multi-puzzle-solver 0.9.12__py3-none-any.whl → 0.9.13__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of multi-puzzle-solver might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: multi-puzzle-solver
3
- Version: 0.9.12
3
+ Version: 0.9.13
4
4
  Summary: Efficient solvers for numerous popular and esoteric logic puzzles using CP-SAT
5
5
  Author: Ar-Kareem
6
6
  Project-URL: Homepage, https://github.com/Ar-Kareem/puzzle_solver
@@ -260,8 +260,8 @@ These are all the puzzles that are implemented in this repo. <br> Click on any o
260
260
  </a>
261
261
  </td>
262
262
  <td align="center">
263
- <a href="#norinori-puzzle-type-33"><b>Norinori</b><br><br>
264
- <img src="https://raw.githubusercontent.com/Ar-Kareem/puzzle_solver/master/images/norinori_solved.png" alt="Norinori" width="140">
263
+ <a href="#lits-puzzle-type-33"><b>Lits</b><br><br>
264
+ <img src="https://raw.githubusercontent.com/Ar-Kareem/puzzle_solver/master/images/lits_solved.png" alt="Lits" width="140">
265
265
  </a>
266
266
  </td>
267
267
  </tr>
@@ -311,7 +311,7 @@ These are all the puzzles that are implemented in this repo. <br> Click on any o
311
311
  - [Kakurasu (Puzzle Type #30)](#kakurasu-puzzle-type-30)
312
312
  - [Star Battle (Puzzle Type #31)](#star-battle-puzzle-type-31)
313
313
  - [Star Battle Shapeless (Puzzle Type #32)](#star-battle-shapeless-puzzle-type-32)
314
- - [Norinori (Puzzle Type #33)](#norinori-puzzle-type-33)
314
+ - [Lits (Puzzle Type #33)](#lits-puzzle-type-33)
315
315
  - [Why SAT / CP-SAT?](#why-sat--cp-sat)
316
316
  - [Testing](#testing)
317
317
  - [Contributing](#contributing)
@@ -2693,9 +2693,9 @@ Time taken: 0.02 seconds
2693
2693
 
2694
2694
  ---
2695
2695
 
2696
- ## Norinori (Puzzle Type #33)
2696
+ ## Lits (Puzzle Type #33)
2697
2697
 
2698
- * [**Play online**](https://www.puzzle-norinori.com/)
2698
+ * [**Play online**](https://www.puzzle-lits.com/)
2699
2699
 
2700
2700
  * [**Solver Code**][33]
2701
2701
 
@@ -2715,7 +2715,7 @@ Note: The solver is capable of solving variations where the puzzle pieces the ma
2715
2715
 
2716
2716
  **Unsolved puzzle**
2717
2717
 
2718
- <img src="https://raw.githubusercontent.com/Ar-Kareem/puzzle_solver/master/images/norinori_unsolved.png" alt="Norinori unsolved" width="500">
2718
+ <img src="https://raw.githubusercontent.com/Ar-Kareem/puzzle_solver/master/images/lits_unsolved.png" alt="Lits unsolved" width="500">
2719
2719
 
2720
2720
  Code to utilize this package and solve the puzzle:
2721
2721
 
@@ -2778,7 +2778,7 @@ Time taken: 0.38 seconds
2778
2778
 
2779
2779
  **Solved puzzle**
2780
2780
 
2781
- <img src="https://raw.githubusercontent.com/Ar-Kareem/puzzle_solver/master/images/norinori_solved.png" alt="Norinori solved" width="500">
2781
+ <img src="https://raw.githubusercontent.com/Ar-Kareem/puzzle_solver/master/images/lits_solved.png" alt="Lits solved" width="500">
2782
2782
 
2783
2783
  ---
2784
2784
 
@@ -2865,4 +2865,4 @@ Issues and PRs welcome!
2865
2865
  [30]: https://github.com/Ar-Kareem/puzzle_solver/tree/master/src/puzzle_solver/puzzles/kakurasu "puzzle_solver/src/puzzle_solver/puzzles/kakurasu at master · Ar-Kareem/puzzle_solver · GitHub"
2866
2866
  [31]: https://github.com/Ar-Kareem/puzzle_solver/tree/master/src/puzzle_solver/puzzles/star_battle "puzzle_solver/src/puzzle_solver/puzzles/star_battle at master · Ar-Kareem/puzzle_solver · GitHub"
2867
2867
  [32]: https://github.com/Ar-Kareem/puzzle_solver/tree/master/src/puzzle_solver/puzzles/star_battle_shapeless "puzzle_solver/src/puzzle_solver/puzzles/star_battle_shapeless at master · Ar-Kareem/puzzle_solver · GitHub"
2868
- [33]: https://github.com/Ar-Kareem/puzzle_solver/tree/master/src/puzzle_solver/puzzles/norinori "puzzle_solver/src/puzzle_solver/puzzles/norinori at master · Ar-Kareem/puzzle_solver · GitHub"
2868
+ [33]: https://github.com/Ar-Kareem/puzzle_solver/tree/master/src/puzzle_solver/puzzles/lits "puzzle_solver/src/puzzle_solver/puzzles/lits at master · Ar-Kareem/puzzle_solver · GitHub"
@@ -1,4 +1,4 @@
1
- puzzle_solver/__init__.py,sha256=TiVEPMsHf9jGYdNPz052mX7Q9XjTh7V6Lf8CpFhW1o8,2441
1
+ puzzle_solver/__init__.py,sha256=3aQDyvMPWTlYKDo3j-v4x_lUcNbp7KyallMChQEeJY0,2429
2
2
  puzzle_solver/core/utils.py,sha256=D7enPxJjnsTbGDqqtOtGaRaetwGs0nqrNtTnrqhMB-g,3408
3
3
  puzzle_solver/core/utils_ortools.py,sha256=eoT9hSJe-c67A_hsu1jnMpyRgMrTtUs5n2j_m5Hk8Do,7362
4
4
  puzzle_solver/puzzles/aquarium/aquarium.py,sha256=BUfkAS2d9eG3TdMoe1cOGGeNYgKUebRvn-z9nsC9gvE,5708
@@ -17,6 +17,7 @@ puzzle_solver/puzzles/inertia/parse_map/parse_map.py,sha256=A9JQTNqamUdzlwqks0XQ
17
17
  puzzle_solver/puzzles/kakurasu/kakurasu.py,sha256=VNGMJnBHDi6WkghLObRLhUvkmrPaGphTTUDMC0TkQvQ,2064
18
18
  puzzle_solver/puzzles/keen/keen.py,sha256=tDb6C5S3Q0JAKPsdw-84WQ6PxRADELZHr_BK8FDH-NA,5039
19
19
  puzzle_solver/puzzles/light_up/light_up.py,sha256=iSA1rjZMFsnI0V0Nxivxox4qZkB7PvUrROSHXcoUXds,4541
20
+ puzzle_solver/puzzles/lits/lits.py,sha256=gYAcsuWucSer2JWs5eKOroiVmjfi-VzccmZvBIUIFks,12014
20
21
  puzzle_solver/puzzles/magnets/magnets.py,sha256=-Wl49JD_PKeq735zQVMQ3XSQX6gdHiY-7PKw-Sh16jw,6474
21
22
  puzzle_solver/puzzles/map/map.py,sha256=sxc57tapB8Tsgam-yoDitln1o-EB_SbIYvO6WEYy3us,2582
22
23
  puzzle_solver/puzzles/minesweeper/minesweeper.py,sha256=LiQVOGkWCsc1WtX8CdPgL_WwAcaeUFuoi5_eqH8U2Og,5876
@@ -30,7 +31,7 @@ puzzle_solver/puzzles/singles/singles.py,sha256=kwMENfqQ-OP3YIz5baY6LRcvYCsNfhIm
30
31
  puzzle_solver/puzzles/star_battle/star_battle.py,sha256=IX6w4H3sifN01kPPtrAVRCK0Nl_xlXXSHvJKw8K1EuE,3718
31
32
  puzzle_solver/puzzles/star_battle/star_battle_shapeless.py,sha256=lj05V0Y3A3NjMo1boMkPIwBhMtm6SWydjgAMeCf5EIo,225
32
33
  puzzle_solver/puzzles/stitches/stitches.py,sha256=iK8t02q43gH3FPbuIDn4dK0sbaOgZOnw8yHNRNvNuIU,6534
33
- puzzle_solver/puzzles/stitches/parse_map/parse_map.py,sha256=S0cV5WOQLFUOQ0OYzaoGdol6GirCulFEOOIvnIpoO6A,9128
34
+ puzzle_solver/puzzles/stitches/parse_map/parse_map.py,sha256=VWHT-iYDaFsd37h9DE07EkeZ_dJMEfatXSByqC2vh04,8916
34
35
  puzzle_solver/puzzles/sudoku/sudoku.py,sha256=M_pry7XyKKzlfCF5rFi02lyOrj5GWZzXnDAxmD3NXvI,3588
35
36
  puzzle_solver/puzzles/tents/tents.py,sha256=iyVK2WXfIT5j_9qqlQg0WmwvixwXlZSsHGK3XA-KpII,6283
36
37
  puzzle_solver/puzzles/thermometers/thermometers.py,sha256=nsvJZkm7G8FALT27bpaB0lv5E_AWawqmvapQI8QcYXw,4015
@@ -39,7 +40,7 @@ puzzle_solver/puzzles/tracks/tracks.py,sha256=0K1YZMHiRIMmFwoD_JxB2c_xB6GYV8spgN
39
40
  puzzle_solver/puzzles/undead/undead.py,sha256=IrCUfzQFBem658P5KKqldG7vd2TugTHehcwseCarerM,6604
40
41
  puzzle_solver/puzzles/unruly/unruly.py,sha256=sDF0oKT50G-NshyW2DYrvAgD9q9Ku9ANUyNhGSAu7cQ,3827
41
42
  puzzle_solver/utils/visualizer.py,sha256=tsX1yEKwmwXBYuBJpx_oZGe2UUt1g5yV73G3UbtmvtE,6817
42
- multi_puzzle_solver-0.9.12.dist-info/METADATA,sha256=YvLLSim71OsFEGhz23K2CAkszd78vxjx1dO1MsUdD7U,143237
43
- multi_puzzle_solver-0.9.12.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
44
- multi_puzzle_solver-0.9.12.dist-info/top_level.txt,sha256=exwVUQa-anK9vYrpKzBPvH8bX43iElWI4VeNiAyBGJY,14
45
- multi_puzzle_solver-0.9.12.dist-info/RECORD,,
43
+ multi_puzzle_solver-0.9.13.dist-info/METADATA,sha256=x82w11xGJo2Rb4cGGQkmlbQNZ1i7MPGuhxCjOyaj61Y,143181
44
+ multi_puzzle_solver-0.9.13.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
45
+ multi_puzzle_solver-0.9.13.dist-info/top_level.txt,sha256=exwVUQa-anK9vYrpKzBPvH8bX43iElWI4VeNiAyBGJY,14
46
+ multi_puzzle_solver-0.9.13.dist-info/RECORD,,
puzzle_solver/__init__.py CHANGED
@@ -16,7 +16,7 @@ from puzzle_solver.puzzles.map import map as map_solver
16
16
  from puzzle_solver.puzzles.minesweeper import minesweeper as minesweeper_solver
17
17
  from puzzle_solver.puzzles.mosaic import mosaic as mosaic_solver
18
18
  from puzzle_solver.puzzles.nonograms import nonograms as nonograms_solver
19
- from puzzle_solver.puzzles.norinori import norinori as norinori_solver
19
+ from puzzle_solver.puzzles.lits import lits as lits_solver
20
20
  from puzzle_solver.puzzles.pearl import pearl as pearl_solver
21
21
  from puzzle_solver.puzzles.range import range as range_solver
22
22
  from puzzle_solver.puzzles.signpost import signpost as signpost_solver
@@ -34,4 +34,4 @@ from puzzle_solver.puzzles.unruly import unruly as unruly_solver
34
34
 
35
35
  from puzzle_solver.puzzles.inertia.parse_map.parse_map import main as inertia_image_parser
36
36
 
37
- __version__ = '0.9.12'
37
+ __version__ = '0.9.13'
@@ -0,0 +1,255 @@
1
+ import json
2
+ import time
3
+ from dataclasses import dataclass
4
+ from typing import Optional, Union
5
+
6
+ from ortools.sat.python import cp_model
7
+ import numpy as np
8
+
9
+ from puzzle_solver.core.utils import Pos, get_all_pos, get_char, set_char, get_pos, in_bounds, Direction, get_next_pos
10
+ from puzzle_solver.core.utils_ortools import generic_solve_all, SingleSolution, force_connected_component
11
+
12
+
13
+ # a shape on the 2d board is just a set of positions
14
+ Shape = frozenset[Pos]
15
+
16
+
17
+ def polyominoes(N):
18
+ """Generate all polyominoes of size N. Every rotation and reflection is considered different and included in the result.
19
+ Translation is not considered different and is removed from the result (otherwise the result would be infinite).
20
+
21
+ Below is the number of unique polyominoes of size N (not including rotations and reflections) and the lenth of the returned result (which includes all rotations and reflections)
22
+ N name #shapes #results
23
+ 1 monomino 1 1
24
+ 2 domino 1 2
25
+ 3 tromino 2 6
26
+ 4 tetromino 5 19
27
+ 5 pentomino 12 63
28
+ 6 hexomino 35 216
29
+ 7 heptomino 108 760
30
+ 8 octomino 369 2,725
31
+ 9 nonomino 1,285 9,910
32
+ 10 decomino 4,655 36,446
33
+ 11 undecomino 17,073 135,268
34
+ 12 dodecomino 63,600 505,861
35
+ Source: https://en.wikipedia.org/wiki/Polyomino
36
+
37
+ Args:
38
+ N (int): The size of the polyominoes to generate.
39
+
40
+ Returns:
41
+ set[(frozenset[Pos], int)]: A set of all polyominoes of size N (rotated and reflected up to D4 symmetry) along with a unique ID for each polyomino.
42
+ """
43
+ assert N >= 1, 'N cannot be less than 1'
44
+ # need a frozenset because regular sets are not hashable
45
+ shapes: set[Shape] = {frozenset({Pos(0, 0)})}
46
+ for i in range(1, N):
47
+ next_shapes: set[Shape] = set()
48
+ for s in shapes:
49
+ # frontier: all 4-neighbors of existing cells not already in the shape
50
+ frontier = {get_next_pos(pos, direction)
51
+ for pos in s
52
+ for direction in Direction
53
+ if get_next_pos(pos, direction) not in s}
54
+ for cell in frontier:
55
+ t = s | {cell}
56
+ # normalize by translation only: shift so min x,y is (0,0). This removes translational symmetries.
57
+ minx = min(pos.x for pos in t)
58
+ miny = min(pos.y for pos in t)
59
+ t0 = frozenset(Pos(x=pos.x - minx, y=pos.y - miny) for pos in t)
60
+ next_shapes.add(t0)
61
+ shapes = next_shapes
62
+ # shapes is now complete, now classify up to D4 symmetry (rotations/reflections), translations ignored
63
+ mats = (
64
+ ( 1, 0, 0, 1), # regular
65
+ (-1, 0, 0, 1), # reflect about x
66
+ ( 1, 0, 0,-1), # reflect about y
67
+ (-1, 0, 0,-1), # reflect about x and y
68
+ # trnaspose then all 4 above
69
+ ( 0, 1, 1, 0), ( 0, 1, -1, 0), ( 0,-1, 1, 0), ( 0,-1, -1, 0),
70
+ )
71
+ # compute canonical representative for each shape (lexicographically smallest normalized transform)
72
+ shape_to_canon: dict[Shape, tuple[Pos, ...]] = {}
73
+ for s in shapes:
74
+ reps: list[tuple[Pos, ...]] = []
75
+ for a, b, c, d in mats:
76
+ pts = {Pos(x=a*p.x + b*p.y, y=c*p.x + d*p.y) for p in s}
77
+ minx = min(p.x for p in pts)
78
+ miny = min(p.y for p in pts)
79
+ rep = tuple(sorted(Pos(x=p.x - minx, y=p.y - miny) for p in pts))
80
+ reps.append(rep)
81
+ canon = min(reps)
82
+ shape_to_canon[s] = canon
83
+
84
+ canon_set = set(shape_to_canon.values())
85
+ canon_to_id = {canon: i for i, canon in enumerate(sorted(canon_set))}
86
+ result = {(s, canon_to_id[shape_to_canon[s]]) for s in shapes}
87
+ return result
88
+
89
+
90
+ @dataclass(frozen=True)
91
+ class SingleSolution:
92
+ assignment: dict[Pos, Union[str, int]]
93
+ all_other_variables: dict
94
+
95
+ def get_hashable_solution(self) -> str:
96
+ result = []
97
+ for pos, v in self.assignment.items():
98
+ result.append((pos.x, pos.y, v))
99
+ return json.dumps(result, sort_keys=True)
100
+
101
+
102
+
103
+ @dataclass
104
+ class ShapeOnBoard:
105
+ is_active: cp_model.IntVar
106
+ shape: Shape
107
+ shape_id: int
108
+ body: set[Pos]
109
+ disallow_same_shape: set[Pos]
110
+
111
+
112
+ class Board:
113
+ def __init__(self, board: np.array, polyomino_degrees: int = 4):
114
+ assert board.ndim == 2, f'board must be 2d, got {board.ndim}'
115
+ self.V = board.shape[0]
116
+ self.H = board.shape[1]
117
+ assert all((str(c.item()).isdecimal() for c in np.nditer(board))), 'board must contain only digits'
118
+ self.board = board
119
+ self.polyomino_degrees = polyomino_degrees
120
+ self.polyominoes = polyominoes(self.polyomino_degrees)
121
+
122
+ self.block_numbers = set([int(c.item()) for c in np.nditer(board)])
123
+ self.blocks = {i: set() for i in self.block_numbers}
124
+ for cell in get_all_pos(self.V, self.H):
125
+ self.blocks[int(get_char(self.board, cell))].add(cell)
126
+
127
+ self.model = cp_model.CpModel()
128
+ self.model_vars: dict[Pos, cp_model.IntVar] = {}
129
+ self.connected_components: dict[Pos, cp_model.IntVar] = {}
130
+ self.shapes_on_board: list[ShapeOnBoard] = [] # will contain every possible shape on the board based on polyomino degrees
131
+
132
+ self.create_vars()
133
+ self.init_shapes_on_board()
134
+ self.add_all_constraints()
135
+
136
+ def create_vars(self):
137
+ for pos in get_all_pos(self.V, self.H):
138
+ self.model_vars[pos] = self.model.NewBoolVar(f'{pos}')
139
+ # print('base vars:', len(self.model_vars))
140
+
141
+ def init_shapes_on_board(self):
142
+ for idx, (shape, shape_id) in enumerate(self.polyominoes):
143
+ for translate in get_all_pos(self.V, self.H): # body of shape is translated to be at pos
144
+ body = {get_pos(x=p.x + translate.x, y=p.y + translate.y) for p in shape}
145
+ if any(not in_bounds(p, self.V, self.H) for p in body):
146
+ continue
147
+ # shape must be fully contained in one block
148
+ if len(set(get_char(self.board, p) for p in body)) > 1:
149
+ continue
150
+ # 2 tetrominoes of matching types cannot touch each other horizontally or vertically. Rotations and reflections count as matching.
151
+ disallow_same_shape = set(get_next_pos(p, direction) for p in body for direction in Direction)
152
+ disallow_same_shape -= body
153
+ self.shapes_on_board.append(ShapeOnBoard(
154
+ is_active=self.model.NewBoolVar(f'{idx}:{translate}:is_active'),
155
+ shape=shape,
156
+ shape_id=shape_id,
157
+ body=body,
158
+ disallow_same_shape=disallow_same_shape,
159
+ ))
160
+ # print('shapes on board:', len(self.shapes_on_board))
161
+
162
+ def add_all_constraints(self):
163
+ # RULES:
164
+ # 1- You have to place one tetromino in each region in such a way that:
165
+ # 2- 2 tetrominoes of matching types cannot touch each other horizontally or vertically. Rotations and reflections count as matching.
166
+ # 3- The shaded cells should form a single connected area.
167
+ # 4- 2x2 shaded areas are not allowed
168
+
169
+ # each cell must be part of a shape, every shape must be fully on the board. Core constraint, otherwise shapes on the board make no sense.
170
+ self.only_allow_shapes_on_board()
171
+
172
+ self.force_one_shape_per_block() # Rule #1
173
+ self.disallow_same_shape_touching() # Rule #2
174
+ self.fc = force_connected_component(self.model, self.model_vars) # Rule #3
175
+ # print('force connected vars:', len(fc))
176
+ shape_2_by_2 = frozenset({Pos(0, 0), Pos(0, 1), Pos(1, 0), Pos(1, 1)})
177
+ self.disallow_shape(shape_2_by_2) # Rule #4
178
+
179
+
180
+ def only_allow_shapes_on_board(self):
181
+ for shape_on_board in self.shapes_on_board:
182
+ # if shape is active then all its body cells must be active
183
+ self.model.Add(sum(self.model_vars[p] for p in shape_on_board.body) == len(shape_on_board.body)).OnlyEnforceIf(shape_on_board.is_active)
184
+ # each cell must be part of a shape
185
+ for p in get_all_pos(self.V, self.H):
186
+ shapes_on_p = [s for s in self.shapes_on_board if p in s.body]
187
+ self.model.Add(sum(s.is_active for s in shapes_on_p) == 1).OnlyEnforceIf(self.model_vars[p])
188
+
189
+ def force_one_shape_per_block(self):
190
+ # You have to place exactly one tetromino in each region
191
+ for block_i in self.block_numbers:
192
+ shapes_on_block = [s for s in self.shapes_on_board if s.body & self.blocks[block_i]]
193
+ assert all(s.body.issubset(self.blocks[block_i]) for s in shapes_on_block), 'expected all shapes on block to be fully contained in the block'
194
+ # print(f'shapes on block {block_i} has {len(shapes_on_block)} shapes')
195
+ self.model.Add(sum(s.is_active for s in shapes_on_block) == 1)
196
+
197
+ def disallow_same_shape_touching(self):
198
+ # if shape is active then it must not touch any other shape of the same type
199
+ for shape_on_board in self.shapes_on_board:
200
+ similar_shapes = [s for s in self.shapes_on_board if s.shape_id == shape_on_board.shape_id]
201
+ for s in similar_shapes:
202
+ if shape_on_board.disallow_same_shape & s.body: # this shape disallows having s be on the board
203
+ self.model.Add(s.is_active == 0).OnlyEnforceIf(shape_on_board.is_active)
204
+
205
+ def disallow_shape(self, shape_to_disallow: Shape):
206
+ # for every position in the board, force sum of body < len(body)
207
+ for translate in get_all_pos(self.V, self.H):
208
+ cur_body = {get_pos(x=p.x + translate.x, y=p.y + translate.y) for p in shape_to_disallow}
209
+ if any(not in_bounds(p, self.V, self.H) for p in cur_body):
210
+ continue
211
+ self.model.Add(sum(self.model_vars[p] for p in cur_body) < len(cur_body))
212
+
213
+
214
+
215
+
216
+ def solve_and_print(self, verbose: bool = True, max_solutions: Optional[int] = None, verbose_callback: Optional[bool] = None):
217
+ if verbose_callback is None:
218
+ verbose_callback = verbose
219
+ def board_to_solution(board: Board, solver: cp_model.CpSolverSolutionCallback) -> SingleSolution:
220
+ assignment: dict[Pos, int] = {}
221
+ for pos, var in board.model_vars.items():
222
+ assignment[pos] = solver.Value(var)
223
+ all_other_variables = {
224
+ 'fc': {k: solver.Value(v) for k, v in board.fc.items()}
225
+ }
226
+ return SingleSolution(assignment=assignment, all_other_variables=all_other_variables)
227
+ def callback(single_res: SingleSolution):
228
+ print("Solution found")
229
+ res = np.full((self.V, self.H), ' ', dtype=str)
230
+ for pos, val in single_res.assignment.items():
231
+ c = 'X' if val == 1 else ' '
232
+ set_char(res, pos, c)
233
+ print('[\n' + '\n'.join([' ' + str(res[row].tolist()) + ',' for row in range(self.V)]) + '\n]')
234
+ pass
235
+ return generic_solve_all(self, board_to_solution, callback=callback if verbose_callback else None, verbose=verbose, max_solutions=max_solutions)
236
+
237
+ def solve_then_constrain(self, verbose: bool = True):
238
+ tic = time.time()
239
+ all_solutions = []
240
+ while True:
241
+ solutions = self.solve_and_print(verbose=False, verbose_callback=verbose, max_solutions=1)
242
+ if len(solutions) == 0:
243
+ break
244
+ all_solutions.extend(solutions)
245
+ assignment = solutions[0].assignment
246
+ # constrain the board to not return the same solution again
247
+ lits = [self.model_vars[p].Not() if assignment[p] == 1 else self.model_vars[p] for p in assignment.keys()]
248
+ self.model.AddBoolOr(lits)
249
+ self.model.ClearHints()
250
+ for k, v in solutions[0].all_other_variables['fc'].items():
251
+ self.model.AddHint(self.fc[k], v)
252
+ print(f'Solutions found: {len(all_solutions)}')
253
+ toc = time.time()
254
+ print(f'Time taken: {toc - tic:.2f} seconds')
255
+ return all_solutions
@@ -1,212 +1,212 @@
1
- """
2
- This file is a simple helper that parses the images from https://www.chiark.greenend.org.uk/~sgtatham/puzzles/js/inertia.html and converts them to a json file.
3
- Look at the ./input_output/ directory for examples of input images and output json files.
4
- The output json is used in the test_solve.py file to test the solver.
5
- """
6
- from pathlib import Path
7
- import numpy as np
8
- cv = None
9
- Image = None
10
-
11
-
12
- def extract_lines(bw):
13
- # Create the images that will use to extract the horizontal and vertical lines
14
- horizontal = np.copy(bw)
15
- vertical = np.copy(bw)
16
-
17
- cols = horizontal.shape[1]
18
- horizontal_size = cols // 5
19
- # Create structure element for extracting horizontal lines through morphology operations
20
- horizontalStructure = cv.getStructuringElement(cv.MORPH_RECT, (horizontal_size, 1))
21
- horizontal = cv.erode(horizontal, horizontalStructure)
22
- horizontal = cv.dilate(horizontal, horizontalStructure)
23
- horizontal_means = np.mean(horizontal, axis=1)
24
- horizontal_cutoff = np.percentile(horizontal_means, 50)
25
- # location where the horizontal lines are
26
- horizontal_idx = np.where(horizontal_means > horizontal_cutoff)[0]
27
- # print(f"horizontal_idx: {horizontal_idx}")
28
- height = len(horizontal_idx)
29
- # show_wait_destroy("horizontal", horizontal) # this has the horizontal lines
30
-
31
- rows = vertical.shape[0]
32
- verticalsize = rows // 5
33
- # Create structure element for extracting vertical lines through morphology operations
34
- verticalStructure = cv.getStructuringElement(cv.MORPH_RECT, (1, verticalsize))
35
- vertical = cv.erode(vertical, verticalStructure)
36
- vertical = cv.dilate(vertical, verticalStructure)
37
- vertical_means = np.mean(vertical, axis=0)
38
- vertical_cutoff = np.percentile(vertical_means, 50)
39
- vertical_idx = np.where(vertical_means > vertical_cutoff)[0]
40
- # print(f"vertical_idx: {vertical_idx}")
41
- width = len(vertical_idx)
42
- # print(f"height: {height}, width: {width}")
43
- # print(f"vertical_means: {vertical_means}")
44
- # show_wait_destroy("vertical", vertical) # this has the vertical lines
45
-
46
- vertical = cv.bitwise_not(vertical)
47
- # show_wait_destroy("vertical_bit", vertical)
48
-
49
- return horizontal_idx, vertical_idx
50
-
51
- def show_wait_destroy(winname, img):
52
- cv.imshow(winname, img)
53
- cv.moveWindow(winname, 500, 0)
54
- cv.waitKey(0)
55
- cv.destroyWindow(winname)
56
-
57
-
58
- def mean_consecutives(arr: np.ndarray) -> np.ndarray:
59
- """if a sequence of values is consecutive, then average the values"""
60
- sums = []
61
- counts = []
62
- for i in range(len(arr)):
63
- if i == 0:
64
- sums.append(arr[i])
65
- counts.append(1)
66
- elif arr[i] == arr[i-1] + 1:
67
- sums[-1] += arr[i]
68
- counts[-1] += 1
69
- else:
70
- sums.append(arr[i])
71
- counts.append(1)
72
- return np.array(sums) // np.array(counts)
73
-
74
- def dfs(x, y, out, output, current_num):
75
- if x < 0 or x >= out.shape[1] or y < 0 or y >= out.shape[0]:
76
- return
77
- if out[y, x] != ' ':
78
- return
79
- out[y, x] = current_num
80
- if output['top'][y, x] == 0:
81
- dfs(x, y-1, out, output, current_num)
82
- if output['left'][y, x] == 0:
83
- dfs(x-1, y, out, output, current_num)
84
- if output['right'][y, x] == 0:
85
- dfs(x+1, y, out, output, current_num)
86
- if output['bottom'][y, x] == 0:
87
- dfs(x, y+1, out, output, current_num)
88
-
89
- def main(image):
90
- global Image
91
- global cv
92
- import matplotlib.pyplot as plt
93
- from PIL import Image as Image_module
94
- import cv2 as cv_module
95
- Image = Image_module
96
- cv = cv_module
97
-
98
-
99
- image_path = Path(image)
100
- output_path = image_path.parent / (image_path.stem + '.json')
101
- src = cv.imread(image, cv.IMREAD_COLOR)
102
- assert src is not None, f'Error opening image: {image}'
103
- if len(src.shape) != 2:
104
- gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
105
- else:
106
- gray = src
107
- # now the image is in grayscale
108
-
109
- # Apply adaptiveThreshold at the bitwise_not of gray, notice the ~ symbol
110
- gray = cv.bitwise_not(gray)
111
- bw = cv.adaptiveThreshold(gray.copy(), 255, cv.ADAPTIVE_THRESH_MEAN_C, \
112
- cv.THRESH_BINARY, 15, -2)
113
- # show_wait_destroy("binary", bw)
114
-
115
- # show_wait_destroy("src", src)
116
- horizontal_idx, vertical_idx = extract_lines(bw)
117
- horizontal_idx = mean_consecutives(horizontal_idx)
118
- vertical_idx = mean_consecutives(vertical_idx)
119
- height = len(horizontal_idx)
120
- width = len(vertical_idx)
121
- print(f"height: {height}, width: {width}")
122
- print(f"horizontal_idx: {horizontal_idx}")
123
- print(f"vertical_idx: {vertical_idx}")
124
- arr = np.zeros((height - 1, width - 1), dtype=object)
125
- output = {'top': arr.copy(), 'left': arr.copy(), 'right': arr.copy(), 'bottom': arr.copy()}
126
- target = 200_000
127
- hists = {'top': {}, 'left': {}, 'right': {}, 'bottom': {}}
128
- for j in range(height - 1):
129
- for i in range(width - 1):
130
- hidx1, hidx2 = horizontal_idx[j], horizontal_idx[j+1]
131
- vidx1, vidx2 = vertical_idx[i], vertical_idx[i+1]
132
- hidx1 = max(0, hidx1 - 2)
133
- hidx2 = min(src.shape[0], hidx2 + 4)
134
- vidx1 = max(0, vidx1 - 2)
135
- vidx2 = min(src.shape[1], vidx2 + 4)
136
- cell = src[hidx1:hidx2, vidx1:vidx2]
137
- mid_x = cell.shape[1] // 2
138
- mid_y = cell.shape[0] // 2
139
- # show_wait_destroy(f"cell_{i}_{j}", cell)
140
- cell = cv.bitwise_not(cell) # invert colors
141
- top = cell[0:10, mid_y-5:mid_y+5]
142
- hists['top'][j, i] = np.sum(top)
143
- left = cell[mid_x-5:mid_x+5, 0:10]
144
- hists['left'][j, i] = np.sum(left)
145
- right = cell[mid_x-5:mid_x+5, -10:]
146
- hists['right'][j, i] = np.sum(right)
147
- bottom = cell[-10:, mid_y-5:mid_y+5]
148
- hists['bottom'][j, i] = np.sum(bottom)
149
-
150
- fig, axs = plt.subplots(2, 2)
151
- axs[0, 0].hist(list(hists['top'].values()), bins=100)
152
- axs[0, 0].set_title('Top')
153
- axs[0, 1].hist(list(hists['left'].values()), bins=100)
154
- axs[0, 1].set_title('Left')
155
- axs[1, 0].hist(list(hists['right'].values()), bins=100)
156
- axs[1, 0].set_title('Right')
157
- axs[1, 1].hist(list(hists['bottom'].values()), bins=100)
158
- axs[1, 1].set_title('Bottom')
159
- target_top = np.mean(list(hists['top'].values()))
160
- target_left = np.mean(list(hists['left'].values()))
161
- target_right = np.mean(list(hists['right'].values()))
162
- target_bottom = np.mean(list(hists['bottom'].values()))
163
- axs[0, 0].axvline(target_top, color='red')
164
- axs[0, 1].axvline(target_left, color='red')
165
- axs[1, 0].axvline(target_right, color='red')
166
- axs[1, 1].axvline(target_bottom, color='red')
167
- # plt.show()
168
- # 1/0
169
- print(f"target_top: {target_top}, target_left: {target_left}, target_right: {target_right}, target_bottom: {target_bottom}")
170
- for j in range(height - 1):
171
- for i in range(width - 1):
172
- if hists['top'][j, i] > target_top:
173
- output['top'][j, i] = 1
174
- if hists['left'][j, i] > target_left:
175
- output['left'][j, i] = 1
176
- if hists['right'][j, i] > target_right:
177
- output['right'][j, i] = 1
178
- if hists['bottom'][j, i] > target_bottom:
179
- output['bottom'][j, i] = 1
180
- print(f"cell_{j}_{i}", end=': ')
181
- print('T' if output['top'][j, i] else '', end='')
182
- print('L' if output['left'][j, i] else '', end='')
183
- print('R' if output['right'][j, i] else '', end='')
184
- print('B' if output['bottom'][j, i] else '', end='')
185
- print(' Sums: ', hists['top'][j, i], hists['left'][j, i], hists['right'][j, i], hists['bottom'][j, i])
186
-
187
- current_count = 0
188
- out = np.full_like(output['top'], ' ', dtype='U2')
189
- for j in range(out.shape[0]):
190
- for i in range(out.shape[1]):
191
- if out[j, i] == ' ':
192
- dfs(i, j, out, output, str(current_count).zfill(2))
193
- current_count += 1
194
-
195
- with open(output_path, 'w') as f:
196
- f.write('[\n')
197
- for i, row in enumerate(out):
198
- f.write(' ' + str(row.tolist()).replace("'", '"'))
199
- if i != len(out) - 1:
200
- f.write(',')
201
- f.write('\n')
202
- f.write(']')
203
- print('output json: ', output_path)
204
-
205
- if __name__ == '__main__':
206
- # to run this script and visualize the output, in the root run:
207
- # python .\src\puzzle_solver\puzzles\stitches\parse_map\parse_map.py | python .\src\puzzle_solver\utils\visualizer.py --read_stdin
208
- # main(Path(__file__).parent / 'input_output' / 'MTM6OSw4MjEsNDAx.png')
209
- # main(Path(__file__).parent / 'input_output' / 'weekly_oct_3rd_2025.png')
210
- # main(Path(__file__).parent / 'input_output' / 'star_battle_67f73ff90cd8cdb4b3e30f56f5261f4968f5dac940bc6.png')
211
- # main(Path(__file__).parent / 'input_output' / 'LITS_MDoxNzksNzY3.png')
212
- main(Path(__file__).parent / 'input_output' / 'lits_OTo3LDMwNiwwMTU=.png')
1
+ """
2
+ This file is a simple helper that parses the images from https://www.chiark.greenend.org.uk/~sgtatham/puzzles/js/inertia.html and converts them to a json file.
3
+ Look at the ./input_output/ directory for examples of input images and output json files.
4
+ The output json is used in the test_solve.py file to test the solver.
5
+ """
6
+ from pathlib import Path
7
+ import numpy as np
8
+ cv = None
9
+ Image = None
10
+
11
+
12
+ def extract_lines(bw):
13
+ # Create the images that will use to extract the horizontal and vertical lines
14
+ horizontal = np.copy(bw)
15
+ vertical = np.copy(bw)
16
+
17
+ cols = horizontal.shape[1]
18
+ horizontal_size = cols // 5
19
+ # Create structure element for extracting horizontal lines through morphology operations
20
+ horizontalStructure = cv.getStructuringElement(cv.MORPH_RECT, (horizontal_size, 1))
21
+ horizontal = cv.erode(horizontal, horizontalStructure)
22
+ horizontal = cv.dilate(horizontal, horizontalStructure)
23
+ horizontal_means = np.mean(horizontal, axis=1)
24
+ horizontal_cutoff = np.percentile(horizontal_means, 50)
25
+ # location where the horizontal lines are
26
+ horizontal_idx = np.where(horizontal_means > horizontal_cutoff)[0]
27
+ # print(f"horizontal_idx: {horizontal_idx}")
28
+ height = len(horizontal_idx)
29
+ # show_wait_destroy("horizontal", horizontal) # this has the horizontal lines
30
+
31
+ rows = vertical.shape[0]
32
+ verticalsize = rows // 5
33
+ # Create structure element for extracting vertical lines through morphology operations
34
+ verticalStructure = cv.getStructuringElement(cv.MORPH_RECT, (1, verticalsize))
35
+ vertical = cv.erode(vertical, verticalStructure)
36
+ vertical = cv.dilate(vertical, verticalStructure)
37
+ vertical_means = np.mean(vertical, axis=0)
38
+ vertical_cutoff = np.percentile(vertical_means, 50)
39
+ vertical_idx = np.where(vertical_means > vertical_cutoff)[0]
40
+ # print(f"vertical_idx: {vertical_idx}")
41
+ width = len(vertical_idx)
42
+ # print(f"height: {height}, width: {width}")
43
+ # print(f"vertical_means: {vertical_means}")
44
+ # show_wait_destroy("vertical", vertical) # this has the vertical lines
45
+
46
+ vertical = cv.bitwise_not(vertical)
47
+ # show_wait_destroy("vertical_bit", vertical)
48
+
49
+ return horizontal_idx, vertical_idx
50
+
51
+ def show_wait_destroy(winname, img):
52
+ cv.imshow(winname, img)
53
+ cv.moveWindow(winname, 500, 0)
54
+ cv.waitKey(0)
55
+ cv.destroyWindow(winname)
56
+
57
+
58
+ def mean_consecutives(arr: np.ndarray) -> np.ndarray:
59
+ """if a sequence of values is consecutive, then average the values"""
60
+ sums = []
61
+ counts = []
62
+ for i in range(len(arr)):
63
+ if i == 0:
64
+ sums.append(arr[i])
65
+ counts.append(1)
66
+ elif arr[i] == arr[i-1] + 1:
67
+ sums[-1] += arr[i]
68
+ counts[-1] += 1
69
+ else:
70
+ sums.append(arr[i])
71
+ counts.append(1)
72
+ return np.array(sums) // np.array(counts)
73
+
74
+ def dfs(x, y, out, output, current_num):
75
+ if x < 0 or x >= out.shape[1] or y < 0 or y >= out.shape[0]:
76
+ return
77
+ if out[y, x] != ' ':
78
+ return
79
+ out[y, x] = current_num
80
+ if output['top'][y, x] == 0:
81
+ dfs(x, y-1, out, output, current_num)
82
+ if output['left'][y, x] == 0:
83
+ dfs(x-1, y, out, output, current_num)
84
+ if output['right'][y, x] == 0:
85
+ dfs(x+1, y, out, output, current_num)
86
+ if output['bottom'][y, x] == 0:
87
+ dfs(x, y+1, out, output, current_num)
88
+
89
+ def main(image):
90
+ global Image
91
+ global cv
92
+ import matplotlib.pyplot as plt
93
+ from PIL import Image as Image_module
94
+ import cv2 as cv_module
95
+ Image = Image_module
96
+ cv = cv_module
97
+
98
+
99
+ image_path = Path(image)
100
+ output_path = image_path.parent / (image_path.stem + '.json')
101
+ src = cv.imread(image, cv.IMREAD_COLOR)
102
+ assert src is not None, f'Error opening image: {image}'
103
+ if len(src.shape) != 2:
104
+ gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
105
+ else:
106
+ gray = src
107
+ # now the image is in grayscale
108
+
109
+ # Apply adaptiveThreshold at the bitwise_not of gray, notice the ~ symbol
110
+ gray = cv.bitwise_not(gray)
111
+ bw = cv.adaptiveThreshold(gray.copy(), 255, cv.ADAPTIVE_THRESH_MEAN_C, \
112
+ cv.THRESH_BINARY, 15, -2)
113
+ # show_wait_destroy("binary", bw)
114
+
115
+ # show_wait_destroy("src", src)
116
+ horizontal_idx, vertical_idx = extract_lines(bw)
117
+ horizontal_idx = mean_consecutives(horizontal_idx)
118
+ vertical_idx = mean_consecutives(vertical_idx)
119
+ height = len(horizontal_idx)
120
+ width = len(vertical_idx)
121
+ print(f"height: {height}, width: {width}")
122
+ print(f"horizontal_idx: {horizontal_idx}")
123
+ print(f"vertical_idx: {vertical_idx}")
124
+ arr = np.zeros((height - 1, width - 1), dtype=object)
125
+ output = {'top': arr.copy(), 'left': arr.copy(), 'right': arr.copy(), 'bottom': arr.copy()}
126
+ target = 200_000
127
+ hists = {'top': {}, 'left': {}, 'right': {}, 'bottom': {}}
128
+ for j in range(height - 1):
129
+ for i in range(width - 1):
130
+ hidx1, hidx2 = horizontal_idx[j], horizontal_idx[j+1]
131
+ vidx1, vidx2 = vertical_idx[i], vertical_idx[i+1]
132
+ hidx1 = max(0, hidx1 - 2)
133
+ hidx2 = min(src.shape[0], hidx2 + 4)
134
+ vidx1 = max(0, vidx1 - 2)
135
+ vidx2 = min(src.shape[1], vidx2 + 4)
136
+ cell = src[hidx1:hidx2, vidx1:vidx2]
137
+ mid_x = cell.shape[1] // 2
138
+ mid_y = cell.shape[0] // 2
139
+ # show_wait_destroy(f"cell_{i}_{j}", cell)
140
+ cell = cv.bitwise_not(cell) # invert colors
141
+ top = cell[0:10, mid_y-5:mid_y+5]
142
+ hists['top'][j, i] = np.sum(top)
143
+ left = cell[mid_x-5:mid_x+5, 0:10]
144
+ hists['left'][j, i] = np.sum(left)
145
+ right = cell[mid_x-5:mid_x+5, -10:]
146
+ hists['right'][j, i] = np.sum(right)
147
+ bottom = cell[-10:, mid_y-5:mid_y+5]
148
+ hists['bottom'][j, i] = np.sum(bottom)
149
+
150
+ fig, axs = plt.subplots(2, 2)
151
+ axs[0, 0].hist(list(hists['top'].values()), bins=100)
152
+ axs[0, 0].set_title('Top')
153
+ axs[0, 1].hist(list(hists['left'].values()), bins=100)
154
+ axs[0, 1].set_title('Left')
155
+ axs[1, 0].hist(list(hists['right'].values()), bins=100)
156
+ axs[1, 0].set_title('Right')
157
+ axs[1, 1].hist(list(hists['bottom'].values()), bins=100)
158
+ axs[1, 1].set_title('Bottom')
159
+ target_top = np.mean(list(hists['top'].values()))
160
+ target_left = np.mean(list(hists['left'].values()))
161
+ target_right = np.mean(list(hists['right'].values()))
162
+ target_bottom = np.mean(list(hists['bottom'].values()))
163
+ axs[0, 0].axvline(target_top, color='red')
164
+ axs[0, 1].axvline(target_left, color='red')
165
+ axs[1, 0].axvline(target_right, color='red')
166
+ axs[1, 1].axvline(target_bottom, color='red')
167
+ # plt.show()
168
+ # 1/0
169
+ print(f"target_top: {target_top}, target_left: {target_left}, target_right: {target_right}, target_bottom: {target_bottom}")
170
+ for j in range(height - 1):
171
+ for i in range(width - 1):
172
+ if hists['top'][j, i] > target_top:
173
+ output['top'][j, i] = 1
174
+ if hists['left'][j, i] > target_left:
175
+ output['left'][j, i] = 1
176
+ if hists['right'][j, i] > target_right:
177
+ output['right'][j, i] = 1
178
+ if hists['bottom'][j, i] > target_bottom:
179
+ output['bottom'][j, i] = 1
180
+ print(f"cell_{j}_{i}", end=': ')
181
+ print('T' if output['top'][j, i] else '', end='')
182
+ print('L' if output['left'][j, i] else '', end='')
183
+ print('R' if output['right'][j, i] else '', end='')
184
+ print('B' if output['bottom'][j, i] else '', end='')
185
+ print(' Sums: ', hists['top'][j, i], hists['left'][j, i], hists['right'][j, i], hists['bottom'][j, i])
186
+
187
+ current_count = 0
188
+ out = np.full_like(output['top'], ' ', dtype='U2')
189
+ for j in range(out.shape[0]):
190
+ for i in range(out.shape[1]):
191
+ if out[j, i] == ' ':
192
+ dfs(i, j, out, output, str(current_count).zfill(2))
193
+ current_count += 1
194
+
195
+ with open(output_path, 'w') as f:
196
+ f.write('[\n')
197
+ for i, row in enumerate(out):
198
+ f.write(' ' + str(row.tolist()).replace("'", '"'))
199
+ if i != len(out) - 1:
200
+ f.write(',')
201
+ f.write('\n')
202
+ f.write(']')
203
+ print('output json: ', output_path)
204
+
205
+ if __name__ == '__main__':
206
+ # to run this script and visualize the output, in the root run:
207
+ # python .\src\puzzle_solver\puzzles\stitches\parse_map\parse_map.py | python .\src\puzzle_solver\utils\visualizer.py --read_stdin
208
+ # main(Path(__file__).parent / 'input_output' / 'MTM6OSw4MjEsNDAx.png')
209
+ # main(Path(__file__).parent / 'input_output' / 'weekly_oct_3rd_2025.png')
210
+ # main(Path(__file__).parent / 'input_output' / 'star_battle_67f73ff90cd8cdb4b3e30f56f5261f4968f5dac940bc6.png')
211
+ # main(Path(__file__).parent / 'input_output' / 'LITS_MDoxNzksNzY3.png')
212
+ main(Path(__file__).parent / 'input_output' / 'lits_OTo3LDMwNiwwMTU=.png')