multipers 2.2.3__cp312-cp312-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of multipers might be problematic. Click here for more details.

Files changed (189) hide show
  1. multipers/__init__.py +31 -0
  2. multipers/_signed_measure_meta.py +430 -0
  3. multipers/_slicer_meta.py +212 -0
  4. multipers/data/MOL2.py +458 -0
  5. multipers/data/UCR.py +18 -0
  6. multipers/data/__init__.py +1 -0
  7. multipers/data/graphs.py +466 -0
  8. multipers/data/immuno_regions.py +27 -0
  9. multipers/data/minimal_presentation_to_st_bf.py +0 -0
  10. multipers/data/pytorch2simplextree.py +91 -0
  11. multipers/data/shape3d.py +101 -0
  12. multipers/data/synthetic.py +111 -0
  13. multipers/distances.py +198 -0
  14. multipers/filtration_conversions.pxd +229 -0
  15. multipers/filtration_conversions.pxd.tp +84 -0
  16. multipers/filtrations.pxd +224 -0
  17. multipers/function_rips.cp312-win_amd64.pyd +0 -0
  18. multipers/function_rips.pyx +105 -0
  19. multipers/grids.cp312-win_amd64.pyd +0 -0
  20. multipers/grids.pyx +350 -0
  21. multipers/gudhi/Persistence_slices_interface.h +132 -0
  22. multipers/gudhi/Simplex_tree_interface.h +245 -0
  23. multipers/gudhi/Simplex_tree_multi_interface.h +561 -0
  24. multipers/gudhi/cubical_to_boundary.h +59 -0
  25. multipers/gudhi/gudhi/Bitmap_cubical_complex.h +450 -0
  26. multipers/gudhi/gudhi/Bitmap_cubical_complex_base.h +1070 -0
  27. multipers/gudhi/gudhi/Bitmap_cubical_complex_periodic_boundary_conditions_base.h +579 -0
  28. multipers/gudhi/gudhi/Debug_utils.h +45 -0
  29. multipers/gudhi/gudhi/Fields/Multi_field.h +484 -0
  30. multipers/gudhi/gudhi/Fields/Multi_field_operators.h +455 -0
  31. multipers/gudhi/gudhi/Fields/Multi_field_shared.h +450 -0
  32. multipers/gudhi/gudhi/Fields/Multi_field_small.h +531 -0
  33. multipers/gudhi/gudhi/Fields/Multi_field_small_operators.h +507 -0
  34. multipers/gudhi/gudhi/Fields/Multi_field_small_shared.h +531 -0
  35. multipers/gudhi/gudhi/Fields/Z2_field.h +355 -0
  36. multipers/gudhi/gudhi/Fields/Z2_field_operators.h +376 -0
  37. multipers/gudhi/gudhi/Fields/Zp_field.h +420 -0
  38. multipers/gudhi/gudhi/Fields/Zp_field_operators.h +400 -0
  39. multipers/gudhi/gudhi/Fields/Zp_field_shared.h +418 -0
  40. multipers/gudhi/gudhi/Flag_complex_edge_collapser.h +337 -0
  41. multipers/gudhi/gudhi/Matrix.h +2107 -0
  42. multipers/gudhi/gudhi/Multi_critical_filtration.h +1038 -0
  43. multipers/gudhi/gudhi/Multi_persistence/Box.h +171 -0
  44. multipers/gudhi/gudhi/Multi_persistence/Line.h +282 -0
  45. multipers/gudhi/gudhi/Off_reader.h +173 -0
  46. multipers/gudhi/gudhi/One_critical_filtration.h +1431 -0
  47. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix.h +769 -0
  48. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix_with_column_compression.h +686 -0
  49. multipers/gudhi/gudhi/Persistence_matrix/Boundary_matrix.h +842 -0
  50. multipers/gudhi/gudhi/Persistence_matrix/Chain_matrix.h +1350 -0
  51. multipers/gudhi/gudhi/Persistence_matrix/Id_to_index_overlay.h +1105 -0
  52. multipers/gudhi/gudhi/Persistence_matrix/Position_to_index_overlay.h +859 -0
  53. multipers/gudhi/gudhi/Persistence_matrix/RU_matrix.h +910 -0
  54. multipers/gudhi/gudhi/Persistence_matrix/allocators/entry_constructors.h +139 -0
  55. multipers/gudhi/gudhi/Persistence_matrix/base_pairing.h +230 -0
  56. multipers/gudhi/gudhi/Persistence_matrix/base_swap.h +211 -0
  57. multipers/gudhi/gudhi/Persistence_matrix/boundary_cell_position_to_id_mapper.h +60 -0
  58. multipers/gudhi/gudhi/Persistence_matrix/boundary_face_position_to_id_mapper.h +60 -0
  59. multipers/gudhi/gudhi/Persistence_matrix/chain_pairing.h +136 -0
  60. multipers/gudhi/gudhi/Persistence_matrix/chain_rep_cycles.h +190 -0
  61. multipers/gudhi/gudhi/Persistence_matrix/chain_vine_swap.h +616 -0
  62. multipers/gudhi/gudhi/Persistence_matrix/columns/chain_column_extra_properties.h +150 -0
  63. multipers/gudhi/gudhi/Persistence_matrix/columns/column_dimension_holder.h +106 -0
  64. multipers/gudhi/gudhi/Persistence_matrix/columns/column_utilities.h +219 -0
  65. multipers/gudhi/gudhi/Persistence_matrix/columns/entry_types.h +327 -0
  66. multipers/gudhi/gudhi/Persistence_matrix/columns/heap_column.h +1140 -0
  67. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_list_column.h +934 -0
  68. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_set_column.h +934 -0
  69. multipers/gudhi/gudhi/Persistence_matrix/columns/list_column.h +980 -0
  70. multipers/gudhi/gudhi/Persistence_matrix/columns/naive_vector_column.h +1092 -0
  71. multipers/gudhi/gudhi/Persistence_matrix/columns/row_access.h +192 -0
  72. multipers/gudhi/gudhi/Persistence_matrix/columns/set_column.h +921 -0
  73. multipers/gudhi/gudhi/Persistence_matrix/columns/small_vector_column.h +1093 -0
  74. multipers/gudhi/gudhi/Persistence_matrix/columns/unordered_set_column.h +1012 -0
  75. multipers/gudhi/gudhi/Persistence_matrix/columns/vector_column.h +1244 -0
  76. multipers/gudhi/gudhi/Persistence_matrix/matrix_dimension_holders.h +186 -0
  77. multipers/gudhi/gudhi/Persistence_matrix/matrix_row_access.h +164 -0
  78. multipers/gudhi/gudhi/Persistence_matrix/ru_pairing.h +156 -0
  79. multipers/gudhi/gudhi/Persistence_matrix/ru_rep_cycles.h +376 -0
  80. multipers/gudhi/gudhi/Persistence_matrix/ru_vine_swap.h +540 -0
  81. multipers/gudhi/gudhi/Persistent_cohomology/Field_Zp.h +118 -0
  82. multipers/gudhi/gudhi/Persistent_cohomology/Multi_field.h +173 -0
  83. multipers/gudhi/gudhi/Persistent_cohomology/Persistent_cohomology_column.h +128 -0
  84. multipers/gudhi/gudhi/Persistent_cohomology.h +745 -0
  85. multipers/gudhi/gudhi/Points_off_io.h +171 -0
  86. multipers/gudhi/gudhi/Simple_object_pool.h +69 -0
  87. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_iterators.h +463 -0
  88. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_node_explicit_storage.h +83 -0
  89. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_siblings.h +106 -0
  90. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_star_simplex_iterators.h +277 -0
  91. multipers/gudhi/gudhi/Simplex_tree/hooks_simplex_base.h +62 -0
  92. multipers/gudhi/gudhi/Simplex_tree/indexing_tag.h +27 -0
  93. multipers/gudhi/gudhi/Simplex_tree/serialization_utils.h +62 -0
  94. multipers/gudhi/gudhi/Simplex_tree/simplex_tree_options.h +157 -0
  95. multipers/gudhi/gudhi/Simplex_tree.h +2794 -0
  96. multipers/gudhi/gudhi/Simplex_tree_multi.h +163 -0
  97. multipers/gudhi/gudhi/distance_functions.h +62 -0
  98. multipers/gudhi/gudhi/graph_simplicial_complex.h +104 -0
  99. multipers/gudhi/gudhi/persistence_interval.h +253 -0
  100. multipers/gudhi/gudhi/persistence_matrix_options.h +170 -0
  101. multipers/gudhi/gudhi/reader_utils.h +367 -0
  102. multipers/gudhi/mma_interface_coh.h +255 -0
  103. multipers/gudhi/mma_interface_h0.h +231 -0
  104. multipers/gudhi/mma_interface_matrix.h +282 -0
  105. multipers/gudhi/naive_merge_tree.h +575 -0
  106. multipers/gudhi/scc_io.h +289 -0
  107. multipers/gudhi/truc.h +888 -0
  108. multipers/io.cp312-win_amd64.pyd +0 -0
  109. multipers/io.pyx +711 -0
  110. multipers/ml/__init__.py +0 -0
  111. multipers/ml/accuracies.py +90 -0
  112. multipers/ml/convolutions.py +520 -0
  113. multipers/ml/invariants_with_persistable.py +79 -0
  114. multipers/ml/kernels.py +176 -0
  115. multipers/ml/mma.py +714 -0
  116. multipers/ml/one.py +472 -0
  117. multipers/ml/point_clouds.py +346 -0
  118. multipers/ml/signed_measures.py +1589 -0
  119. multipers/ml/sliced_wasserstein.py +461 -0
  120. multipers/ml/tools.py +113 -0
  121. multipers/mma_structures.cp312-win_amd64.pyd +0 -0
  122. multipers/mma_structures.pxd +127 -0
  123. multipers/mma_structures.pyx +2746 -0
  124. multipers/mma_structures.pyx.tp +1085 -0
  125. multipers/multi_parameter_rank_invariant/diff_helpers.h +93 -0
  126. multipers/multi_parameter_rank_invariant/euler_characteristic.h +97 -0
  127. multipers/multi_parameter_rank_invariant/function_rips.h +322 -0
  128. multipers/multi_parameter_rank_invariant/hilbert_function.h +769 -0
  129. multipers/multi_parameter_rank_invariant/persistence_slices.h +148 -0
  130. multipers/multi_parameter_rank_invariant/rank_invariant.h +369 -0
  131. multipers/multiparameter_edge_collapse.py +41 -0
  132. multipers/multiparameter_module_approximation/approximation.h +2295 -0
  133. multipers/multiparameter_module_approximation/combinatory.h +129 -0
  134. multipers/multiparameter_module_approximation/debug.h +107 -0
  135. multipers/multiparameter_module_approximation/euler_curves.h +0 -0
  136. multipers/multiparameter_module_approximation/format_python-cpp.h +286 -0
  137. multipers/multiparameter_module_approximation/heap_column.h +238 -0
  138. multipers/multiparameter_module_approximation/images.h +79 -0
  139. multipers/multiparameter_module_approximation/list_column.h +174 -0
  140. multipers/multiparameter_module_approximation/list_column_2.h +232 -0
  141. multipers/multiparameter_module_approximation/ru_matrix.h +347 -0
  142. multipers/multiparameter_module_approximation/set_column.h +135 -0
  143. multipers/multiparameter_module_approximation/structure_higher_dim_barcode.h +36 -0
  144. multipers/multiparameter_module_approximation/unordered_set_column.h +166 -0
  145. multipers/multiparameter_module_approximation/utilities.h +419 -0
  146. multipers/multiparameter_module_approximation/vector_column.h +223 -0
  147. multipers/multiparameter_module_approximation/vector_matrix.h +331 -0
  148. multipers/multiparameter_module_approximation/vineyards.h +464 -0
  149. multipers/multiparameter_module_approximation/vineyards_trajectories.h +649 -0
  150. multipers/multiparameter_module_approximation.cp312-win_amd64.pyd +0 -0
  151. multipers/multiparameter_module_approximation.pyx +217 -0
  152. multipers/pickle.py +53 -0
  153. multipers/plots.py +334 -0
  154. multipers/point_measure.cp312-win_amd64.pyd +0 -0
  155. multipers/point_measure.pyx +320 -0
  156. multipers/simplex_tree_multi.cp312-win_amd64.pyd +0 -0
  157. multipers/simplex_tree_multi.pxd +133 -0
  158. multipers/simplex_tree_multi.pyx +10335 -0
  159. multipers/simplex_tree_multi.pyx.tp +1935 -0
  160. multipers/slicer.cp312-win_amd64.pyd +0 -0
  161. multipers/slicer.pxd +2371 -0
  162. multipers/slicer.pxd.tp +214 -0
  163. multipers/slicer.pyx +15467 -0
  164. multipers/slicer.pyx.tp +914 -0
  165. multipers/tbb12.dll +0 -0
  166. multipers/tbbbind_2_5.dll +0 -0
  167. multipers/tbbmalloc.dll +0 -0
  168. multipers/tbbmalloc_proxy.dll +0 -0
  169. multipers/tensor/tensor.h +672 -0
  170. multipers/tensor.pxd +13 -0
  171. multipers/test.pyx +44 -0
  172. multipers/tests/__init__.py +57 -0
  173. multipers/tests/test_diff_helper.py +73 -0
  174. multipers/tests/test_hilbert_function.py +82 -0
  175. multipers/tests/test_mma.py +83 -0
  176. multipers/tests/test_point_clouds.py +49 -0
  177. multipers/tests/test_python-cpp_conversion.py +82 -0
  178. multipers/tests/test_signed_betti.py +181 -0
  179. multipers/tests/test_signed_measure.py +89 -0
  180. multipers/tests/test_simplextreemulti.py +221 -0
  181. multipers/tests/test_slicer.py +221 -0
  182. multipers/torch/__init__.py +1 -0
  183. multipers/torch/diff_grids.py +217 -0
  184. multipers/torch/rips_density.py +304 -0
  185. multipers-2.2.3.dist-info/LICENSE +21 -0
  186. multipers-2.2.3.dist-info/METADATA +134 -0
  187. multipers-2.2.3.dist-info/RECORD +189 -0
  188. multipers-2.2.3.dist-info/WHEEL +5 -0
  189. multipers-2.2.3.dist-info/top_level.txt +1 -0
@@ -0,0 +1,224 @@
1
+ from libcpp.utility cimport pair
2
+ from libcpp cimport bool
3
+ from libcpp.vector cimport vector
4
+ from libcpp cimport tuple
5
+ from libc.stdint cimport uintptr_t,intptr_t
6
+ from cpython cimport Py_buffer
7
+
8
+
9
+ cdef extern from "gudhi/One_critical_filtration.h" namespace "Gudhi::multi_filtration":
10
+ cdef cppclass One_critical_filtration[T=*]:
11
+ ## Copied from cython vector
12
+ ctypedef size_t size_type
13
+ ctypedef ptrdiff_t difference_type
14
+ ctypedef T value_type
15
+
16
+ cppclass const_iterator
17
+ cppclass iterator:
18
+ iterator() except +
19
+ iterator(iterator&) except +
20
+ value_type& operator*()
21
+ iterator operator++()
22
+ iterator operator--()
23
+ iterator operator++(int)
24
+ iterator operator--(int)
25
+ iterator operator+(size_type)
26
+ iterator operator-(size_type)
27
+ difference_type operator-(iterator)
28
+ difference_type operator-(const_iterator)
29
+ bint operator==(iterator)
30
+ bint operator==(const_iterator)
31
+ bint operator!=(iterator)
32
+ bint operator!=(const_iterator)
33
+ bint operator<(iterator)
34
+ bint operator<(const_iterator)
35
+ bint operator>(iterator)
36
+ bint operator>(const_iterator)
37
+ bint operator<=(iterator)
38
+ bint operator<=(const_iterator)
39
+ bint operator>=(iterator)
40
+ bint operator>=(const_iterator)
41
+ cppclass const_iterator:
42
+ const_iterator() except +
43
+ const_iterator(iterator&) except +
44
+ const_iterator(const_iterator&) except +
45
+ operator=(iterator&) except +
46
+ const value_type& operator*()
47
+ const_iterator operator++()
48
+ const_iterator operator--()
49
+ const_iterator operator++(int)
50
+ const_iterator operator--(int)
51
+ const_iterator operator+(size_type)
52
+ const_iterator operator-(size_type)
53
+ difference_type operator-(iterator)
54
+ difference_type operator-(const_iterator)
55
+ bint operator==(iterator)
56
+ bint operator==(const_iterator)
57
+ bint operator!=(iterator)
58
+ bint operator!=(const_iterator)
59
+ bint operator<(iterator)
60
+ bint operator<(const_iterator)
61
+ bint operator>(iterator)
62
+ bint operator>(const_iterator)
63
+ bint operator<=(iterator)
64
+ bint operator<=(const_iterator)
65
+ bint operator>=(iterator)
66
+ bint operator>=(const_iterator)
67
+
68
+ cppclass const_reverse_iterator
69
+ cppclass reverse_iterator:
70
+ reverse_iterator() except +
71
+ reverse_iterator(reverse_iterator&) except +
72
+ value_type& operator*()
73
+ reverse_iterator operator++()
74
+ reverse_iterator operator--()
75
+ reverse_iterator operator++(int)
76
+ reverse_iterator operator--(int)
77
+ reverse_iterator operator+(size_type)
78
+ reverse_iterator operator-(size_type)
79
+ difference_type operator-(iterator)
80
+ difference_type operator-(const_iterator)
81
+ bint operator==(reverse_iterator)
82
+ bint operator==(const_reverse_iterator)
83
+ bint operator!=(reverse_iterator)
84
+ bint operator!=(const_reverse_iterator)
85
+ bint operator<(reverse_iterator)
86
+ bint operator<(const_reverse_iterator)
87
+ bint operator>(reverse_iterator)
88
+ bint operator>(const_reverse_iterator)
89
+ bint operator<=(reverse_iterator)
90
+ bint operator<=(const_reverse_iterator)
91
+ bint operator>=(reverse_iterator)
92
+ bint operator>=(const_reverse_iterator)
93
+ cppclass const_reverse_iterator:
94
+ const_reverse_iterator() except +
95
+ const_reverse_iterator(reverse_iterator&) except +
96
+ operator=(reverse_iterator&) except +
97
+ const value_type& operator*()
98
+ const_reverse_iterator operator++()
99
+ const_reverse_iterator operator--()
100
+ const_reverse_iterator operator++(int)
101
+ const_reverse_iterator operator--(int)
102
+ const_reverse_iterator operator+(size_type)
103
+ const_reverse_iterator operator-(size_type)
104
+ difference_type operator-(iterator)
105
+ difference_type operator-(const_iterator)
106
+ bint operator==(reverse_iterator)
107
+ bint operator==(const_reverse_iterator)
108
+ bint operator!=(reverse_iterator)
109
+ bint operator!=(const_reverse_iterator)
110
+ bint operator<(reverse_iterator)
111
+ bint operator<(const_reverse_iterator)
112
+ bint operator>(reverse_iterator)
113
+ bint operator>(const_reverse_iterator)
114
+ bint operator<=(reverse_iterator)
115
+ bint operator<=(const_reverse_iterator)
116
+ bint operator>=(reverse_iterator)
117
+ bint operator>=(const_reverse_iterator)
118
+ value_type& operator[](size_type)
119
+ #vector& operator=(vector&)
120
+ void assign(size_type, const value_type&)
121
+ void assign[InputIt](InputIt, InputIt) except +
122
+ value_type& at(size_type) except +
123
+ value_type& back()
124
+ iterator begin()
125
+ const_iterator const_begin "begin"()
126
+ const_iterator cbegin()
127
+ size_type capacity()
128
+ void clear() nogil
129
+ bint empty() nogil
130
+ iterator end()
131
+ const_iterator const_end "end"()
132
+ const_iterator cend()
133
+ iterator erase(iterator)
134
+ iterator erase(iterator, iterator)
135
+ value_type& front()
136
+ iterator insert(iterator, const value_type&) except +
137
+ iterator insert(iterator, size_type, const value_type&) except +
138
+ iterator insert[InputIt](iterator, InputIt, InputIt) except +
139
+ size_type max_size()
140
+ void pop_back()
141
+ void push_back(value_type&) except + nogil
142
+ reverse_iterator rbegin()
143
+ const_reverse_iterator const_rbegin "rbegin"()
144
+ const_reverse_iterator crbegin()
145
+ reverse_iterator rend()
146
+ const_reverse_iterator const_rend "rend"()
147
+ const_reverse_iterator crend()
148
+ void reserve(size_type) except + nogil
149
+ void resize(size_type) except + nogil
150
+ void resize(size_type, value_type&) except +
151
+ # size_type size()
152
+ size_type num_parameters() nogil
153
+ size_type num_generators() nogil
154
+ void swap(vector&)
155
+
156
+ # C++11 methods
157
+ value_type* data()
158
+ const value_type* const_data "data"()
159
+ void shrink_to_fit() except +
160
+ iterator emplace(const_iterator, ...) except +
161
+ value_type& emplace_back(...) except +
162
+
163
+ ## end of copied from cython vector
164
+
165
+ One_critical_filtration() except + nogil
166
+ One_critical_filtration(vector[value_type]&) except + nogil
167
+ One_critical_filtration(One_critical_filtration&) except + nogil
168
+
169
+ One_critical_filtration(int) nogil
170
+ One_critical_filtration& operator=(const One_critical_filtration&) except +
171
+ @staticmethod
172
+ vector[value_type]& vector[value_type]() nogil
173
+
174
+ void push_to_least_common_upper_bound(One_critical_filtration[T]&) nogil
175
+ void pull_to_greatest_common_lower_bound(One_critical_filtration[T]&) nogil
176
+
177
+ bool is_finite() nogil
178
+
179
+
180
+ cdef extern from "gudhi/Multi_critical_filtration.h" namespace "Gudhi::multi_filtration":
181
+ cdef cppclass Multi_critical_filtration[T=*]:
182
+ ctypedef size_t size_type
183
+ ctypedef One_critical_filtration[T] filtration_type
184
+ Multi_critical_filtration() except + nogil
185
+ Multi_critical_filtration(One_critical_filtration[T]) except +
186
+ Multi_critical_filtration[T]& operator=(const Multi_critical_filtration[T]&) except +
187
+ size_t num_parameters() noexcept nogil
188
+ size_t num_generators() noexcept nogil
189
+ void add_guaranteed_generator(One_critical_filtration[T]) nogil
190
+ void add_generator(One_critical_filtration[T]) nogil
191
+ void reserve(size_t) noexcept nogil
192
+ void simplify() nogil
193
+ void set_num_generators(size_t) nogil
194
+ One_critical_filtration[T]& operator[](int) nogil
195
+
196
+ void push_to_least_common_upper_bound(One_critical_filtration[T]&) except + nogil
197
+ void pull_to_greatest_common_lower_bound(One_critical_filtration[T]&) except + nogil
198
+
199
+ cdef extern from "gudhi/Multi_persistence/Box.h" namespace "Gudhi::multi_persistence":
200
+ cdef cppclass Box[T=*]:
201
+ ctypedef vector[T] corner_type
202
+ Box() except +
203
+ Box( vector[T]&, vector[T]&) nogil
204
+ Box( pair[vector[T], vector[T]]&) nogil
205
+ void inflate(T) nogil
206
+ const One_critical_filtration[T]& get_lower_corner() nogil
207
+ const One_critical_filtration[T]& get_upper_corner() nogil
208
+ bool contains(vector[T]&) nogil
209
+ pair[One_critical_filtration[T], One_critical_filtration[T]] get_bounding_corners() nogil
210
+
211
+ cdef extern from "gudhi/Multi_persistence/Line.h" namespace "Gudhi::multi_persistence":
212
+ cdef cppclass Line[T=*]:
213
+ ctypedef One_critical_filtration[T] point_type
214
+ Line() except + nogil
215
+ Line(One_critical_filtration[T]&) except + nogil
216
+ Line(One_critical_filtration[T]&, One_critical_filtration[T]&) except + nogil
217
+
218
+
219
+
220
+
221
+
222
+ # ------ useful types:
223
+ # ctypedef One_critical_filtration[float] Generator
224
+ # ctypedef Multi_critical_filtration[float] kcritical
@@ -0,0 +1,105 @@
1
+ # cimport multipers.tensor as mt
2
+ from libc.stdint cimport intptr_t, uint16_t, uint32_t, int32_t
3
+ from libcpp.vector cimport vector
4
+ from libcpp cimport bool, int, float
5
+ from libcpp.utility cimport pair, tuple
6
+ from typing import Optional,Iterable,Callable
7
+
8
+ import numpy as np
9
+ cimport numpy as cnp
10
+ cnp.import_array()
11
+
12
+ ctypedef double value_type
13
+ python_value_type=np.float64
14
+
15
+ ctypedef int32_t indices_type # uint fails for some reason
16
+ python_indices_type=np.int32
17
+
18
+ ctypedef int32_t tensor_dtype
19
+ python_tensor_dtype = np.int32
20
+
21
+ ctypedef pair[vector[vector[indices_type]], vector[tensor_dtype]] signed_measure_type
22
+
23
+
24
+ from multipers.simplex_tree_multi import SimplexTreeMulti_Ff64
25
+ from gudhi.simplex_tree import SimplexTree
26
+
27
+ cdef extern from "multi_parameter_rank_invariant/function_rips.h" namespace "Gudhi::multiparameter::function_rips":
28
+ void compute_function_rips_surface_python(const intptr_t, tensor_dtype* , const vector[indices_type], indices_type,indices_type, bool, bool, indices_type) except + nogil
29
+ signed_measure_type compute_function_rips_signed_measure_python(const intptr_t, tensor_dtype* , const vector[indices_type], indices_type,indices_type, bool, bool, indices_type) except + nogil
30
+ pair[vector[value_type],int] get_degree_rips_st_python(const intptr_t,const intptr_t, const vector[int]) except + nogil
31
+
32
+
33
+ import multipers.grids as mpg
34
+
35
+
36
+
37
+ def get_degree_rips(st, vector[int] degrees, grid_strategy="exact", resolution=0):
38
+ assert isinstance(st,SimplexTree), "Input has to be a Gudhi simplextree for now."
39
+ assert st.dimension() == 1, "Simplextree has to be of dimension 1. You can use the `prune_above_dimension` method."
40
+ degree_rips_st = SimplexTreeMulti_Ff64(num_parameters=degrees.size())
41
+ cdef intptr_t simplextree_ptr = st.thisptr
42
+ cdef intptr_t st_multi_ptr = degree_rips_st.thisptr
43
+ cdef pair[vector[value_type],int] out
44
+ with nogil:
45
+ out = get_degree_rips_st_python(simplextree_ptr, st_multi_ptr, degrees)
46
+ filtrations = np.asarray(out.first)
47
+ cdef int max_degree = out.second
48
+ cdef bool inf_flag = filtrations[-1] == np.inf
49
+ if inf_flag:
50
+ filtrations = filtrations[:-1]
51
+ filtrations, = mpg.compute_grid([filtrations],strategy=grid_strategy,resolution=resolution)
52
+ if inf_flag:
53
+ filtrations = np.concatenate([filtrations, [np.inf]])
54
+ degree_rips_st.grid_squeeze([filtrations]*degree_rips_st.num_parameters, inplace=True, coordinate_values=True)
55
+ degree_rips_st.filtration_grid = [filtrations, np.asarray(degrees)[::-1]]
56
+ degree_rips_st._is_function_simplextree=True
57
+ return degree_rips_st,max_degree
58
+
59
+ def function_rips_surface(st_multi, vector[indices_type] homological_degrees, bool mobius_inversion=True, bool zero_pad=False, indices_type n_jobs=0):
60
+ assert st_multi.is_squeezed, "Squeeze first !"
61
+ cdef intptr_t st_multi_ptr = st_multi.thisptr
62
+ cdef indices_type I = len(st_multi.filtration_grid[0])
63
+ cdef indices_type J = st_multi.num_parameters
64
+ container_shape = (homological_degrees.size(),I,J)
65
+ container_array = np.ascontiguousarray(np.zeros(container_shape, dtype=python_tensor_dtype).flatten())
66
+ assert len(container_array) < np.iinfo(np.uint32).max, "Too large container. Raise an issue on github if you encounter this issue. (Due to tensor's operator[])"
67
+ cdef tensor_dtype[::1] container = container_array
68
+ cdef tensor_dtype* container_ptr = &container[0]
69
+ with nogil:
70
+ compute_function_rips_surface_python(st_multi_ptr,container_ptr, homological_degrees, I,J, mobius_inversion, zero_pad, n_jobs)
71
+ filtration_grid = st_multi.filtration_grid
72
+ if filtration_grid[0][-1] == np.inf:
73
+ filtration_grid[0][-1] = filtration_grid[0][-2]
74
+ return filtration_grid, container_array.reshape(container_shape)
75
+
76
+
77
+
78
+ def function_rips_signed_measure(st_multi, vector[indices_type] homological_degrees, bool mobius_inversion=True, bool zero_pad=False, indices_type n_jobs=0, bool reconvert = True):
79
+ assert st_multi.is_squeezed
80
+ cdef intptr_t st_multi_ptr = st_multi.thisptr
81
+ cdef indices_type I = len(st_multi.filtration_grid[0])
82
+ cdef indices_type J = st_multi.num_parameters
83
+ container_shape = (homological_degrees.size(),I,J)
84
+ container_array = np.ascontiguousarray(np.zeros(container_shape, dtype=python_tensor_dtype).flatten())
85
+ assert len(container_array) < np.iinfo(np.uint32).max, "Too large container. Raise an issue on github if you encounter this issue. (Due to tensor's operator[])"
86
+ cdef tensor_dtype[::1] container = container_array
87
+ cdef tensor_dtype* container_ptr = &container[0]
88
+ cdef signed_measure_type out
89
+ # TODO nogil
90
+ with nogil:
91
+ out = compute_function_rips_signed_measure_python(st_multi_ptr,container_ptr, homological_degrees, I,J, mobius_inversion, zero_pad, n_jobs)
92
+ pts, weights = np.asarray(out.first, dtype=int).reshape(-1, 3), np.asarray(out.second, dtype=int)
93
+
94
+ degree_indices = [np.argwhere(pts[:,0] == degree_index).flatten() for degree_index, degree in enumerate(homological_degrees)] ## TODO : maybe optimize
95
+ sms = [(pts[id,1:],weights[id]) for id in degree_indices]
96
+ if not reconvert: return sms
97
+
98
+ grid_conversion = st_multi.filtration_grid
99
+ for degree_index,(pts,weights) in enumerate(sms):
100
+ coords = np.empty(shape=pts.shape, dtype=float)
101
+ for i in range(coords.shape[1]):
102
+ coords[:,i] = np.asarray(grid_conversion[i])[pts[:,i]]
103
+ sms[degree_index]=(coords, weights)
104
+
105
+ return sms
Binary file
multipers/grids.pyx ADDED
@@ -0,0 +1,350 @@
1
+
2
+ from libc.stdint cimport intptr_t, int32_t, int64_t
3
+ from libcpp cimport bool,int,long, float
4
+
5
+ cimport numpy as cnp
6
+ import numpy as np
7
+ cnp.import_array()
8
+
9
+
10
+ from typing import Iterable,Literal,Optional
11
+ from itertools import product
12
+
13
+
14
+ available_strategies = ["regular","regular_closest", "regular_left", "partition", "quantile", "precomputed"]
15
+ Lstrategies = Literal["regular","regular_closest", "regular_left", "partition", "quantile", "precomputed"]
16
+
17
+ ctypedef fused some_int:
18
+ int32_t
19
+ int64_t
20
+ int
21
+ long
22
+
23
+ ctypedef fused some_float:
24
+ float
25
+ double
26
+
27
+
28
+ def compute_grid(
29
+ x,
30
+ resolution:Optional[int|Iterable[int]]=None,
31
+ strategy:Lstrategies="exact",
32
+ bool unique=True,
33
+ some_float _q_factor=1.,
34
+ drop_quantiles=[0,0],
35
+ bool dense = False,
36
+ ):
37
+ """
38
+ Computes a grid from filtration values, using some strategy.
39
+
40
+ Input
41
+ -----
42
+
43
+ - `filtrations_values`: `Iterable[filtration of parameter for parameter]`
44
+ where `filtration_of_parameter` is a array[float, ndim=1]
45
+ - `resolution`:Optional[int|tuple[int]]
46
+ - `strategy`: either exact, regular, regular_closest, regular_left, partition, quantile, or precomputed.
47
+ - `unique`: if true, doesn't repeat values in the output grid.
48
+ - `drop_quantiles` : drop some filtration values according to these quantiles
49
+ Output
50
+ ------
51
+
52
+ Iterable[array[float, ndim=1]] : the 1d-grid for each parameter.
53
+ """
54
+
55
+ from multipers.slicer import is_slicer
56
+ from multipers.simplex_tree_multi import is_simplextree_multi
57
+ from multipers.mma_structures import is_mma
58
+
59
+ if resolution is not None and strategy == "exact":
60
+ raise ValueError("The 'exact' strategy does not support resolution.")
61
+ if strategy != "exact":
62
+ assert resolution is not None, "A resolution is required for non-exact strategies"
63
+
64
+
65
+ cdef bool is_numpy_compatible = True
66
+ if is_slicer(x):
67
+ initial_grid = x.get_filtrations_values().T
68
+ elif is_simplextree_multi(x):
69
+ initial_grid = x.get_filtration_grid()
70
+ elif is_mma(x):
71
+ initial_grid = x.get_filtration_values()
72
+ elif isinstance(x, np.ndarray):
73
+ initial_grid = x
74
+ else:
75
+ x = tuple(x)
76
+ if len(x) == 0: return []
77
+ first = x[0]
78
+ ## is_sm, i.e., iterable tuple(pts,weights)
79
+ if isinstance(x[0], tuple) and getattr(x[0][0], "shape", None) is not None:
80
+ initial_grid = tuple(f[0].T for f in x)
81
+ if isinstance(initial_grid[0], np.ndarray):
82
+ initial_grid = np.concatenate(initial_grid, axis=1)
83
+ else:
84
+ is_numpy_compatbile = False
85
+ import torch
86
+ assert isinstance(first[0], torch.Tensor), "Only numpy and torch are supported ftm."
87
+ initial_grid = torch.cat(initial_grid, axis=1)
88
+ ## is grid-like (num_params, num_pts)
89
+ elif isinstance(first,list) or isinstance(first, tuple) or isinstance(first, np.ndarray):
90
+ initial_grid = tuple(f for f in x)
91
+ else:
92
+ is_numpy_compatible = False
93
+ import torch
94
+ assert isinstance(first, torch.Tensor), "Only numpy and torch are supported ftm."
95
+ initial_grid = x
96
+ if is_numpy_compatible:
97
+ return _compute_grid_numpy(
98
+ initial_grid,
99
+ resolution=resolution,
100
+ strategy = strategy,
101
+ unique = unique,
102
+ _q_factor=_q_factor,
103
+ drop_quantiles=drop_quantiles,
104
+ dense = dense,
105
+ )
106
+ from multipers.torch.diff_grids import get_grid
107
+ return get_grid(strategy)(initial_grid,resolution)
108
+
109
+
110
+
111
+
112
+
113
+
114
+ def _compute_grid_numpy(
115
+ filtrations_values,
116
+ resolution=None,
117
+ strategy:Lstrategies="exact",
118
+ bool unique=True,
119
+ some_float _q_factor=1.,
120
+ drop_quantiles=[0,0],
121
+ bool dense = False,
122
+ ):
123
+ """
124
+ Computes a grid from filtration values, using some strategy.
125
+
126
+ Input
127
+ -----
128
+ - `filtrations_values`: `Iterable[filtration of parameter for parameter]`
129
+ where `filtration_of_parameter` is a array[float, ndim=1]
130
+ - `resolution`:Optional[int|tuple[int]]
131
+ - `strategy`: either exact, regular, regular_closest, regular_left, partition, quantile, or precomputed.
132
+ - `unique`: if true, doesn't repeat values in the output grid.
133
+ - `drop_quantiles` : drop some filtration values according to these quantiles
134
+ Output
135
+ ------
136
+ Iterable[array[float, ndim=1]] : the 1d-grid for each parameter.
137
+ """
138
+ num_parameters = len(filtrations_values)
139
+ if resolution is None and strategy not in ["exact", "precomputed"]:
140
+ raise ValueError("Resolution must be provided for this strategy.")
141
+ elif resolution is not None:
142
+ try:
143
+ int(resolution)
144
+ resolution = [resolution]*num_parameters
145
+ except:
146
+ pass
147
+ try:
148
+ a,b=drop_quantiles
149
+ except:
150
+ a,b=drop_quantiles,drop_quantiles
151
+
152
+ if a != 0 or b != 0:
153
+ boxes = np.asarray([np.quantile(filtration, [a, b], axis=1, method='closest_observation') for filtration in filtrations_values])
154
+ min_filtration, max_filtration = np.min(boxes, axis=(0,1)), np.max(boxes, axis=(0,1)) # box, birth/death, filtration
155
+ filtrations_values = [
156
+ filtration[(m<filtration) * (filtration <M)]
157
+ for filtration, m,M in zip(filtrations_values, min_filtration, max_filtration)
158
+ ]
159
+
160
+ to_unique = lambda f : np.unique(f) if isinstance(f,np.ndarray) else f.unique()
161
+ ## match doesn't work with cython BUG
162
+ if strategy == "exact":
163
+ F=tuple(to_unique(f) for f in filtrations_values)
164
+ elif strategy == "quantile":
165
+ F = tuple(to_unique(f) for f in filtrations_values)
166
+ max_resolution = [min(len(f),r) for f,r in zip(F,resolution)]
167
+ F = tuple( np.quantile(f, q=np.linspace(0,1,num=int(r*_q_factor)), axis=0, method='closest_observation') for f,r in zip(F, resolution) )
168
+ if unique:
169
+ F = tuple(to_unique(f) for f in F)
170
+ if np.all(np.asarray(max_resolution) > np.asarray([len(f) for f in F])):
171
+ return _compute_grid_numpy(filtrations_values=filtrations_values, resolution=resolution, strategy="quantile",_q_factor=1.5*_q_factor)
172
+ elif strategy == "regular":
173
+ F = tuple(np.linspace(np.min(f),np.max(f),num=r, dtype=np.asarray(f).dtype) for f,r in zip(filtrations_values, resolution))
174
+ elif strategy == "regular_closest":
175
+ F = tuple(_todo_regular_closest(f,r, unique) for f,r in zip(filtrations_values, resolution))
176
+ elif strategy == "regular_left":
177
+ F = tuple(_todo_regular_left(f,r, unique) for f,r in zip(filtrations_values, resolution))
178
+ elif strategy == "torch_regular_closest":
179
+ F = tuple(_torch_regular_closest(f,r, unique) for f,r in zip(filtrations_values, resolution))
180
+ elif strategy == "partition":
181
+ F = tuple(_todo_partition(f,r, unique) for f,r in zip(filtrations_values, resolution))
182
+ elif strategy == "precomputed":
183
+ F=filtrations_values
184
+ else:
185
+ raise ValueError(f"Invalid strategy {strategy}. Pick something in {available_strategies}.")
186
+ if dense:
187
+ return todense(F)
188
+ return F
189
+
190
+ def todense(grid, bool product_order=False):
191
+ if len(grid) == 0:
192
+ return np.empty(0)
193
+ if not isinstance(grid[0], np.ndarray):
194
+ import torch
195
+ assert isinstance(grid[0], torch.Tensor)
196
+ from multipers.torch.diff_grids import todense
197
+ return todense(grid)
198
+ dtype = grid[0].dtype
199
+ if product_order:
200
+ return np.fromiter(product(*grid), dtype=np.dtype((dtype, len(grid))), count=np.prod([len(f) for f in grid]))
201
+ mesh = np.meshgrid(*grid)
202
+ coordinates = np.concatenate(tuple(stuff.ravel()[:,None] for stuff in mesh), axis=1, dtype=dtype)
203
+ return coordinates
204
+
205
+
206
+
207
+ ## TODO : optimize. Pykeops ?
208
+ def _todo_regular_closest(some_float[:] f, int r, bool unique):
209
+ f_array = np.asarray(f)
210
+ f_regular = np.linspace(np.min(f), np.max(f),num=r, dtype=f_array.dtype)
211
+ f_regular_closest = np.asarray([f[<long>np.argmin(np.abs(f_array-f_regular[i]))] for i in range(r)])
212
+ if unique: f_regular_closest = np.unique(f_regular_closest)
213
+ return f_regular_closest
214
+
215
+ def _todo_regular_left(some_float[:] f, int r, bool unique):
216
+ sorted_f = np.sort(f)
217
+ f_regular = np.linspace(sorted_f[0],sorted_f[-1],num=r, dtype=sorted_f.dtype)
218
+ f_regular_closest = sorted_f[np.searchsorted(sorted_f,f_regular)]
219
+ if unique: f_regular_closest = np.unique(f_regular_closest)
220
+ return f_regular_closest
221
+
222
+ def _torch_regular_closest(f, int r, bool unique=True):
223
+ import torch
224
+ f_regular = torch.linspace(f.min(),f.max(), r, dtype=f.dtype)
225
+ f_regular_closest =torch.tensor([f[(f-x).abs().argmin()] for x in f_regular])
226
+ if unique: f_regular_closest = f_regular_closest.unique()
227
+ return f_regular_closest
228
+
229
+ def _todo_partition(some_float[:] data,int resolution, bool unique):
230
+ if data.shape[0] < resolution: resolution=data.shape[0]
231
+ k = data.shape[0] // resolution
232
+ partitions = np.partition(data, k)
233
+ f = partitions[[i*k for i in range(resolution)]]
234
+ if unique: f= np.unique(f)
235
+ return f
236
+
237
+
238
+ def compute_bounding_box(stuff, inflate = 0.):
239
+ r"""
240
+ Returns a array of shape (2, num_parameters)
241
+ such that for any filtration value $y$ of something in stuff,
242
+ then if (x,z) is the output of this function, we have
243
+ $x\le y \le z$.
244
+ """
245
+ box = np.array(compute_grid(stuff,strategy="regular",resolution=2)).T
246
+ if inflate:
247
+ box[0] -= inflate
248
+ box[1] += inflate
249
+ return box
250
+
251
+ def push_to_grid(some_float[:,:] points, grid, bool return_coordinate=False):
252
+ """
253
+ Given points and a grid (list of one parameter grids),
254
+ pushes the points onto the grid.
255
+ """
256
+ num_points, num_parameters = points.shape[0], points.shape[1]
257
+ cdef cnp.ndarray[long,ndim=2] coordinates = np.empty((num_points, num_parameters),dtype=np.int64)
258
+ for parameter in range(num_parameters):
259
+ coordinates[:,parameter] = np.searchsorted(grid[parameter],points[:,parameter])
260
+ if return_coordinate:
261
+ return coordinates
262
+ out = np.empty((num_points,num_parameters), grid[0].dtype)
263
+ for parameter in range(num_parameters):
264
+ out[:,parameter] = grid[parameter][coordinates[:,parameter]]
265
+ return out
266
+
267
+
268
+ def coarsen_points(some_float[:,:] points, strategy="exact", int resolution=-1, bool coordinate=False):
269
+ grid = _compute_grid_numpy(points.T, strategy=strategy, resolution=resolution)
270
+ if coordinate:
271
+ return push_to_grid(points, grid, coordinate), grid
272
+ return push_to_grid(points, grid, coordinate)
273
+
274
+
275
+
276
+ def evaluate_in_grid(pts, grid, mass_default=None):
277
+ """
278
+ Input
279
+ -----
280
+ - pts: of the form array[int, ndim=2]
281
+ - grid of the form Iterable[array[float, ndim=1]]
282
+ """
283
+ first_filtration = grid[0]
284
+ dtype = first_filtration.dtype
285
+ if isinstance(first_filtration, np.ndarray):
286
+ if mass_default is not None:
287
+ grid = tuple(np.concatenate([g, [m]]) for g,m in zip(grid, mass_default))
288
+ def empty_like(x):
289
+ return np.empty_like(x, dtype=dtype)
290
+ else:
291
+ import torch
292
+ # assert isinstance(first_filtration, torch.Tensor), f"Invalid grid type. Got {type(grid[0])}, expected numpy or torch array."
293
+ if mass_default is not None:
294
+ grid = tuple(torch.cat([g, torch.tensor(m)[None]]) for g,m in zip(grid, mass_default))
295
+ def empty_like(x):
296
+ return torch.empty(x.shape,dtype=dtype)
297
+
298
+ coords= empty_like(pts)
299
+ for i in range(coords.shape[1]):
300
+ coords[:,i] = grid[i][pts[:,i]]
301
+ return coords
302
+
303
+ def sm_in_grid(pts, weights, grid, int num_parameters=-1, mass_default=None):
304
+ """Given a measure whose points are coordinates,
305
+ pushes this measure in this grid.
306
+ Input
307
+ -----
308
+ - pts: of the form array[int, ndim=2]
309
+ - weights: array[int, ndim=1]
310
+ - grid of the form Iterable[array[float, ndim=1]]
311
+ - num_parameters: number of parameters
312
+ """
313
+ first_filtration = grid[0]
314
+ dtype = first_filtration.dtype
315
+ def to_int(x):
316
+ return np.asarray(x,dtype=np.int64)
317
+ if isinstance(first_filtration, np.ndarray):
318
+ if mass_default is not None:
319
+ grid = tuple(np.concatenate([g, [m]]) for g,m in zip(grid, mass_default))
320
+ def empty_like(x, weights):
321
+ return np.empty_like(x, dtype=dtype), np.asarray(weights)
322
+ else:
323
+ import torch
324
+ # assert isinstance(first_filtration, torch.Tensor), f"Invalid grid type. Got {type(grid[0])}, expected numpy or torch array."
325
+ if mass_default is not None:
326
+ grid = tuple(torch.cat([g, torch.tensor(m)[None]]) for g,m in zip(grid, mass_default))
327
+ def empty_like(x, weights):
328
+ return torch.empty(x.shape,dtype=dtype), torch.from_numpy(weights)
329
+
330
+ pts = to_int(pts)
331
+ coords,weights = empty_like(pts,weights)
332
+ for i in range(coords.shape[1]):
333
+ if num_parameters > 0:
334
+ coords[:,i] = grid[i%num_parameters][pts[:,i]]
335
+ else:
336
+ coords[:,i] = grid[i][pts[:,i]]
337
+ return (coords, weights)
338
+
339
+ # TODO : optimize with memoryviews / typing
340
+ def sms_in_grid(sms, grid, int num_parameters=-1, mass_default=None):
341
+ """Given a measure whose points are coordinates,
342
+ pushes this measure in this grid.
343
+ Input
344
+ -----
345
+ - sms: of the form (signed_measure_like for num_measures)
346
+ where signed_measure_like = tuple(array[int, ndim=2], array[int])
347
+ - grid of the form Iterable[array[float, ndim=1]]
348
+ """
349
+ sms = tuple(sm_in_grid(pts,weights,grid=grid,num_parameters=num_parameters, mass_default=mass_default) for pts,weights in sms)
350
+ return sms