multi-puzzle-solver 0.9.13__py3-none-any.whl → 0.9.14__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of multi-puzzle-solver might be problematic. Click here for more details.
- {multi_puzzle_solver-0.9.13.dist-info → multi_puzzle_solver-0.9.14.dist-info}/METADATA +120 -9
- {multi_puzzle_solver-0.9.13.dist-info → multi_puzzle_solver-0.9.14.dist-info}/RECORD +16 -15
- puzzle_solver/__init__.py +2 -1
- puzzle_solver/core/utils.py +228 -127
- puzzle_solver/core/utils_ortools.py +235 -172
- puzzle_solver/puzzles/battleships/battleships.py +1 -0
- puzzle_solver/puzzles/black_box/black_box.py +313 -0
- puzzle_solver/puzzles/filling/filling.py +117 -192
- puzzle_solver/puzzles/inertia/tsp.py +4 -1
- puzzle_solver/puzzles/lits/lits.py +2 -95
- puzzle_solver/puzzles/pearl/pearl.py +12 -44
- puzzle_solver/puzzles/range/range.py +2 -51
- puzzle_solver/puzzles/singles/singles.py +9 -50
- puzzle_solver/puzzles/tracks/tracks.py +12 -41
- {multi_puzzle_solver-0.9.13.dist-info → multi_puzzle_solver-0.9.14.dist-info}/WHEEL +0 -0
- {multi_puzzle_solver-0.9.13.dist-info → multi_puzzle_solver-0.9.14.dist-info}/top_level.txt +0 -0
|
@@ -6,7 +6,7 @@ from typing import Optional, Union
|
|
|
6
6
|
from ortools.sat.python import cp_model
|
|
7
7
|
import numpy as np
|
|
8
8
|
|
|
9
|
-
from puzzle_solver.core.utils import Pos, get_all_pos, get_char, set_char, get_pos, in_bounds, Direction, get_next_pos
|
|
9
|
+
from puzzle_solver.core.utils import Pos, get_all_pos, get_char, set_char, get_pos, in_bounds, Direction, get_next_pos, polyominoes_with_shape_id
|
|
10
10
|
from puzzle_solver.core.utils_ortools import generic_solve_all, SingleSolution, force_connected_component
|
|
11
11
|
|
|
12
12
|
|
|
@@ -14,79 +14,6 @@ from puzzle_solver.core.utils_ortools import generic_solve_all, SingleSolution,
|
|
|
14
14
|
Shape = frozenset[Pos]
|
|
15
15
|
|
|
16
16
|
|
|
17
|
-
def polyominoes(N):
|
|
18
|
-
"""Generate all polyominoes of size N. Every rotation and reflection is considered different and included in the result.
|
|
19
|
-
Translation is not considered different and is removed from the result (otherwise the result would be infinite).
|
|
20
|
-
|
|
21
|
-
Below is the number of unique polyominoes of size N (not including rotations and reflections) and the lenth of the returned result (which includes all rotations and reflections)
|
|
22
|
-
N name #shapes #results
|
|
23
|
-
1 monomino 1 1
|
|
24
|
-
2 domino 1 2
|
|
25
|
-
3 tromino 2 6
|
|
26
|
-
4 tetromino 5 19
|
|
27
|
-
5 pentomino 12 63
|
|
28
|
-
6 hexomino 35 216
|
|
29
|
-
7 heptomino 108 760
|
|
30
|
-
8 octomino 369 2,725
|
|
31
|
-
9 nonomino 1,285 9,910
|
|
32
|
-
10 decomino 4,655 36,446
|
|
33
|
-
11 undecomino 17,073 135,268
|
|
34
|
-
12 dodecomino 63,600 505,861
|
|
35
|
-
Source: https://en.wikipedia.org/wiki/Polyomino
|
|
36
|
-
|
|
37
|
-
Args:
|
|
38
|
-
N (int): The size of the polyominoes to generate.
|
|
39
|
-
|
|
40
|
-
Returns:
|
|
41
|
-
set[(frozenset[Pos], int)]: A set of all polyominoes of size N (rotated and reflected up to D4 symmetry) along with a unique ID for each polyomino.
|
|
42
|
-
"""
|
|
43
|
-
assert N >= 1, 'N cannot be less than 1'
|
|
44
|
-
# need a frozenset because regular sets are not hashable
|
|
45
|
-
shapes: set[Shape] = {frozenset({Pos(0, 0)})}
|
|
46
|
-
for i in range(1, N):
|
|
47
|
-
next_shapes: set[Shape] = set()
|
|
48
|
-
for s in shapes:
|
|
49
|
-
# frontier: all 4-neighbors of existing cells not already in the shape
|
|
50
|
-
frontier = {get_next_pos(pos, direction)
|
|
51
|
-
for pos in s
|
|
52
|
-
for direction in Direction
|
|
53
|
-
if get_next_pos(pos, direction) not in s}
|
|
54
|
-
for cell in frontier:
|
|
55
|
-
t = s | {cell}
|
|
56
|
-
# normalize by translation only: shift so min x,y is (0,0). This removes translational symmetries.
|
|
57
|
-
minx = min(pos.x for pos in t)
|
|
58
|
-
miny = min(pos.y for pos in t)
|
|
59
|
-
t0 = frozenset(Pos(x=pos.x - minx, y=pos.y - miny) for pos in t)
|
|
60
|
-
next_shapes.add(t0)
|
|
61
|
-
shapes = next_shapes
|
|
62
|
-
# shapes is now complete, now classify up to D4 symmetry (rotations/reflections), translations ignored
|
|
63
|
-
mats = (
|
|
64
|
-
( 1, 0, 0, 1), # regular
|
|
65
|
-
(-1, 0, 0, 1), # reflect about x
|
|
66
|
-
( 1, 0, 0,-1), # reflect about y
|
|
67
|
-
(-1, 0, 0,-1), # reflect about x and y
|
|
68
|
-
# trnaspose then all 4 above
|
|
69
|
-
( 0, 1, 1, 0), ( 0, 1, -1, 0), ( 0,-1, 1, 0), ( 0,-1, -1, 0),
|
|
70
|
-
)
|
|
71
|
-
# compute canonical representative for each shape (lexicographically smallest normalized transform)
|
|
72
|
-
shape_to_canon: dict[Shape, tuple[Pos, ...]] = {}
|
|
73
|
-
for s in shapes:
|
|
74
|
-
reps: list[tuple[Pos, ...]] = []
|
|
75
|
-
for a, b, c, d in mats:
|
|
76
|
-
pts = {Pos(x=a*p.x + b*p.y, y=c*p.x + d*p.y) for p in s}
|
|
77
|
-
minx = min(p.x for p in pts)
|
|
78
|
-
miny = min(p.y for p in pts)
|
|
79
|
-
rep = tuple(sorted(Pos(x=p.x - minx, y=p.y - miny) for p in pts))
|
|
80
|
-
reps.append(rep)
|
|
81
|
-
canon = min(reps)
|
|
82
|
-
shape_to_canon[s] = canon
|
|
83
|
-
|
|
84
|
-
canon_set = set(shape_to_canon.values())
|
|
85
|
-
canon_to_id = {canon: i for i, canon in enumerate(sorted(canon_set))}
|
|
86
|
-
result = {(s, canon_to_id[shape_to_canon[s]]) for s in shapes}
|
|
87
|
-
return result
|
|
88
|
-
|
|
89
|
-
|
|
90
17
|
@dataclass(frozen=True)
|
|
91
18
|
class SingleSolution:
|
|
92
19
|
assignment: dict[Pos, Union[str, int]]
|
|
@@ -117,7 +44,7 @@ class Board:
|
|
|
117
44
|
assert all((str(c.item()).isdecimal() for c in np.nditer(board))), 'board must contain only digits'
|
|
118
45
|
self.board = board
|
|
119
46
|
self.polyomino_degrees = polyomino_degrees
|
|
120
|
-
self.polyominoes =
|
|
47
|
+
self.polyominoes = polyominoes_with_shape_id(self.polyomino_degrees)
|
|
121
48
|
|
|
122
49
|
self.block_numbers = set([int(c.item()) for c in np.nditer(board)])
|
|
123
50
|
self.blocks = {i: set() for i in self.block_numbers}
|
|
@@ -233,23 +160,3 @@ class Board:
|
|
|
233
160
|
print('[\n' + '\n'.join([' ' + str(res[row].tolist()) + ',' for row in range(self.V)]) + '\n]')
|
|
234
161
|
pass
|
|
235
162
|
return generic_solve_all(self, board_to_solution, callback=callback if verbose_callback else None, verbose=verbose, max_solutions=max_solutions)
|
|
236
|
-
|
|
237
|
-
def solve_then_constrain(self, verbose: bool = True):
|
|
238
|
-
tic = time.time()
|
|
239
|
-
all_solutions = []
|
|
240
|
-
while True:
|
|
241
|
-
solutions = self.solve_and_print(verbose=False, verbose_callback=verbose, max_solutions=1)
|
|
242
|
-
if len(solutions) == 0:
|
|
243
|
-
break
|
|
244
|
-
all_solutions.extend(solutions)
|
|
245
|
-
assignment = solutions[0].assignment
|
|
246
|
-
# constrain the board to not return the same solution again
|
|
247
|
-
lits = [self.model_vars[p].Not() if assignment[p] == 1 else self.model_vars[p] for p in assignment.keys()]
|
|
248
|
-
self.model.AddBoolOr(lits)
|
|
249
|
-
self.model.ClearHints()
|
|
250
|
-
for k, v in solutions[0].all_other_variables['fc'].items():
|
|
251
|
-
self.model.AddHint(self.fc[k], v)
|
|
252
|
-
print(f'Solutions found: {len(all_solutions)}')
|
|
253
|
-
toc = time.time()
|
|
254
|
-
print(f'Time taken: {toc - tic:.2f} seconds')
|
|
255
|
-
return all_solutions
|
|
@@ -5,7 +5,7 @@ from ortools.sat.python import cp_model
|
|
|
5
5
|
from ortools.sat.python.cp_model import LinearExpr as lxp
|
|
6
6
|
|
|
7
7
|
from puzzle_solver.core.utils import Pos, get_all_pos, set_char, in_bounds, Direction, get_next_pos, get_char, get_opposite_direction
|
|
8
|
-
from puzzle_solver.core.utils_ortools import and_constraint,
|
|
8
|
+
from puzzle_solver.core.utils_ortools import and_constraint, generic_solve_all, SingleSolution, force_connected_component
|
|
9
9
|
|
|
10
10
|
|
|
11
11
|
class Board:
|
|
@@ -18,7 +18,6 @@ class Board:
|
|
|
18
18
|
self.model = cp_model.CpModel()
|
|
19
19
|
self.cell_active: dict[Pos, cp_model.IntVar] = {}
|
|
20
20
|
self.cell_direction: dict[tuple[Pos, Direction], cp_model.IntVar] = {}
|
|
21
|
-
self.reach_layers: list[dict[Pos, cp_model.IntVar]] = [] # R_t[p] booleans, t = 0..T
|
|
22
21
|
|
|
23
22
|
self.create_vars()
|
|
24
23
|
self.add_all_constraints()
|
|
@@ -28,18 +27,11 @@ class Board:
|
|
|
28
27
|
self.cell_active[pos] = self.model.NewBoolVar(f"a[{pos}]")
|
|
29
28
|
for direction in Direction:
|
|
30
29
|
self.cell_direction[(pos, direction)] = self.model.NewBoolVar(f"b[{pos}]->({direction.name})")
|
|
31
|
-
# Percolation layers R_t (monotone flood fill)
|
|
32
|
-
T = self.V * self.H # large enough to cover whole board
|
|
33
|
-
for t in range(T + 1):
|
|
34
|
-
Rt: dict[Pos, cp_model.IntVar] = {}
|
|
35
|
-
for pos in get_all_pos(self.V, self.H):
|
|
36
|
-
Rt[pos] = self.model.NewBoolVar(f"R[{t}][{pos}]")
|
|
37
|
-
self.reach_layers.append(Rt)
|
|
38
30
|
|
|
39
31
|
def add_all_constraints(self):
|
|
40
32
|
self.force_direction_constraints()
|
|
41
33
|
self.force_wb_constraints()
|
|
42
|
-
self.
|
|
34
|
+
self.force_connected_component()
|
|
43
35
|
|
|
44
36
|
def force_wb_constraints(self):
|
|
45
37
|
for pos in get_all_pos(self.V, self.H):
|
|
@@ -91,40 +83,16 @@ class Board:
|
|
|
91
83
|
else:
|
|
92
84
|
self.model.Add(self.cell_direction[(pos, direction)] == 0)
|
|
93
85
|
|
|
94
|
-
def
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
if i == 0:
|
|
105
|
-
self.model.Add(self.reach_layers[0][pos] == 1) # first cell is root
|
|
106
|
-
else:
|
|
107
|
-
self.model.Add(self.reach_layers[0][pos] == 0)
|
|
108
|
-
|
|
109
|
-
for t in range(1, len(self.reach_layers)):
|
|
110
|
-
Rt_prev = self.reach_layers[t - 1]
|
|
111
|
-
Rt = self.reach_layers[t]
|
|
112
|
-
for p in get_all_pos(self.V, self.H):
|
|
113
|
-
# Rt[p] = Rt_prev[p] | (white[p] & Rt_prev[neighbour #1]) | (white[p] & Rt_prev[neighbour #2]) | ...
|
|
114
|
-
# Create helper (white[p] & Rt_prev[neighbour #X]) for each neighbor q
|
|
115
|
-
neigh_helpers: list[cp_model.IntVar] = []
|
|
116
|
-
for direction in Direction:
|
|
117
|
-
q = get_next_pos(p, direction)
|
|
118
|
-
if not in_bounds(q, self.V, self.H):
|
|
119
|
-
continue
|
|
120
|
-
a = self.model.NewBoolVar(f"A[{t}][{p}]<-({q})")
|
|
121
|
-
and_constraint(self.model, target=a, cs=[Rt_prev[q], self.cell_direction[(q, get_opposite_direction(direction))]])
|
|
122
|
-
neigh_helpers.append(a)
|
|
123
|
-
or_constraint(self.model, target=Rt[p], cs=[Rt_prev[p]] + neigh_helpers)
|
|
124
|
-
|
|
125
|
-
# every pearl must be reached by the final layer
|
|
126
|
-
for p in get_all_pos(self.V, self.H):
|
|
127
|
-
self.model.Add(self.reach_layers[-1][p] == 1).OnlyEnforceIf(self.cell_active[p])
|
|
86
|
+
def force_connected_component(self):
|
|
87
|
+
def is_neighbor(pd1: tuple[Pos, Direction], pd2: tuple[Pos, Direction]) -> bool:
|
|
88
|
+
p1, d1 = pd1
|
|
89
|
+
p2, d2 = pd2
|
|
90
|
+
if p1 == p2 and d1 != d2: # same position, different direction, is neighbor
|
|
91
|
+
return True
|
|
92
|
+
if get_next_pos(p1, d1) == p2 and d2 == get_opposite_direction(d1):
|
|
93
|
+
return True
|
|
94
|
+
return False
|
|
95
|
+
force_connected_component(self.model, self.cell_direction, is_neighbor=is_neighbor)
|
|
128
96
|
|
|
129
97
|
|
|
130
98
|
def solve_and_print(self, verbose: bool = True):
|
|
@@ -2,7 +2,7 @@ import numpy as np
|
|
|
2
2
|
from ortools.sat.python import cp_model
|
|
3
3
|
|
|
4
4
|
from puzzle_solver.core.utils import Pos, get_all_pos, set_char, get_neighbors4, in_bounds, Direction, get_next_pos, get_char
|
|
5
|
-
from puzzle_solver.core.utils_ortools import and_constraint, or_constraint, generic_solve_all, SingleSolution
|
|
5
|
+
from puzzle_solver.core.utils_ortools import and_constraint, or_constraint, generic_solve_all, SingleSolution, force_connected_component
|
|
6
6
|
|
|
7
7
|
|
|
8
8
|
def get_ray(pos: Pos, V: int, H: int, direction: Direction) -> list[Pos]:
|
|
@@ -27,9 +27,6 @@ class Board:
|
|
|
27
27
|
# Core vars
|
|
28
28
|
self.b: dict[Pos, cp_model.IntVar] = {} # 1=black, 0=white
|
|
29
29
|
self.w: dict[Pos, cp_model.IntVar] = {} # 1=white, 0=black
|
|
30
|
-
# Connectivity helpers
|
|
31
|
-
self.root: dict[Pos, cp_model.IntVar] = {} # exactly one root; root <= w
|
|
32
|
-
self.reach_layers: list[dict[Pos, cp_model.IntVar]] = [] # R_t[p] booleans, t = 0..T
|
|
33
30
|
|
|
34
31
|
self.create_vars()
|
|
35
32
|
self.add_all_constraints()
|
|
@@ -41,18 +38,6 @@ class Board:
|
|
|
41
38
|
self.w[pos] = self.model.NewBoolVar(f"w[{pos}]")
|
|
42
39
|
self.model.AddExactlyOne([self.b[pos], self.w[pos]])
|
|
43
40
|
|
|
44
|
-
# Root
|
|
45
|
-
for pos in get_all_pos(self.V, self.H):
|
|
46
|
-
self.root[pos] = self.model.NewBoolVar(f"root[{pos}]")
|
|
47
|
-
|
|
48
|
-
# Percolation layers R_t (monotone flood fill)
|
|
49
|
-
T = self.V * self.H # large enough to cover whole board
|
|
50
|
-
for t in range(T + 1):
|
|
51
|
-
Rt: dict[Pos, cp_model.IntVar] = {}
|
|
52
|
-
for pos in get_all_pos(self.V, self.H):
|
|
53
|
-
Rt[pos] = self.model.NewBoolVar(f"R[{t}][{pos}]")
|
|
54
|
-
self.reach_layers.append(Rt)
|
|
55
|
-
|
|
56
41
|
def add_all_constraints(self):
|
|
57
42
|
self.no_adjacent_blacks()
|
|
58
43
|
self.white_connectivity_percolation()
|
|
@@ -69,41 +54,7 @@ class Board:
|
|
|
69
54
|
|
|
70
55
|
|
|
71
56
|
def white_connectivity_percolation(self):
|
|
72
|
-
|
|
73
|
-
Layered percolation:
|
|
74
|
-
- root is exactly the first white cell
|
|
75
|
-
- R_t is monotone nondecreasing in t (R_t+1 >= R_t)
|
|
76
|
-
- A cell can 'turn on' at layer t+1 iff it's white and has a neighbor on at layer t (or is root)
|
|
77
|
-
- Final layer is equal to the white mask: R_T[p] == w[p] => all whites are connected to the unique root
|
|
78
|
-
"""
|
|
79
|
-
# to find unique solutions easily, we make only 1 possible root allowed; root is exactly the first white cell
|
|
80
|
-
prev_cells_black: list[cp_model.IntVar] = []
|
|
81
|
-
for pos in get_all_pos(self.V, self.H):
|
|
82
|
-
and_constraint(self.model, target=self.root[pos], cs=[self.w[pos]] + prev_cells_black)
|
|
83
|
-
prev_cells_black.append(self.b[pos])
|
|
84
|
-
|
|
85
|
-
# Seed: R0 = root
|
|
86
|
-
for pos in get_all_pos(self.V, self.H):
|
|
87
|
-
self.model.Add(self.reach_layers[0][pos] == self.root[pos])
|
|
88
|
-
|
|
89
|
-
T = len(self.reach_layers)
|
|
90
|
-
for t in range(1, T):
|
|
91
|
-
Rt_prev = self.reach_layers[t - 1]
|
|
92
|
-
Rt = self.reach_layers[t]
|
|
93
|
-
for p in get_all_pos(self.V, self.H):
|
|
94
|
-
# Rt[p] = Rt_prev[p] | (white[p] & Rt_prev[neighbour #1]) | (white[p] & Rt_prev[neighbour #2]) | ...
|
|
95
|
-
# Create helper (white[p] & Rt_prev[neighbour #X]) for each neighbor q
|
|
96
|
-
neigh_helpers: list[cp_model.IntVar] = []
|
|
97
|
-
for q in get_neighbors4(p, self.V, self.H):
|
|
98
|
-
a = self.model.NewBoolVar(f"A[{t}][{p}]<-({q})")
|
|
99
|
-
and_constraint(self.model, target=a, cs=[self.w[p], Rt_prev[q]])
|
|
100
|
-
neigh_helpers.append(a)
|
|
101
|
-
or_constraint(self.model, target=Rt[p], cs=[Rt_prev[p]] + neigh_helpers)
|
|
102
|
-
|
|
103
|
-
# All whites must be reached by the final layer
|
|
104
|
-
RT = self.reach_layers[T - 1]
|
|
105
|
-
for p in get_all_pos(self.V, self.H):
|
|
106
|
-
self.model.Add(RT[p] == self.w[p])
|
|
57
|
+
force_connected_component(self.model, self.w)
|
|
107
58
|
|
|
108
59
|
def range_clues(self):
|
|
109
60
|
# For each numbered cell c with value k:
|
|
@@ -2,7 +2,7 @@ import numpy as np
|
|
|
2
2
|
from ortools.sat.python import cp_model
|
|
3
3
|
|
|
4
4
|
from puzzle_solver.core.utils import Pos, get_all_pos, get_char, set_char, get_neighbors4, get_all_pos_to_idx_dict, get_row_pos, get_col_pos
|
|
5
|
-
from puzzle_solver.core.utils_ortools import generic_solve_all, SingleSolution,
|
|
5
|
+
from puzzle_solver.core.utils_ortools import generic_solve_all, SingleSolution, force_connected_component
|
|
6
6
|
|
|
7
7
|
|
|
8
8
|
class Board:
|
|
@@ -17,34 +17,26 @@ class Board:
|
|
|
17
17
|
|
|
18
18
|
self.model = cp_model.CpModel()
|
|
19
19
|
self.B = {} # black squares
|
|
20
|
+
self.W = {} # white squares
|
|
20
21
|
self.Num = {} # value of squares (Num = N + idx if black, else board[pos])
|
|
21
|
-
# Connectivity helpers
|
|
22
|
-
self.root: dict[Pos, cp_model.IntVar] = {} # exactly one root; root <= w
|
|
23
|
-
self.reach_layers: list[dict[Pos, cp_model.IntVar]] = [] # R_t[p] booleans, t = 0..T
|
|
24
22
|
|
|
25
23
|
self.create_vars()
|
|
26
24
|
self.add_all_constraints()
|
|
27
25
|
|
|
28
26
|
def create_vars(self):
|
|
29
27
|
for pos in get_all_pos(self.V, self.H):
|
|
30
|
-
self.B[pos] = self.model.NewBoolVar(f'{pos}')
|
|
28
|
+
self.B[pos] = self.model.NewBoolVar(f'B:{pos}')
|
|
29
|
+
self.W[pos] = self.model.NewBoolVar(f'W:{pos}')
|
|
30
|
+
# either black or white
|
|
31
|
+
self.model.AddExactlyOne([self.B[pos], self.W[pos]])
|
|
31
32
|
self.Num[pos] = self.model.NewIntVar(0, 2*self.N, f'{pos}')
|
|
32
33
|
self.model.Add(self.Num[pos] == self.N + self.idx_of[pos]).OnlyEnforceIf(self.B[pos])
|
|
33
34
|
self.model.Add(self.Num[pos] == int(get_char(self.board, pos))).OnlyEnforceIf(self.B[pos].Not())
|
|
34
|
-
# Root
|
|
35
|
-
for pos in get_all_pos(self.V, self.H):
|
|
36
|
-
self.root[pos] = self.model.NewBoolVar(f"root[{pos}]")
|
|
37
|
-
# Percolation layers R_t (monotone flood fill)
|
|
38
|
-
for t in range(self.N + 1):
|
|
39
|
-
Rt: dict[Pos, cp_model.IntVar] = {}
|
|
40
|
-
for pos in get_all_pos(self.V, self.H):
|
|
41
|
-
Rt[pos] = self.model.NewBoolVar(f"R[{t}][{pos}]")
|
|
42
|
-
self.reach_layers.append(Rt)
|
|
43
35
|
|
|
44
36
|
def add_all_constraints(self):
|
|
45
37
|
self.no_adjacent_blacks()
|
|
46
38
|
self.no_number_appears_twice()
|
|
47
|
-
self.
|
|
39
|
+
self.force_connected_component()
|
|
48
40
|
|
|
49
41
|
def no_adjacent_blacks(self):
|
|
50
42
|
# no two black squares are adjacent
|
|
@@ -61,42 +53,9 @@ class Board:
|
|
|
61
53
|
var_list = [self.Num[pos] for pos in get_col_pos(col, self.V)]
|
|
62
54
|
self.model.AddAllDifferent(var_list)
|
|
63
55
|
|
|
64
|
-
def
|
|
65
|
-
|
|
66
|
-
Layered percolation:
|
|
67
|
-
- root is exactly the first white cell
|
|
68
|
-
- R_t is monotone nondecreasing in t (R_t+1 >= R_t)
|
|
69
|
-
- A cell can 'turn on' at layer t+1 iff it's white and has a neighbor on at layer t (or is root)
|
|
70
|
-
- Final layer is equal to the white mask: R_T[p] == w[p] => all whites are connected to the unique root
|
|
71
|
-
"""
|
|
72
|
-
# to find unique solutions easily, we make only 1 possible root allowed; root is exactly the first white cell
|
|
73
|
-
prev_cells_black: list[cp_model.IntVar] = []
|
|
74
|
-
for pos in get_all_pos(self.V, self.H):
|
|
75
|
-
and_constraint(self.model, target=self.root[pos], cs=[self.B[pos].Not()] + prev_cells_black)
|
|
76
|
-
prev_cells_black.append(self.B[pos])
|
|
77
|
-
|
|
78
|
-
# Seed: R0 = root
|
|
79
|
-
for pos in get_all_pos(self.V, self.H):
|
|
80
|
-
self.model.Add(self.reach_layers[0][pos] == self.root[pos])
|
|
81
|
-
|
|
82
|
-
T = len(self.reach_layers)
|
|
83
|
-
for t in range(1, T):
|
|
84
|
-
Rt_prev = self.reach_layers[t - 1]
|
|
85
|
-
Rt = self.reach_layers[t]
|
|
86
|
-
for p in get_all_pos(self.V, self.H):
|
|
87
|
-
# Rt[p] = Rt_prev[p] | (white[p] & Rt_prev[neighbour #1]) | (white[p] & Rt_prev[neighbour #2]) | ...
|
|
88
|
-
# Create helper (white[p] & Rt_prev[neighbour #X]) for each neighbor q
|
|
89
|
-
neigh_helpers: list[cp_model.IntVar] = []
|
|
90
|
-
for q in get_neighbors4(p, self.V, self.H):
|
|
91
|
-
a = self.model.NewBoolVar(f"A[{t}][{p}]<-({q})")
|
|
92
|
-
and_constraint(self.model, target=a, cs=[self.B[p].Not(), Rt_prev[q]])
|
|
93
|
-
neigh_helpers.append(a)
|
|
94
|
-
or_constraint(self.model, target=Rt[p], cs=[Rt_prev[p]] + neigh_helpers)
|
|
56
|
+
def force_connected_component(self):
|
|
57
|
+
force_connected_component(self.model, self.W)
|
|
95
58
|
|
|
96
|
-
# All whites must be reached by the final layer
|
|
97
|
-
RT = self.reach_layers[T - 1]
|
|
98
|
-
for p in get_all_pos(self.V, self.H):
|
|
99
|
-
self.model.Add(RT[p] == self.B[p].Not())
|
|
100
59
|
|
|
101
60
|
|
|
102
61
|
def solve_and_print(self, verbose: bool = True):
|
|
@@ -3,7 +3,7 @@ import numpy as np
|
|
|
3
3
|
from ortools.sat.python import cp_model
|
|
4
4
|
|
|
5
5
|
from puzzle_solver.core.utils import Pos, get_all_pos, set_char, get_char, Direction, in_bounds, get_next_pos, get_row_pos, get_col_pos, get_opposite_direction
|
|
6
|
-
from puzzle_solver.core.utils_ortools import generic_solve_all, SingleSolution
|
|
6
|
+
from puzzle_solver.core.utils_ortools import force_connected_component, generic_solve_all, SingleSolution
|
|
7
7
|
|
|
8
8
|
|
|
9
9
|
class Board:
|
|
@@ -25,7 +25,6 @@ class Board:
|
|
|
25
25
|
self.model = cp_model.CpModel()
|
|
26
26
|
self.cell_active: dict[Pos, cp_model.IntVar] = {}
|
|
27
27
|
self.cell_direction: dict[tuple[Pos, Direction], cp_model.IntVar] = {}
|
|
28
|
-
self.reach_layers: list[dict[Pos, cp_model.IntVar]] = [] # R_t[p] booleans, t = 0..T
|
|
29
28
|
|
|
30
29
|
self.create_vars()
|
|
31
30
|
self.add_all_constraints()
|
|
@@ -35,19 +34,13 @@ class Board:
|
|
|
35
34
|
self.cell_active[pos] = self.model.NewBoolVar(f'{pos}')
|
|
36
35
|
for direction in Direction:
|
|
37
36
|
self.cell_direction[(pos, direction)] = self.model.NewBoolVar(f'{pos}:{direction}')
|
|
38
|
-
# Percolation layers R_t (monotone flood fill)
|
|
39
|
-
for t in range(self.V * self.H + 1):
|
|
40
|
-
Rt: dict[Pos, cp_model.IntVar] = {}
|
|
41
|
-
for pos in get_all_pos(self.V, self.H):
|
|
42
|
-
Rt[pos] = self.model.NewBoolVar(f"R[{t}][{pos}]")
|
|
43
|
-
self.reach_layers.append(Rt)
|
|
44
37
|
|
|
45
38
|
def add_all_constraints(self):
|
|
46
39
|
self.force_hints()
|
|
47
40
|
self.force_sides()
|
|
48
41
|
self.force_0_or_2_active()
|
|
49
42
|
self.force_direction_constraints()
|
|
50
|
-
self.
|
|
43
|
+
self.force_connected_component()
|
|
51
44
|
|
|
52
45
|
|
|
53
46
|
def force_hints(self):
|
|
@@ -108,38 +101,16 @@ class Board:
|
|
|
108
101
|
for pos in get_row_pos(0, self.H):
|
|
109
102
|
self.model.Add(self.cell_direction[(pos, Direction.UP)] == 0)
|
|
110
103
|
|
|
111
|
-
def
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
self.model
|
|
121
|
-
for pos in get_all_pos(self.V, self.H):
|
|
122
|
-
if pos != self.first_col_start_pos:
|
|
123
|
-
self.model.Add(self.reach_layers[0][pos] == 0)
|
|
124
|
-
|
|
125
|
-
for t in range(1, len(self.reach_layers)):
|
|
126
|
-
Rt_prev = self.reach_layers[t - 1]
|
|
127
|
-
Rt = self.reach_layers[t]
|
|
128
|
-
for p in get_all_pos(self.V, self.H):
|
|
129
|
-
# Rt[p] = Rt_prev[p] | (active[p] & Rt_prev[neighbour #1]) | (active[p] & Rt_prev[neighbour #2]) | ...
|
|
130
|
-
# Create helper (active[p] & Rt_prev[neighbour #X]) for each neighbor q
|
|
131
|
-
neigh_helpers: list[cp_model.IntVar] = []
|
|
132
|
-
for direction in Direction:
|
|
133
|
-
q = get_next_pos(p, direction)
|
|
134
|
-
if not in_bounds(q, self.V, self.H):
|
|
135
|
-
continue
|
|
136
|
-
a = self.model.NewBoolVar(f"A[{t}][{p}]<-({q})")
|
|
137
|
-
and_constraint(self.model, target=a, cs=[self.cell_active[p], Rt_prev[q], self.cell_direction[(q, get_opposite_direction(direction))]])
|
|
138
|
-
neigh_helpers.append(a)
|
|
139
|
-
or_constraint(self.model, target=Rt[p], cs=[Rt_prev[p]] + neigh_helpers)
|
|
140
|
-
# every avtive track must be reachible -> single connected component
|
|
141
|
-
for pos in get_all_pos(self.V, self.H):
|
|
142
|
-
self.model.Add(self.reach_layers[-1][pos] == 1).OnlyEnforceIf(self.cell_active[pos])
|
|
104
|
+
def force_connected_component(self):
|
|
105
|
+
def is_neighbor(pd1: tuple[Pos, Direction], pd2: tuple[Pos, Direction]) -> bool:
|
|
106
|
+
p1, d1 = pd1
|
|
107
|
+
p2, d2 = pd2
|
|
108
|
+
if p1 == p2: # same position, different direction, is neighbor
|
|
109
|
+
return True
|
|
110
|
+
if get_next_pos(p1, d1) == p2 and d2 == get_opposite_direction(d1):
|
|
111
|
+
return True
|
|
112
|
+
return False
|
|
113
|
+
force_connected_component(self.model, self.cell_direction, is_neighbor=is_neighbor)
|
|
143
114
|
|
|
144
115
|
|
|
145
116
|
|
|
File without changes
|
|
File without changes
|