+ ):
123
+ """
124
+ Computes a grid from filtration values, using some strategy.
125
+
126
+ Input
127
+ -----
128
+ - `filtrations_values`: `Iterable[filtration of parameter for parameter]`
129
+ where `filtration_of_parameter` is a array[float, ndim=1]
130
+ - `resolution`:Optional[int|tuple[int]]
131
+ - `strategy`: either exact, regular, regular_closest, regular_left, partition, quantile, or precomputed.
132
+ - `unique`: if true, doesn't repeat values in the output grid.
133
+ - `drop_quantiles` : drop some filtration values according to these quantiles
134
+ Output
135
+ ------
136
+ Iterable[array[float, ndim=1]] : the 1d-grid for each parameter.
137
+ """
138
+ num_parameters = len(filtrations_values)
139
+ if resolution is None and strategy not in ["exact", "precomputed"]:
140
+ raise ValueError("Resolution must be provided for this strategy.")
141
+ elif resolution is not None:
142
+ try:
143
+ int(resolution)
144
+ resolution = [resolution]*num_parameters
145
+ except:
146
+ pass
147
+ try:
148
+ a,b=drop_quantiles
149
+ except:
150
+ a,b=drop_quantiles,drop_quantiles
151
+
152
+ if a != 0 or b != 0:
153
+ boxes = np.asarray([np.quantile(filtration, [a, b], axis=1, method='closest_observation') for filtration in filtrations_values])
154
+ min_filtration, max_filtration = np.min(boxes, axis=(0,1)), np.max(boxes, axis=(0,1)) # box, birth/death, filtration
155
+ filtrations_values = [
156
+ filtration[(m<filtration) * (filtration <M)]
157
+ for filtration, m,M in zip(filtrations_values, min_filtration, max_filtration)
158
+ ]
159
+
160
+ to_unique = lambda f : np.unique(f) if isinstance(f,np.ndarray) else f.unique()
161
+ ## match doesn't work with cython BUG
162
+ if strategy == "exact":
163
+ F=tuple(to_unique(f) for f in filtrations_values)
164
+ elif strategy == "quantile":
165
+ F = tuple(to_unique(f) for f in filtrations_values)
166
+ max_resolution = [min(len(f),r) for f,r in zip(F,resolution)]
167
+ F = tuple( np.quantile(f, q=np.linspace(0,1,num=int(r*_q_factor)), axis=0, method='closest_observation') for f,r in zip(F, resolution) )
168
+ if unique:
169
+ F = tuple(to_unique(f) for f in F)
170
+ if np.all(np.asarray(max_resolution) > np.asarray([len(f) for f in F])):
171
+ return _compute_grid_numpy(filtrations_values=filtrations_values, resolution=resolution, strategy="quantile",_q_factor=1.5*_q_factor)
172
+ elif strategy == "regular":
173
+ F = tuple(np.linspace(np.min(f),np.max(f),num=r, dtype=np.asarray(f).dtype) for f,r in zip(filtrations_values, resolution))
174
+ elif strategy == "regular_closest":
175
+ F = tuple(_todo_regular_closest(f,r, unique) for f,r in zip(filtrations_values, resolution))
176
+ elif strategy == "regular_left":
177
+ F = tuple(_todo_regular_left(f,r, unique) for f,r in zip(filtrations_values, resolution))
178
+ elif strategy == "torch_regular_closest":
179
+ F = tuple(_torch_regular_closest(f,r, unique) for f,r in zip(filtrations_values, resolution))
180
+ elif strategy == "partition":
181
+ F = tuple(_todo_partition(f,r, unique) for f,r in zip(filtrations_values, resolution))
182
+ elif strategy == "precomputed":
183
+ F=filtrations_values
184
+ else:
185
+ raise ValueError(f"Invalid strategy {strategy}. Pick something in {available_strategies}.")
186
+ if dense:
187
+ return todense(F)
188
+ return F
189
+
190
+ def todense(grid, bool product_order=False):
191
+ if len(grid) == 0:
192
+ return np.empty(0)
193
+ if not isinstance(grid[0], np.ndarray):
194
+ import torch
195
+ assert isinstance(grid[0], torch.Tensor)
196
+ from multipers.torch.diff_grids import todense
197
+ return todense(grid)
198
+ dtype = grid[0].dtype
199
+ if product_order:
200
+ return np.fromiter(product(*grid), dtype=np.dtype((dtype, len(grid))), count=np.prod([len(f) for f in grid]))
201
+ mesh = np.meshgrid(*grid)
202
+ coordinates = np.concatenate(tuple(stuff.ravel()[:,None] for stuff in mesh), axis=1, dtype=dtype)
203
+ return coordinates
204
+
205
+
206
+
207
+ ## TODO : optimize. Pykeops ?
208
+ def _todo_regular_closest(some_float[:] f, int r, bool unique):
209
+ f_array = np.asarray(f)
210
+ f_regular = np.linspace(np.min(f), np.max(f),num=r, dtype=f_array.dtype)
211
+ f_regular_closest = np.asarray([f[<long>np.argmin(np.abs(f_array-f_regular[i]))] for i in range(r)])
212
+ if unique: f_regular_closest = np.unique(f_regular_closest)
213
+ return f_regular_closest
214
+
215
+ def _todo_regular_left(some_float[:] f, int r, bool unique):
216
+ sorted_f = np.sort(f)
217
+ f_regular = np.linspace(sorted_f[0],sorted_f[-1],num=r, dtype=sorted_f.dtype)
218
+ f_regular_closest = sorted_f[np.searchsorted(sorted_f,f_regular)]
219
+ if unique: f_regular_closest = np.unique(f_regular_closest)
220
+ return f_regular_closest
221
+
222
+ def _torch_regular_closest(f, int r, bool unique=True):
223
+ import torch
224
+ f_regular = torch.linspace(f.min(),f.max(), r, dtype=f.dtype)
225
+ f_regular_closest =torch.tensor([f[(f-x).abs().argmin()] for x in f_regular])
226
+ if unique: f_regular_closest = f_regular_closest.unique()
227
+ return f_regular_closest
228
+
229
+ def _todo_partition(some_float[:] data,int resolution, bool unique):
230
+ if data.shape[0] < resolution: resolution=data.shape[0]
231
+ k = data.shape[0] // resolution
232
+ partitions = np.partition(data, k)
233
+ f = partitions[[i*k for i in range(resolution)]]
234
+ if unique: f= np.unique(f)
235
+ return f
236
+
237
+
238
+ def compute_bounding_box(stuff, inflate = 0.):
239
+ r"""
240
+ Returns a array of shape (2, num_parameters)
241
+ such that for any filtration value $y$ of something in stuff,
242
+ then if (x,z) is the output of this function, we have
243
+ $x\le y \le z$.
244
+ """
245
+ box = np.array(compute_grid(stuff,strategy="regular",resolution=2)).T
246
+ if inflate:
247
+ box[0] -= inflate
248
+ box[1] += inflate
249
+ return box
250
+
251
+ def push_to_grid(some_float[:,:] points, grid, bool return_coordinate=False):
252
+ """
253
+ Given points and a grid (list of one parameter grids),
254
+ pushes the points onto the grid.
255
+ """
256
+ num_points, num_parameters = points.shape[0], points.shape[1]
257
+ cdef cnp.ndarray[long,ndim=2] coordinates = np.empty((num_points, num_parameters),dtype=np.int64)
258
+ for parameter in range(num_parameters):
259
+ coordinates[:,parameter] = np.searchsorted(grid[parameter],points[:,parameter])
260
+ if return_coordinate:
261
+ return coordinates
262
+ out = np.empty((num_points,num_parameters), grid[0].dtype)
263
+ for parameter in range(num_parameters):
264
+ out[:,parameter] = grid[parameter][coordinates[:,parameter]]
265
+ return out
266
+
267
+
268
+ def coarsen_points(some_float[:,:] points, strategy="exact", int resolution=-1, bool coordinate=False):
269
+ grid = _compute_grid_numpy(points.T, strategy=strategy, resolution=resolution)
270
+ if coordinate:
271
+ return push_to_grid(points, grid, coordinate), grid
272
+ return push_to_grid(points, grid, coordinate)
273
+
274
+
275
+
276
+ def evaluate_in_grid(pts, grid, mass_default=None):
277
+ """
278
+ Input
279
+ -----
280
+ - pts: of the form array[int, ndim=2]
281
+ - grid of the form Iterable[array[float, ndim=1]]
282
+ """
283
+ first_filtration = grid[0]
284
+ dtype = first_filtration.dtype
285
+ if isinstance(first_filtration, np.ndarray):
286
+ if mass_default is not None:
287
+ grid = tuple(np.concatenate([g, [m]]) for g,m in zip(grid, mass_default))
288
+ def empty_like(x):
289
+ return np.empty_like(x, dtype=dtype)
290
+ else:
291
+ import torch
292
+ # assert isinstance(first_filtration, torch.Tensor), f"Invalid grid type. Got {type(grid[0])}, expected numpy or torch array."
293
+ if mass_default is not None:
294
+ grid = tuple(torch.cat([g, torch.tensor(m)[None]]) for g,m in zip(grid, mass_default))
295
+ def empty_like(x):
296
+ return torch.empty(x.shape,dtype=dtype)
297
+
298
+ coords= empty_like(pts)
299
+ for i in range(coords.shape[1]):
300
+ coords[:,i] = grid[i][pts[:,i]]
301
+ return coords
302
+
303
+ def sm_in_grid(pts, weights, grid, int num_parameters=-1, mass_default=None):
304
+ """Given a measure whose points are coordinates,
305
+ pushes this measure in this grid.
306
+ Input
307
+ -----
308
+ - pts: of the form array[int, ndim=2]
309
+ - weights: array[int, ndim=1]
310
+ - grid of the form Iterable[array[float, ndim=1]]
311
+ - num_parameters: number of parameters
312
+ """
313
+ first_filtration = grid[0]
314
+ dtype = first_filtration.dtype
315
+ def to_int(x):
316
+ return np.asarray(x,dtype=np.int64)
317
+ if isinstance(first_filtration, np.ndarray):
318
+ if mass_default is not None:
319
+ grid = tuple(np.concatenate([g, [m]]) for g,m in zip(grid, mass_default))
320
+ def empty_like(x, weights):
321
+ return np.empty_like(x, dtype=dtype), np.asarray(weights)
322
+ else:
323
+ import torch
324
+ # assert isinstance(first_filtration, torch.Tensor), f"Invalid grid type. Got {type(grid[0])}, expected numpy or torch array."
325
+ if mass_default is not None:
326
+ grid = tuple(torch.cat([g, torch.tensor(m)[None]]) for g,m in zip(grid, mass_default))
327
+ def empty_like(x, weights):
328
+ return torch.empty(x.shape,dtype=dtype), torch.from_numpy(weights)
329
+
330
+ pts = to_int(pts)
331
+ coords,weights = empty_like(pts,weights)
332
+ for i in range(coords.shape[1]):
333
+ if num_parameters > 0:
334
+ coords[:,i] = grid[i%num_parameters][pts[:,i]]
335
+ else:
336
+ coords[:,i] = grid[i][pts[:,i]]
337
+ return (coords, weights)
338
+
339
+ # TODO : optimize with memoryviews / typing
340
+ def sms_in_grid(sms, grid, int num_parameters=-1, mass_default=None):
341
+ """Given a measure whose points are coordinates,
342
+ pushes this measure in this grid.
343
+ Input
344
+ -----
345
+ - sms: of the form (signed_measure_like for num_measures)
346
+ where signed_measure_like = tuple(array[int, ndim=2], array[int])
347
+ - grid of the form Iterable[array[float, ndim=1]]
348
+ """
349
+ sms = tuple(sm_in_grid(pts,weights,grid=grid,num_parameters=num_parameters, mass_default=mass_default) for pts,weights in sms)
350
+ return sms
@@ -0,0 +1,132 @@
1
+ #pragma once
2
+
3
+ #include "mma_interface_h0.h"
4
+ #include "mma_interface_matrix.h"
5
+ #include "mma_interface_coh.h"
6
+ #include <type_traits> // For static_assert
7
+ #include "truc.h"
8
+ #include <gudhi/Simplex_tree_multi.h>
9
+ #include <gudhi/One_critical_filtration.h>
10
+ #include <gudhi/Multi_critical_filtration.h>
11
+
12
+ template <typename Filtration>
13
+ using SimplexTreeMultiOptions = Gudhi::multi_persistence::Simplex_tree_options_multidimensional_filtration<Filtration>;
14
+
15
+ enum Column_types_strs { LIST, SET, HEAP, VECTOR, NAIVE_VECTOR, UNORDERED_SET, INTRUSIVE_LIST, INTRUSIVE_SET };
16
+
17
+ using Available_columns = Gudhi::persistence_matrix::Column_types;
18
+
19
+ template <Available_columns col>
20
+ using BackendOptionsWithVine = Gudhi::multiparameter::truc_interface::Multi_persistence_options<col>;
21
+ template <Available_columns col>
22
+ using BackendOptionsWithoutVine = Gudhi::multiparameter::truc_interface::No_vine_multi_persistence_options<col>;
23
+
24
+ template <Available_columns col>
25
+ using ClementBackendOptionsWithVine = Gudhi::multiparameter::truc_interface::Multi_persistence_Clement_options<col>;
26
+
27
+ using SimplicialStructure = Gudhi::multiparameter::truc_interface::SimplicialStructure;
28
+ using PresentationStructure = Gudhi::multiparameter::truc_interface::PresentationStructure;
29
+
30
+ template <Available_columns col, class Structure = SimplicialStructure>
31
+ using MatrixBackendNoVine =
32
+ Gudhi::multiparameter::truc_interface::Persistence_backend_matrix<BackendOptionsWithoutVine<col>, Structure>;
33
+
34
+ template <Available_columns col, class Structure = SimplicialStructure>
35
+ using MatrixBackendVine =
36
+ Gudhi::multiparameter::truc_interface::Persistence_backend_matrix<BackendOptionsWithVine<col>, Structure>;
37
+
38
+ template <Available_columns col, class Structure = SimplicialStructure>
39
+ using ClementMatrixBackendVine =
40
+ Gudhi::multiparameter::truc_interface::Persistence_backend_matrix<ClementBackendOptionsWithVine<col>, Structure>;
41
+ using GraphBackendVine = Gudhi::multiparameter::truc_interface::Persistence_backend_h0<SimplicialStructure>;
42
+
43
+ using Filtration_value = Gudhi::multi_filtration::One_critical_filtration<float>;
44
+
45
+ template <Available_columns col = Available_columns::INTRUSIVE_SET>
46
+ using SimplicialNoVineMatrixTruc =
47
+ Gudhi::multiparameter::truc_interface::Truc<MatrixBackendNoVine<col>, SimplicialStructure, Filtration_value>;
48
+
49
+ template <Available_columns col = Available_columns::INTRUSIVE_SET>
50
+ using GeneralVineTruc = Gudhi::multiparameter::truc_interface::
51
+ Truc<MatrixBackendVine<col, PresentationStructure>, PresentationStructure, Filtration_value>;
52
+
53
+ template <Available_columns col = Available_columns::INTRUSIVE_SET>
54
+ using GeneralNoVineTruc = Gudhi::multiparameter::truc_interface::
55
+ Truc<MatrixBackendNoVine<col, PresentationStructure>, PresentationStructure, Filtration_value>;
56
+
57
+ template <Available_columns col = Available_columns::INTRUSIVE_SET>
58
+ using GeneralVineClementTruc = Gudhi::multiparameter::truc_interface::
59
+ Truc<ClementMatrixBackendVine<col, PresentationStructure>, PresentationStructure, Filtration_value>;
60
+
61
+ template <Available_columns col = Available_columns::INTRUSIVE_SET>
62
+ using SimplicialVineMatrixTruc =
63
+ Gudhi::multiparameter::truc_interface::Truc<MatrixBackendVine<col>, SimplicialStructure, Filtration_value>;
64
+ using SimplicialVineGraphTruc =
65
+ Gudhi::multiparameter::truc_interface::Truc<GraphBackendVine, SimplicialStructure, Filtration_value>;
66
+
67
+ // multicrititcal
68
+ using Multi_critical_filtrationValue = Gudhi::multi_filtration::Multi_critical_filtration<float>;
69
+ template <Available_columns col = Available_columns::INTRUSIVE_SET>
70
+ using KCriticalVineTruc = Gudhi::multiparameter::truc_interface::
71
+ Truc<MatrixBackendVine<col, PresentationStructure>, PresentationStructure, Multi_critical_filtrationValue>;
72
+
73
+ template <bool is_vine, Available_columns col = Available_columns::INTRUSIVE_SET>
74
+ using Matrix_interface = std::conditional_t<is_vine,
75
+ MatrixBackendVine<col, PresentationStructure>,
76
+ MatrixBackendNoVine<col, PresentationStructure>>;
77
+
78
+ template <bool is_kcritical, typename value_type>
79
+ using filtration_options = std::conditional_t<is_kcritical,
80
+ Gudhi::multi_filtration::Multi_critical_filtration<value_type>,
81
+ Gudhi::multi_filtration::One_critical_filtration<value_type>>;
82
+
83
+ template <bool is_vine,
84
+ bool is_kcritical,
85
+ typename value_type,
86
+ Available_columns col = Available_columns::INTRUSIVE_SET>
87
+ using MatrixTrucPythonInterface = Gudhi::multiparameter::truc_interface::
88
+ Truc<Matrix_interface<is_vine, col>, PresentationStructure, filtration_options<is_kcritical, value_type>>;
89
+
90
+ enum class BackendsEnum { Matrix, Graph, Clement, GudhiCohomology };
91
+
92
+ // Create a template metafunction to simplify the type selection
93
+ template <BackendsEnum backend, bool is_vine, Available_columns col>
94
+ struct PersBackendOptsImpl;
95
+
96
+ template <bool is_vine, Available_columns col>
97
+ struct PersBackendOptsImpl<BackendsEnum::Matrix, is_vine, col> {
98
+ using type = Matrix_interface<is_vine, col>;
99
+ };
100
+
101
+ template <bool is_vine, Available_columns col>
102
+ struct PersBackendOptsImpl<BackendsEnum::Clement, is_vine, col> {
103
+ static_assert(is_vine, "Clement is vine");
104
+ using type = ClementMatrixBackendVine<col, PresentationStructure>;
105
+ };
106
+
107
+ template <bool is_vine, Available_columns col>
108
+ struct PersBackendOptsImpl<BackendsEnum::GudhiCohomology, is_vine, col> {
109
+ static_assert(!is_vine, "Gudhi is not vine");
110
+ using type = Gudhi::multiparameter::truc_interface::Persistence_backend_cohomology<PresentationStructure>;
111
+ };
112
+
113
+ template <bool is_vine, Available_columns col>
114
+ struct PersBackendOptsImpl<BackendsEnum::Graph, is_vine, col> {
115
+ static_assert(is_vine, "Graph backend requires is_vine to be true");
116
+ using type = GraphBackendVine;
117
+ };
118
+
119
+ // Helper alias to extract the type
120
+ template <BackendsEnum backend, bool is_vine, Available_columns col>
121
+ using PersBackendOpts = typename PersBackendOptsImpl<backend, is_vine, col>::type;
122
+
123
+ template <BackendsEnum backend>
124
+ using StructureStuff = std::conditional_t<backend == BackendsEnum::Graph, SimplicialStructure, PresentationStructure>;
125
+
126
+ template <BackendsEnum backend,
127
+ bool is_vine,
128
+ bool is_kcritical,
129
+ typename value_type,
130
+ Available_columns col = Available_columns::INTRUSIVE_SET>
131
+ using TrucPythonInterface = Gudhi::multiparameter::truc_interface::
132
+ Truc<PersBackendOpts<backend, is_vine, col>, StructureStuff<backend>, filtration_options<is_kcritical, value_type>>;