multi-puzzle-solver 0.9.12__py3-none-any.whl → 0.9.14__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of multi-puzzle-solver might be problematic. Click here for more details.
- {multi_puzzle_solver-0.9.12.dist-info → multi_puzzle_solver-0.9.14.dist-info}/METADATA +128 -17
- {multi_puzzle_solver-0.9.12.dist-info → multi_puzzle_solver-0.9.14.dist-info}/RECORD +17 -15
- puzzle_solver/__init__.py +3 -2
- puzzle_solver/core/utils.py +228 -127
- puzzle_solver/core/utils_ortools.py +235 -172
- puzzle_solver/puzzles/battleships/battleships.py +1 -0
- puzzle_solver/puzzles/black_box/black_box.py +313 -0
- puzzle_solver/puzzles/filling/filling.py +117 -192
- puzzle_solver/puzzles/inertia/tsp.py +4 -1
- puzzle_solver/puzzles/lits/lits.py +162 -0
- puzzle_solver/puzzles/pearl/pearl.py +12 -44
- puzzle_solver/puzzles/range/range.py +2 -51
- puzzle_solver/puzzles/singles/singles.py +9 -50
- puzzle_solver/puzzles/stitches/parse_map/parse_map.py +212 -212
- puzzle_solver/puzzles/tracks/tracks.py +12 -41
- {multi_puzzle_solver-0.9.12.dist-info → multi_puzzle_solver-0.9.14.dist-info}/WHEEL +0 -0
- {multi_puzzle_solver-0.9.12.dist-info → multi_puzzle_solver-0.9.14.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,162 @@
|
|
|
1
|
+
import json
|
|
2
|
+
import time
|
|
3
|
+
from dataclasses import dataclass
|
|
4
|
+
from typing import Optional, Union
|
|
5
|
+
|
|
6
|
+
from ortools.sat.python import cp_model
|
|
7
|
+
import numpy as np
|
|
8
|
+
|
|
9
|
+
from puzzle_solver.core.utils import Pos, get_all_pos, get_char, set_char, get_pos, in_bounds, Direction, get_next_pos, polyominoes_with_shape_id
|
|
10
|
+
from puzzle_solver.core.utils_ortools import generic_solve_all, SingleSolution, force_connected_component
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
# a shape on the 2d board is just a set of positions
|
|
14
|
+
Shape = frozenset[Pos]
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
@dataclass(frozen=True)
|
|
18
|
+
class SingleSolution:
|
|
19
|
+
assignment: dict[Pos, Union[str, int]]
|
|
20
|
+
all_other_variables: dict
|
|
21
|
+
|
|
22
|
+
def get_hashable_solution(self) -> str:
|
|
23
|
+
result = []
|
|
24
|
+
for pos, v in self.assignment.items():
|
|
25
|
+
result.append((pos.x, pos.y, v))
|
|
26
|
+
return json.dumps(result, sort_keys=True)
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
@dataclass
|
|
31
|
+
class ShapeOnBoard:
|
|
32
|
+
is_active: cp_model.IntVar
|
|
33
|
+
shape: Shape
|
|
34
|
+
shape_id: int
|
|
35
|
+
body: set[Pos]
|
|
36
|
+
disallow_same_shape: set[Pos]
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
class Board:
|
|
40
|
+
def __init__(self, board: np.array, polyomino_degrees: int = 4):
|
|
41
|
+
assert board.ndim == 2, f'board must be 2d, got {board.ndim}'
|
|
42
|
+
self.V = board.shape[0]
|
|
43
|
+
self.H = board.shape[1]
|
|
44
|
+
assert all((str(c.item()).isdecimal() for c in np.nditer(board))), 'board must contain only digits'
|
|
45
|
+
self.board = board
|
|
46
|
+
self.polyomino_degrees = polyomino_degrees
|
|
47
|
+
self.polyominoes = polyominoes_with_shape_id(self.polyomino_degrees)
|
|
48
|
+
|
|
49
|
+
self.block_numbers = set([int(c.item()) for c in np.nditer(board)])
|
|
50
|
+
self.blocks = {i: set() for i in self.block_numbers}
|
|
51
|
+
for cell in get_all_pos(self.V, self.H):
|
|
52
|
+
self.blocks[int(get_char(self.board, cell))].add(cell)
|
|
53
|
+
|
|
54
|
+
self.model = cp_model.CpModel()
|
|
55
|
+
self.model_vars: dict[Pos, cp_model.IntVar] = {}
|
|
56
|
+
self.connected_components: dict[Pos, cp_model.IntVar] = {}
|
|
57
|
+
self.shapes_on_board: list[ShapeOnBoard] = [] # will contain every possible shape on the board based on polyomino degrees
|
|
58
|
+
|
|
59
|
+
self.create_vars()
|
|
60
|
+
self.init_shapes_on_board()
|
|
61
|
+
self.add_all_constraints()
|
|
62
|
+
|
|
63
|
+
def create_vars(self):
|
|
64
|
+
for pos in get_all_pos(self.V, self.H):
|
|
65
|
+
self.model_vars[pos] = self.model.NewBoolVar(f'{pos}')
|
|
66
|
+
# print('base vars:', len(self.model_vars))
|
|
67
|
+
|
|
68
|
+
def init_shapes_on_board(self):
|
|
69
|
+
for idx, (shape, shape_id) in enumerate(self.polyominoes):
|
|
70
|
+
for translate in get_all_pos(self.V, self.H): # body of shape is translated to be at pos
|
|
71
|
+
body = {get_pos(x=p.x + translate.x, y=p.y + translate.y) for p in shape}
|
|
72
|
+
if any(not in_bounds(p, self.V, self.H) for p in body):
|
|
73
|
+
continue
|
|
74
|
+
# shape must be fully contained in one block
|
|
75
|
+
if len(set(get_char(self.board, p) for p in body)) > 1:
|
|
76
|
+
continue
|
|
77
|
+
# 2 tetrominoes of matching types cannot touch each other horizontally or vertically. Rotations and reflections count as matching.
|
|
78
|
+
disallow_same_shape = set(get_next_pos(p, direction) for p in body for direction in Direction)
|
|
79
|
+
disallow_same_shape -= body
|
|
80
|
+
self.shapes_on_board.append(ShapeOnBoard(
|
|
81
|
+
is_active=self.model.NewBoolVar(f'{idx}:{translate}:is_active'),
|
|
82
|
+
shape=shape,
|
|
83
|
+
shape_id=shape_id,
|
|
84
|
+
body=body,
|
|
85
|
+
disallow_same_shape=disallow_same_shape,
|
|
86
|
+
))
|
|
87
|
+
# print('shapes on board:', len(self.shapes_on_board))
|
|
88
|
+
|
|
89
|
+
def add_all_constraints(self):
|
|
90
|
+
# RULES:
|
|
91
|
+
# 1- You have to place one tetromino in each region in such a way that:
|
|
92
|
+
# 2- 2 tetrominoes of matching types cannot touch each other horizontally or vertically. Rotations and reflections count as matching.
|
|
93
|
+
# 3- The shaded cells should form a single connected area.
|
|
94
|
+
# 4- 2x2 shaded areas are not allowed
|
|
95
|
+
|
|
96
|
+
# each cell must be part of a shape, every shape must be fully on the board. Core constraint, otherwise shapes on the board make no sense.
|
|
97
|
+
self.only_allow_shapes_on_board()
|
|
98
|
+
|
|
99
|
+
self.force_one_shape_per_block() # Rule #1
|
|
100
|
+
self.disallow_same_shape_touching() # Rule #2
|
|
101
|
+
self.fc = force_connected_component(self.model, self.model_vars) # Rule #3
|
|
102
|
+
# print('force connected vars:', len(fc))
|
|
103
|
+
shape_2_by_2 = frozenset({Pos(0, 0), Pos(0, 1), Pos(1, 0), Pos(1, 1)})
|
|
104
|
+
self.disallow_shape(shape_2_by_2) # Rule #4
|
|
105
|
+
|
|
106
|
+
|
|
107
|
+
def only_allow_shapes_on_board(self):
|
|
108
|
+
for shape_on_board in self.shapes_on_board:
|
|
109
|
+
# if shape is active then all its body cells must be active
|
|
110
|
+
self.model.Add(sum(self.model_vars[p] for p in shape_on_board.body) == len(shape_on_board.body)).OnlyEnforceIf(shape_on_board.is_active)
|
|
111
|
+
# each cell must be part of a shape
|
|
112
|
+
for p in get_all_pos(self.V, self.H):
|
|
113
|
+
shapes_on_p = [s for s in self.shapes_on_board if p in s.body]
|
|
114
|
+
self.model.Add(sum(s.is_active for s in shapes_on_p) == 1).OnlyEnforceIf(self.model_vars[p])
|
|
115
|
+
|
|
116
|
+
def force_one_shape_per_block(self):
|
|
117
|
+
# You have to place exactly one tetromino in each region
|
|
118
|
+
for block_i in self.block_numbers:
|
|
119
|
+
shapes_on_block = [s for s in self.shapes_on_board if s.body & self.blocks[block_i]]
|
|
120
|
+
assert all(s.body.issubset(self.blocks[block_i]) for s in shapes_on_block), 'expected all shapes on block to be fully contained in the block'
|
|
121
|
+
# print(f'shapes on block {block_i} has {len(shapes_on_block)} shapes')
|
|
122
|
+
self.model.Add(sum(s.is_active for s in shapes_on_block) == 1)
|
|
123
|
+
|
|
124
|
+
def disallow_same_shape_touching(self):
|
|
125
|
+
# if shape is active then it must not touch any other shape of the same type
|
|
126
|
+
for shape_on_board in self.shapes_on_board:
|
|
127
|
+
similar_shapes = [s for s in self.shapes_on_board if s.shape_id == shape_on_board.shape_id]
|
|
128
|
+
for s in similar_shapes:
|
|
129
|
+
if shape_on_board.disallow_same_shape & s.body: # this shape disallows having s be on the board
|
|
130
|
+
self.model.Add(s.is_active == 0).OnlyEnforceIf(shape_on_board.is_active)
|
|
131
|
+
|
|
132
|
+
def disallow_shape(self, shape_to_disallow: Shape):
|
|
133
|
+
# for every position in the board, force sum of body < len(body)
|
|
134
|
+
for translate in get_all_pos(self.V, self.H):
|
|
135
|
+
cur_body = {get_pos(x=p.x + translate.x, y=p.y + translate.y) for p in shape_to_disallow}
|
|
136
|
+
if any(not in_bounds(p, self.V, self.H) for p in cur_body):
|
|
137
|
+
continue
|
|
138
|
+
self.model.Add(sum(self.model_vars[p] for p in cur_body) < len(cur_body))
|
|
139
|
+
|
|
140
|
+
|
|
141
|
+
|
|
142
|
+
|
|
143
|
+
def solve_and_print(self, verbose: bool = True, max_solutions: Optional[int] = None, verbose_callback: Optional[bool] = None):
|
|
144
|
+
if verbose_callback is None:
|
|
145
|
+
verbose_callback = verbose
|
|
146
|
+
def board_to_solution(board: Board, solver: cp_model.CpSolverSolutionCallback) -> SingleSolution:
|
|
147
|
+
assignment: dict[Pos, int] = {}
|
|
148
|
+
for pos, var in board.model_vars.items():
|
|
149
|
+
assignment[pos] = solver.Value(var)
|
|
150
|
+
all_other_variables = {
|
|
151
|
+
'fc': {k: solver.Value(v) for k, v in board.fc.items()}
|
|
152
|
+
}
|
|
153
|
+
return SingleSolution(assignment=assignment, all_other_variables=all_other_variables)
|
|
154
|
+
def callback(single_res: SingleSolution):
|
|
155
|
+
print("Solution found")
|
|
156
|
+
res = np.full((self.V, self.H), ' ', dtype=str)
|
|
157
|
+
for pos, val in single_res.assignment.items():
|
|
158
|
+
c = 'X' if val == 1 else ' '
|
|
159
|
+
set_char(res, pos, c)
|
|
160
|
+
print('[\n' + '\n'.join([' ' + str(res[row].tolist()) + ',' for row in range(self.V)]) + '\n]')
|
|
161
|
+
pass
|
|
162
|
+
return generic_solve_all(self, board_to_solution, callback=callback if verbose_callback else None, verbose=verbose, max_solutions=max_solutions)
|
|
@@ -5,7 +5,7 @@ from ortools.sat.python import cp_model
|
|
|
5
5
|
from ortools.sat.python.cp_model import LinearExpr as lxp
|
|
6
6
|
|
|
7
7
|
from puzzle_solver.core.utils import Pos, get_all_pos, set_char, in_bounds, Direction, get_next_pos, get_char, get_opposite_direction
|
|
8
|
-
from puzzle_solver.core.utils_ortools import and_constraint,
|
|
8
|
+
from puzzle_solver.core.utils_ortools import and_constraint, generic_solve_all, SingleSolution, force_connected_component
|
|
9
9
|
|
|
10
10
|
|
|
11
11
|
class Board:
|
|
@@ -18,7 +18,6 @@ class Board:
|
|
|
18
18
|
self.model = cp_model.CpModel()
|
|
19
19
|
self.cell_active: dict[Pos, cp_model.IntVar] = {}
|
|
20
20
|
self.cell_direction: dict[tuple[Pos, Direction], cp_model.IntVar] = {}
|
|
21
|
-
self.reach_layers: list[dict[Pos, cp_model.IntVar]] = [] # R_t[p] booleans, t = 0..T
|
|
22
21
|
|
|
23
22
|
self.create_vars()
|
|
24
23
|
self.add_all_constraints()
|
|
@@ -28,18 +27,11 @@ class Board:
|
|
|
28
27
|
self.cell_active[pos] = self.model.NewBoolVar(f"a[{pos}]")
|
|
29
28
|
for direction in Direction:
|
|
30
29
|
self.cell_direction[(pos, direction)] = self.model.NewBoolVar(f"b[{pos}]->({direction.name})")
|
|
31
|
-
# Percolation layers R_t (monotone flood fill)
|
|
32
|
-
T = self.V * self.H # large enough to cover whole board
|
|
33
|
-
for t in range(T + 1):
|
|
34
|
-
Rt: dict[Pos, cp_model.IntVar] = {}
|
|
35
|
-
for pos in get_all_pos(self.V, self.H):
|
|
36
|
-
Rt[pos] = self.model.NewBoolVar(f"R[{t}][{pos}]")
|
|
37
|
-
self.reach_layers.append(Rt)
|
|
38
30
|
|
|
39
31
|
def add_all_constraints(self):
|
|
40
32
|
self.force_direction_constraints()
|
|
41
33
|
self.force_wb_constraints()
|
|
42
|
-
self.
|
|
34
|
+
self.force_connected_component()
|
|
43
35
|
|
|
44
36
|
def force_wb_constraints(self):
|
|
45
37
|
for pos in get_all_pos(self.V, self.H):
|
|
@@ -91,40 +83,16 @@ class Board:
|
|
|
91
83
|
else:
|
|
92
84
|
self.model.Add(self.cell_direction[(pos, direction)] == 0)
|
|
93
85
|
|
|
94
|
-
def
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
if i == 0:
|
|
105
|
-
self.model.Add(self.reach_layers[0][pos] == 1) # first cell is root
|
|
106
|
-
else:
|
|
107
|
-
self.model.Add(self.reach_layers[0][pos] == 0)
|
|
108
|
-
|
|
109
|
-
for t in range(1, len(self.reach_layers)):
|
|
110
|
-
Rt_prev = self.reach_layers[t - 1]
|
|
111
|
-
Rt = self.reach_layers[t]
|
|
112
|
-
for p in get_all_pos(self.V, self.H):
|
|
113
|
-
# Rt[p] = Rt_prev[p] | (white[p] & Rt_prev[neighbour #1]) | (white[p] & Rt_prev[neighbour #2]) | ...
|
|
114
|
-
# Create helper (white[p] & Rt_prev[neighbour #X]) for each neighbor q
|
|
115
|
-
neigh_helpers: list[cp_model.IntVar] = []
|
|
116
|
-
for direction in Direction:
|
|
117
|
-
q = get_next_pos(p, direction)
|
|
118
|
-
if not in_bounds(q, self.V, self.H):
|
|
119
|
-
continue
|
|
120
|
-
a = self.model.NewBoolVar(f"A[{t}][{p}]<-({q})")
|
|
121
|
-
and_constraint(self.model, target=a, cs=[Rt_prev[q], self.cell_direction[(q, get_opposite_direction(direction))]])
|
|
122
|
-
neigh_helpers.append(a)
|
|
123
|
-
or_constraint(self.model, target=Rt[p], cs=[Rt_prev[p]] + neigh_helpers)
|
|
124
|
-
|
|
125
|
-
# every pearl must be reached by the final layer
|
|
126
|
-
for p in get_all_pos(self.V, self.H):
|
|
127
|
-
self.model.Add(self.reach_layers[-1][p] == 1).OnlyEnforceIf(self.cell_active[p])
|
|
86
|
+
def force_connected_component(self):
|
|
87
|
+
def is_neighbor(pd1: tuple[Pos, Direction], pd2: tuple[Pos, Direction]) -> bool:
|
|
88
|
+
p1, d1 = pd1
|
|
89
|
+
p2, d2 = pd2
|
|
90
|
+
if p1 == p2 and d1 != d2: # same position, different direction, is neighbor
|
|
91
|
+
return True
|
|
92
|
+
if get_next_pos(p1, d1) == p2 and d2 == get_opposite_direction(d1):
|
|
93
|
+
return True
|
|
94
|
+
return False
|
|
95
|
+
force_connected_component(self.model, self.cell_direction, is_neighbor=is_neighbor)
|
|
128
96
|
|
|
129
97
|
|
|
130
98
|
def solve_and_print(self, verbose: bool = True):
|
|
@@ -2,7 +2,7 @@ import numpy as np
|
|
|
2
2
|
from ortools.sat.python import cp_model
|
|
3
3
|
|
|
4
4
|
from puzzle_solver.core.utils import Pos, get_all_pos, set_char, get_neighbors4, in_bounds, Direction, get_next_pos, get_char
|
|
5
|
-
from puzzle_solver.core.utils_ortools import and_constraint, or_constraint, generic_solve_all, SingleSolution
|
|
5
|
+
from puzzle_solver.core.utils_ortools import and_constraint, or_constraint, generic_solve_all, SingleSolution, force_connected_component
|
|
6
6
|
|
|
7
7
|
|
|
8
8
|
def get_ray(pos: Pos, V: int, H: int, direction: Direction) -> list[Pos]:
|
|
@@ -27,9 +27,6 @@ class Board:
|
|
|
27
27
|
# Core vars
|
|
28
28
|
self.b: dict[Pos, cp_model.IntVar] = {} # 1=black, 0=white
|
|
29
29
|
self.w: dict[Pos, cp_model.IntVar] = {} # 1=white, 0=black
|
|
30
|
-
# Connectivity helpers
|
|
31
|
-
self.root: dict[Pos, cp_model.IntVar] = {} # exactly one root; root <= w
|
|
32
|
-
self.reach_layers: list[dict[Pos, cp_model.IntVar]] = [] # R_t[p] booleans, t = 0..T
|
|
33
30
|
|
|
34
31
|
self.create_vars()
|
|
35
32
|
self.add_all_constraints()
|
|
@@ -41,18 +38,6 @@ class Board:
|
|
|
41
38
|
self.w[pos] = self.model.NewBoolVar(f"w[{pos}]")
|
|
42
39
|
self.model.AddExactlyOne([self.b[pos], self.w[pos]])
|
|
43
40
|
|
|
44
|
-
# Root
|
|
45
|
-
for pos in get_all_pos(self.V, self.H):
|
|
46
|
-
self.root[pos] = self.model.NewBoolVar(f"root[{pos}]")
|
|
47
|
-
|
|
48
|
-
# Percolation layers R_t (monotone flood fill)
|
|
49
|
-
T = self.V * self.H # large enough to cover whole board
|
|
50
|
-
for t in range(T + 1):
|
|
51
|
-
Rt: dict[Pos, cp_model.IntVar] = {}
|
|
52
|
-
for pos in get_all_pos(self.V, self.H):
|
|
53
|
-
Rt[pos] = self.model.NewBoolVar(f"R[{t}][{pos}]")
|
|
54
|
-
self.reach_layers.append(Rt)
|
|
55
|
-
|
|
56
41
|
def add_all_constraints(self):
|
|
57
42
|
self.no_adjacent_blacks()
|
|
58
43
|
self.white_connectivity_percolation()
|
|
@@ -69,41 +54,7 @@ class Board:
|
|
|
69
54
|
|
|
70
55
|
|
|
71
56
|
def white_connectivity_percolation(self):
|
|
72
|
-
|
|
73
|
-
Layered percolation:
|
|
74
|
-
- root is exactly the first white cell
|
|
75
|
-
- R_t is monotone nondecreasing in t (R_t+1 >= R_t)
|
|
76
|
-
- A cell can 'turn on' at layer t+1 iff it's white and has a neighbor on at layer t (or is root)
|
|
77
|
-
- Final layer is equal to the white mask: R_T[p] == w[p] => all whites are connected to the unique root
|
|
78
|
-
"""
|
|
79
|
-
# to find unique solutions easily, we make only 1 possible root allowed; root is exactly the first white cell
|
|
80
|
-
prev_cells_black: list[cp_model.IntVar] = []
|
|
81
|
-
for pos in get_all_pos(self.V, self.H):
|
|
82
|
-
and_constraint(self.model, target=self.root[pos], cs=[self.w[pos]] + prev_cells_black)
|
|
83
|
-
prev_cells_black.append(self.b[pos])
|
|
84
|
-
|
|
85
|
-
# Seed: R0 = root
|
|
86
|
-
for pos in get_all_pos(self.V, self.H):
|
|
87
|
-
self.model.Add(self.reach_layers[0][pos] == self.root[pos])
|
|
88
|
-
|
|
89
|
-
T = len(self.reach_layers)
|
|
90
|
-
for t in range(1, T):
|
|
91
|
-
Rt_prev = self.reach_layers[t - 1]
|
|
92
|
-
Rt = self.reach_layers[t]
|
|
93
|
-
for p in get_all_pos(self.V, self.H):
|
|
94
|
-
# Rt[p] = Rt_prev[p] | (white[p] & Rt_prev[neighbour #1]) | (white[p] & Rt_prev[neighbour #2]) | ...
|
|
95
|
-
# Create helper (white[p] & Rt_prev[neighbour #X]) for each neighbor q
|
|
96
|
-
neigh_helpers: list[cp_model.IntVar] = []
|
|
97
|
-
for q in get_neighbors4(p, self.V, self.H):
|
|
98
|
-
a = self.model.NewBoolVar(f"A[{t}][{p}]<-({q})")
|
|
99
|
-
and_constraint(self.model, target=a, cs=[self.w[p], Rt_prev[q]])
|
|
100
|
-
neigh_helpers.append(a)
|
|
101
|
-
or_constraint(self.model, target=Rt[p], cs=[Rt_prev[p]] + neigh_helpers)
|
|
102
|
-
|
|
103
|
-
# All whites must be reached by the final layer
|
|
104
|
-
RT = self.reach_layers[T - 1]
|
|
105
|
-
for p in get_all_pos(self.V, self.H):
|
|
106
|
-
self.model.Add(RT[p] == self.w[p])
|
|
57
|
+
force_connected_component(self.model, self.w)
|
|
107
58
|
|
|
108
59
|
def range_clues(self):
|
|
109
60
|
# For each numbered cell c with value k:
|
|
@@ -2,7 +2,7 @@ import numpy as np
|
|
|
2
2
|
from ortools.sat.python import cp_model
|
|
3
3
|
|
|
4
4
|
from puzzle_solver.core.utils import Pos, get_all_pos, get_char, set_char, get_neighbors4, get_all_pos_to_idx_dict, get_row_pos, get_col_pos
|
|
5
|
-
from puzzle_solver.core.utils_ortools import generic_solve_all, SingleSolution,
|
|
5
|
+
from puzzle_solver.core.utils_ortools import generic_solve_all, SingleSolution, force_connected_component
|
|
6
6
|
|
|
7
7
|
|
|
8
8
|
class Board:
|
|
@@ -17,34 +17,26 @@ class Board:
|
|
|
17
17
|
|
|
18
18
|
self.model = cp_model.CpModel()
|
|
19
19
|
self.B = {} # black squares
|
|
20
|
+
self.W = {} # white squares
|
|
20
21
|
self.Num = {} # value of squares (Num = N + idx if black, else board[pos])
|
|
21
|
-
# Connectivity helpers
|
|
22
|
-
self.root: dict[Pos, cp_model.IntVar] = {} # exactly one root; root <= w
|
|
23
|
-
self.reach_layers: list[dict[Pos, cp_model.IntVar]] = [] # R_t[p] booleans, t = 0..T
|
|
24
22
|
|
|
25
23
|
self.create_vars()
|
|
26
24
|
self.add_all_constraints()
|
|
27
25
|
|
|
28
26
|
def create_vars(self):
|
|
29
27
|
for pos in get_all_pos(self.V, self.H):
|
|
30
|
-
self.B[pos] = self.model.NewBoolVar(f'{pos}')
|
|
28
|
+
self.B[pos] = self.model.NewBoolVar(f'B:{pos}')
|
|
29
|
+
self.W[pos] = self.model.NewBoolVar(f'W:{pos}')
|
|
30
|
+
# either black or white
|
|
31
|
+
self.model.AddExactlyOne([self.B[pos], self.W[pos]])
|
|
31
32
|
self.Num[pos] = self.model.NewIntVar(0, 2*self.N, f'{pos}')
|
|
32
33
|
self.model.Add(self.Num[pos] == self.N + self.idx_of[pos]).OnlyEnforceIf(self.B[pos])
|
|
33
34
|
self.model.Add(self.Num[pos] == int(get_char(self.board, pos))).OnlyEnforceIf(self.B[pos].Not())
|
|
34
|
-
# Root
|
|
35
|
-
for pos in get_all_pos(self.V, self.H):
|
|
36
|
-
self.root[pos] = self.model.NewBoolVar(f"root[{pos}]")
|
|
37
|
-
# Percolation layers R_t (monotone flood fill)
|
|
38
|
-
for t in range(self.N + 1):
|
|
39
|
-
Rt: dict[Pos, cp_model.IntVar] = {}
|
|
40
|
-
for pos in get_all_pos(self.V, self.H):
|
|
41
|
-
Rt[pos] = self.model.NewBoolVar(f"R[{t}][{pos}]")
|
|
42
|
-
self.reach_layers.append(Rt)
|
|
43
35
|
|
|
44
36
|
def add_all_constraints(self):
|
|
45
37
|
self.no_adjacent_blacks()
|
|
46
38
|
self.no_number_appears_twice()
|
|
47
|
-
self.
|
|
39
|
+
self.force_connected_component()
|
|
48
40
|
|
|
49
41
|
def no_adjacent_blacks(self):
|
|
50
42
|
# no two black squares are adjacent
|
|
@@ -61,42 +53,9 @@ class Board:
|
|
|
61
53
|
var_list = [self.Num[pos] for pos in get_col_pos(col, self.V)]
|
|
62
54
|
self.model.AddAllDifferent(var_list)
|
|
63
55
|
|
|
64
|
-
def
|
|
65
|
-
|
|
66
|
-
Layered percolation:
|
|
67
|
-
- root is exactly the first white cell
|
|
68
|
-
- R_t is monotone nondecreasing in t (R_t+1 >= R_t)
|
|
69
|
-
- A cell can 'turn on' at layer t+1 iff it's white and has a neighbor on at layer t (or is root)
|
|
70
|
-
- Final layer is equal to the white mask: R_T[p] == w[p] => all whites are connected to the unique root
|
|
71
|
-
"""
|
|
72
|
-
# to find unique solutions easily, we make only 1 possible root allowed; root is exactly the first white cell
|
|
73
|
-
prev_cells_black: list[cp_model.IntVar] = []
|
|
74
|
-
for pos in get_all_pos(self.V, self.H):
|
|
75
|
-
and_constraint(self.model, target=self.root[pos], cs=[self.B[pos].Not()] + prev_cells_black)
|
|
76
|
-
prev_cells_black.append(self.B[pos])
|
|
77
|
-
|
|
78
|
-
# Seed: R0 = root
|
|
79
|
-
for pos in get_all_pos(self.V, self.H):
|
|
80
|
-
self.model.Add(self.reach_layers[0][pos] == self.root[pos])
|
|
81
|
-
|
|
82
|
-
T = len(self.reach_layers)
|
|
83
|
-
for t in range(1, T):
|
|
84
|
-
Rt_prev = self.reach_layers[t - 1]
|
|
85
|
-
Rt = self.reach_layers[t]
|
|
86
|
-
for p in get_all_pos(self.V, self.H):
|
|
87
|
-
# Rt[p] = Rt_prev[p] | (white[p] & Rt_prev[neighbour #1]) | (white[p] & Rt_prev[neighbour #2]) | ...
|
|
88
|
-
# Create helper (white[p] & Rt_prev[neighbour #X]) for each neighbor q
|
|
89
|
-
neigh_helpers: list[cp_model.IntVar] = []
|
|
90
|
-
for q in get_neighbors4(p, self.V, self.H):
|
|
91
|
-
a = self.model.NewBoolVar(f"A[{t}][{p}]<-({q})")
|
|
92
|
-
and_constraint(self.model, target=a, cs=[self.B[p].Not(), Rt_prev[q]])
|
|
93
|
-
neigh_helpers.append(a)
|
|
94
|
-
or_constraint(self.model, target=Rt[p], cs=[Rt_prev[p]] + neigh_helpers)
|
|
56
|
+
def force_connected_component(self):
|
|
57
|
+
force_connected_component(self.model, self.W)
|
|
95
58
|
|
|
96
|
-
# All whites must be reached by the final layer
|
|
97
|
-
RT = self.reach_layers[T - 1]
|
|
98
|
-
for p in get_all_pos(self.V, self.H):
|
|
99
|
-
self.model.Add(RT[p] == self.B[p].Not())
|
|
100
59
|
|
|
101
60
|
|
|
102
61
|
def solve_and_print(self, verbose: bool = True):
|