multi-puzzle-solver 1.0.7__py3-none-any.whl → 1.0.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of multi-puzzle-solver might be problematic. Click here for more details.

@@ -1,221 +1,220 @@
1
- from collections import defaultdict
2
- from typing import Optional
3
-
4
- import numpy as np
5
- from ortools.sat.python import cp_model
6
- from ortools.sat.python.cp_model import LinearExpr as lxp
7
-
8
- from puzzle_solver.core.utils import Pos, get_all_pos, get_pos, set_char, get_row_pos, get_col_pos
9
- from puzzle_solver.core.utils_ortools import generic_solve_all, SingleSolution
10
- from puzzle_solver.core.utils_visualizer import combined_function
11
-
12
-
13
- def assert_input(lines: list[list[tuple[int, str]]]):
14
- for line in lines:
15
- for i,c in enumerate(line):
16
- if c == -1:
17
- continue
18
- elif isinstance(c, str):
19
- assert c[:-1].isdigit(), f'strings must begin with a digit, got {c}'
20
- line[i] = (int(c[:-1]), c[-1])
21
- elif isinstance(c, tuple):
22
- assert len(c) == 2 and isinstance(c[0], int) and isinstance(c[1], str), f'tuples must be (int, str), got {c}'
23
- else:
24
- raise ValueError(f'invalid cell value: {c}')
25
-
26
-
27
- class Board:
28
- def __init__(self, top: list[list[tuple[int, str]]], side: list[list[tuple[int, str]]]):
29
- assert_input(top)
30
- assert_input(side)
31
- self.top = top
32
- self.side = side
33
- self.V = len(side)
34
- self.H = len(top)
35
- self.unique_colors = list(set([i[1] for line in top for i in line if i != -1] + [i[1] for line in side for i in line if i != -1]))
36
- self.model = cp_model.CpModel()
37
- self.model_vars: dict[Pos, dict[str, cp_model.IntVar]] = defaultdict(dict)
38
- self.extra_vars = {}
39
-
40
- self.create_vars()
41
- self.add_all_constraints()
42
-
43
- def create_vars(self):
44
- for pos in get_all_pos(self.V, self.H):
45
- for color in self.unique_colors:
46
- self.model_vars[pos][color] = self.model.NewBoolVar(f'{pos}:{color}')
47
-
48
- def add_all_constraints(self):
49
- for pos in get_all_pos(self.V, self.H):
50
- self.model.Add(lxp.sum(list(self.model_vars[pos].values())) <= 1)
51
- for i in range(self.V):
52
- ground_sequence = self.side[i]
53
- if tuple(ground_sequence) == (-1,):
54
- continue
55
- current_sequence = [self.model_vars[pos] for pos in get_row_pos(i, self.H)]
56
- self.constrain_nonogram_sequence(ground_sequence, current_sequence, f'ngm_side_{i}')
57
- for i in range(self.H):
58
- ground_sequence = self.top[i]
59
- if tuple(ground_sequence) == (-1,):
60
- continue
61
- current_sequence = [self.model_vars[pos] for pos in get_col_pos(i, self.V)]
62
- self.constrain_nonogram_sequence(ground_sequence, current_sequence, f'ngm_top_{i}')
63
-
64
- def constrain_nonogram_sequence(self, clues: list[tuple[int, str]], current_sequence: list[dict[str, cp_model.IntVar]], ns: str):
65
- """
66
- Constrain a colored sequence (current_sequence) to match the nonogram clues in clues.
67
-
68
- clues: e.g., [(3, 'R'), (1, 'G')] means: a run of 3 red ones, then a run of 1 green one. If two clues are next to each other and have the same color, they must be separated by at least one blank.
69
- current_sequence: list of dicts of IntVar in {0,1} for each color.
70
-
71
- steps:
72
- - Create start position s_i for each run i.
73
- - Enforce order and >=1 separation between runs.
74
- - Link each cell j to exactly one run interval (or none) via coverage booleans.
75
- - Force sum of ones to equal sum(clues).
76
- """
77
- L = len(current_sequence)
78
- R = len(clues)
79
-
80
- # Early infeasibility check:
81
- # Minimum required blanks equals number of adjacent pairs with same color.
82
- same_color_separators = sum(1 for (len_i, col_i), (len_j, col_j) in zip(clues, clues[1:]) if col_i == col_j)
83
- min_needed = sum(len_i for len_i, _ in clues) + same_color_separators
84
- if min_needed > L:
85
- print(f"Infeasible: clues {clues} need {min_needed} cells but line length is {L} for {ns}")
86
- self.model.Add(0 == 1)
87
- return
88
-
89
- # Collect the color set present in clues and in the line vars
90
- clue_colors = {c for _, c in clues}
91
- seq_colors = set()
92
- for j in range(L):
93
- seq_colors.update(current_sequence[j].keys())
94
- colors = sorted(clue_colors | seq_colors)
95
-
96
- # Start vars per run
97
- starts: list[cp_model.IntVar] = []
98
- self.extra_vars[f"{ns}_starts"] = starts
99
- for i in range(len(clues)):
100
- # s_i in [0, L] but we will bound by containment constraint below
101
- s = self.model.NewIntVar(0, L, f"{ns}_s[{i}]")
102
- starts.append(s)
103
-
104
- # Ordering + separation:
105
- # If same color: s[i+1] >= s[i] + len[i] + 1
106
- # If different color: s[i+1] >= s[i] + len[i]
107
- for i in range(R - 1):
108
- len_i, col_i = clues[i]
109
- _, col_next = clues[i + 1]
110
- gap = 1 if col_i == col_next else 0
111
- self.model.Add(starts[i + 1] >= starts[i] + len_i + gap)
112
-
113
- # Containment: s[i] + len[i] <= L
114
- for i, (run_len, _) in enumerate(clues):
115
- self.model.Add(starts[i] + run_len <= L)
116
-
117
- # Coverage booleans: cover[i][j] <=> (starts[i] <= j) AND (j < starts[i] + run_len)
118
- cover = [[None] * L for _ in range(R)]
119
- list_b_le = [[None] * L for _ in range(R)]
120
- list_b_lt_end = [[None] * L for _ in range(R)]
121
- self.extra_vars[f"{ns}_cover"] = cover
122
- self.extra_vars[f"{ns}_list_b_le"] = list_b_le
123
- self.extra_vars[f"{ns}_list_b_lt_end"] = list_b_lt_end
124
-
125
- for i, (run_len, _) in enumerate(clues):
126
- s_i = starts[i]
127
- for j in range(L):
128
- b_le = self.model.NewBoolVar(f"{ns}_le[{i},{j}]") # s_i <= j
129
- self.model.Add(s_i <= j).OnlyEnforceIf(b_le)
130
- self.model.Add(s_i >= j + 1).OnlyEnforceIf(b_le.Not())
131
-
132
- b_lt_end = self.model.NewBoolVar(f"{ns}_lt_end[{i},{j}]") # j < s_i + run_len <=> s_i + run_len - 1 >= j
133
- end_expr = s_i + run_len - 1
134
- self.model.Add(end_expr >= j).OnlyEnforceIf(b_lt_end)
135
- self.model.Add(end_expr <= j - 1).OnlyEnforceIf(b_lt_end.Not())
136
-
137
- b_cov = self.model.NewBoolVar(f"{ns}_cov[{i},{j}]")
138
- self.model.AddBoolAnd([b_le, b_lt_end]).OnlyEnforceIf(b_cov)
139
- self.model.AddBoolOr([b_cov, b_le.Not(), b_lt_end.Not()])
140
-
141
- cover[i][j] = b_cov
142
- list_b_le[i][j] = b_le
143
- list_b_lt_end[i][j] = b_lt_end
144
-
145
- # Link coverage to per-cell, per-color variables.
146
- # For each color k and cell j:
147
- # sum_{i: color_i == k} cover[i][j] == current_sequence[j][k]
148
- # Also tie the total cover at j to the sum over all colors at j:
149
- # sum_i cover[i][j] == sum_k current_sequence[j][k]
150
- # This enforces that at most one color is active per cell (since the LHS is in {0,1} due to non-overlap).
151
- # If a color var is missing in current_sequence[j], assume it’s an implicit 0 by creating a fixed zero var.
152
- # (Alternatively, require the caller to provide all colors per cell.)
153
- zero_cache = {}
154
- def get_zero(name: str):
155
- if name not in zero_cache:
156
- z = self.model.NewConstant(0)
157
- zero_cache[name] = z
158
- return zero_cache[name]
159
-
160
- # Pre-index runs by color for efficiency
161
- runs_by_color = {k: [] for k in colors}
162
- for i, (_, k) in enumerate(clues):
163
- runs_by_color[k].append(i)
164
-
165
- for j in range(L):
166
- # Total coverage at cell j
167
- total_cov_j = sum(cover[i][j] for i in range(R)) if R > 0 else 0
168
-
169
- # Sum of color vars at cell j
170
- color_vars_j = []
171
- for k in colors:
172
- v = current_sequence[j].get(k, None)
173
- if v is None:
174
- v = get_zero(f"{ns}_zero_{k}")
175
- color_vars_j.append(v)
176
-
177
- # Per-color coverage equality
178
- if runs_by_color[k]:
179
- self.model.Add(sum(cover[i][j] for i in runs_by_color[k]) == v)
180
- else:
181
- # No runs of this color -> force cell color var to 0
182
- self.model.Add(v == 0)
183
-
184
- # Tie total coverage to sum of color vars (blank vs exactly-one color)
185
- if R > 0:
186
- self.model.Add(total_cov_j == sum(color_vars_j))
187
- else:
188
- # No runs at all: all cells must be blank across all colors
189
- for v in color_vars_j:
190
- self.model.Add(v == 0)
191
-
192
- # Optional but strong propagation: per-color totals must match total clue lengths of that color
193
- total_len_by_color = {k: 0 for k in colors}
194
- for length, k in clues:
195
- total_len_by_color[k] += length
196
-
197
- for k in colors:
198
- total_cells_k = sum(current_sequence[j].get(k, get_zero(f"{ns}_zero_{k}")) for j in range(L))
199
- self.model.Add(total_cells_k == total_len_by_color[k])
200
-
201
- def solve_and_print(self, verbose: bool = True, visualize_colors: Optional[dict[str, str]] = None):
202
- def board_to_solution(board: Board, solver: cp_model.CpSolverSolutionCallback) -> SingleSolution:
203
- return SingleSolution(assignment={pos: color for pos, d in board.model_vars.items() for color, var in d.items() if solver.value(var) == 1})
204
- def callback(single_res: SingleSolution):
205
- print("Solution found")
206
- print(combined_function(self.V, self.H, center_char=lambda r, c: single_res.assignment.get(get_pos(x=c, y=r), ' ')))
207
- if visualize_colors is not None:
208
- from matplotlib import pyplot as plt
209
- from matplotlib.colors import ListedColormap
210
- visualize_colors[' '] = 'black'
211
- visualize_colors_keys = list(visualize_colors.keys())
212
- char_to_int = {c: i for i, c in enumerate(visualize_colors_keys)}
213
- nums = [[char_to_int[single_res.assignment.get(get_pos(x=c, y=r), ' ')] for c in range(self.H)] for r in range(self.V)]
214
- plt.imshow(nums,
215
- aspect='equal',
216
- cmap=ListedColormap([visualize_colors[c] for c in visualize_colors_keys]),
217
- extent=[0, self.H, self.V, 0])
218
- plt.colorbar()
219
- # plt.grid(True)
220
- plt.show()
221
- return generic_solve_all(self, board_to_solution, callback=callback if verbose else None, verbose=verbose)
1
+ from collections import defaultdict
2
+ from typing import Optional
3
+
4
+ from ortools.sat.python import cp_model
5
+ from ortools.sat.python.cp_model import LinearExpr as lxp
6
+
7
+ from puzzle_solver.core.utils import Pos, get_all_pos, get_pos, get_row_pos, get_col_pos
8
+ from puzzle_solver.core.utils_ortools import generic_solve_all, SingleSolution
9
+ from puzzle_solver.core.utils_visualizer import combined_function
10
+
11
+
12
+ def assert_input(lines: list[list[tuple[int, str]]]):
13
+ for line in lines:
14
+ for i,c in enumerate(line):
15
+ if c == -1:
16
+ continue
17
+ elif isinstance(c, str):
18
+ assert c[:-1].isdigit(), f'strings must begin with a digit, got {c}'
19
+ line[i] = (int(c[:-1]), c[-1])
20
+ elif isinstance(c, tuple):
21
+ assert len(c) == 2 and isinstance(c[0], int) and isinstance(c[1], str), f'tuples must be (int, str), got {c}'
22
+ else:
23
+ raise ValueError(f'invalid cell value: {c}')
24
+
25
+
26
+ class Board:
27
+ def __init__(self, top: list[list[tuple[int, str]]], side: list[list[tuple[int, str]]]):
28
+ assert_input(top)
29
+ assert_input(side)
30
+ self.top = top
31
+ self.side = side
32
+ self.V = len(side)
33
+ self.H = len(top)
34
+ self.unique_colors = list(set([i[1] for line in top for i in line if i != -1] + [i[1] for line in side for i in line if i != -1]))
35
+ self.model = cp_model.CpModel()
36
+ self.model_vars: dict[Pos, dict[str, cp_model.IntVar]] = defaultdict(dict)
37
+ self.extra_vars = {}
38
+
39
+ self.create_vars()
40
+ self.add_all_constraints()
41
+
42
+ def create_vars(self):
43
+ for pos in get_all_pos(self.V, self.H):
44
+ for color in self.unique_colors:
45
+ self.model_vars[pos][color] = self.model.NewBoolVar(f'{pos}:{color}')
46
+
47
+ def add_all_constraints(self):
48
+ for pos in get_all_pos(self.V, self.H):
49
+ self.model.Add(lxp.sum(list(self.model_vars[pos].values())) <= 1)
50
+ for i in range(self.V):
51
+ ground_sequence = self.side[i]
52
+ if tuple(ground_sequence) == (-1,):
53
+ continue
54
+ current_sequence = [self.model_vars[pos] for pos in get_row_pos(i, self.H)]
55
+ self.constrain_nonogram_sequence(ground_sequence, current_sequence, f'ngm_side_{i}')
56
+ for i in range(self.H):
57
+ ground_sequence = self.top[i]
58
+ if tuple(ground_sequence) == (-1,):
59
+ continue
60
+ current_sequence = [self.model_vars[pos] for pos in get_col_pos(i, self.V)]
61
+ self.constrain_nonogram_sequence(ground_sequence, current_sequence, f'ngm_top_{i}')
62
+
63
+ def constrain_nonogram_sequence(self, clues: list[tuple[int, str]], current_sequence: list[dict[str, cp_model.IntVar]], ns: str):
64
+ """
65
+ Constrain a colored sequence (current_sequence) to match the nonogram clues in clues.
66
+
67
+ clues: e.g., [(3, 'R'), (1, 'G')] means: a run of 3 red ones, then a run of 1 green one. If two clues are next to each other and have the same color, they must be separated by at least one blank.
68
+ current_sequence: list of dicts of IntVar in {0,1} for each color.
69
+
70
+ steps:
71
+ - Create start position s_i for each run i.
72
+ - Enforce order and >=1 separation between runs.
73
+ - Link each cell j to exactly one run interval (or none) via coverage booleans.
74
+ - Force sum of ones to equal sum(clues).
75
+ """
76
+ L = len(current_sequence)
77
+ R = len(clues)
78
+
79
+ # Early infeasibility check:
80
+ # Minimum required blanks equals number of adjacent pairs with same color.
81
+ same_color_separators = sum(1 for (len_i, col_i), (len_j, col_j) in zip(clues, clues[1:]) if col_i == col_j)
82
+ min_needed = sum(len_i for len_i, _ in clues) + same_color_separators
83
+ if min_needed > L:
84
+ print(f"Infeasible: clues {clues} need {min_needed} cells but line length is {L} for {ns}")
85
+ self.model.Add(0 == 1)
86
+ return
87
+
88
+ # Collect the color set present in clues and in the line vars
89
+ clue_colors = {c for _, c in clues}
90
+ seq_colors = set()
91
+ for j in range(L):
92
+ seq_colors.update(current_sequence[j].keys())
93
+ colors = sorted(clue_colors | seq_colors)
94
+
95
+ # Start vars per run
96
+ starts: list[cp_model.IntVar] = []
97
+ self.extra_vars[f"{ns}_starts"] = starts
98
+ for i in range(len(clues)):
99
+ # s_i in [0, L] but we will bound by containment constraint below
100
+ s = self.model.NewIntVar(0, L, f"{ns}_s[{i}]")
101
+ starts.append(s)
102
+
103
+ # Ordering + separation:
104
+ # If same color: s[i+1] >= s[i] + len[i] + 1
105
+ # If different color: s[i+1] >= s[i] + len[i]
106
+ for i in range(R - 1):
107
+ len_i, col_i = clues[i]
108
+ _, col_next = clues[i + 1]
109
+ gap = 1 if col_i == col_next else 0
110
+ self.model.Add(starts[i + 1] >= starts[i] + len_i + gap)
111
+
112
+ # Containment: s[i] + len[i] <= L
113
+ for i, (run_len, _) in enumerate(clues):
114
+ self.model.Add(starts[i] + run_len <= L)
115
+
116
+ # Coverage booleans: cover[i][j] <=> (starts[i] <= j) AND (j < starts[i] + run_len)
117
+ cover = [[None] * L for _ in range(R)]
118
+ list_b_le = [[None] * L for _ in range(R)]
119
+ list_b_lt_end = [[None] * L for _ in range(R)]
120
+ self.extra_vars[f"{ns}_cover"] = cover
121
+ self.extra_vars[f"{ns}_list_b_le"] = list_b_le
122
+ self.extra_vars[f"{ns}_list_b_lt_end"] = list_b_lt_end
123
+
124
+ for i, (run_len, _) in enumerate(clues):
125
+ s_i = starts[i]
126
+ for j in range(L):
127
+ b_le = self.model.NewBoolVar(f"{ns}_le[{i},{j}]") # s_i <= j
128
+ self.model.Add(s_i <= j).OnlyEnforceIf(b_le)
129
+ self.model.Add(s_i >= j + 1).OnlyEnforceIf(b_le.Not())
130
+
131
+ b_lt_end = self.model.NewBoolVar(f"{ns}_lt_end[{i},{j}]") # j < s_i + run_len <=> s_i + run_len - 1 >= j
132
+ end_expr = s_i + run_len - 1
133
+ self.model.Add(end_expr >= j).OnlyEnforceIf(b_lt_end)
134
+ self.model.Add(end_expr <= j - 1).OnlyEnforceIf(b_lt_end.Not())
135
+
136
+ b_cov = self.model.NewBoolVar(f"{ns}_cov[{i},{j}]")
137
+ self.model.AddBoolAnd([b_le, b_lt_end]).OnlyEnforceIf(b_cov)
138
+ self.model.AddBoolOr([b_cov, b_le.Not(), b_lt_end.Not()])
139
+
140
+ cover[i][j] = b_cov
141
+ list_b_le[i][j] = b_le
142
+ list_b_lt_end[i][j] = b_lt_end
143
+
144
+ # Link coverage to per-cell, per-color variables.
145
+ # For each color k and cell j:
146
+ # sum_{i: color_i == k} cover[i][j] == current_sequence[j][k]
147
+ # Also tie the total cover at j to the sum over all colors at j:
148
+ # sum_i cover[i][j] == sum_k current_sequence[j][k]
149
+ # This enforces that at most one color is active per cell (since the LHS is in {0,1} due to non-overlap).
150
+ # If a color var is missing in current_sequence[j], assume it’s an implicit 0 by creating a fixed zero var.
151
+ # (Alternatively, require the caller to provide all colors per cell.)
152
+ zero_cache = {}
153
+ def get_zero(name: str):
154
+ if name not in zero_cache:
155
+ z = self.model.NewConstant(0)
156
+ zero_cache[name] = z
157
+ return zero_cache[name]
158
+
159
+ # Pre-index runs by color for efficiency
160
+ runs_by_color = {k: [] for k in colors}
161
+ for i, (_, k) in enumerate(clues):
162
+ runs_by_color[k].append(i)
163
+
164
+ for j in range(L):
165
+ # Total coverage at cell j
166
+ total_cov_j = sum(cover[i][j] for i in range(R)) if R > 0 else 0
167
+
168
+ # Sum of color vars at cell j
169
+ color_vars_j = []
170
+ for k in colors:
171
+ v = current_sequence[j].get(k, None)
172
+ if v is None:
173
+ v = get_zero(f"{ns}_zero_{k}")
174
+ color_vars_j.append(v)
175
+
176
+ # Per-color coverage equality
177
+ if runs_by_color[k]:
178
+ self.model.Add(sum(cover[i][j] for i in runs_by_color[k]) == v)
179
+ else:
180
+ # No runs of this color -> force cell color var to 0
181
+ self.model.Add(v == 0)
182
+
183
+ # Tie total coverage to sum of color vars (blank vs exactly-one color)
184
+ if R > 0:
185
+ self.model.Add(total_cov_j == sum(color_vars_j))
186
+ else:
187
+ # No runs at all: all cells must be blank across all colors
188
+ for v in color_vars_j:
189
+ self.model.Add(v == 0)
190
+
191
+ # Optional but strong propagation: per-color totals must match total clue lengths of that color
192
+ total_len_by_color = {k: 0 for k in colors}
193
+ for length, k in clues:
194
+ total_len_by_color[k] += length
195
+
196
+ for k in colors:
197
+ total_cells_k = sum(current_sequence[j].get(k, get_zero(f"{ns}_zero_{k}")) for j in range(L))
198
+ self.model.Add(total_cells_k == total_len_by_color[k])
199
+
200
+ def solve_and_print(self, verbose: bool = True, visualize_colors: Optional[dict[str, str]] = None):
201
+ def board_to_solution(board: Board, solver: cp_model.CpSolverSolutionCallback) -> SingleSolution:
202
+ return SingleSolution(assignment={pos: color for pos, d in board.model_vars.items() for color, var in d.items() if solver.value(var) == 1})
203
+ def callback(single_res: SingleSolution):
204
+ print("Solution found")
205
+ print(combined_function(self.V, self.H, center_char=lambda r, c: single_res.assignment.get(get_pos(x=c, y=r), ' ')))
206
+ if visualize_colors is not None:
207
+ from matplotlib import pyplot as plt
208
+ from matplotlib.colors import ListedColormap
209
+ visualize_colors[' '] = 'black'
210
+ visualize_colors_keys = list(visualize_colors.keys())
211
+ char_to_int = {c: i for i, c in enumerate(visualize_colors_keys)}
212
+ nums = [[char_to_int[single_res.assignment.get(get_pos(x=c, y=r), ' ')] for c in range(self.H)] for r in range(self.V)]
213
+ plt.imshow(nums,
214
+ aspect='equal',
215
+ cmap=ListedColormap([visualize_colors[c] for c in visualize_colors_keys]),
216
+ extent=[0, self.H, self.V, 0])
217
+ plt.colorbar()
218
+ # plt.grid(True)
219
+ plt.show()
220
+ return generic_solve_all(self, board_to_solution, callback=callback if verbose else None, verbose=verbose)