multi-puzzle-solver 1.0.4__py3-none-any.whl → 1.0.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of multi-puzzle-solver might be problematic. Click here for more details.
- {multi_puzzle_solver-1.0.4.dist-info → multi_puzzle_solver-1.0.7.dist-info}/METADATA +1075 -556
- multi_puzzle_solver-1.0.7.dist-info/RECORD +74 -0
- puzzle_solver/__init__.py +5 -1
- puzzle_solver/core/utils.py +17 -1
- puzzle_solver/core/utils_visualizer.py +257 -201
- puzzle_solver/puzzles/abc_view/abc_view.py +75 -0
- puzzle_solver/puzzles/aquarium/aquarium.py +8 -23
- puzzle_solver/puzzles/battleships/battleships.py +39 -53
- puzzle_solver/puzzles/binairo/binairo.py +2 -2
- puzzle_solver/puzzles/black_box/black_box.py +6 -70
- puzzle_solver/puzzles/connect_the_dots/connect_the_dots.py +4 -2
- puzzle_solver/puzzles/filling/filling.py +11 -34
- puzzle_solver/puzzles/galaxies/galaxies.py +4 -2
- puzzle_solver/puzzles/heyawake/heyawake.py +72 -14
- puzzle_solver/puzzles/kakurasu/kakurasu.py +5 -13
- puzzle_solver/puzzles/kakuro/kakuro.py +6 -2
- puzzle_solver/puzzles/lits/lits.py +4 -2
- puzzle_solver/puzzles/mosaic/mosaic.py +8 -18
- puzzle_solver/puzzles/nonograms/nonograms.py +80 -85
- puzzle_solver/puzzles/nonograms/nonograms_colored.py +221 -0
- puzzle_solver/puzzles/norinori/norinori.py +5 -12
- puzzle_solver/puzzles/nurikabe/nurikabe.py +6 -2
- puzzle_solver/puzzles/palisade/palisade.py +8 -22
- puzzle_solver/puzzles/pearl/pearl.py +15 -27
- puzzle_solver/puzzles/pipes/pipes.py +2 -1
- puzzle_solver/puzzles/range/range.py +19 -55
- puzzle_solver/puzzles/rectangles/rectangles.py +4 -2
- puzzle_solver/puzzles/shingoki/shingoki.py +62 -105
- puzzle_solver/puzzles/singles/singles.py +6 -2
- puzzle_solver/puzzles/slant/slant.py +13 -19
- puzzle_solver/puzzles/slitherlink/slitherlink.py +2 -2
- puzzle_solver/puzzles/star_battle/star_battle.py +5 -2
- puzzle_solver/puzzles/stitches/stitches.py +8 -21
- puzzle_solver/puzzles/sudoku/sudoku.py +5 -11
- puzzle_solver/puzzles/tapa/tapa.py +6 -2
- puzzle_solver/puzzles/tents/tents.py +50 -80
- puzzle_solver/puzzles/tracks/tracks.py +19 -66
- puzzle_solver/puzzles/unruly/unruly.py +17 -49
- puzzle_solver/puzzles/yin_yang/yin_yang.py +3 -10
- multi_puzzle_solver-1.0.4.dist-info/RECORD +0 -72
- {multi_puzzle_solver-1.0.4.dist-info → multi_puzzle_solver-1.0.7.dist-info}/WHEEL +0 -0
- {multi_puzzle_solver-1.0.4.dist-info → multi_puzzle_solver-1.0.7.dist-info}/top_level.txt +0 -0
|
@@ -1,9 +1,9 @@
|
|
|
1
1
|
import numpy as np
|
|
2
2
|
from ortools.sat.python import cp_model
|
|
3
3
|
|
|
4
|
-
from puzzle_solver.core.utils import Pos, get_all_pos, get_neighbors4, get_pos, get_char
|
|
4
|
+
from puzzle_solver.core.utils import Pos, get_all_pos, get_col_pos, get_neighbors4, get_pos, get_char, get_row_pos
|
|
5
5
|
from puzzle_solver.core.utils_ortools import generic_solve_all, SingleSolution, force_connected_component
|
|
6
|
-
from puzzle_solver.core.utils_visualizer import
|
|
6
|
+
from puzzle_solver.core.utils_visualizer import combined_function, id_board_to_wall_fn
|
|
7
7
|
|
|
8
8
|
|
|
9
9
|
def return_3_consecutives(int_list: list[int]) -> list[tuple[int, int]]:
|
|
@@ -20,6 +20,17 @@ def return_3_consecutives(int_list: list[int]) -> list[tuple[int, int]]:
|
|
|
20
20
|
out.append((begin_idx, end_idx))
|
|
21
21
|
return out
|
|
22
22
|
|
|
23
|
+
|
|
24
|
+
def get_diagonal(pos1: Pos, pos2: Pos) -> list[Pos]:
|
|
25
|
+
assert pos1 != pos2, 'positions must be different'
|
|
26
|
+
dx = pos1.x - pos2.x
|
|
27
|
+
dy = pos1.y - pos2.y
|
|
28
|
+
assert abs(dx) == abs(dy), 'positions must be on a diagonal'
|
|
29
|
+
sdx = 1 if dx > 0 else -1
|
|
30
|
+
sdy = 1 if dy > 0 else -1
|
|
31
|
+
return [get_pos(x=pos2.x + i*sdx, y=pos2.y + i*sdy) for i in range(abs(dx) + 1)]
|
|
32
|
+
|
|
33
|
+
|
|
23
34
|
class Board:
|
|
24
35
|
def __init__(self, board: np.array, region_to_clue: dict[str, int]):
|
|
25
36
|
assert board.ndim == 2, f'board must be 2d, got {board.ndim}'
|
|
@@ -59,6 +70,10 @@ class Board:
|
|
|
59
70
|
force_connected_component(self.model, self.W)
|
|
60
71
|
# A straight (orthogonal) line of connected white cells cannot span across more than 2 regions.
|
|
61
72
|
self.disallow_white_lines_spanning_3_regions()
|
|
73
|
+
# straight diagonal black lines from side wall to horizontal wall are not allowed; because they would disconnect the white cells
|
|
74
|
+
self.disallow_full_black_diagonal()
|
|
75
|
+
# disallow a diagonal black line coming out of a wall of length N then coming back in on the same wall; because it would disconnect the white cells
|
|
76
|
+
self.disallow_zigzag_on_wall()
|
|
62
77
|
|
|
63
78
|
def disallow_white_lines_spanning_3_regions(self):
|
|
64
79
|
# A straight (orthogonal) line of connected white cells cannot span across more than 2 regions.
|
|
@@ -77,18 +92,61 @@ class Board:
|
|
|
77
92
|
pos_list = [get_pos(x=col_num, y=y) for y in range(begin_idx, end_idx+1)]
|
|
78
93
|
self.model.AddBoolOr([self.B[p] for p in pos_list])
|
|
79
94
|
|
|
80
|
-
def
|
|
95
|
+
def disallow_full_black_diagonal(self):
|
|
96
|
+
corners_dx_dy = [
|
|
97
|
+
((0, 0), 1, 1),
|
|
98
|
+
((self.H-1, 0), -1, 1),
|
|
99
|
+
((0, self.V-1), 1, -1),
|
|
100
|
+
((self.H-1, self.V-1), -1, -1),
|
|
101
|
+
]
|
|
102
|
+
for (corner_x, corner_y), dx, dy in corners_dx_dy:
|
|
103
|
+
for delta in range(1, min(self.V, self.H)):
|
|
104
|
+
pos1 = get_pos(x=corner_x, y=corner_y + delta*dy)
|
|
105
|
+
pos2 = get_pos(x=corner_x + delta*dx, y=corner_y)
|
|
106
|
+
diagonal_line = get_diagonal(pos1, pos2)
|
|
107
|
+
self.model.AddBoolOr([self.W[p] for p in diagonal_line])
|
|
108
|
+
|
|
109
|
+
def disallow_zigzag_on_wall(self):
|
|
110
|
+
for pos in get_row_pos(0, self.H): # top line
|
|
111
|
+
for end_x in range(pos.x + 2, self.H, 2): # end pos is even distance away from start pos
|
|
112
|
+
end_pos = get_pos(x=end_x, y=pos.y)
|
|
113
|
+
dx = end_x - pos.x
|
|
114
|
+
mid_pos = get_pos(x=pos.x + dx//2, y=pos.y + dx//2)
|
|
115
|
+
diag_1 = get_diagonal(pos, mid_pos) # from top wall to bottom triangle tip "\"
|
|
116
|
+
diag_2 = get_diagonal(end_pos, mid_pos) # from bottom triangle tip to top wall "/"
|
|
117
|
+
self.model.AddBoolOr([self.W[p] for p in diag_1 + diag_2])
|
|
118
|
+
for pos in get_row_pos(self.V-1, self.H): # bottom line
|
|
119
|
+
for end_x in range(pos.x + 2, self.H, 2): # end pos is even distance away from start pos
|
|
120
|
+
end_pos = get_pos(x=end_x, y=pos.y)
|
|
121
|
+
dx = end_x - pos.x
|
|
122
|
+
mid_pos = get_pos(x=pos.x + dx//2, y=pos.y - dx//2)
|
|
123
|
+
diag_1 = get_diagonal(pos, mid_pos) # from bottom wall to top triangle tip "/"
|
|
124
|
+
diag_2 = get_diagonal(end_pos, mid_pos) # from top triangle tip to bottom wall "\"
|
|
125
|
+
self.model.AddBoolOr([self.W[p] for p in diag_1 + diag_2])
|
|
126
|
+
for pos in get_col_pos(0, self.V): # left line
|
|
127
|
+
for end_y in range(pos.y + 2, self.V, 2): # end pos is even distance away from start pos
|
|
128
|
+
end_pos = get_pos(x=pos.x, y=end_y)
|
|
129
|
+
dy = end_y - pos.y
|
|
130
|
+
mid_pos = get_pos(x=pos.x + dy//2, y=pos.y + dy//2)
|
|
131
|
+
diag_1 = get_diagonal(pos, mid_pos) # from left wall to right triangle tip "\"
|
|
132
|
+
diag_2 = get_diagonal(end_pos, mid_pos) # from right triangle tip to left wall "/"
|
|
133
|
+
self.model.AddBoolOr([self.W[p] for p in diag_1 + diag_2])
|
|
134
|
+
for pos in get_col_pos(self.H-1, self.V): # right line
|
|
135
|
+
for end_y in range(pos.y + 2, self.V, 2): # end pos is even distance away from start pos
|
|
136
|
+
end_pos = get_pos(x=pos.x, y=end_y)
|
|
137
|
+
dy = end_y - pos.y
|
|
138
|
+
mid_pos = get_pos(x=pos.x - dy//2, y=pos.y + dy//2)
|
|
139
|
+
diag_1 = get_diagonal(pos, mid_pos) # from right wall to left triangle tip "/"
|
|
140
|
+
|
|
141
|
+
def solve_and_print(self, verbose: bool = True, max_solutions: int = 20):
|
|
81
142
|
def board_to_solution(board: Board, solver: cp_model.CpSolverSolutionCallback) -> SingleSolution:
|
|
82
|
-
assignment:
|
|
83
|
-
for pos, var in board.B.items():
|
|
84
|
-
assignment[pos] = 1 if solver.Value(var) == 1 else 0
|
|
85
|
-
return SingleSolution(assignment=assignment)
|
|
143
|
+
return SingleSolution(assignment={pos: solver.Value(var) for pos, var in board.B.items()})
|
|
86
144
|
def callback(single_res: SingleSolution):
|
|
87
145
|
print("Solution found")
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
return generic_solve_all(self, board_to_solution, callback=callback if verbose else None, verbose=verbose, max_solutions=
|
|
146
|
+
print(combined_function(self.V, self.H,
|
|
147
|
+
cell_flags=id_board_to_wall_fn(self.board),
|
|
148
|
+
is_shaded=lambda r, c: single_res.assignment[get_pos(x=c, y=r)] == 1,
|
|
149
|
+
center_char=lambda r, c: self.region_to_clue.get(int(self.board[r, c]), ''),
|
|
150
|
+
text_on_shaded_cells=False
|
|
151
|
+
))
|
|
152
|
+
return generic_solve_all(self, board_to_solution, callback=callback if verbose else None, verbose=verbose, max_solutions=max_solutions)
|
|
@@ -1,22 +1,21 @@
|
|
|
1
1
|
import numpy as np
|
|
2
2
|
from ortools.sat.python import cp_model
|
|
3
3
|
|
|
4
|
-
from puzzle_solver.core.utils import Pos, get_all_pos,
|
|
4
|
+
from puzzle_solver.core.utils import Pos, get_all_pos, get_pos
|
|
5
5
|
from puzzle_solver.core.utils_ortools import generic_solve_all, SingleSolution
|
|
6
|
+
from puzzle_solver.core.utils_visualizer import combined_function
|
|
6
7
|
|
|
7
8
|
|
|
8
9
|
class Board:
|
|
9
10
|
def __init__(self, side: np.array, bottom: np.array):
|
|
10
11
|
assert side.ndim == 1, f'side must be 1d, got {side.ndim}'
|
|
11
|
-
self.V = side.shape[0]
|
|
12
12
|
assert bottom.ndim == 1, f'bottom must be 1d, got {bottom.ndim}'
|
|
13
|
+
self.V = side.shape[0]
|
|
13
14
|
self.H = bottom.shape[0]
|
|
14
15
|
self.side = side
|
|
15
16
|
self.bottom = bottom
|
|
16
|
-
|
|
17
17
|
self.model = cp_model.CpModel()
|
|
18
18
|
self.model_vars: dict[Pos, cp_model.IntVar] = {}
|
|
19
|
-
|
|
20
19
|
self.create_vars()
|
|
21
20
|
self.add_all_constraints()
|
|
22
21
|
|
|
@@ -32,15 +31,8 @@ class Board:
|
|
|
32
31
|
|
|
33
32
|
def solve_and_print(self, verbose: bool = True):
|
|
34
33
|
def board_to_solution(board: Board, solver: cp_model.CpSolverSolutionCallback) -> SingleSolution:
|
|
35
|
-
assignment:
|
|
36
|
-
for pos, var in board.model_vars.items():
|
|
37
|
-
assignment[pos] = solver.value(var)
|
|
38
|
-
return SingleSolution(assignment=assignment)
|
|
34
|
+
return SingleSolution(assignment={pos: solver.Value(var) for pos, var in board.model_vars.items()})
|
|
39
35
|
def callback(single_res: SingleSolution):
|
|
40
36
|
print("Solution found")
|
|
41
|
-
|
|
42
|
-
for pos in get_all_pos(self.V, self.H):
|
|
43
|
-
c = 'X' if single_res.assignment[pos] else ' '
|
|
44
|
-
set_char(res, pos, c)
|
|
45
|
-
print(res)
|
|
37
|
+
print(combined_function(self.V, self.H, is_shaded=lambda r, c: single_res.assignment[get_pos(x=c, y=r)]))
|
|
46
38
|
return generic_solve_all(self, board_to_solution, callback=callback if verbose else None, verbose=verbose)
|
|
@@ -6,7 +6,7 @@ from ortools.sat.python.cp_model import LinearExpr as lxp
|
|
|
6
6
|
|
|
7
7
|
from puzzle_solver.core.utils import Direction, Pos, get_all_pos, get_next_pos, get_pos, in_bounds, get_char
|
|
8
8
|
from puzzle_solver.core.utils_ortools import generic_solve_all, SingleSolution
|
|
9
|
-
from puzzle_solver.core.utils_visualizer import
|
|
9
|
+
from puzzle_solver.core.utils_visualizer import combined_function
|
|
10
10
|
|
|
11
11
|
|
|
12
12
|
class Board:
|
|
@@ -73,5 +73,9 @@ class Board:
|
|
|
73
73
|
return SingleSolution(assignment=assignment)
|
|
74
74
|
def callback(single_res: SingleSolution):
|
|
75
75
|
print("Solution found")
|
|
76
|
-
print(
|
|
76
|
+
print(combined_function(self.V, self.H,
|
|
77
|
+
is_shaded=lambda r, c: self.board[r, c] == '#',
|
|
78
|
+
center_char=lambda r, c: str(single_res.assignment[get_pos(x=c, y=r)]),
|
|
79
|
+
text_on_shaded_cells=False
|
|
80
|
+
))
|
|
77
81
|
return generic_solve_all(self, board_to_solution, callback=callback if verbose else None, verbose=verbose)
|
|
@@ -6,7 +6,7 @@ import numpy as np
|
|
|
6
6
|
|
|
7
7
|
from puzzle_solver.core.utils import Pos, get_all_pos, get_char, set_char, get_pos, in_bounds, Direction, get_next_pos, polyominoes_with_shape_id
|
|
8
8
|
from puzzle_solver.core.utils_ortools import generic_solve_all, SingleSolution, force_connected_component
|
|
9
|
-
from puzzle_solver.core.utils_visualizer import
|
|
9
|
+
from puzzle_solver.core.utils_visualizer import combined_function, id_board_to_wall_fn
|
|
10
10
|
|
|
11
11
|
|
|
12
12
|
# a shape on the 2d board is just a set of positions
|
|
@@ -132,5 +132,7 @@ class Board:
|
|
|
132
132
|
res = np.full((self.V, self.H), ' ', dtype=object)
|
|
133
133
|
for pos, val in single_res.assignment.items():
|
|
134
134
|
set_char(res, pos, '▒▒▒' if val == 1 else ' ')
|
|
135
|
-
print(
|
|
135
|
+
print(combined_function(self.V, self.H,
|
|
136
|
+
cell_flags=id_board_to_wall_fn(self.board),
|
|
137
|
+
center_char=lambda r, c: res[r][c]))
|
|
136
138
|
return generic_solve_all(self, board_to_solution, callback=callback if verbose_callback else None, verbose=verbose, max_solutions=max_solutions)
|
|
@@ -2,47 +2,37 @@ import numpy as np
|
|
|
2
2
|
from ortools.sat.python import cp_model
|
|
3
3
|
from ortools.sat.python.cp_model import LinearExpr as lxp
|
|
4
4
|
|
|
5
|
-
from puzzle_solver.core.utils import Pos, get_all_pos,
|
|
5
|
+
from puzzle_solver.core.utils import Pos, get_all_pos, get_char, get_neighbors8, get_pos
|
|
6
6
|
from puzzle_solver.core.utils_ortools import generic_solve_all, SingleSolution
|
|
7
|
+
from puzzle_solver.core.utils_visualizer import combined_function
|
|
7
8
|
|
|
8
9
|
|
|
9
10
|
class Board:
|
|
10
11
|
def __init__(self, board: np.array):
|
|
11
12
|
assert board.ndim == 2, f'board must be 2d, got {board.ndim}'
|
|
12
|
-
assert board.shape[0] == board.shape[1], 'board must be square'
|
|
13
13
|
assert all((c.item() == ' ') or str(c.item()).isdecimal() for c in np.nditer(board)), 'board must contain only space or digits'
|
|
14
14
|
self.board = board
|
|
15
|
-
self.
|
|
15
|
+
self.V, self.H = board.shape
|
|
16
16
|
self.model = cp_model.CpModel()
|
|
17
17
|
self.model_vars: dict[Pos, cp_model.IntVar] = {}
|
|
18
|
-
|
|
19
18
|
self.create_vars()
|
|
20
19
|
self.add_all_constraints()
|
|
21
20
|
|
|
22
21
|
def create_vars(self):
|
|
23
|
-
for pos in get_all_pos(self.
|
|
22
|
+
for pos in get_all_pos(self.V, self.H):
|
|
24
23
|
self.model_vars[pos] = self.model.NewBoolVar(f'{pos}')
|
|
25
24
|
|
|
26
25
|
def add_all_constraints(self):
|
|
27
|
-
for pos in get_all_pos(self.
|
|
26
|
+
for pos in get_all_pos(self.V, self.H):
|
|
28
27
|
c = get_char(self.board, pos)
|
|
29
28
|
if not str(c).isdecimal():
|
|
30
29
|
continue
|
|
31
|
-
|
|
32
|
-
self.model.Add(lxp.sum(neighbour_vars) == int(c))
|
|
30
|
+
self.model.Add(lxp.Sum([self.model_vars[n] for n in get_neighbors8(pos, self.V, self.H, include_self=True)]) == int(c))
|
|
33
31
|
|
|
34
32
|
def solve_and_print(self, verbose: bool = True):
|
|
35
33
|
def board_to_solution(board: Board, solver: cp_model.CpSolverSolutionCallback) -> SingleSolution:
|
|
36
|
-
assignment:
|
|
37
|
-
for pos, var in board.model_vars.items():
|
|
38
|
-
assignment[pos] = solver.Value(var)
|
|
39
|
-
return SingleSolution(assignment=assignment)
|
|
34
|
+
return SingleSolution(assignment={pos: solver.Value(var) for pos, var in board.model_vars.items()})
|
|
40
35
|
def callback(single_res: SingleSolution):
|
|
41
36
|
print("Solution found")
|
|
42
|
-
|
|
43
|
-
for pos in get_all_pos(self.N):
|
|
44
|
-
c = get_char(self.board, pos)
|
|
45
|
-
c = 'B' if single_res.assignment[pos] == 1 else ' '
|
|
46
|
-
set_char(res, pos, c)
|
|
47
|
-
print(res)
|
|
37
|
+
print(combined_function(self.V, self.H, is_shaded=lambda r, c: single_res.assignment[get_pos(x=c, y=r)] == 1, center_char=lambda r, c: str(self.board[r, c]), text_on_shaded_cells=False))
|
|
48
38
|
return generic_solve_all(self, board_to_solution, callback=callback if verbose else None, verbose=verbose)
|
|
@@ -1,8 +1,82 @@
|
|
|
1
|
-
import numpy as np
|
|
2
1
|
from ortools.sat.python import cp_model
|
|
3
2
|
|
|
4
|
-
from puzzle_solver.core.utils import Pos, get_all_pos,
|
|
3
|
+
from puzzle_solver.core.utils import Pos, get_all_pos, get_pos, get_row_pos, get_col_pos
|
|
5
4
|
from puzzle_solver.core.utils_ortools import generic_solve_all, SingleSolution
|
|
5
|
+
from puzzle_solver.core.utils_visualizer import combined_function
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
def constrain_nonogram_sequence(model: cp_model.CpModel, clues: list[int], current_sequence: list[cp_model.IntVar], ns: str):
|
|
9
|
+
"""
|
|
10
|
+
Constrain a binary sequence (current_sequence) to match the nonogram clues in clues.
|
|
11
|
+
|
|
12
|
+
clues: e.g., [3,1] means: a run of 3 ones, >=1 zero, then a run of 1 one.
|
|
13
|
+
current_sequence: list of IntVar in {0,1}.
|
|
14
|
+
extra_vars: dict for storing helper vars safely across multiple calls.
|
|
15
|
+
|
|
16
|
+
steps:
|
|
17
|
+
- Create start position s_i for each run i.
|
|
18
|
+
- Enforce order and >=1 separation between runs.
|
|
19
|
+
- Link each cell j to exactly one run interval (or none) via coverage booleans.
|
|
20
|
+
- Force sum of ones to equal sum(clues).
|
|
21
|
+
"""
|
|
22
|
+
L = len(current_sequence)
|
|
23
|
+
|
|
24
|
+
# not needed but useful for debugging: any clue longer than the line ⇒ unsat.
|
|
25
|
+
if sum(clues) + len(clues) - 1 > L:
|
|
26
|
+
print(f"Infeasible: clue {clues} longer than line length {L} for {ns}")
|
|
27
|
+
model.Add(0 == 1)
|
|
28
|
+
return
|
|
29
|
+
|
|
30
|
+
result = {}
|
|
31
|
+
# Start variables for each run. This is the most critical variable for the problem.
|
|
32
|
+
starts = []
|
|
33
|
+
result[f"{ns}_starts"] = starts
|
|
34
|
+
for i in range(len(clues)):
|
|
35
|
+
s = model.NewIntVar(0, L, f"{ns}_s[{i}]")
|
|
36
|
+
starts.append(s)
|
|
37
|
+
# Enforce order and >=1 blank between consecutive runs.
|
|
38
|
+
for i in range(len(clues) - 1):
|
|
39
|
+
model.Add(starts[i + 1] >= starts[i] + clues[i] + 1)
|
|
40
|
+
# enforce that every run is fully contained in the board
|
|
41
|
+
for i in range(len(clues)):
|
|
42
|
+
model.Add(starts[i] + clues[i] <= L)
|
|
43
|
+
|
|
44
|
+
# For each cell j, create booleans cover[i][j] that indicate
|
|
45
|
+
# whether run i covers cell j: (starts[i] <= j) AND (j < starts[i] + clues[i])
|
|
46
|
+
cover = [[None] * L for _ in range(len(clues))]
|
|
47
|
+
list_b_le = [[None] * L for _ in range(len(clues))]
|
|
48
|
+
list_b_lt_end = [[None] * L for _ in range(len(clues))]
|
|
49
|
+
result[f"{ns}_cover"] = cover
|
|
50
|
+
result[f"{ns}_list_b_le"] = list_b_le
|
|
51
|
+
result[f"{ns}_list_b_lt_end"] = list_b_lt_end
|
|
52
|
+
|
|
53
|
+
for i, c in enumerate(clues):
|
|
54
|
+
s_i = starts[i]
|
|
55
|
+
for j in range(L):
|
|
56
|
+
# b_le: s_i <= j [is start[i] <= j]
|
|
57
|
+
b_le = model.NewBoolVar(f"{ns}_le[{i},{j}]")
|
|
58
|
+
model.Add(s_i <= j).OnlyEnforceIf(b_le)
|
|
59
|
+
model.Add(s_i >= j + 1).OnlyEnforceIf(b_le.Not())
|
|
60
|
+
|
|
61
|
+
# b_lt_end: j < s_i + c ⇔ s_i + c - 1 >= j [is start[i] + clues[i] - 1 (aka end[i]) >= j]
|
|
62
|
+
b_lt_end = model.NewBoolVar(f"{ns}_lt_end[{i},{j}]")
|
|
63
|
+
end_expr = s_i + c - 1
|
|
64
|
+
model.Add(end_expr >= j).OnlyEnforceIf(b_lt_end)
|
|
65
|
+
model.Add(end_expr <= j - 1).OnlyEnforceIf(b_lt_end.Not()) # (s_i + c - 1) < j
|
|
66
|
+
|
|
67
|
+
b_cov = model.NewBoolVar(f"{ns}_cov[{i},{j}]")
|
|
68
|
+
# If covered ⇒ both comparisons true
|
|
69
|
+
model.AddBoolAnd([b_le, b_lt_end]).OnlyEnforceIf(b_cov)
|
|
70
|
+
# If both comparisons true ⇒ covered
|
|
71
|
+
model.AddBoolOr([b_cov, b_le.Not(), b_lt_end.Not()])
|
|
72
|
+
cover[i][j] = b_cov
|
|
73
|
+
list_b_le[i][j] = b_le
|
|
74
|
+
list_b_lt_end[i][j] = b_lt_end
|
|
75
|
+
|
|
76
|
+
# Each cell j is 1 iff it is covered by exactly one run.
|
|
77
|
+
# (Because runs are separated by >=1 zero, these coverage intervals cannot overlap,
|
|
78
|
+
for j in range(L):
|
|
79
|
+
model.Add(sum(cover[i][j] for i in range(len(clues))) == current_sequence[j])
|
|
6
80
|
|
|
7
81
|
|
|
8
82
|
class Board:
|
|
@@ -30,97 +104,18 @@ class Board:
|
|
|
30
104
|
if ground_sequence == -1:
|
|
31
105
|
continue
|
|
32
106
|
current_sequence = [self.model_vars[pos] for pos in get_row_pos(i, self.H)]
|
|
33
|
-
self.
|
|
107
|
+
constrain_nonogram_sequence(self.model, ground_sequence, current_sequence, f'ngm_side_{i}')
|
|
34
108
|
for i in range(self.H):
|
|
35
109
|
ground_sequence = self.top[i]
|
|
36
110
|
if ground_sequence == -1:
|
|
37
111
|
continue
|
|
38
112
|
current_sequence = [self.model_vars[pos] for pos in get_col_pos(i, self.V)]
|
|
39
|
-
self.
|
|
40
|
-
|
|
41
|
-
def constrain_nonogram_sequence(self, clues: list[int], current_sequence: list[cp_model.IntVar], ns: str):
|
|
42
|
-
"""
|
|
43
|
-
Constrain a binary sequence (current_sequence) to match the nonogram clues in clues.
|
|
44
|
-
|
|
45
|
-
clues: e.g., [3,1] means: a run of 3 ones, >=1 zero, then a run of 1 one.
|
|
46
|
-
current_sequence: list of IntVar in {0,1}.
|
|
47
|
-
extra_vars: dict for storing helper vars safely across multiple calls.
|
|
48
|
-
|
|
49
|
-
steps:
|
|
50
|
-
- Create start position s_i for each run i.
|
|
51
|
-
- Enforce order and >=1 separation between runs.
|
|
52
|
-
- Link each cell j to exactly one run interval (or none) via coverage booleans.
|
|
53
|
-
- Force sum of ones to equal sum(clues).
|
|
54
|
-
"""
|
|
55
|
-
L = len(current_sequence)
|
|
56
|
-
|
|
57
|
-
# not needed but useful for debugging: any clue longer than the line ⇒ unsat.
|
|
58
|
-
if sum(clues) + len(clues) - 1 > L:
|
|
59
|
-
print(f"Infeasible: clue {clues} longer than line length {L} for {ns}")
|
|
60
|
-
self.model.Add(0 == 1)
|
|
61
|
-
return
|
|
62
|
-
|
|
63
|
-
# Start variables for each run. This is the most critical variable for the problem.
|
|
64
|
-
starts = []
|
|
65
|
-
self.extra_vars[f"{ns}_starts"] = starts
|
|
66
|
-
for i in range(len(clues)):
|
|
67
|
-
s = self.model.NewIntVar(0, L, f"{ns}_s[{i}]")
|
|
68
|
-
starts.append(s)
|
|
69
|
-
# Enforce order and >=1 blank between consecutive runs.
|
|
70
|
-
for i in range(len(clues) - 1):
|
|
71
|
-
self.model.Add(starts[i + 1] >= starts[i] + clues[i] + 1)
|
|
72
|
-
# enforce that every run is fully contained in the board
|
|
73
|
-
for i in range(len(clues)):
|
|
74
|
-
self.model.Add(starts[i] + clues[i] <= L)
|
|
75
|
-
|
|
76
|
-
# For each cell j, create booleans cover[i][j] that indicate
|
|
77
|
-
# whether run i covers cell j: (starts[i] <= j) AND (j < starts[i] + clues[i])
|
|
78
|
-
cover = [[None] * L for _ in range(len(clues))]
|
|
79
|
-
list_b_le = [[None] * L for _ in range(len(clues))]
|
|
80
|
-
list_b_lt_end = [[None] * L for _ in range(len(clues))]
|
|
81
|
-
self.extra_vars[f"{ns}_cover"] = cover
|
|
82
|
-
self.extra_vars[f"{ns}_list_b_le"] = list_b_le
|
|
83
|
-
self.extra_vars[f"{ns}_list_b_lt_end"] = list_b_lt_end
|
|
84
|
-
|
|
85
|
-
for i, c in enumerate(clues):
|
|
86
|
-
s_i = starts[i]
|
|
87
|
-
for j in range(L):
|
|
88
|
-
# b_le: s_i <= j [is start[i] <= j]
|
|
89
|
-
b_le = self.model.NewBoolVar(f"{ns}_le[{i},{j}]")
|
|
90
|
-
self.model.Add(s_i <= j).OnlyEnforceIf(b_le)
|
|
91
|
-
self.model.Add(s_i >= j + 1).OnlyEnforceIf(b_le.Not())
|
|
92
|
-
|
|
93
|
-
# b_lt_end: j < s_i + c ⇔ s_i + c - 1 >= j [is start[i] + clues[i] - 1 (aka end[i]) >= j]
|
|
94
|
-
b_lt_end = self.model.NewBoolVar(f"{ns}_lt_end[{i},{j}]")
|
|
95
|
-
end_expr = s_i + c - 1
|
|
96
|
-
self.model.Add(end_expr >= j).OnlyEnforceIf(b_lt_end)
|
|
97
|
-
self.model.Add(end_expr <= j - 1).OnlyEnforceIf(b_lt_end.Not()) # (s_i + c - 1) < j
|
|
98
|
-
|
|
99
|
-
b_cov = self.model.NewBoolVar(f"{ns}_cov[{i},{j}]")
|
|
100
|
-
# If covered ⇒ both comparisons true
|
|
101
|
-
self.model.AddBoolAnd([b_le, b_lt_end]).OnlyEnforceIf(b_cov)
|
|
102
|
-
# If both comparisons true ⇒ covered
|
|
103
|
-
self.model.AddBoolOr([b_cov, b_le.Not(), b_lt_end.Not()])
|
|
104
|
-
cover[i][j] = b_cov
|
|
105
|
-
list_b_le[i][j] = b_le
|
|
106
|
-
list_b_lt_end[i][j] = b_lt_end
|
|
107
|
-
|
|
108
|
-
# Each cell j is 1 iff it is covered by exactly one run.
|
|
109
|
-
# (Because runs are separated by >=1 zero, these coverage intervals cannot overlap,
|
|
110
|
-
for j in range(L):
|
|
111
|
-
self.model.Add(sum(cover[i][j] for i in range(len(clues))) == current_sequence[j])
|
|
113
|
+
constrain_nonogram_sequence(self.model, ground_sequence, current_sequence, f'ngm_top_{i}')
|
|
112
114
|
|
|
113
115
|
def solve_and_print(self, verbose: bool = True):
|
|
114
116
|
def board_to_solution(board: Board, solver: cp_model.CpSolverSolutionCallback) -> SingleSolution:
|
|
115
|
-
assignment:
|
|
116
|
-
for pos, var in board.model_vars.items():
|
|
117
|
-
assignment[pos] = solver.value(var)
|
|
118
|
-
return SingleSolution(assignment=assignment)
|
|
117
|
+
return SingleSolution(assignment={pos: solver.value(var) for pos, var in board.model_vars.items()})
|
|
119
118
|
def callback(single_res: SingleSolution):
|
|
120
119
|
print("Solution found")
|
|
121
|
-
|
|
122
|
-
for pos in get_all_pos(self.V, self.H):
|
|
123
|
-
c = 'B' if single_res.assignment[pos] == 1 else ' '
|
|
124
|
-
set_char(res, pos, c)
|
|
125
|
-
print(res)
|
|
120
|
+
print(combined_function(self.V, self.H, is_shaded=lambda r, c: single_res.assignment[get_pos(x=c, y=r)]))
|
|
126
121
|
return generic_solve_all(self, board_to_solution, callback=callback if verbose else None, verbose=verbose)
|
|
@@ -0,0 +1,221 @@
|
|
|
1
|
+
from collections import defaultdict
|
|
2
|
+
from typing import Optional
|
|
3
|
+
|
|
4
|
+
import numpy as np
|
|
5
|
+
from ortools.sat.python import cp_model
|
|
6
|
+
from ortools.sat.python.cp_model import LinearExpr as lxp
|
|
7
|
+
|
|
8
|
+
from puzzle_solver.core.utils import Pos, get_all_pos, get_pos, set_char, get_row_pos, get_col_pos
|
|
9
|
+
from puzzle_solver.core.utils_ortools import generic_solve_all, SingleSolution
|
|
10
|
+
from puzzle_solver.core.utils_visualizer import combined_function
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
def assert_input(lines: list[list[tuple[int, str]]]):
|
|
14
|
+
for line in lines:
|
|
15
|
+
for i,c in enumerate(line):
|
|
16
|
+
if c == -1:
|
|
17
|
+
continue
|
|
18
|
+
elif isinstance(c, str):
|
|
19
|
+
assert c[:-1].isdigit(), f'strings must begin with a digit, got {c}'
|
|
20
|
+
line[i] = (int(c[:-1]), c[-1])
|
|
21
|
+
elif isinstance(c, tuple):
|
|
22
|
+
assert len(c) == 2 and isinstance(c[0], int) and isinstance(c[1], str), f'tuples must be (int, str), got {c}'
|
|
23
|
+
else:
|
|
24
|
+
raise ValueError(f'invalid cell value: {c}')
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
class Board:
|
|
28
|
+
def __init__(self, top: list[list[tuple[int, str]]], side: list[list[tuple[int, str]]]):
|
|
29
|
+
assert_input(top)
|
|
30
|
+
assert_input(side)
|
|
31
|
+
self.top = top
|
|
32
|
+
self.side = side
|
|
33
|
+
self.V = len(side)
|
|
34
|
+
self.H = len(top)
|
|
35
|
+
self.unique_colors = list(set([i[1] for line in top for i in line if i != -1] + [i[1] for line in side for i in line if i != -1]))
|
|
36
|
+
self.model = cp_model.CpModel()
|
|
37
|
+
self.model_vars: dict[Pos, dict[str, cp_model.IntVar]] = defaultdict(dict)
|
|
38
|
+
self.extra_vars = {}
|
|
39
|
+
|
|
40
|
+
self.create_vars()
|
|
41
|
+
self.add_all_constraints()
|
|
42
|
+
|
|
43
|
+
def create_vars(self):
|
|
44
|
+
for pos in get_all_pos(self.V, self.H):
|
|
45
|
+
for color in self.unique_colors:
|
|
46
|
+
self.model_vars[pos][color] = self.model.NewBoolVar(f'{pos}:{color}')
|
|
47
|
+
|
|
48
|
+
def add_all_constraints(self):
|
|
49
|
+
for pos in get_all_pos(self.V, self.H):
|
|
50
|
+
self.model.Add(lxp.sum(list(self.model_vars[pos].values())) <= 1)
|
|
51
|
+
for i in range(self.V):
|
|
52
|
+
ground_sequence = self.side[i]
|
|
53
|
+
if tuple(ground_sequence) == (-1,):
|
|
54
|
+
continue
|
|
55
|
+
current_sequence = [self.model_vars[pos] for pos in get_row_pos(i, self.H)]
|
|
56
|
+
self.constrain_nonogram_sequence(ground_sequence, current_sequence, f'ngm_side_{i}')
|
|
57
|
+
for i in range(self.H):
|
|
58
|
+
ground_sequence = self.top[i]
|
|
59
|
+
if tuple(ground_sequence) == (-1,):
|
|
60
|
+
continue
|
|
61
|
+
current_sequence = [self.model_vars[pos] for pos in get_col_pos(i, self.V)]
|
|
62
|
+
self.constrain_nonogram_sequence(ground_sequence, current_sequence, f'ngm_top_{i}')
|
|
63
|
+
|
|
64
|
+
def constrain_nonogram_sequence(self, clues: list[tuple[int, str]], current_sequence: list[dict[str, cp_model.IntVar]], ns: str):
|
|
65
|
+
"""
|
|
66
|
+
Constrain a colored sequence (current_sequence) to match the nonogram clues in clues.
|
|
67
|
+
|
|
68
|
+
clues: e.g., [(3, 'R'), (1, 'G')] means: a run of 3 red ones, then a run of 1 green one. If two clues are next to each other and have the same color, they must be separated by at least one blank.
|
|
69
|
+
current_sequence: list of dicts of IntVar in {0,1} for each color.
|
|
70
|
+
|
|
71
|
+
steps:
|
|
72
|
+
- Create start position s_i for each run i.
|
|
73
|
+
- Enforce order and >=1 separation between runs.
|
|
74
|
+
- Link each cell j to exactly one run interval (or none) via coverage booleans.
|
|
75
|
+
- Force sum of ones to equal sum(clues).
|
|
76
|
+
"""
|
|
77
|
+
L = len(current_sequence)
|
|
78
|
+
R = len(clues)
|
|
79
|
+
|
|
80
|
+
# Early infeasibility check:
|
|
81
|
+
# Minimum required blanks equals number of adjacent pairs with same color.
|
|
82
|
+
same_color_separators = sum(1 for (len_i, col_i), (len_j, col_j) in zip(clues, clues[1:]) if col_i == col_j)
|
|
83
|
+
min_needed = sum(len_i for len_i, _ in clues) + same_color_separators
|
|
84
|
+
if min_needed > L:
|
|
85
|
+
print(f"Infeasible: clues {clues} need {min_needed} cells but line length is {L} for {ns}")
|
|
86
|
+
self.model.Add(0 == 1)
|
|
87
|
+
return
|
|
88
|
+
|
|
89
|
+
# Collect the color set present in clues and in the line vars
|
|
90
|
+
clue_colors = {c for _, c in clues}
|
|
91
|
+
seq_colors = set()
|
|
92
|
+
for j in range(L):
|
|
93
|
+
seq_colors.update(current_sequence[j].keys())
|
|
94
|
+
colors = sorted(clue_colors | seq_colors)
|
|
95
|
+
|
|
96
|
+
# Start vars per run
|
|
97
|
+
starts: list[cp_model.IntVar] = []
|
|
98
|
+
self.extra_vars[f"{ns}_starts"] = starts
|
|
99
|
+
for i in range(len(clues)):
|
|
100
|
+
# s_i in [0, L] but we will bound by containment constraint below
|
|
101
|
+
s = self.model.NewIntVar(0, L, f"{ns}_s[{i}]")
|
|
102
|
+
starts.append(s)
|
|
103
|
+
|
|
104
|
+
# Ordering + separation:
|
|
105
|
+
# If same color: s[i+1] >= s[i] + len[i] + 1
|
|
106
|
+
# If different color: s[i+1] >= s[i] + len[i]
|
|
107
|
+
for i in range(R - 1):
|
|
108
|
+
len_i, col_i = clues[i]
|
|
109
|
+
_, col_next = clues[i + 1]
|
|
110
|
+
gap = 1 if col_i == col_next else 0
|
|
111
|
+
self.model.Add(starts[i + 1] >= starts[i] + len_i + gap)
|
|
112
|
+
|
|
113
|
+
# Containment: s[i] + len[i] <= L
|
|
114
|
+
for i, (run_len, _) in enumerate(clues):
|
|
115
|
+
self.model.Add(starts[i] + run_len <= L)
|
|
116
|
+
|
|
117
|
+
# Coverage booleans: cover[i][j] <=> (starts[i] <= j) AND (j < starts[i] + run_len)
|
|
118
|
+
cover = [[None] * L for _ in range(R)]
|
|
119
|
+
list_b_le = [[None] * L for _ in range(R)]
|
|
120
|
+
list_b_lt_end = [[None] * L for _ in range(R)]
|
|
121
|
+
self.extra_vars[f"{ns}_cover"] = cover
|
|
122
|
+
self.extra_vars[f"{ns}_list_b_le"] = list_b_le
|
|
123
|
+
self.extra_vars[f"{ns}_list_b_lt_end"] = list_b_lt_end
|
|
124
|
+
|
|
125
|
+
for i, (run_len, _) in enumerate(clues):
|
|
126
|
+
s_i = starts[i]
|
|
127
|
+
for j in range(L):
|
|
128
|
+
b_le = self.model.NewBoolVar(f"{ns}_le[{i},{j}]") # s_i <= j
|
|
129
|
+
self.model.Add(s_i <= j).OnlyEnforceIf(b_le)
|
|
130
|
+
self.model.Add(s_i >= j + 1).OnlyEnforceIf(b_le.Not())
|
|
131
|
+
|
|
132
|
+
b_lt_end = self.model.NewBoolVar(f"{ns}_lt_end[{i},{j}]") # j < s_i + run_len <=> s_i + run_len - 1 >= j
|
|
133
|
+
end_expr = s_i + run_len - 1
|
|
134
|
+
self.model.Add(end_expr >= j).OnlyEnforceIf(b_lt_end)
|
|
135
|
+
self.model.Add(end_expr <= j - 1).OnlyEnforceIf(b_lt_end.Not())
|
|
136
|
+
|
|
137
|
+
b_cov = self.model.NewBoolVar(f"{ns}_cov[{i},{j}]")
|
|
138
|
+
self.model.AddBoolAnd([b_le, b_lt_end]).OnlyEnforceIf(b_cov)
|
|
139
|
+
self.model.AddBoolOr([b_cov, b_le.Not(), b_lt_end.Not()])
|
|
140
|
+
|
|
141
|
+
cover[i][j] = b_cov
|
|
142
|
+
list_b_le[i][j] = b_le
|
|
143
|
+
list_b_lt_end[i][j] = b_lt_end
|
|
144
|
+
|
|
145
|
+
# Link coverage to per-cell, per-color variables.
|
|
146
|
+
# For each color k and cell j:
|
|
147
|
+
# sum_{i: color_i == k} cover[i][j] == current_sequence[j][k]
|
|
148
|
+
# Also tie the total cover at j to the sum over all colors at j:
|
|
149
|
+
# sum_i cover[i][j] == sum_k current_sequence[j][k]
|
|
150
|
+
# This enforces that at most one color is active per cell (since the LHS is in {0,1} due to non-overlap).
|
|
151
|
+
# If a color var is missing in current_sequence[j], assume it’s an implicit 0 by creating a fixed zero var.
|
|
152
|
+
# (Alternatively, require the caller to provide all colors per cell.)
|
|
153
|
+
zero_cache = {}
|
|
154
|
+
def get_zero(name: str):
|
|
155
|
+
if name not in zero_cache:
|
|
156
|
+
z = self.model.NewConstant(0)
|
|
157
|
+
zero_cache[name] = z
|
|
158
|
+
return zero_cache[name]
|
|
159
|
+
|
|
160
|
+
# Pre-index runs by color for efficiency
|
|
161
|
+
runs_by_color = {k: [] for k in colors}
|
|
162
|
+
for i, (_, k) in enumerate(clues):
|
|
163
|
+
runs_by_color[k].append(i)
|
|
164
|
+
|
|
165
|
+
for j in range(L):
|
|
166
|
+
# Total coverage at cell j
|
|
167
|
+
total_cov_j = sum(cover[i][j] for i in range(R)) if R > 0 else 0
|
|
168
|
+
|
|
169
|
+
# Sum of color vars at cell j
|
|
170
|
+
color_vars_j = []
|
|
171
|
+
for k in colors:
|
|
172
|
+
v = current_sequence[j].get(k, None)
|
|
173
|
+
if v is None:
|
|
174
|
+
v = get_zero(f"{ns}_zero_{k}")
|
|
175
|
+
color_vars_j.append(v)
|
|
176
|
+
|
|
177
|
+
# Per-color coverage equality
|
|
178
|
+
if runs_by_color[k]:
|
|
179
|
+
self.model.Add(sum(cover[i][j] for i in runs_by_color[k]) == v)
|
|
180
|
+
else:
|
|
181
|
+
# No runs of this color -> force cell color var to 0
|
|
182
|
+
self.model.Add(v == 0)
|
|
183
|
+
|
|
184
|
+
# Tie total coverage to sum of color vars (blank vs exactly-one color)
|
|
185
|
+
if R > 0:
|
|
186
|
+
self.model.Add(total_cov_j == sum(color_vars_j))
|
|
187
|
+
else:
|
|
188
|
+
# No runs at all: all cells must be blank across all colors
|
|
189
|
+
for v in color_vars_j:
|
|
190
|
+
self.model.Add(v == 0)
|
|
191
|
+
|
|
192
|
+
# Optional but strong propagation: per-color totals must match total clue lengths of that color
|
|
193
|
+
total_len_by_color = {k: 0 for k in colors}
|
|
194
|
+
for length, k in clues:
|
|
195
|
+
total_len_by_color[k] += length
|
|
196
|
+
|
|
197
|
+
for k in colors:
|
|
198
|
+
total_cells_k = sum(current_sequence[j].get(k, get_zero(f"{ns}_zero_{k}")) for j in range(L))
|
|
199
|
+
self.model.Add(total_cells_k == total_len_by_color[k])
|
|
200
|
+
|
|
201
|
+
def solve_and_print(self, verbose: bool = True, visualize_colors: Optional[dict[str, str]] = None):
|
|
202
|
+
def board_to_solution(board: Board, solver: cp_model.CpSolverSolutionCallback) -> SingleSolution:
|
|
203
|
+
return SingleSolution(assignment={pos: color for pos, d in board.model_vars.items() for color, var in d.items() if solver.value(var) == 1})
|
|
204
|
+
def callback(single_res: SingleSolution):
|
|
205
|
+
print("Solution found")
|
|
206
|
+
print(combined_function(self.V, self.H, center_char=lambda r, c: single_res.assignment.get(get_pos(x=c, y=r), ' ')))
|
|
207
|
+
if visualize_colors is not None:
|
|
208
|
+
from matplotlib import pyplot as plt
|
|
209
|
+
from matplotlib.colors import ListedColormap
|
|
210
|
+
visualize_colors[' '] = 'black'
|
|
211
|
+
visualize_colors_keys = list(visualize_colors.keys())
|
|
212
|
+
char_to_int = {c: i for i, c in enumerate(visualize_colors_keys)}
|
|
213
|
+
nums = [[char_to_int[single_res.assignment.get(get_pos(x=c, y=r), ' ')] for c in range(self.H)] for r in range(self.V)]
|
|
214
|
+
plt.imshow(nums,
|
|
215
|
+
aspect='equal',
|
|
216
|
+
cmap=ListedColormap([visualize_colors[c] for c in visualize_colors_keys]),
|
|
217
|
+
extent=[0, self.H, self.V, 0])
|
|
218
|
+
plt.colorbar()
|
|
219
|
+
# plt.grid(True)
|
|
220
|
+
plt.show()
|
|
221
|
+
return generic_solve_all(self, board_to_solution, callback=callback if verbose else None, verbose=verbose)
|