multi-agent-rlenv 3.5.1__py3-none-any.whl → 3.5.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
marlenv/__init__.py CHANGED
@@ -62,7 +62,7 @@ print(env.extras_shape) # (1, )
62
62
  If you want to create a new environment, you can simply create a class that inherits from `MARLEnv`. If you want to create a wrapper around an existing `MARLEnv`, you probably want to subclass `RLEnvWrapper` which implements a default behaviour for every method.
63
63
  """
64
64
 
65
- __version__ = "3.5.1"
65
+ __version__ = "3.5.2"
66
66
 
67
67
  from . import models
68
68
  from .models import (
marlenv/models/env.py CHANGED
@@ -199,7 +199,7 @@ class MARLEnv(ABC, Generic[ActionSpaceType]):
199
199
  episode.add(step, action)
200
200
  return episode
201
201
 
202
- def has_same_inouts(self, other) -> bool:
202
+ def has_same_inouts(self, other: "MARLEnv[ActionSpaceType]") -> bool:
203
203
  """Alias for `have_same_inouts(self, other)`."""
204
204
  if not isinstance(other, MARLEnv):
205
205
  return False
marlenv/models/episode.py CHANGED
@@ -66,13 +66,13 @@ class Episode:
66
66
  if target_len < self.episode_len:
67
67
  raise ValueError(f"Cannot pad episode to a smaller size: {target_len} < {self.episode_len}")
68
68
  padding_size = target_len - self.episode_len
69
- obs = self.all_observations + [self.all_observations[0]] * padding_size
70
- extras = self.all_extras + [self.all_extras[0]] * padding_size
71
- actions = self.actions + [self.actions[0]] * padding_size
72
- rewards = self.rewards + [self.rewards[0]] * padding_size
69
+ obs = self.all_observations + [np.zeros_like(self.all_observations[0])] * padding_size
70
+ extras = self.all_extras + [np.zeros_like(self.all_extras[0])] * padding_size
71
+ actions = self.actions + [np.zeros_like(self.actions[0])] * padding_size
72
+ rewards = self.rewards + [np.zeros_like(self.rewards[0])] * padding_size
73
73
  availables = self.all_available_actions + [self.all_available_actions[0]] * padding_size
74
- states = self.all_states + [self.all_states[0]] * padding_size
75
- states_extras = self.all_states_extras + [self.all_states_extras[0]] * padding_size
74
+ states = self.all_states + [np.zeros_like(self.all_states[0])] * padding_size
75
+ states_extras = self.all_states_extras + [np.zeros_like(self.all_states_extras[0])] * padding_size
76
76
  other = {key: value + [value[0]] * padding_size for key, value in self.other.items()}
77
77
  return Episode(
78
78
  all_observations=obs,
@@ -2,10 +2,15 @@ from abc import abstractmethod, ABC
2
2
  from .rlenv_wrapper import RLEnvWrapper
3
3
  from marlenv import Space, MARLEnv, Observation
4
4
  from typing import TypeVar, Optional
5
+ import numpy as np
6
+ import numpy.typing as npt
7
+
8
+ from dataclasses import dataclass
5
9
 
6
10
  A = TypeVar("A", bound=Space)
7
11
 
8
12
 
13
+ @dataclass
9
14
  class PotentialShaping(RLEnvWrapper[A], ABC):
10
15
  """
11
16
  Potential shaping for the Laser Learning Environment (LLE).
@@ -23,7 +28,7 @@ class PotentialShaping(RLEnvWrapper[A], ABC):
23
28
  ):
24
29
  super().__init__(env, extra_shape=extra_shape)
25
30
  self.gamma = gamma
26
- self.current_potential = self.compute_potential()
31
+ self._current_potential = self.compute_potential()
27
32
 
28
33
  def add_extras(self, obs: Observation) -> Observation:
29
34
  """Add the extras related to potential shaping. Does nothing by default."""
@@ -31,19 +36,19 @@ class PotentialShaping(RLEnvWrapper[A], ABC):
31
36
 
32
37
  def reset(self):
33
38
  obs, state = super().reset()
34
- self.current_potential = self.compute_potential()
39
+ self._current_potential = self.compute_potential()
35
40
  return self.add_extras(obs), state
36
41
 
37
42
  def step(self, actions):
38
- phi_t = self.current_potential
43
+ prev_potential = self._current_potential
39
44
  step = super().step(actions)
40
45
 
41
- self.current_potential = self.compute_potential()
42
- shaped_reward = self.gamma * self.current_potential - phi_t
46
+ self._current_potential = self.compute_potential()
47
+ shaped_reward = self.gamma * self._current_potential - prev_potential
43
48
  step.obs = self.add_extras(step.obs)
44
49
  step.reward += shaped_reward
45
50
  return step
46
51
 
47
52
  @abstractmethod
48
- def compute_potential(self) -> float:
53
+ def compute_potential(self) -> float | npt.NDArray[np.float32]:
49
54
  """Compute the potential of the current state of the environment."""
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: multi-agent-rlenv
3
- Version: 3.5.1
3
+ Version: 3.5.2
4
4
  Summary: A strongly typed Multi-Agent Reinforcement Learning framework
5
5
  Project-URL: repository, https://github.com/yamoling/multi-agent-rlenv
6
6
  Author-email: Yannick Molinghen <yannick.molinghen@ulb.be>
@@ -1,4 +1,4 @@
1
- marlenv/__init__.py,sha256=zNSSEveqBncupuGlVpeywLpK4BZSrXufi-BUhG96e4s,3656
1
+ marlenv/__init__.py,sha256=UoZATsYMuKlnHyYdIRX7eQ6mGcmMww-tqX3uCyWVqRA,3656
2
2
  marlenv/env_builder.py,sha256=RJoHJLYAUE1ausAoJiRC3fUxyxpH1WRJf7Sdm2ml-uk,5517
3
3
  marlenv/env_pool.py,sha256=nCEBkGQU62fcvCAANyAqY8gCFjYlVnSCg-V3Fhx00yc,933
4
4
  marlenv/exceptions.py,sha256=gJUC_2rVAvOfK_ypVFc7Myh-pIfSU3To38VBVS_0rZA,1179
@@ -11,8 +11,8 @@ marlenv/adapters/pettingzoo_adapter.py,sha256=w9Ta-X4L_6ZXdDGmREOdcU0vpLR8lGP__s
11
11
  marlenv/adapters/pymarl_adapter.py,sha256=2s7EY31s1hrml3q-BBaXo_eDMXTjkebozZPvzsgrb9c,3353
12
12
  marlenv/adapters/smac_adapter.py,sha256=8uWC7YKsaSXeTS8AUhpGOKvrWMbVEQT2-pml5BaFUB0,8343
13
13
  marlenv/models/__init__.py,sha256=uihmRs71Gg5z7Bvau_xtaQVg7xEtX8sTzi74bIHL5P0,443
14
- marlenv/models/env.py,sha256=KB3-LcvIbGG-78L8ZavfjKykoO85FvhZjs5lJQKvxE0,7813
15
- marlenv/models/episode.py,sha256=IF3-8YV0tHsIjTYZUOlHmX_IyjnrrzTWk-HPk_mwcR4,15100
14
+ marlenv/models/env.py,sha256=BG1iVHxGD_p827mF0ewyOBn6wU2gtFsHLW1b4UtW-V0,7841
15
+ marlenv/models/episode.py,sha256=IKPLuDVlz85Be6zrC21gyautjqRkEApS4fgRqQR52s0,15190
16
16
  marlenv/models/observation.py,sha256=kAmh1hIoC2TGrZlGVzV0y4TXXCSrI7gcmG0raeoncYk,3153
17
17
  marlenv/models/spaces.py,sha256=v7jnhPfj7vq7DFFJpSbQEYe4NGLLlj_bj2pzvvSBX7Y,7777
18
18
  marlenv/models/state.py,sha256=958PXTHadi3gtRnhGgcGtqBnF44R11kdcx62NN2gwxA,1717
@@ -30,11 +30,11 @@ marlenv/wrappers/delayed_rewards.py,sha256=P8az9rYmu67OzL1ZEFqfTQcCxRI_AXKXrKUBQ
30
30
  marlenv/wrappers/last_action_wrapper.py,sha256=QVepSLcWExqACwKvAM0G2LALapSoWdd7YHmah2LZ3vE,2603
31
31
  marlenv/wrappers/paddings.py,sha256=0aAi7RP1yL8I5mR4Oxzl9-itKys88mgsPjqe7q-frbk,2024
32
32
  marlenv/wrappers/penalty_wrapper.py,sha256=3YBoUV6ETksZ8tFEOq1WYXvPs3ejMAehE6-QA8e4JOE,864
33
- marlenv/wrappers/potential_shaping.py,sha256=N4h0agFVxZZgCwMZTPFW64MGRFEYYFFVd9k4F27_MgQ,1520
33
+ marlenv/wrappers/potential_shaping.py,sha256=T_QvnmWReCgpyoInxRw2UXbmdvcBD5U-vV1ledLG7y8,1661
34
34
  marlenv/wrappers/rlenv_wrapper.py,sha256=S6G1VjFklTEzU6bj0AXrTDXnsTQJARq8VB4uUH6AXe4,2993
35
35
  marlenv/wrappers/time_limit.py,sha256=GxbxcbfFyuVg14ylQU2C_cjmV9q4uDAt5wepfgX_PyM,3976
36
36
  marlenv/wrappers/video_recorder.py,sha256=ucBQSNRPqDr-2mYxrTCqlrWcxSWtSJ7XlRC9-LdukBM,2535
37
- multi_agent_rlenv-3.5.1.dist-info/METADATA,sha256=92aLf2gsXK8leco_rbbZzU-fLnIIgV3F6xdV1D3fP50,4897
38
- multi_agent_rlenv-3.5.1.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
39
- multi_agent_rlenv-3.5.1.dist-info/licenses/LICENSE,sha256=_eeiGVoIJ7kYt6l1zbIvSBQppTnw0mjnYk1lQ4FxEjE,1074
40
- multi_agent_rlenv-3.5.1.dist-info/RECORD,,
37
+ multi_agent_rlenv-3.5.2.dist-info/METADATA,sha256=QjQkN0ZJsbaa-GyP7fAs4JFSTJkEUBLrIV0zCGPUvrc,4897
38
+ multi_agent_rlenv-3.5.2.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
39
+ multi_agent_rlenv-3.5.2.dist-info/licenses/LICENSE,sha256=_eeiGVoIJ7kYt6l1zbIvSBQppTnw0mjnYk1lQ4FxEjE,1074
40
+ multi_agent_rlenv-3.5.2.dist-info/RECORD,,