multipers 2.0.0__cp312-cp312-macosx_13_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of multipers might be problematic. Click here for more details.
- multipers/.dylibs/libc++.1.0.dylib +0 -0
- multipers/.dylibs/libtbb.12.12.dylib +0 -0
- multipers/.dylibs/libtbbmalloc.2.12.dylib +0 -0
- multipers/__init__.py +11 -0
- multipers/_signed_measure_meta.py +268 -0
- multipers/_slicer_meta.py +171 -0
- multipers/data/MOL2.py +350 -0
- multipers/data/UCR.py +18 -0
- multipers/data/__init__.py +1 -0
- multipers/data/graphs.py +466 -0
- multipers/data/immuno_regions.py +27 -0
- multipers/data/minimal_presentation_to_st_bf.py +0 -0
- multipers/data/pytorch2simplextree.py +91 -0
- multipers/data/shape3d.py +101 -0
- multipers/data/synthetic.py +68 -0
- multipers/distances.py +198 -0
- multipers/euler_characteristic.pyx +132 -0
- multipers/filtration_conversions.pxd +229 -0
- multipers/filtrations.pxd +225 -0
- multipers/function_rips.cpython-312-darwin.so +0 -0
- multipers/function_rips.pyx +105 -0
- multipers/grids.cpython-312-darwin.so +0 -0
- multipers/grids.pyx +281 -0
- multipers/hilbert_function.pyi +46 -0
- multipers/hilbert_function.pyx +153 -0
- multipers/io.cpython-312-darwin.so +0 -0
- multipers/io.pyx +571 -0
- multipers/ml/__init__.py +0 -0
- multipers/ml/accuracies.py +90 -0
- multipers/ml/convolutions.py +532 -0
- multipers/ml/invariants_with_persistable.py +79 -0
- multipers/ml/kernels.py +176 -0
- multipers/ml/mma.py +659 -0
- multipers/ml/one.py +472 -0
- multipers/ml/point_clouds.py +238 -0
- multipers/ml/signed_betti.py +50 -0
- multipers/ml/signed_measures.py +1542 -0
- multipers/ml/sliced_wasserstein.py +461 -0
- multipers/ml/tools.py +113 -0
- multipers/mma_structures.cpython-312-darwin.so +0 -0
- multipers/mma_structures.pxd +127 -0
- multipers/mma_structures.pyx +2433 -0
- multipers/multiparameter_edge_collapse.py +41 -0
- multipers/multiparameter_module_approximation.cpython-312-darwin.so +0 -0
- multipers/multiparameter_module_approximation.pyx +211 -0
- multipers/pickle.py +53 -0
- multipers/plots.py +326 -0
- multipers/point_measure_integration.cpython-312-darwin.so +0 -0
- multipers/point_measure_integration.pyx +139 -0
- multipers/rank_invariant.cpython-312-darwin.so +0 -0
- multipers/rank_invariant.pyx +229 -0
- multipers/simplex_tree_multi.cpython-312-darwin.so +0 -0
- multipers/simplex_tree_multi.pxd +129 -0
- multipers/simplex_tree_multi.pyi +715 -0
- multipers/simplex_tree_multi.pyx +4655 -0
- multipers/slicer.cpython-312-darwin.so +0 -0
- multipers/slicer.pxd +781 -0
- multipers/slicer.pyx +3393 -0
- multipers/tensor.pxd +13 -0
- multipers/test.pyx +44 -0
- multipers/tests/__init__.py +40 -0
- multipers/tests/old_test_rank_invariant.py +91 -0
- multipers/tests/test_diff_helper.py +74 -0
- multipers/tests/test_hilbert_function.py +82 -0
- multipers/tests/test_mma.py +51 -0
- multipers/tests/test_point_clouds.py +59 -0
- multipers/tests/test_python-cpp_conversion.py +82 -0
- multipers/tests/test_signed_betti.py +181 -0
- multipers/tests/test_simplextreemulti.py +98 -0
- multipers/tests/test_slicer.py +63 -0
- multipers/torch/__init__.py +1 -0
- multipers/torch/diff_grids.py +217 -0
- multipers/torch/rips_density.py +257 -0
- multipers-2.0.0.dist-info/LICENSE +21 -0
- multipers-2.0.0.dist-info/METADATA +29 -0
- multipers-2.0.0.dist-info/RECORD +78 -0
- multipers-2.0.0.dist-info/WHEEL +5 -0
- multipers-2.0.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,225 @@
|
|
|
1
|
+
from libcpp.utility cimport pair
|
|
2
|
+
from libcpp cimport bool
|
|
3
|
+
from libcpp.vector cimport vector
|
|
4
|
+
from libcpp cimport tuple
|
|
5
|
+
from libc.stdint cimport uintptr_t,intptr_t
|
|
6
|
+
from cpython cimport Py_buffer
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
cdef extern from "gudhi/Simplex_tree/multi_filtrations/Finitely_critical_filtrations.h" namespace "Gudhi::multiparameter::multi_filtrations":
|
|
10
|
+
cdef cppclass Finitely_critical_multi_filtration[T=*]:
|
|
11
|
+
## Copied from cython vector
|
|
12
|
+
ctypedef size_t size_type
|
|
13
|
+
ctypedef ptrdiff_t difference_type
|
|
14
|
+
ctypedef T value_type
|
|
15
|
+
|
|
16
|
+
cppclass const_iterator
|
|
17
|
+
cppclass iterator:
|
|
18
|
+
iterator() except +
|
|
19
|
+
iterator(iterator&) except +
|
|
20
|
+
value_type& operator*()
|
|
21
|
+
iterator operator++()
|
|
22
|
+
iterator operator--()
|
|
23
|
+
iterator operator++(int)
|
|
24
|
+
iterator operator--(int)
|
|
25
|
+
iterator operator+(size_type)
|
|
26
|
+
iterator operator-(size_type)
|
|
27
|
+
difference_type operator-(iterator)
|
|
28
|
+
difference_type operator-(const_iterator)
|
|
29
|
+
bint operator==(iterator)
|
|
30
|
+
bint operator==(const_iterator)
|
|
31
|
+
bint operator!=(iterator)
|
|
32
|
+
bint operator!=(const_iterator)
|
|
33
|
+
bint operator<(iterator)
|
|
34
|
+
bint operator<(const_iterator)
|
|
35
|
+
bint operator>(iterator)
|
|
36
|
+
bint operator>(const_iterator)
|
|
37
|
+
bint operator<=(iterator)
|
|
38
|
+
bint operator<=(const_iterator)
|
|
39
|
+
bint operator>=(iterator)
|
|
40
|
+
bint operator>=(const_iterator)
|
|
41
|
+
cppclass const_iterator:
|
|
42
|
+
const_iterator() except +
|
|
43
|
+
const_iterator(iterator&) except +
|
|
44
|
+
const_iterator(const_iterator&) except +
|
|
45
|
+
operator=(iterator&) except +
|
|
46
|
+
const value_type& operator*()
|
|
47
|
+
const_iterator operator++()
|
|
48
|
+
const_iterator operator--()
|
|
49
|
+
const_iterator operator++(int)
|
|
50
|
+
const_iterator operator--(int)
|
|
51
|
+
const_iterator operator+(size_type)
|
|
52
|
+
const_iterator operator-(size_type)
|
|
53
|
+
difference_type operator-(iterator)
|
|
54
|
+
difference_type operator-(const_iterator)
|
|
55
|
+
bint operator==(iterator)
|
|
56
|
+
bint operator==(const_iterator)
|
|
57
|
+
bint operator!=(iterator)
|
|
58
|
+
bint operator!=(const_iterator)
|
|
59
|
+
bint operator<(iterator)
|
|
60
|
+
bint operator<(const_iterator)
|
|
61
|
+
bint operator>(iterator)
|
|
62
|
+
bint operator>(const_iterator)
|
|
63
|
+
bint operator<=(iterator)
|
|
64
|
+
bint operator<=(const_iterator)
|
|
65
|
+
bint operator>=(iterator)
|
|
66
|
+
bint operator>=(const_iterator)
|
|
67
|
+
|
|
68
|
+
cppclass const_reverse_iterator
|
|
69
|
+
cppclass reverse_iterator:
|
|
70
|
+
reverse_iterator() except +
|
|
71
|
+
reverse_iterator(reverse_iterator&) except +
|
|
72
|
+
value_type& operator*()
|
|
73
|
+
reverse_iterator operator++()
|
|
74
|
+
reverse_iterator operator--()
|
|
75
|
+
reverse_iterator operator++(int)
|
|
76
|
+
reverse_iterator operator--(int)
|
|
77
|
+
reverse_iterator operator+(size_type)
|
|
78
|
+
reverse_iterator operator-(size_type)
|
|
79
|
+
difference_type operator-(iterator)
|
|
80
|
+
difference_type operator-(const_iterator)
|
|
81
|
+
bint operator==(reverse_iterator)
|
|
82
|
+
bint operator==(const_reverse_iterator)
|
|
83
|
+
bint operator!=(reverse_iterator)
|
|
84
|
+
bint operator!=(const_reverse_iterator)
|
|
85
|
+
bint operator<(reverse_iterator)
|
|
86
|
+
bint operator<(const_reverse_iterator)
|
|
87
|
+
bint operator>(reverse_iterator)
|
|
88
|
+
bint operator>(const_reverse_iterator)
|
|
89
|
+
bint operator<=(reverse_iterator)
|
|
90
|
+
bint operator<=(const_reverse_iterator)
|
|
91
|
+
bint operator>=(reverse_iterator)
|
|
92
|
+
bint operator>=(const_reverse_iterator)
|
|
93
|
+
cppclass const_reverse_iterator:
|
|
94
|
+
const_reverse_iterator() except +
|
|
95
|
+
const_reverse_iterator(reverse_iterator&) except +
|
|
96
|
+
operator=(reverse_iterator&) except +
|
|
97
|
+
const value_type& operator*()
|
|
98
|
+
const_reverse_iterator operator++()
|
|
99
|
+
const_reverse_iterator operator--()
|
|
100
|
+
const_reverse_iterator operator++(int)
|
|
101
|
+
const_reverse_iterator operator--(int)
|
|
102
|
+
const_reverse_iterator operator+(size_type)
|
|
103
|
+
const_reverse_iterator operator-(size_type)
|
|
104
|
+
difference_type operator-(iterator)
|
|
105
|
+
difference_type operator-(const_iterator)
|
|
106
|
+
bint operator==(reverse_iterator)
|
|
107
|
+
bint operator==(const_reverse_iterator)
|
|
108
|
+
bint operator!=(reverse_iterator)
|
|
109
|
+
bint operator!=(const_reverse_iterator)
|
|
110
|
+
bint operator<(reverse_iterator)
|
|
111
|
+
bint operator<(const_reverse_iterator)
|
|
112
|
+
bint operator>(reverse_iterator)
|
|
113
|
+
bint operator>(const_reverse_iterator)
|
|
114
|
+
bint operator<=(reverse_iterator)
|
|
115
|
+
bint operator<=(const_reverse_iterator)
|
|
116
|
+
bint operator>=(reverse_iterator)
|
|
117
|
+
bint operator>=(const_reverse_iterator)
|
|
118
|
+
value_type& operator[](size_type)
|
|
119
|
+
#vector& operator=(vector&)
|
|
120
|
+
void assign(size_type, const value_type&)
|
|
121
|
+
void assign[InputIt](InputIt, InputIt) except +
|
|
122
|
+
value_type& at(size_type) except +
|
|
123
|
+
value_type& back()
|
|
124
|
+
iterator begin()
|
|
125
|
+
const_iterator const_begin "begin"()
|
|
126
|
+
const_iterator cbegin()
|
|
127
|
+
size_type capacity()
|
|
128
|
+
void clear() nogil
|
|
129
|
+
bint empty() nogil
|
|
130
|
+
iterator end()
|
|
131
|
+
const_iterator const_end "end"()
|
|
132
|
+
const_iterator cend()
|
|
133
|
+
iterator erase(iterator)
|
|
134
|
+
iterator erase(iterator, iterator)
|
|
135
|
+
value_type& front()
|
|
136
|
+
iterator insert(iterator, const value_type&) except +
|
|
137
|
+
iterator insert(iterator, size_type, const value_type&) except +
|
|
138
|
+
iterator insert[InputIt](iterator, InputIt, InputIt) except +
|
|
139
|
+
size_type max_size()
|
|
140
|
+
void pop_back()
|
|
141
|
+
void push_back(value_type&) except + nogil
|
|
142
|
+
reverse_iterator rbegin()
|
|
143
|
+
const_reverse_iterator const_rbegin "rbegin"()
|
|
144
|
+
const_reverse_iterator crbegin()
|
|
145
|
+
reverse_iterator rend()
|
|
146
|
+
const_reverse_iterator const_rend "rend"()
|
|
147
|
+
const_reverse_iterator crend()
|
|
148
|
+
void reserve(size_type) except + nogil
|
|
149
|
+
void resize(size_type) except + nogil
|
|
150
|
+
void resize(size_type, value_type&) except +
|
|
151
|
+
# size_type size()
|
|
152
|
+
size_type num_parameters()
|
|
153
|
+
size_type num_generators()
|
|
154
|
+
void swap(vector&)
|
|
155
|
+
|
|
156
|
+
# C++11 methods
|
|
157
|
+
value_type* data()
|
|
158
|
+
const value_type* const_data "data"()
|
|
159
|
+
void shrink_to_fit() except +
|
|
160
|
+
iterator emplace(const_iterator, ...) except +
|
|
161
|
+
value_type& emplace_back(...) except +
|
|
162
|
+
|
|
163
|
+
## end of copied from cython vector
|
|
164
|
+
|
|
165
|
+
Finitely_critical_multi_filtration() except + nogil
|
|
166
|
+
Finitely_critical_multi_filtration(vector[value_type]&) except + nogil
|
|
167
|
+
Finitely_critical_multi_filtration(Finitely_critical_multi_filtration&) except + nogil
|
|
168
|
+
|
|
169
|
+
Finitely_critical_multi_filtration(int) nogil
|
|
170
|
+
Finitely_critical_multi_filtration& operator=(const Finitely_critical_multi_filtration&) except +
|
|
171
|
+
@staticmethod
|
|
172
|
+
vector[vector[value_type]] to_python(vector[Finitely_critical_multi_filtration]&) nogil const
|
|
173
|
+
@staticmethod
|
|
174
|
+
vector[value_type]& vector[value_type]() nogil
|
|
175
|
+
|
|
176
|
+
|
|
177
|
+
|
|
178
|
+
cdef cppclass KCriticalFiltration[T=*]:
|
|
179
|
+
ctypedef size_t size_type
|
|
180
|
+
ctypedef Finitely_critical_multi_filtration[T] filtration_type
|
|
181
|
+
KCriticalFiltration() except + nogil
|
|
182
|
+
KCriticalFiltration(Finitely_critical_multi_filtration[T]) except +
|
|
183
|
+
KCriticalFiltration[T]& operator=(const KCriticalFiltration[T]&) except +
|
|
184
|
+
size_type num_parameters()
|
|
185
|
+
size_type num_generators()
|
|
186
|
+
void clear() nogil
|
|
187
|
+
void push_back(T) nogil
|
|
188
|
+
void add_point(Finitely_critical_multi_filtration[T]) nogil
|
|
189
|
+
void reserve(size_t) nogil
|
|
190
|
+
void set_num_generators(size_t) nogil
|
|
191
|
+
Finitely_critical_multi_filtration[T]& operator[](int) nogil
|
|
192
|
+
# @staticmethod
|
|
193
|
+
# multifiltration& to_python(vector[KCriticalFiltration]&) nogil const
|
|
194
|
+
# @staticmethod
|
|
195
|
+
# vector[KCriticalFiltration]& from_python(multifiltration&) nogil const
|
|
196
|
+
# vector[value_type]& _convert_back() nogil
|
|
197
|
+
# filtration_type __filtration_type__(self):
|
|
198
|
+
# return self.get_vector()
|
|
199
|
+
|
|
200
|
+
cdef extern from "gudhi/Simplex_tree/multi_filtrations/Box.h" namespace "Gudhi::multiparameter::multi_filtrations":
|
|
201
|
+
cdef cppclass Box[T=*]:
|
|
202
|
+
ctypedef vector[T] corner_type
|
|
203
|
+
Box() except +
|
|
204
|
+
Box( vector[T]&, vector[T]&) nogil
|
|
205
|
+
Box( pair[vector[T], vector[T]]&) nogil
|
|
206
|
+
void inflate(T) nogil
|
|
207
|
+
const Finitely_critical_multi_filtration[T]& get_bottom_corner() nogil
|
|
208
|
+
const Finitely_critical_multi_filtration[T]& get_upper_corner() nogil
|
|
209
|
+
bool contains(vector[T]&) nogil
|
|
210
|
+
pair[Finitely_critical_multi_filtration[T], Finitely_critical_multi_filtration[T]] get_pair() nogil
|
|
211
|
+
|
|
212
|
+
cdef extern from "gudhi/Simplex_tree/multi_filtrations/Line.h" namespace "Gudhi::multiparameter::multi_filtrations":
|
|
213
|
+
cdef cppclass Line[T=*]:
|
|
214
|
+
ctypedef Finitely_critical_multi_filtration[T] point_type
|
|
215
|
+
Line() except + nogil
|
|
216
|
+
Line(Finitely_critical_multi_filtration[T]&) except + nogil
|
|
217
|
+
Line(Finitely_critical_multi_filtration[T]&, Finitely_critical_multi_filtration[T]&) except + nogil
|
|
218
|
+
|
|
219
|
+
|
|
220
|
+
|
|
221
|
+
|
|
222
|
+
|
|
223
|
+
# ------ useful types:
|
|
224
|
+
# ctypedef Finitely_critical_multi_filtration[float] onecritical
|
|
225
|
+
# ctypedef KCriticalFiltration[float] kcritical
|
|
Binary file
|
|
@@ -0,0 +1,105 @@
|
|
|
1
|
+
# cimport multipers.tensor as mt
|
|
2
|
+
from libc.stdint cimport intptr_t, uint16_t, uint32_t, int32_t
|
|
3
|
+
from libcpp.vector cimport vector
|
|
4
|
+
from libcpp cimport bool, int, float
|
|
5
|
+
from libcpp.utility cimport pair, tuple
|
|
6
|
+
from typing import Optional,Iterable,Callable
|
|
7
|
+
|
|
8
|
+
import numpy as np
|
|
9
|
+
cimport numpy as cnp
|
|
10
|
+
cnp.import_array()
|
|
11
|
+
|
|
12
|
+
ctypedef double value_type
|
|
13
|
+
python_value_type=np.float64
|
|
14
|
+
|
|
15
|
+
ctypedef int32_t indices_type # uint fails for some reason
|
|
16
|
+
python_indices_type=np.int32
|
|
17
|
+
|
|
18
|
+
ctypedef int32_t tensor_dtype
|
|
19
|
+
python_tensor_dtype = np.int32
|
|
20
|
+
|
|
21
|
+
ctypedef pair[vector[vector[indices_type]], vector[tensor_dtype]] signed_measure_type
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
from multipers.simplex_tree_multi import SimplexTreeMulti_Ff64
|
|
25
|
+
from gudhi.simplex_tree import SimplexTree
|
|
26
|
+
|
|
27
|
+
cdef extern from "multi_parameter_rank_invariant/function_rips.h" namespace "Gudhi::multiparameter::function_rips":
|
|
28
|
+
void compute_function_rips_surface_python(const intptr_t, tensor_dtype* , const vector[indices_type], indices_type,indices_type, bool, bool, indices_type) except + nogil
|
|
29
|
+
signed_measure_type compute_function_rips_signed_measure_python(const intptr_t, tensor_dtype* , const vector[indices_type], indices_type,indices_type, bool, bool, indices_type) except + nogil
|
|
30
|
+
pair[vector[value_type],int] get_degree_rips_st_python(const intptr_t,const intptr_t, const vector[int]) except + nogil
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
import multipers.grids as mpg
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
def get_degree_rips(st, vector[int] degrees, grid_strategy="exact", resolution=0):
|
|
38
|
+
assert isinstance(st,SimplexTree), "Input has to be a Gudhi simplextree for now."
|
|
39
|
+
assert st.dimension() == 1, "Simplextree has to be of dimension 1. You can use the `prune_above_dimension` method."
|
|
40
|
+
degree_rips_st = SimplexTreeMulti_Ff64(num_parameters=degrees.size())
|
|
41
|
+
cdef intptr_t simplextree_ptr = st.thisptr
|
|
42
|
+
cdef intptr_t st_multi_ptr = degree_rips_st.thisptr
|
|
43
|
+
cdef pair[vector[value_type],int] out
|
|
44
|
+
with nogil:
|
|
45
|
+
out = get_degree_rips_st_python(simplextree_ptr, st_multi_ptr, degrees)
|
|
46
|
+
filtrations = np.asarray(out.first)
|
|
47
|
+
cdef int max_degree = out.second
|
|
48
|
+
cdef bool inf_flag = filtrations[-1] == np.inf
|
|
49
|
+
if inf_flag:
|
|
50
|
+
filtrations = filtrations[:-1]
|
|
51
|
+
filtrations, = mpg.compute_grid([filtrations],strategy=grid_strategy,resolution=resolution)
|
|
52
|
+
if inf_flag:
|
|
53
|
+
filtrations = np.concatenate([filtrations, [np.inf]])
|
|
54
|
+
degree_rips_st.grid_squeeze([filtrations]*degree_rips_st.num_parameters, inplace=True, coordinate_values=True)
|
|
55
|
+
degree_rips_st.filtration_grid = [filtrations, np.asarray(degrees)[::-1]]
|
|
56
|
+
degree_rips_st._is_function_simplextree=True
|
|
57
|
+
return degree_rips_st,max_degree
|
|
58
|
+
|
|
59
|
+
def function_rips_surface(st_multi, vector[indices_type] homological_degrees, bool mobius_inversion=True, bool zero_pad=False, indices_type n_jobs=0):
|
|
60
|
+
assert st_multi._is_squeezed, "Squeeze first !"
|
|
61
|
+
cdef intptr_t st_multi_ptr = st_multi.thisptr
|
|
62
|
+
cdef indices_type I = len(st_multi.filtration_grid[0])
|
|
63
|
+
cdef indices_type J = st_multi.num_parameters
|
|
64
|
+
container_shape = (homological_degrees.size(),I,J)
|
|
65
|
+
container_array = np.ascontiguousarray(np.zeros(container_shape, dtype=python_tensor_dtype).flatten())
|
|
66
|
+
assert len(container_array) < np.iinfo(np.uint32).max, "Too large container. Raise an issue on github if you encounter this issue. (Due to tensor's operator[])"
|
|
67
|
+
cdef tensor_dtype[::1] container = container_array
|
|
68
|
+
cdef tensor_dtype* container_ptr = &container[0]
|
|
69
|
+
with nogil:
|
|
70
|
+
compute_function_rips_surface_python(st_multi_ptr,container_ptr, homological_degrees, I,J, mobius_inversion, zero_pad, n_jobs)
|
|
71
|
+
filtration_grid = st_multi.filtration_grid
|
|
72
|
+
if filtration_grid[0][-1] == np.inf:
|
|
73
|
+
filtration_grid[0][-1] = filtration_grid[0][-2]
|
|
74
|
+
return filtration_grid, container_array.reshape(container_shape)
|
|
75
|
+
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+
def function_rips_signed_measure(st_multi, vector[indices_type] homological_degrees, bool mobius_inversion=True, bool zero_pad=False, indices_type n_jobs=0, bool reconvert = True):
|
|
79
|
+
assert st_multi._is_squeezed
|
|
80
|
+
cdef intptr_t st_multi_ptr = st_multi.thisptr
|
|
81
|
+
cdef indices_type I = len(st_multi.filtration_grid[0])
|
|
82
|
+
cdef indices_type J = st_multi.num_parameters
|
|
83
|
+
container_shape = (homological_degrees.size(),I,J)
|
|
84
|
+
container_array = np.ascontiguousarray(np.zeros(container_shape, dtype=python_tensor_dtype).flatten())
|
|
85
|
+
assert len(container_array) < np.iinfo(np.uint32).max, "Too large container. Raise an issue on github if you encounter this issue. (Due to tensor's operator[])"
|
|
86
|
+
cdef tensor_dtype[::1] container = container_array
|
|
87
|
+
cdef tensor_dtype* container_ptr = &container[0]
|
|
88
|
+
cdef signed_measure_type out
|
|
89
|
+
# TODO nogil
|
|
90
|
+
with nogil:
|
|
91
|
+
out = compute_function_rips_signed_measure_python(st_multi_ptr,container_ptr, homological_degrees, I,J, mobius_inversion, zero_pad, n_jobs)
|
|
92
|
+
pts, weights = np.asarray(out.first, dtype=int).reshape(-1, 3), np.asarray(out.second, dtype=int)
|
|
93
|
+
|
|
94
|
+
degree_indices = [np.argwhere(pts[:,0] == degree_index).flatten() for degree_index, degree in enumerate(homological_degrees)] ## TODO : maybe optimize
|
|
95
|
+
sms = [(pts[id,1:],weights[id]) for id in degree_indices]
|
|
96
|
+
if not reconvert: return sms
|
|
97
|
+
|
|
98
|
+
grid_conversion = st_multi.filtration_grid
|
|
99
|
+
for degree_index,(pts,weights) in enumerate(sms):
|
|
100
|
+
coords = np.empty(shape=pts.shape, dtype=float)
|
|
101
|
+
for i in range(coords.shape[1]):
|
|
102
|
+
coords[:,i] = np.asarray(grid_conversion[i])[pts[:,i]]
|
|
103
|
+
sms[degree_index]=(coords, weights)
|
|
104
|
+
|
|
105
|
+
return sms
|
|
Binary file
|
multipers/grids.pyx
ADDED
|
@@ -0,0 +1,281 @@
|
|
|
1
|
+
|
|
2
|
+
from libc.stdint cimport intptr_t, int32_t, int64_t
|
|
3
|
+
from libcpp cimport bool,int,long, float
|
|
4
|
+
|
|
5
|
+
cimport numpy as cnp
|
|
6
|
+
import numpy as np
|
|
7
|
+
cnp.import_array()
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
from typing import Iterable,Literal,Optional
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
available_strategies = ["regular","regular_closest", "regular_left", "partition", "quantile", "precomputed"]
|
|
14
|
+
Lstrategies = Literal["regular","regular_closest", "regular_left", "partition", "quantile", "precomputed"]
|
|
15
|
+
|
|
16
|
+
ctypedef fused some_int:
|
|
17
|
+
int32_t
|
|
18
|
+
int64_t
|
|
19
|
+
int
|
|
20
|
+
long
|
|
21
|
+
|
|
22
|
+
ctypedef fused some_float:
|
|
23
|
+
float
|
|
24
|
+
double
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
def compute_grid(
|
|
28
|
+
x,
|
|
29
|
+
resolution=None,
|
|
30
|
+
strategy:Lstrategies="exact",
|
|
31
|
+
bool unique=True,
|
|
32
|
+
some_float _q_factor=1.,
|
|
33
|
+
drop_quantiles=[0,0],
|
|
34
|
+
bool dense = False,
|
|
35
|
+
):
|
|
36
|
+
"""
|
|
37
|
+
Computes a grid from filtration values, using some strategy.
|
|
38
|
+
|
|
39
|
+
Input
|
|
40
|
+
-----
|
|
41
|
+
|
|
42
|
+
- `filtrations_values`: `Iterable[filtration of parameter for parameter]`
|
|
43
|
+
where `filtration_of_parameter` is a array[float, ndim=1]
|
|
44
|
+
- `resolution`:Optional[int|tuple[int]]
|
|
45
|
+
- `strategy`: either exact, regular, regular_closest, regular_left, partition, quantile, or precomputed.
|
|
46
|
+
- `unique`: if true, doesn't repeat values in the output grid.
|
|
47
|
+
- `drop_quantiles` : drop some filtration values according to these quantiles
|
|
48
|
+
Output
|
|
49
|
+
------
|
|
50
|
+
|
|
51
|
+
Iterable[array[float, ndim=1]] : the 1d-grid for each parameter.
|
|
52
|
+
"""
|
|
53
|
+
|
|
54
|
+
from multipers.slicer import is_slicer
|
|
55
|
+
from multipers.simplex_tree_multi import is_simplextree_multi
|
|
56
|
+
|
|
57
|
+
cdef bool is_numpy_compatible = True
|
|
58
|
+
if is_slicer(x):
|
|
59
|
+
initial_grid = x.get_filtrations_values().T
|
|
60
|
+
elif is_simplextree_multi(x):
|
|
61
|
+
initial_grid = x.get_filtration_grid()
|
|
62
|
+
elif isinstance(x, np.ndarray):
|
|
63
|
+
initial_grid = x
|
|
64
|
+
else:
|
|
65
|
+
x = tuple(x)
|
|
66
|
+
if len(x) == 0: return []
|
|
67
|
+
first = x[0]
|
|
68
|
+
if isinstance(first,list) or isinstance(first, tuple) or isinstance(first, np.ndarray):
|
|
69
|
+
initial_grid = tuple(np.asarray(f) for f in x)
|
|
70
|
+
else:
|
|
71
|
+
is_numpy_compatible = False
|
|
72
|
+
import torch
|
|
73
|
+
assert isinstance(first, torch.Tensor), "Only numpy and torch are supported ftm."
|
|
74
|
+
initial_grid = x
|
|
75
|
+
|
|
76
|
+
if is_numpy_compatible:
|
|
77
|
+
return _compute_grid_numpy(
|
|
78
|
+
initial_grid,
|
|
79
|
+
resolution=resolution,
|
|
80
|
+
strategy = strategy,
|
|
81
|
+
unique = unique,
|
|
82
|
+
_q_factor=_q_factor,
|
|
83
|
+
drop_quantiles=drop_quantiles,
|
|
84
|
+
dense = dense,
|
|
85
|
+
)
|
|
86
|
+
from multipers.torch.diff_grids import get_grid
|
|
87
|
+
return get_grid(strategy)(initial_grid,resolution)
|
|
88
|
+
|
|
89
|
+
|
|
90
|
+
|
|
91
|
+
|
|
92
|
+
|
|
93
|
+
|
|
94
|
+
def _compute_grid_numpy(
|
|
95
|
+
filtrations_values,
|
|
96
|
+
resolution=None,
|
|
97
|
+
strategy:Lstrategies="exact",
|
|
98
|
+
bool unique=True,
|
|
99
|
+
some_float _q_factor=1.,
|
|
100
|
+
drop_quantiles=[0,0],
|
|
101
|
+
bool dense = False,
|
|
102
|
+
):
|
|
103
|
+
"""
|
|
104
|
+
Computes a grid from filtration values, using some strategy.
|
|
105
|
+
|
|
106
|
+
Input
|
|
107
|
+
-----
|
|
108
|
+
- `filtrations_values`: `Iterable[filtration of parameter for parameter]`
|
|
109
|
+
where `filtration_of_parameter` is a array[float, ndim=1]
|
|
110
|
+
- `resolution`:Optional[int|tuple[int]]
|
|
111
|
+
- `strategy`: either exact, regular, regular_closest, regular_left, partition, quantile, or precomputed.
|
|
112
|
+
- `unique`: if true, doesn't repeat values in the output grid.
|
|
113
|
+
- `drop_quantiles` : drop some filtration values according to these quantiles
|
|
114
|
+
Output
|
|
115
|
+
------
|
|
116
|
+
Iterable[array[float, ndim=1]] : the 1d-grid for each parameter.
|
|
117
|
+
"""
|
|
118
|
+
num_parameters = len(filtrations_values)
|
|
119
|
+
if resolution is None and strategy not in ["exact", "precomputed"]:
|
|
120
|
+
raise ValueError("Resolution must be provided for this strategy.")
|
|
121
|
+
elif resolution is not None:
|
|
122
|
+
try:
|
|
123
|
+
int(resolution)
|
|
124
|
+
resolution = [resolution]*num_parameters
|
|
125
|
+
except:
|
|
126
|
+
pass
|
|
127
|
+
try:
|
|
128
|
+
a,b=drop_quantiles
|
|
129
|
+
except:
|
|
130
|
+
a,b=drop_quantiles,drop_quantiles
|
|
131
|
+
|
|
132
|
+
if a != 0 or b != 0:
|
|
133
|
+
boxes = np.asarray([np.quantile(filtration, [a, b], axis=1, method='closest_observation') for filtration in filtrations_values])
|
|
134
|
+
min_filtration, max_filtration = np.min(boxes, axis=(0,1)), np.max(boxes, axis=(0,1)) # box, birth/death, filtration
|
|
135
|
+
filtrations_values = [
|
|
136
|
+
filtration[(m<filtration) * (filtration <M)]
|
|
137
|
+
for filtration, m,M in zip(filtrations_values, min_filtration, max_filtration)
|
|
138
|
+
]
|
|
139
|
+
|
|
140
|
+
to_unique = lambda f : np.unique(f) if isinstance(f,np.ndarray) else f.unique()
|
|
141
|
+
## match doesn't work with cython BUG
|
|
142
|
+
if strategy == "exact":
|
|
143
|
+
F=tuple(to_unique(f) for f in filtrations_values)
|
|
144
|
+
elif strategy == "quantile":
|
|
145
|
+
F = tuple(to_unique(f) for f in filtrations_values)
|
|
146
|
+
max_resolution = [min(len(f),r) for f,r in zip(F,resolution)]
|
|
147
|
+
F = tuple( np.quantile(f, q=np.linspace(0,1,num=int(r*_q_factor)), axis=0, method='closest_observation') for f,r in zip(F, resolution) )
|
|
148
|
+
if unique:
|
|
149
|
+
F = tuple(to_unique(f) for f in F)
|
|
150
|
+
if np.all(np.asarray(max_resolution) > np.asarray([len(f) for f in F])):
|
|
151
|
+
return _compute_grid_numpy(filtrations_values=filtrations_values, resolution=resolution, strategy="quantile",_q_factor=1.5*_q_factor)
|
|
152
|
+
elif strategy == "regular":
|
|
153
|
+
F = tuple(np.linspace(f.min(),f.max(),num=r, dtype=f.dtype) for f,r in zip(filtrations_values, resolution))
|
|
154
|
+
elif strategy == "regular_closest":
|
|
155
|
+
F = tuple(_todo_regular_closest(f,r, unique) for f,r in zip(filtrations_values, resolution))
|
|
156
|
+
elif strategy == "regular_left":
|
|
157
|
+
F = tuple(_todo_regular_left(f,r, unique) for f,r in zip(filtrations_values, resolution))
|
|
158
|
+
elif strategy == "torch_regular_closest":
|
|
159
|
+
F = tuple(_torch_regular_closest(f,r, unique) for f,r in zip(filtrations_values, resolution))
|
|
160
|
+
elif strategy == "partition":
|
|
161
|
+
F = tuple(_todo_partition(f,r, unique) for f,r in zip(filtrations_values, resolution))
|
|
162
|
+
elif strategy == "precomputed":
|
|
163
|
+
F=filtrations_values
|
|
164
|
+
else:
|
|
165
|
+
raise ValueError(f"Invalid strategy {strategy}. Pick something in {available_strategies}.")
|
|
166
|
+
if dense:
|
|
167
|
+
mesh = np.meshgrid(*F)
|
|
168
|
+
coordinates = np.concatenate(tuple(stuff.ravel()[:,None] for stuff in mesh), axis=1)
|
|
169
|
+
return coordinates
|
|
170
|
+
return F
|
|
171
|
+
|
|
172
|
+
def todense(grid):
|
|
173
|
+
if len(grid) == 0:
|
|
174
|
+
return np.empty(0)
|
|
175
|
+
dtype = grid[0].dtype
|
|
176
|
+
mesh = np.meshgrid(*grid)
|
|
177
|
+
coordinates = np.concatenate(tuple(stuff.ravel()[:,None] for stuff in mesh), axis=1, dtype=dtype)
|
|
178
|
+
return coordinates
|
|
179
|
+
|
|
180
|
+
|
|
181
|
+
|
|
182
|
+
## TODO : optimize. Pykeops ?
|
|
183
|
+
def _todo_regular_closest(some_float[:] f, int r, bool unique):
|
|
184
|
+
f_array = np.asarray(f)
|
|
185
|
+
f_regular = np.linspace(np.min(f), np.max(f),num=r, dtype=f_array.dtype)
|
|
186
|
+
f_regular_closest = np.asarray([f[<long>np.argmin(np.abs(f_array-f_regular[i]))] for i in range(r)])
|
|
187
|
+
if unique: f_regular_closest = np.unique(f_regular_closest)
|
|
188
|
+
return f_regular_closest
|
|
189
|
+
|
|
190
|
+
def _todo_regular_left(some_float[:] f, int r, bool unique):
|
|
191
|
+
sorted_f = np.sort(f)
|
|
192
|
+
f_regular = np.linspace(sorted_f[0],sorted_f[-1],num=r, dtype=sorted_f.dtype)
|
|
193
|
+
f_regular_closest = sorted_f[np.searchsorted(sorted_f,f_regular)]
|
|
194
|
+
if unique: f_regular_closest = np.unique(f_regular_closest)
|
|
195
|
+
return f_regular_closest
|
|
196
|
+
|
|
197
|
+
def _torch_regular_closest(f, int r, bool unique=True):
|
|
198
|
+
import torch
|
|
199
|
+
f_regular = torch.linspace(f.min(),f.max(), r, dtype=f.dtype)
|
|
200
|
+
f_regular_closest =torch.tensor([f[(f-x).abs().argmin()] for x in f_regular])
|
|
201
|
+
if unique: f_regular_closest = f_regular_closest.unique()
|
|
202
|
+
return f_regular_closest
|
|
203
|
+
|
|
204
|
+
def _todo_partition(some_float[:] data,int resolution, bool unique):
|
|
205
|
+
if data.shape[0] < resolution: resolution=data.shape[0]
|
|
206
|
+
k = data.shape[0] // resolution
|
|
207
|
+
partitions = np.partition(data, k)
|
|
208
|
+
f = partitions[[i*k for i in range(resolution)]]
|
|
209
|
+
if unique: f= np.unique(f)
|
|
210
|
+
return f
|
|
211
|
+
|
|
212
|
+
|
|
213
|
+
def push_to_grid(some_float[:,:] points, grid, bool return_coordinate=False):
|
|
214
|
+
"""
|
|
215
|
+
Given points and a grid (list of one parameter grids),
|
|
216
|
+
pushes the points onto the grid.
|
|
217
|
+
"""
|
|
218
|
+
num_points, num_parameters = points.shape[0], points.shape[1]
|
|
219
|
+
cdef cnp.ndarray[long,ndim=2] coordinates = np.empty((num_points, num_parameters),dtype=np.int64)
|
|
220
|
+
for parameter in range(num_parameters):
|
|
221
|
+
coordinates[:,parameter] = np.searchsorted(grid[parameter],points[:,parameter])
|
|
222
|
+
if return_coordinate:
|
|
223
|
+
return coordinates
|
|
224
|
+
out = np.empty((num_points,num_parameters), grid[0].dtype)
|
|
225
|
+
for parameter in range(num_parameters):
|
|
226
|
+
out[:,parameter] = grid[parameter][coordinates[:,parameter]]
|
|
227
|
+
return out
|
|
228
|
+
|
|
229
|
+
|
|
230
|
+
def coarsen_points(some_float[:,:] points, strategy="exact", int resolution=-1, bool coordinate=False):
|
|
231
|
+
grid = _compute_grid_numpy(points.T, strategy=strategy, resolution=resolution)
|
|
232
|
+
if coordinate:
|
|
233
|
+
return push_to_grid(points, grid, coordinate), grid
|
|
234
|
+
return push_to_grid(points, grid, coordinate)
|
|
235
|
+
|
|
236
|
+
|
|
237
|
+
|
|
238
|
+
def sm_in_grid(pts, weights, grid_conversion, int num_parameters=-1):
|
|
239
|
+
"""Given a measure whose points are coordinates,
|
|
240
|
+
pushes this measure in this grid.
|
|
241
|
+
Input
|
|
242
|
+
-----
|
|
243
|
+
- pts: of the form array[int, ndim=2]
|
|
244
|
+
- weights: array[int, ndim=1]
|
|
245
|
+
- grid_conversion of the form Iterable[array[float, ndim=1]]
|
|
246
|
+
- num_parameters: number of parameters
|
|
247
|
+
"""
|
|
248
|
+
first_filtration = grid_conversion[0]
|
|
249
|
+
dtype = first_filtration.dtype
|
|
250
|
+
def to_int(x):
|
|
251
|
+
return np.asarray(x,dtype=np.int64)
|
|
252
|
+
if isinstance(first_filtration, np.ndarray):
|
|
253
|
+
def empty_like(x, weights):
|
|
254
|
+
return np.empty_like(x, dtype=dtype), np.asarray(weights)
|
|
255
|
+
else:
|
|
256
|
+
import torch
|
|
257
|
+
# assert isinstance(first_filtration, torch.Tensor), f"Invalid grid type. Got {type(grid_conversion[0])}, expected numpy or torch array."
|
|
258
|
+
def empty_like(x, weights):
|
|
259
|
+
return torch.empty(x.shape,dtype=dtype), torch.from_numpy(weights).type(torch.int64)
|
|
260
|
+
|
|
261
|
+
pts = to_int(pts)
|
|
262
|
+
coords,weights = empty_like(pts,weights)
|
|
263
|
+
for i in range(coords.shape[1]):
|
|
264
|
+
if num_parameters > 0:
|
|
265
|
+
coords[:,i] = grid_conversion[i%num_parameters][pts[:,i]]
|
|
266
|
+
else:
|
|
267
|
+
coords[:,i] = grid_conversion[i][pts[:,i]]
|
|
268
|
+
return (coords, weights)
|
|
269
|
+
|
|
270
|
+
# TODO : optimize with memoryviews / typing
|
|
271
|
+
def sms_in_grid(sms, grid_conversion, int num_parameters=-1):
|
|
272
|
+
"""Given a measure whose points are coordinates,
|
|
273
|
+
pushes this measure in this grid.
|
|
274
|
+
Input
|
|
275
|
+
-----
|
|
276
|
+
- sms: of the form (signed_measure_like for num_measures)
|
|
277
|
+
where signed_measure_like = tuple(array[int, ndim=2], array[int])
|
|
278
|
+
- grid_conversion of the form Iterable[array[float, ndim=1]]
|
|
279
|
+
"""
|
|
280
|
+
sms = tuple(sm_in_grid(pts,weights,grid_conversion,num_parameters) for pts,weights in sms)
|
|
281
|
+
return sms
|
|
@@ -0,0 +1,46 @@
|
|
|
1
|
+
# cimport multipers.tensor as mt
|
|
2
|
+
from libc.stdint cimport intptr_t, uint16_t, uint32_t, int32_t
|
|
3
|
+
from libcpp.vector cimport vector
|
|
4
|
+
from libcpp cimport bool, int, float
|
|
5
|
+
from libcpp.utility cimport pair
|
|
6
|
+
from typing import Optional,Iterable,Callable
|
|
7
|
+
|
|
8
|
+
def hilbert_signed_measure(simplextree, degrees, mass_default=None, plot=False, n_jobs=0, verbose=False):
|
|
9
|
+
"""
|
|
10
|
+
Computes the signed measures given by the decomposition of the hilbert function.
|
|
11
|
+
|
|
12
|
+
Input
|
|
13
|
+
-----
|
|
14
|
+
- simplextree:SimplexTreeMulti, the multifiltered simplicial complex
|
|
15
|
+
- degrees:array-like of ints, the degrees to compute
|
|
16
|
+
- mass_default: Either None, or 'auto' or 'inf', or array-like of floats. Where to put the default mass to get a zero-mass measure.
|
|
17
|
+
- plot:bool, plots the computed measures if true.
|
|
18
|
+
- n_jobs:int, number of jobs. Defaults to #cpu, but when doing parallel computations of signed measures, we recommend setting this to 1.
|
|
19
|
+
- verbose:bool, prints c++ logs.
|
|
20
|
+
|
|
21
|
+
Output
|
|
22
|
+
------
|
|
23
|
+
`[signed_measure_of_degree for degree in degrees]`
|
|
24
|
+
with `signed_measure_of_degree` of the form `(dirac location, dirac weights)`.
|
|
25
|
+
"""
|
|
26
|
+
pass
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
def hilbert_function(simplextree, degrees, zero_pad=False, plot=False, n_jobs=0):
|
|
30
|
+
"""
|
|
31
|
+
Computes the hilbert function.
|
|
32
|
+
|
|
33
|
+
Input
|
|
34
|
+
-----
|
|
35
|
+
- simplextree:SimplexTreeMulti, the multifiltered simplicial complex
|
|
36
|
+
- degrees:array-like of ints, the degrees to compute
|
|
37
|
+
- mass_default: Either None, or 'auto' or 'inf', or array-like of floats. Where to put the default mass to get a zero-mass measure.
|
|
38
|
+
- plot:bool, plots the computed measures if true.
|
|
39
|
+
- n_jobs:int, number of jobs. Defaults to #cpu, but when doing parallel computations of signed measures, we recommend setting this to 1.
|
|
40
|
+
- verbose:bool, prints c++ logs.
|
|
41
|
+
|
|
42
|
+
Output
|
|
43
|
+
------
|
|
44
|
+
Integer array of the form `(num_degrees, num_filtration_values_of_parameter 1, ..., num_filtration_values_of_parameter n)`
|
|
45
|
+
"""
|
|
46
|
+
pass
|