multi-puzzle-solver 0.9.13__py3-none-any.whl → 0.9.15__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of multi-puzzle-solver might be problematic. Click here for more details.

@@ -2,7 +2,7 @@ import numpy as np
2
2
  from ortools.sat.python import cp_model
3
3
 
4
4
  from puzzle_solver.core.utils import Pos, get_all_pos, get_char, set_char, get_neighbors4, get_all_pos_to_idx_dict, get_row_pos, get_col_pos
5
- from puzzle_solver.core.utils_ortools import generic_solve_all, SingleSolution, and_constraint, or_constraint
5
+ from puzzle_solver.core.utils_ortools import generic_solve_all, SingleSolution, force_connected_component
6
6
 
7
7
 
8
8
  class Board:
@@ -17,34 +17,26 @@ class Board:
17
17
 
18
18
  self.model = cp_model.CpModel()
19
19
  self.B = {} # black squares
20
+ self.W = {} # white squares
20
21
  self.Num = {} # value of squares (Num = N + idx if black, else board[pos])
21
- # Connectivity helpers
22
- self.root: dict[Pos, cp_model.IntVar] = {} # exactly one root; root <= w
23
- self.reach_layers: list[dict[Pos, cp_model.IntVar]] = [] # R_t[p] booleans, t = 0..T
24
22
 
25
23
  self.create_vars()
26
24
  self.add_all_constraints()
27
25
 
28
26
  def create_vars(self):
29
27
  for pos in get_all_pos(self.V, self.H):
30
- self.B[pos] = self.model.NewBoolVar(f'{pos}')
28
+ self.B[pos] = self.model.NewBoolVar(f'B:{pos}')
29
+ self.W[pos] = self.model.NewBoolVar(f'W:{pos}')
30
+ # either black or white
31
+ self.model.AddExactlyOne([self.B[pos], self.W[pos]])
31
32
  self.Num[pos] = self.model.NewIntVar(0, 2*self.N, f'{pos}')
32
33
  self.model.Add(self.Num[pos] == self.N + self.idx_of[pos]).OnlyEnforceIf(self.B[pos])
33
34
  self.model.Add(self.Num[pos] == int(get_char(self.board, pos))).OnlyEnforceIf(self.B[pos].Not())
34
- # Root
35
- for pos in get_all_pos(self.V, self.H):
36
- self.root[pos] = self.model.NewBoolVar(f"root[{pos}]")
37
- # Percolation layers R_t (monotone flood fill)
38
- for t in range(self.N + 1):
39
- Rt: dict[Pos, cp_model.IntVar] = {}
40
- for pos in get_all_pos(self.V, self.H):
41
- Rt[pos] = self.model.NewBoolVar(f"R[{t}][{pos}]")
42
- self.reach_layers.append(Rt)
43
35
 
44
36
  def add_all_constraints(self):
45
37
  self.no_adjacent_blacks()
46
38
  self.no_number_appears_twice()
47
- self.white_connectivity_percolation()
39
+ self.force_connected_component()
48
40
 
49
41
  def no_adjacent_blacks(self):
50
42
  # no two black squares are adjacent
@@ -61,42 +53,9 @@ class Board:
61
53
  var_list = [self.Num[pos] for pos in get_col_pos(col, self.V)]
62
54
  self.model.AddAllDifferent(var_list)
63
55
 
64
- def white_connectivity_percolation(self):
65
- """
66
- Layered percolation:
67
- - root is exactly the first white cell
68
- - R_t is monotone nondecreasing in t (R_t+1 >= R_t)
69
- - A cell can 'turn on' at layer t+1 iff it's white and has a neighbor on at layer t (or is root)
70
- - Final layer is equal to the white mask: R_T[p] == w[p] => all whites are connected to the unique root
71
- """
72
- # to find unique solutions easily, we make only 1 possible root allowed; root is exactly the first white cell
73
- prev_cells_black: list[cp_model.IntVar] = []
74
- for pos in get_all_pos(self.V, self.H):
75
- and_constraint(self.model, target=self.root[pos], cs=[self.B[pos].Not()] + prev_cells_black)
76
- prev_cells_black.append(self.B[pos])
77
-
78
- # Seed: R0 = root
79
- for pos in get_all_pos(self.V, self.H):
80
- self.model.Add(self.reach_layers[0][pos] == self.root[pos])
81
-
82
- T = len(self.reach_layers)
83
- for t in range(1, T):
84
- Rt_prev = self.reach_layers[t - 1]
85
- Rt = self.reach_layers[t]
86
- for p in get_all_pos(self.V, self.H):
87
- # Rt[p] = Rt_prev[p] | (white[p] & Rt_prev[neighbour #1]) | (white[p] & Rt_prev[neighbour #2]) | ...
88
- # Create helper (white[p] & Rt_prev[neighbour #X]) for each neighbor q
89
- neigh_helpers: list[cp_model.IntVar] = []
90
- for q in get_neighbors4(p, self.V, self.H):
91
- a = self.model.NewBoolVar(f"A[{t}][{p}]<-({q})")
92
- and_constraint(self.model, target=a, cs=[self.B[p].Not(), Rt_prev[q]])
93
- neigh_helpers.append(a)
94
- or_constraint(self.model, target=Rt[p], cs=[Rt_prev[p]] + neigh_helpers)
56
+ def force_connected_component(self):
57
+ force_connected_component(self.model, self.W)
95
58
 
96
- # All whites must be reached by the final layer
97
- RT = self.reach_layers[T - 1]
98
- for p in get_all_pos(self.V, self.H):
99
- self.model.Add(RT[p] == self.B[p].Not())
100
59
 
101
60
 
102
61
  def solve_and_print(self, verbose: bool = True):
@@ -3,7 +3,7 @@ import numpy as np
3
3
  from ortools.sat.python import cp_model
4
4
 
5
5
  from puzzle_solver.core.utils import Pos, get_all_pos, set_char, get_char, Direction, in_bounds, get_next_pos, get_row_pos, get_col_pos, get_opposite_direction
6
- from puzzle_solver.core.utils_ortools import generic_solve_all, SingleSolution, and_constraint, or_constraint
6
+ from puzzle_solver.core.utils_ortools import force_connected_component, generic_solve_all, SingleSolution
7
7
 
8
8
 
9
9
  class Board:
@@ -25,7 +25,6 @@ class Board:
25
25
  self.model = cp_model.CpModel()
26
26
  self.cell_active: dict[Pos, cp_model.IntVar] = {}
27
27
  self.cell_direction: dict[tuple[Pos, Direction], cp_model.IntVar] = {}
28
- self.reach_layers: list[dict[Pos, cp_model.IntVar]] = [] # R_t[p] booleans, t = 0..T
29
28
 
30
29
  self.create_vars()
31
30
  self.add_all_constraints()
@@ -35,19 +34,13 @@ class Board:
35
34
  self.cell_active[pos] = self.model.NewBoolVar(f'{pos}')
36
35
  for direction in Direction:
37
36
  self.cell_direction[(pos, direction)] = self.model.NewBoolVar(f'{pos}:{direction}')
38
- # Percolation layers R_t (monotone flood fill)
39
- for t in range(self.V * self.H + 1):
40
- Rt: dict[Pos, cp_model.IntVar] = {}
41
- for pos in get_all_pos(self.V, self.H):
42
- Rt[pos] = self.model.NewBoolVar(f"R[{t}][{pos}]")
43
- self.reach_layers.append(Rt)
44
37
 
45
38
  def add_all_constraints(self):
46
39
  self.force_hints()
47
40
  self.force_sides()
48
41
  self.force_0_or_2_active()
49
42
  self.force_direction_constraints()
50
- self.force_percolation()
43
+ self.force_connected_component()
51
44
 
52
45
 
53
46
  def force_hints(self):
@@ -108,38 +101,16 @@ class Board:
108
101
  for pos in get_row_pos(0, self.H):
109
102
  self.model.Add(self.cell_direction[(pos, Direction.UP)] == 0)
110
103
 
111
- def force_percolation(self):
112
- """
113
- Layered percolation:
114
- - root is exactly the first cell in the first column
115
- - R_t is monotone nondecreasing in t (R_t+1 >= R_t)
116
- - A cell can 'turn on' at layer t+1 iff it's active and has a neighbor on AND pointing to it at layer t
117
- - Final layer is equal to the active mask: R_T[p] == active[p] => all active cells are connected to the unique root
118
- """
119
- # only the start position is a root
120
- self.model.Add(self.reach_layers[0][self.first_col_start_pos] == 1)
121
- for pos in get_all_pos(self.V, self.H):
122
- if pos != self.first_col_start_pos:
123
- self.model.Add(self.reach_layers[0][pos] == 0)
124
-
125
- for t in range(1, len(self.reach_layers)):
126
- Rt_prev = self.reach_layers[t - 1]
127
- Rt = self.reach_layers[t]
128
- for p in get_all_pos(self.V, self.H):
129
- # Rt[p] = Rt_prev[p] | (active[p] & Rt_prev[neighbour #1]) | (active[p] & Rt_prev[neighbour #2]) | ...
130
- # Create helper (active[p] & Rt_prev[neighbour #X]) for each neighbor q
131
- neigh_helpers: list[cp_model.IntVar] = []
132
- for direction in Direction:
133
- q = get_next_pos(p, direction)
134
- if not in_bounds(q, self.V, self.H):
135
- continue
136
- a = self.model.NewBoolVar(f"A[{t}][{p}]<-({q})")
137
- and_constraint(self.model, target=a, cs=[self.cell_active[p], Rt_prev[q], self.cell_direction[(q, get_opposite_direction(direction))]])
138
- neigh_helpers.append(a)
139
- or_constraint(self.model, target=Rt[p], cs=[Rt_prev[p]] + neigh_helpers)
140
- # every avtive track must be reachible -> single connected component
141
- for pos in get_all_pos(self.V, self.H):
142
- self.model.Add(self.reach_layers[-1][pos] == 1).OnlyEnforceIf(self.cell_active[pos])
104
+ def force_connected_component(self):
105
+ def is_neighbor(pd1: tuple[Pos, Direction], pd2: tuple[Pos, Direction]) -> bool:
106
+ p1, d1 = pd1
107
+ p2, d2 = pd2
108
+ if p1 == p2: # same position, different direction, is neighbor
109
+ return True
110
+ if get_next_pos(p1, d1) == p2 and d2 == get_opposite_direction(d1):
111
+ return True
112
+ return False
113
+ force_connected_component(self.model, self.cell_direction, is_neighbor=is_neighbor)
143
114
 
144
115
 
145
116