multi-agent-rlenv 3.7.2__py3-none-any.whl → 3.7.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
marlenv/__init__.py CHANGED
@@ -1,65 +1,114 @@
1
1
  """
2
2
  `marlenv` is a strongly typed library for multi-agent and multi-objective reinforcement learning.
3
3
 
4
+ Install the library with
5
+ ```sh
6
+ $ pip install multi-agent-rlenv # Basics
7
+ $ pip install multi-agent-rlenv[all] # With all optional dependecies
8
+ $ pip install multi-agent-rlenv[smac,overcooked] # Only SMACv2 & Overcooked
9
+ ```
10
+
4
11
  It aims to provide a simple and consistent interface for reinforcement learning environments by providing abstraction models such as `Observation`s or `Episode`s. `marlenv` provides adapters for popular libraries such as `gym` or `pettingzoo` and provides utility wrappers to add functionalities such as video recording or limiting the number of steps.
5
12
 
6
- Almost every class is a dataclassto enable seemless serialiation with the `orjson` library.
13
+ Almost every class is a dataclass to enable seemless serialiation with the `orjson` library.
7
14
 
8
- # Existing environments
9
- The `MARLEnv` class represents a multi-agent RL environment and is at the center of this library, and `marlenv` provides an adapted implementation of multiple common MARL environments (gym, pettingzoo, smac and overcooked) in `marlenv.adapters`. Note that these adapters will only work if you have the corresponding library installed.
15
+ # Fundamentals
16
+ ## States & Observations
17
+ `MARLEnv.reset()` returns a pair of `(Observation, State)` and `MARLEnv.step()` returns a `Step`.
10
18
 
11
- ```python
12
- from marlenv.adapters import Gym, PettingZoo, SMAC, Overcooked
13
- import marlenv
19
+ - `Observation` contains:
20
+ - `data`: shape `[n_agents, *observation_shape]`
21
+ - `available_actions`: boolean mask `[n_agents, n_actions]`
22
+ - `extras`: extra features per agent (default shape `(n_agents, 0)`)
23
+ - `State` represents the environment state and can also carry `extras`.
24
+ - `Step` bundles `obs`, `state`, `reward`, `done`, `truncated`, and `info`.
14
25
 
15
- env1 = Gym("CartPole-v1")
16
- env2 = marlenv.make("CartPole-v1")
17
- env3 = PettingZoo("prospector_v4")
18
- env4 = SMAC("3m")
19
- env5 = Overcooked.from_layout("cramped_room")
20
- ```
26
+ Rewards are stored as `np.float32` arrays. Multi-objective envs use reward vectors with `reward_space.size > 1`.
21
27
 
22
- # Wrappers & Builder
23
- To facilitate the create of an environment with common wrappers, `marlenv` provides a `Builder` class that can be used to chain the creation of multiple wrappers.
28
+ ## Extras
29
+ Extras are auxiliary features appended by wrappers (agent id, last action, time ratio, available actions, ...).
30
+ Wrappers that add extras must update both `extras_shape` and `extras_meanings` so downstream users can interpret them.
31
+ `State` extras should stay in sync with `Observation` extras when applicable.
32
+
33
+ # Environment catalog
34
+ `marlenv.catalog` exposes curated environments and lazily imports optional dependencies.
24
35
 
25
36
  ```python
26
- from marlenv import make, Builder
37
+ from marlenv import catalog
27
38
 
28
- env = <your env>
29
- env = Builder(env).agent_id().time_limit(50).record("videos").build()
39
+ env1 = catalog.overcooked().from_layout("scenario4")
40
+ env2 = catalog.lle().level(6)
41
+ env3 = catalog.DeepSea(mex_depth=5)
30
42
  ```
31
43
 
32
- # Using the library
33
- A typical environment loop would look like this:
44
+ Catalog entries require their corresponding extras at install time (e.g., `marlenv[overcooked]`, `marlenv[lle]`).
45
+
46
+ # Wrappers & builders
47
+ Wrappers are composable through `RLEnvWrapper` and can be chained via `Builder` for fluent configuration.
34
48
 
35
49
  ```python
36
- from marlenv import DiscreteMockEnv, Builder, Episode
37
-
38
- env = Builder(DicreteMockEnv()).agent_id().build()
39
- obs, state = env.reset()
40
- terminated = False
41
- episode = Episode.new(obs, state)
42
- while not episode.is_finished:
43
- action = env.sample_action() # a valid random action
44
- step = env.step(action) # Step data `step.obs`, `step.reward`, ...
45
- episode.add(step, action) # Progressively build the episode
50
+ from marlenv import Builder
51
+ from marlenv.adapters import SMAC
52
+
53
+ env = (
54
+ Builder(SMAC("3m"))
55
+ .agent_id()
56
+ .time_limit(20)
57
+ .available_actions()
58
+ .build()
59
+ )
46
60
  ```
47
61
 
48
- # Extras
49
- To cope with complex observation spaces, `marlenv` distinguishes the "main" observation data from the "extra" observation data. A typical example would be the observation of a gridworld environment with a time limit. In that case, the main observation has shape (height, width), i.e. the content of the grid, but the current time is an extra observation data of shape (1, ).
62
+ Common wrappers include time limits, delayed rewards, masking available actions, and video recording.
63
+
64
+ # Using the library
65
+ ## Adapters for existing libraries
66
+ Adapters normalize external APIs into `MARLEnv`:
50
67
 
51
68
  ```python
52
- env = GridWorldEnv()
53
- print(env.observation_shape) # (height, width)
54
- print(env.extras_shape) # (0, )
69
+ import marlenv
70
+
71
+ gym_env = marlenv.make("CartPole-v1", seed=25)
55
72
 
56
- env = Builder(env).time_limit(25).build()
57
- print(env.observation_shape) # (height, width)
58
- print(env.extras_shape) # (1, )
73
+ from marlenv.adapters import SMAC
74
+ smac_env = SMAC("3m", debug=True, difficulty="9")
75
+
76
+ from pettingzoo.sisl import pursuit_v4
77
+ from marlenv.adapters import PettingZoo
78
+ env = PettingZoo(pursuit_v4.parallel_env())
59
79
  ```
60
80
 
61
- # Creating a new environment
62
- If you want to create a new environment, you can simply create a class that inherits from `MARLEnv`. If you want to create a wrapper around an existing `MARLEnv`, you probably want to subclass `RLEnvWrapper` which implements a default behaviour for every method.
81
+ ## Designing a custom environment
82
+ Create a custom environment by inheriting from `MARLEnv` and implementing `reset`, `step`, `get_observation`, and `get_state`.
83
+
84
+ ```python
85
+ import numpy as np
86
+ from marlenv import MARLEnv, DiscreteSpace, Observation, State, Step
87
+
88
+ class CustomEnv(MARLEnv[DiscreteSpace]):
89
+ def __init__(self):
90
+ super().__init__(
91
+ n_agents=3,
92
+ action_space=DiscreteSpace.action(5).repeat(3),
93
+ observation_shape=(4,),
94
+ state_shape=(2,),
95
+ )
96
+ self.t = 0
97
+
98
+ def reset(self):
99
+ self.t = 0
100
+ return self.get_observation(), self.get_state()
101
+
102
+ def step(self, action):
103
+ self.t += 1
104
+ return Step(self.get_observation(), self.get_state(), reward=0.0, done=False)
105
+
106
+ def get_observation(self):
107
+ return Observation(np.zeros((3, 4), dtype=np.float32), self.available_actions())
108
+
109
+ def get_state(self):
110
+ return State(np.array([self.t, 0], dtype=np.float32))
111
+ ```
63
112
  """
64
113
 
65
114
  from importlib.metadata import version, PackageNotFoundError
@@ -1,3 +1,18 @@
1
+ """
2
+ Adapters for external RL libraries.
3
+
4
+ This submodule provides optional wrappers that normalize third-party APIs into
5
+ `MARLEnv`. Adapters are imported lazily via `try/except` so the base install
6
+ remains lightweight. The availability flags (`HAS_GYM`, `HAS_PETTINGZOO`,
7
+ `HAS_SMAC`) reflect whether the corresponding extra was installed.
8
+
9
+ Install extras to enable adapters with `uv` or `pip`:
10
+ - `multi-agent-rlenv[all]` for all optional dependencies
11
+ - `multi-agent-rlenv[gym]` for Gymnasium
12
+ - `multi-agent-rlenv[pettingzoo]` for PettingZoo
13
+ - `multi-agent-rlenv[smac]` for SMAC
14
+ """
15
+
1
16
  from .pymarl_adapter import PymarlAdapter
2
17
  from marlenv.utils import dummy_function
3
18
 
@@ -3,7 +3,7 @@ from typing import overload
3
3
 
4
4
  import numpy as np
5
5
  import numpy.typing as npt
6
- from smac.env import StarCraft2Env # pyright: ignore[reportMissingImports]
6
+ from smacv2.env import StarCraft2Env
7
7
 
8
8
  from marlenv.models import MARLEnv, Observation, State, Step, MultiDiscreteSpace, DiscreteSpace
9
9
 
@@ -1,3 +1,24 @@
1
+ """
2
+ Environment catalog for `marlenv`.
3
+
4
+ This submodule exposes curated environments and provides lazy imports for optional
5
+ dependencies to keep the base install lightweight. Use the catalog to construct
6
+ environments without importing their packages directly.
7
+
8
+ Examples:
9
+ ```python
10
+ from marlenv import catalog
11
+
12
+ env1 = catalog.DeepSea(mex_depth=5)
13
+ env2 = catalog.CoordinatedGrid()
14
+ env3 = catalog.connect_n()(width=7, height=6, n_to_connect=4)
15
+ env4 = catalog.smac()("3m")
16
+ ```
17
+
18
+ Optional entries such as `smac`, `lle`, and `overcooked` require installing their
19
+ corresponding extras (e.g., `marlenv[smac]`, `marlenv[lle]`, `marlenv[overcooked]`).
20
+ """
21
+
1
22
  from .deepsea import DeepSea
2
23
  from .matrix_game import MatrixGame
3
24
  from .coordinated_grid import CoordinatedGrid
@@ -1,3 +1,14 @@
1
+ """
2
+ Core data models for the `marlenv` API.
3
+
4
+ This package defines the typed containers and interfaces shared across adapters,
5
+ wrappers, and environments:
6
+ - `MARLEnv`: the abstract environment contract.
7
+ - `Observation` / `State`: structured inputs to agents and state tracking.
8
+ - `Step` / `Transition` / `Episode`: execution results and replayable logs.
9
+ - `Space` variants: action/reward space definitions.
10
+ """
11
+
1
12
  from .spaces import DiscreteSpace, ContinuousSpace, MultiDiscreteSpace, Space
2
13
  from .observation import Observation
3
14
  from .step import Step
marlenv/models/step.py CHANGED
@@ -9,6 +9,15 @@ from .state import State
9
9
 
10
10
  @dataclass
11
11
  class Step:
12
+ """
13
+ The result of performing a step in the environment:
14
+ - the new observation
15
+ - the new state
16
+ - the reward received for the step performed
17
+ - whether the episode is done or truncated
18
+ - some info (mainly for logging purposes)
19
+ """
20
+
12
21
  obs: Observation
13
22
  """The new observation (1 per agent) of the environment resulting from the agent's action."""
14
23
  state: State
@@ -0,0 +1,156 @@
1
+ Metadata-Version: 2.4
2
+ Name: multi-agent-rlenv
3
+ Version: 3.7.4
4
+ Summary: A strongly typed Multi-Agent Reinforcement Learning framework
5
+ Project-URL: repository, https://github.com/yamoling/multi-agent-rlenv
6
+ Author-email: Yannick Molinghen <yannick.molinghen@ulb.be>
7
+ License-File: LICENSE
8
+ Classifier: Operating System :: OS Independent
9
+ Classifier: Programming Language :: Python :: 3
10
+ Requires-Python: <4,>=3.12
11
+ Requires-Dist: numpy>=2.0.0
12
+ Requires-Dist: opencv-python>=4.0
13
+ Requires-Dist: typing-extensions>=4.0
14
+ Provides-Extra: all
15
+ Requires-Dist: gymnasium>0.29.1; extra == 'all'
16
+ Requires-Dist: laser-learning-environment>=2.6.1; extra == 'all'
17
+ Requires-Dist: overcooked>=0.1.0; extra == 'all'
18
+ Requires-Dist: pettingzoo>=1.20; extra == 'all'
19
+ Requires-Dist: pymunk>=6.0; extra == 'all'
20
+ Requires-Dist: scipy>=1.10; extra == 'all'
21
+ Requires-Dist: smacv2; extra == 'all'
22
+ Requires-Dist: torch>=2.0; extra == 'all'
23
+ Provides-Extra: gym
24
+ Requires-Dist: gymnasium>=0.29.1; extra == 'gym'
25
+ Provides-Extra: lle
26
+ Requires-Dist: laser-learning-environment>=2.6.1; extra == 'lle'
27
+ Provides-Extra: overcooked
28
+ Requires-Dist: overcooked>=0.1.0; extra == 'overcooked'
29
+ Provides-Extra: pettingzoo
30
+ Requires-Dist: pettingzoo>=1.20; extra == 'pettingzoo'
31
+ Requires-Dist: pymunk>=6.0; extra == 'pettingzoo'
32
+ Requires-Dist: scipy>=1.10; extra == 'pettingzoo'
33
+ Provides-Extra: smac
34
+ Requires-Dist: pysc2; extra == 'smac'
35
+ Requires-Dist: smacv2; extra == 'smac'
36
+ Provides-Extra: torch
37
+ Requires-Dist: torch>=2.0; extra == 'torch'
38
+ Description-Content-Type: text/markdown
39
+
40
+ # `marlenv` - A unified framework for muti-agent reinforcement learning
41
+ **Documentation: [https://yamoling.github.io/multi-agent-rlenv](https://yamoling.github.io/multi-agent-rlenv)**
42
+
43
+ `marlenv` is a strongly typed library for multi-agent and multi-objective reinforcement learning.
44
+
45
+ Install the library with
46
+ ```sh
47
+ $ pip install multi-agent-rlenv # Basics
48
+ $ pip install multi-agent-rlenv[all] # With all optional dependecies
49
+ $ pip install multi-agent-rlenv[smac,overcooked] # Only SMACv2 & Overcooked
50
+ ```
51
+
52
+ It aims to provide a simple and consistent interface for reinforcement learning environments by providing abstraction models such as `Observation`s or `Episode`s. `marlenv` provides adapters for popular libraries such as `gym` or `pettingzoo` and provides utility wrappers to add functionalities such as video recording or limiting the number of steps.
53
+
54
+ Almost every class is a dataclass to enable seemless serialiation with the `orjson` library.
55
+
56
+ # Fundamentals
57
+ ## States & Observations
58
+ `MARLEnv.reset()` returns a pair of `(Observation, State)` and `MARLEnv.step()` returns a `Step`.
59
+
60
+ - `Observation` contains:
61
+ - `data`: shape `[n_agents, *observation_shape]`
62
+ - `available_actions`: boolean mask `[n_agents, n_actions]`
63
+ - `extras`: extra features per agent (default shape `(n_agents, 0)`)
64
+ - `State` represents the environment state and can also carry `extras`.
65
+ - `Step` bundles `obs`, `state`, `reward`, `done`, `truncated`, and `info`.
66
+
67
+ Rewards are stored as `np.float32` arrays. Multi-objective envs use reward vectors with `reward_space.size > 1`.
68
+
69
+ ## Extras
70
+ Extras are auxiliary features appended by wrappers (agent id, last action, time ratio, available actions, ...).
71
+ Wrappers that add extras must update both `extras_shape` and `extras_meanings` so downstream users can interpret them.
72
+ `State` extras should stay in sync with `Observation` extras when applicable.
73
+
74
+ # Environment catalog
75
+ `marlenv.catalog` exposes curated environments and lazily imports optional dependencies.
76
+
77
+ ```python
78
+ from marlenv import catalog
79
+
80
+ env1 = catalog.overcooked().from_layout("scenario4")
81
+ env2 = catalog.lle().level(6)
82
+ env3 = catalog.DeepSea(mex_depth=5)
83
+ ```
84
+
85
+ Catalog entries require their corresponding extras at install time (e.g., `marlenv[overcooked]`, `marlenv[lle]`).
86
+
87
+ # Wrappers & builders
88
+ Wrappers are composable through `RLEnvWrapper` and can be chained via `Builder` for fluent configuration.
89
+
90
+ ```python
91
+ from marlenv import Builder
92
+ from marlenv.adapters import SMAC
93
+
94
+ env = (
95
+ Builder(SMAC("3m"))
96
+ .agent_id()
97
+ .time_limit(20)
98
+ .available_actions()
99
+ .build()
100
+ )
101
+ ```
102
+
103
+ Common wrappers include time limits, delayed rewards, masking available actions, and video recording.
104
+
105
+ # Using the library
106
+ ## Adapters for existing libraries
107
+ Adapters normalize external APIs into `MARLEnv`:
108
+
109
+ ```python
110
+ import marlenv
111
+
112
+ gym_env = marlenv.make("CartPole-v1", seed=25)
113
+
114
+ from marlenv.adapters import SMAC
115
+ smac_env = SMAC("3m", debug=True, difficulty="9")
116
+
117
+ from pettingzoo.sisl import pursuit_v4
118
+ from marlenv.adapters import PettingZoo
119
+ env = PettingZoo(pursuit_v4.parallel_env())
120
+ ```
121
+
122
+ ## Designing a custom environment
123
+ Create a custom environment by inheriting from `MARLEnv` and implementing `reset`, `step`, `get_observation`, and `get_state`.
124
+
125
+ ```python
126
+ import numpy as np
127
+ from marlenv import MARLEnv, DiscreteSpace, Observation, State, Step
128
+
129
+ class CustomEnv(MARLEnv[DiscreteSpace]):
130
+ def __init__(self):
131
+ super().__init__(
132
+ n_agents=3,
133
+ action_space=DiscreteSpace.action(5).repeat(3),
134
+ observation_shape=(4,),
135
+ state_shape=(2,),
136
+ )
137
+ self.t = 0
138
+
139
+ def reset(self):
140
+ self.t = 0
141
+ return self.get_observation(), self.get_state()
142
+
143
+ def step(self, action):
144
+ self.t += 1
145
+ return Step(self.get_observation(), self.get_state(), reward=0.0, done=False)
146
+
147
+ def get_observation(self):
148
+ return Observation(np.zeros((3, 4), dtype=np.float32), self.available_actions())
149
+
150
+ def get_state(self):
151
+ return State(np.array([self.t, 0], dtype=np.float32))
152
+ ```
153
+
154
+ # Related projects
155
+ - MARL: Collection of multi-agent reinforcement learning algorithms based on `marlenv` [https://github.com/yamoling/marl](https://github.com/yamoling/marl)
156
+ - Laser Learning Environment: a multi-agent gridworld that leverages `marlenv`'s capabilities [https://pypi.org/project/laser-learning-environment/](https://pypi.org/project/laser-learning-environment/)
@@ -1,15 +1,15 @@
1
- marlenv/__init__.py,sha256=mxpDjgGSc5eq67w1PIKat0UWkAg9A7VjchWwtzzsvW8,3881
1
+ marlenv/__init__.py,sha256=5HWxgfUTA1l-uGpvwEt1e8KxRINteqXPKshY-PItlxI,4875
2
2
  marlenv/env_builder.py,sha256=RUMFvW7dAJtHMLm8-oPVpjBefDtNliZtjlHci97Xj-Q,3874
3
3
  marlenv/env_pool.py,sha256=mJhJUROX9k2A2njwnUOBl2EAuhotksQMugH_Zydg1IU,951
4
4
  marlenv/exceptions.py,sha256=gJUC_2rVAvOfK_ypVFc7Myh-pIfSU3To38VBVS_0rZA,1179
5
5
  marlenv/mock_env.py,sha256=rvl4QAn046HM79IMMiAj1Aoy3_GBSNBBR1_9fHPutR8,4682
6
6
  marlenv/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
7
- marlenv/adapters/__init__.py,sha256=G-PwyGDymdAMFWtCpnlHkHQuSE40Q8bv_-yQ7gVcbbM,600
7
+ marlenv/adapters/__init__.py,sha256=1APqbpC2JmVgMhexdb8FbTifxFs7_mjqrcEkQquug8k,1182
8
8
  marlenv/adapters/gym_adapter.py,sha256=DXQ1czcvRoL9hTwcVzfMyXArZeVIHP1gAKqZJO87y7Y,3065
9
9
  marlenv/adapters/pettingzoo_adapter.py,sha256=UzSUdP4EUJOt49AB7H45ToA8rUkGmPQgrJKegvK86og,2877
10
10
  marlenv/adapters/pymarl_adapter.py,sha256=2s7EY31s1hrml3q-BBaXo_eDMXTjkebozZPvzsgrb9c,3353
11
- marlenv/adapters/smac_adapter.py,sha256=OIR0_do9KavLlZ2f1YQNJwhl_yLCa6SVvCrp78hwU20,8279
12
- marlenv/catalog/__init__.py,sha256=l9_lvqpV2wKKMYDrStbW93WGEBDhGw6KjgbZsOcLKx0,570
11
+ marlenv/adapters/smac_adapter.py,sha256=HXECjK4hs4c1zAr1qWUChrJZdcvsu-OhnDovS0_u9Z0,8240
12
+ marlenv/catalog/__init__.py,sha256=YK8w6wUleIZkO85f_5e0Dj_7HEqX3X0u1CgXeTX6IE0,1215
13
13
  marlenv/catalog/coordinated_grid.py,sha256=Kq5UzG9rr5gYRO0QWFCmKmO56JIzgIR19an9_pvypJU,4997
14
14
  marlenv/catalog/deepsea.py,sha256=yTyvskWZiAZem11L8cZwHedBIDQ4EAxE2IaUKrjKL2U,2413
15
15
  marlenv/catalog/matrix_game.py,sha256=zkErnh6ZIa1kBryYMVLw-jeMCd2AJ-BlP2yROxpbb0w,1519
@@ -17,13 +17,13 @@ marlenv/catalog/two_steps.py,sha256=lI-q4-Q8283QZTjY0wk7OfXWB6Ln-lquYUjHyT4URi4,
17
17
  marlenv/catalog/connectn/__init__.py,sha256=BKfM0ZofMK6zqGURi2bzILyNFfYjfbZpKTs5ikKiJAk,195
18
18
  marlenv/catalog/connectn/board.py,sha256=GVcFA1OJgLUmQoTIfOO9M7nL9dFv-4T3tGrVsP15zyg,6124
19
19
  marlenv/catalog/connectn/env.py,sha256=Ot5vfAbzS6eRe3-nLW_AkhEH7F1WVvv4_odoxZU7HNg,1905
20
- marlenv/models/__init__.py,sha256=uihmRs71Gg5z7Bvau_xtaQVg7xEtX8sTzi74bIHL5P0,443
20
+ marlenv/models/__init__.py,sha256=M6nXAZJWpTdncWm-4wN5V05waUAp4KJ007efw-xbMDQ,854
21
21
  marlenv/models/env.py,sha256=BG1iVHxGD_p827mF0ewyOBn6wU2gtFsHLW1b4UtW-V0,7841
22
22
  marlenv/models/episode.py,sha256=zsyxsW4LIioPKyY4DZKn64A31e5ZvlwOf3HIGuRUzhs,13531
23
23
  marlenv/models/observation.py,sha256=6uY2h0zHBm6g1ECzD8jZLXuSzuuX-U60QW0E_b4qPuc,3569
24
24
  marlenv/models/spaces.py,sha256=d_aIPWwPdaOWZeNRUUdzSiDxs9XQb9itPnrE_EyhhfQ,7810
25
25
  marlenv/models/state.py,sha256=JvCXwf0l7L2UMHkvYp-WM_aDegJ-hePpQI2yiUw6X_g,2099
26
- marlenv/models/step.py,sha256=00PhD_ccdCIYAY1SVJdJU91weU0Y_tNIJwK16TN_53I,3056
26
+ marlenv/models/step.py,sha256=xg_7iPyOvahsZ5k7L6On7E_j0dUDEu0h6eyqFsWGR-M,3337
27
27
  marlenv/models/transition.py,sha256=UkJVRNxZoyRkjE7YmKtUf_4xA7cOEh20O60dTldbvys,5070
28
28
  marlenv/utils/__init__.py,sha256=ky5mz_T7EF65YNaEN1UDCUYZVlz7hFyKResgIJlE_1Q,462
29
29
  marlenv/utils/cached_property_collector.py,sha256=IOjbr61f0DqLhcidXKrl7MhN1BOEGiTzCANIKQCxaF0,600
@@ -45,7 +45,7 @@ marlenv/wrappers/rlenv_wrapper.py,sha256=iFSQsDMkUUbQJKEO8l6SosNi-eOUVSh4pIJVu7a
45
45
  marlenv/wrappers/state_counter.py,sha256=QmEMb55vOnK-VJuvKsDIIBgcNRsHuovqgpK2pcCY7sA,1211
46
46
  marlenv/wrappers/time_limit.py,sha256=HctKeiepPQ2NAIa208SnvknioSkRIuUQ4X-Xhf_XTs0,3974
47
47
  marlenv/wrappers/video_recorder.py,sha256=mtWcqaYNCu-zjVXvpa8DJe3_062tpK_TChOu-Xyxs3s,2533
48
- multi_agent_rlenv-3.7.2.dist-info/METADATA,sha256=loGAqI0-dvtGJEM6txWjaP00TImesivli2RI0Pd2OK0,5751
49
- multi_agent_rlenv-3.7.2.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
50
- multi_agent_rlenv-3.7.2.dist-info/licenses/LICENSE,sha256=_eeiGVoIJ7kYt6l1zbIvSBQppTnw0mjnYk1lQ4FxEjE,1074
51
- multi_agent_rlenv-3.7.2.dist-info/RECORD,,
48
+ multi_agent_rlenv-3.7.4.dist-info/METADATA,sha256=UKdalybcSN3nvAVbJtZXgQFr9R3AEjKq0E3OFvlM3ZE,5971
49
+ multi_agent_rlenv-3.7.4.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
50
+ multi_agent_rlenv-3.7.4.dist-info/licenses/LICENSE,sha256=_eeiGVoIJ7kYt6l1zbIvSBQppTnw0mjnYk1lQ4FxEjE,1074
51
+ multi_agent_rlenv-3.7.4.dist-info/RECORD,,
@@ -1,144 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: multi-agent-rlenv
3
- Version: 3.7.2
4
- Summary: A strongly typed Multi-Agent Reinforcement Learning framework
5
- Project-URL: repository, https://github.com/yamoling/multi-agent-rlenv
6
- Author-email: Yannick Molinghen <yannick.molinghen@ulb.be>
7
- License-File: LICENSE
8
- Classifier: Operating System :: OS Independent
9
- Classifier: Programming Language :: Python :: 3
10
- Requires-Python: <4,>=3.12
11
- Requires-Dist: numpy>=2.0.0
12
- Requires-Dist: opencv-python>=4.0
13
- Requires-Dist: typing-extensions>=4.0
14
- Provides-Extra: all
15
- Requires-Dist: gymnasium>0.29.1; extra == 'all'
16
- Requires-Dist: laser-learning-environment>=2.6.1; extra == 'all'
17
- Requires-Dist: overcooked>=0.1.0; extra == 'all'
18
- Requires-Dist: pettingzoo>=1.20; extra == 'all'
19
- Requires-Dist: pymunk>=6.0; extra == 'all'
20
- Requires-Dist: pysc2; extra == 'all'
21
- Requires-Dist: scipy>=1.10; extra == 'all'
22
- Requires-Dist: smac; extra == 'all'
23
- Requires-Dist: torch>=2.0; extra == 'all'
24
- Provides-Extra: gym
25
- Requires-Dist: gymnasium>=0.29.1; extra == 'gym'
26
- Provides-Extra: lle
27
- Requires-Dist: laser-learning-environment>=2.6.1; extra == 'lle'
28
- Provides-Extra: overcooked
29
- Requires-Dist: overcooked>=0.1.0; extra == 'overcooked'
30
- Provides-Extra: pettingzoo
31
- Requires-Dist: pettingzoo>=1.20; extra == 'pettingzoo'
32
- Requires-Dist: pymunk>=6.0; extra == 'pettingzoo'
33
- Requires-Dist: scipy>=1.10; extra == 'pettingzoo'
34
- Provides-Extra: smac
35
- Requires-Dist: pysc2; extra == 'smac'
36
- Requires-Dist: smac; extra == 'smac'
37
- Provides-Extra: torch
38
- Requires-Dist: torch>=2.0; extra == 'torch'
39
- Description-Content-Type: text/markdown
40
-
41
- # `marlenv` - A unified framework for muti-agent reinforcement learning
42
- **Documentation: [https://yamoling.github.io/multi-agent-rlenv](https://yamoling.github.io/multi-agent-rlenv)**
43
-
44
- The objective of `marlenv` is to provide a common (typed) interface for many different reinforcement learning environments.
45
-
46
- As such, `marlenv` provides high level abstractions of RL concepts such as `Observation`s or `Transition`s that are commonly represented as mere (confusing) lists or tuples.
47
-
48
- ## Installation
49
- Install with you preferred package manager (`uv`, `pip`, `poetry`, ...):
50
- ```bash
51
- $ pip install marlenv[all] # Enable all features
52
- $ pip install marlenv # Basic installation
53
- ```
54
-
55
- There are multiple optional dependencies if you want to support specific libraries and environments. Available options are:
56
- - `smac` for StarCraft II environments
57
- - `gym` for OpenAI Gym environments
58
- - `pettingzoo` for PettingZoo environments
59
- - `overcooked` for Overcooked environments
60
-
61
- Install them with:
62
- ```bash
63
- $ pip install marlenv[smac] # Install SMAC
64
- $ pip install marlenv[gym,smac] # Install Gym & smac support
65
- ```
66
-
67
- ## Using the `marlenv` environment catalog
68
- Some environments are registered in the `marlenv` and can be easily instantiated via its catalog.
69
-
70
- ```python
71
- from marlenv import catalog
72
-
73
- env1 = catalog.Overcooked.from_layout("scenario4")
74
- env2 = catalog.LLE.level(6)
75
- env3 = catalog.DeepSea(mex_depth=5)
76
- ```
77
- Note that using the catalog requires the corresponding environment package to be installed. For instance you need to install the `laser-learning-environment` package to use `catalog.LLE`, which can be done by using the corresponding feature when at installation as shown below.
78
- ```bash
79
- pip install multi-agent-rlenv[lle]
80
- ```
81
-
82
-
83
- ## Using `marlenv` with existing libraries
84
- `marlenv` provides adapters from most popular libraries to unify them under a single interface. Namely, `marlenv` supports `smac`, `gymnasium` and `pettingzoo`.
85
-
86
- ```python
87
- import marlenv
88
-
89
- # You can instanciate gymnasium environments directly via their registry ID
90
- gym_env = marlenv.make("CartPole-v1", seed=25)
91
-
92
- # You can seemlessly instanciate a SMAC environment and directly pass your required arguments
93
- from marlenv.adapters import SMAC
94
- smac_env = SMAC("3m", debug=True, difficulty="9")
95
-
96
- # pettingzoo is also supported
97
- from pettingzoo.sisl import pursuit_v4
98
- from marlenv.adapters import PettingZoo
99
- pz_env = PettingZoo(pursuit_v4.parallel_env())
100
- ```
101
-
102
-
103
- ## Designing custom environments
104
- You can create your own custom environment by inheriting from the `RLEnv` class. The below example illustrates a gridworld with a discrete action space. Note that other methods such as `step` or `render` must also be implemented.
105
- ```python
106
- import numpy as np
107
- from marlenv import RLEnv, DiscreteActionSpace, Observation
108
-
109
- N_AGENTS = 3
110
- N_ACTIONS = 5
111
-
112
- class CustomEnv(MARLEnv[DiscreteActionSpace]):
113
- def __init__(self, width: int, height: int):
114
- super().__init__(
115
- action_space=DiscreteActionSpace(N_AGENTS, N_ACTIONS),
116
- observation_shape=(height, width),
117
- state_shape=(1,),
118
- )
119
- self.time = 0
120
-
121
- def reset(self) -> Observation:
122
- self.time = 0
123
- ...
124
- return obs
125
-
126
- def get_state(self):
127
- return np.array([self.time])
128
- ```
129
-
130
- ## Useful wrappers
131
- `marlenv` comes with multiple common environment wrappers, check the documentation for a complete list. The preferred way of using the wrappers is through a `marlenv.Builder`. The below example shows how to add a time limit (in number of steps) and an agent id to the observations of a SMAC environment.
132
-
133
- ```python
134
- from marlenv import Builder
135
- from marlenv.adapters import SMAC
136
-
137
- env = Builder(SMAC("3m")).agent_id().time_limit(20).build()
138
- print(env.extras_shape) # -> (4, ) because there are 3 agents and the time counter
139
- ```
140
-
141
-
142
- # Related projects
143
- - MARL: Collection of multi-agent reinforcement learning algorithms based on `marlenv` [https://github.com/yamoling/marl](https://github.com/yamoling/marl)
144
- - Laser Learning Environment: a multi-agent gridworld that leverages `marlenv`'s capabilities [https://pypi.org/project/laser-learning-environment/](https://pypi.org/project/laser-learning-environment/)