mteb 2.7.8__py3-none-any.whl → 2.7.10__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -527,7 +527,7 @@ bge_small_en = ModelMeta(
527
527
  model_type=["dense"],
528
528
  languages=["eng-Latn"],
529
529
  open_weights=True,
530
- revision="4778d71a06863076696b03fd2777eb118712cad8",
530
+ revision="2275a7bdee235e9b4f01fa73aa60d3311983cfea",
531
531
  release_date="2023-08-05", # initial commit of hf model.
532
532
  n_parameters=33_400_000,
533
533
  n_embedding_parameters=11_720_448,
@@ -64,7 +64,7 @@ class NomicWrapper(SentenceTransformerEncoderWrapper):
64
64
  ) -> Array:
65
65
  # default to search_document if input_type and prompt_name are not provided
66
66
  prompt_name = (
67
- self.get_prompt_name(self.model_prompts, task_metadata, prompt_type)
67
+ self.get_prompt_name(task_metadata, prompt_type)
68
68
  or PromptType.document.value
69
69
  )
70
70
  sentences = [text for batch in inputs for text in batch["text"]]
@@ -1,3 +1,5 @@
1
+ from typing import Any
2
+
1
3
  import datasets
2
4
 
3
5
  from mteb.abstasks.pair_classification import AbsTaskPairClassification
@@ -74,8 +76,7 @@ class PubChemSMILESPC(AbsTaskPairClassification):
74
76
  """,
75
77
  )
76
78
 
77
- def load_data(self):
78
- """Load dataset from HuggingFace hub"""
79
+ def load_data(self, num_proc: int = 1, **kwargs: Any) -> None:
79
80
  if self.data_loaded:
80
81
  return
81
82
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mteb
3
- Version: 2.7.8
3
+ Version: 2.7.10
4
4
  Summary: Massive Text Embedding Benchmark
5
5
  Author-email: MTEB Contributors <niklas@huggingface.co>, Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Nouamane Tazi <nouamane@huggingface.co>, Nils Reimers <info@nils-reimers.de>
6
6
  Maintainer-email: Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Roman Solomatin <risolomatin@gmail.com>, Isaac Chung <chungisaac1217@gmail.com>
@@ -1501,7 +1501,7 @@ mteb/models/model_implementations/ara_models.py,sha256=b-Qa5q3O8M5XbkauVm7I6D6aZ
1501
1501
  mteb/models/model_implementations/arctic_models.py,sha256=MfYvAkcGcb3FdbvieYmiekSvZREwu2pRJ_2sbbcUIPk,11051
1502
1502
  mteb/models/model_implementations/b1ade_models.py,sha256=-czgy_Ym5LHAX4-f-F7YaUGqTkfwsKmTL-tiCiihLnU,1705
1503
1503
  mteb/models/model_implementations/bedrock_models.py,sha256=FStjboIV3gsbUTN3CcbY0ULn-1_2Lk7CP-TrytMkTaI,9047
1504
- mteb/models/model_implementations/bge_models.py,sha256=cC9Koty1kenoOkPpmZF63X0OsV7REIs2SEc9UIk1zAk,28033
1504
+ mteb/models/model_implementations/bge_models.py,sha256=JuO1FRWrsqlsM_jslQ96oVsD3FeWVD_uHBnMv8JJyNA,28033
1505
1505
  mteb/models/model_implementations/bica_model.py,sha256=Yx3iZrXF6ZMJS9SH5lbzNHoUWGNH3dypRtZ7dX5o7rA,1305
1506
1506
  mteb/models/model_implementations/blip2_models.py,sha256=C6egwozJthHmv92I0SWID3-sQCPROPJP0TzfQVKNzlo,7898
1507
1507
  mteb/models/model_implementations/blip_models.py,sha256=D_9e7C8GXGST8k7dMJL20x984vMeqbITu36XASi-iUU,12149
@@ -1565,7 +1565,7 @@ mteb/models/model_implementations/model2vec_models.py,sha256=qXcPhV0hGRFBsvRBrb8
1565
1565
  mteb/models/model_implementations/moka_models.py,sha256=4Esujv_fVJjHuX1nRH6sGtmrmF04A90F4Xo2uN0YTzs,5205
1566
1566
  mteb/models/model_implementations/nbailab.py,sha256=iv2xdqVM5HoTAlBR6e_UdzJu6rSPujqWXFYwyCv69hU,2684
1567
1567
  mteb/models/model_implementations/no_instruct_sentence_models.py,sha256=DTb-eHZYSY6lGJkkdkC0tZ_n0GHLQwVlUehVg59T5N4,4198
1568
- mteb/models/model_implementations/nomic_models.py,sha256=dDCto9qE83Qfk76CxQQeHNJxwvd5ovrJOpE6MZy6ZQc,15489
1568
+ mteb/models/model_implementations/nomic_models.py,sha256=oUaSabKEJXrg_cnmWdfczsdrqRDP7LZhX5vN1U5b-Xk,15469
1569
1569
  mteb/models/model_implementations/nomic_models_vision.py,sha256=AzTCWbXBonUAVub0TTxWCsBtg4WYex3vPiLlz3ULdHc,6916
1570
1570
  mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py,sha256=5jYzS0qc4x82T5_c1HFt4uy9kksTt9Fs24pdLioq4Oc,7033
1571
1571
  mteb/models/model_implementations/nvidia_models.py,sha256=r-AW1dVQbteWjexjvZgFEt_90OHNRYer_5GLuqSXRS0,26924
@@ -2103,7 +2103,7 @@ mteb/tasks/pair_classification/deu/false_friends_de_en_pc.py,sha256=feormqdXvJWQ
2103
2103
  mteb/tasks/pair_classification/eng/__init__.py,sha256=ME_1M0sfZ36vVSHSNnKKEB5-Cm7EtdkZML69OIHcl0M,697
2104
2104
  mteb/tasks/pair_classification/eng/legal_bench_pc.py,sha256=k24kzLMZWB486eBVO9vpBEC15o49BuMUipt2HmUOqgk,5733
2105
2105
  mteb/tasks/pair_classification/eng/pub_chem_ai_sentence_paraphrase_pc.py,sha256=ZGJIiJSC-zaeyYD8c1DaBML3FZ7b41YwgmqcsaOmOxE,2287
2106
- mteb/tasks/pair_classification/eng/pub_chem_smilespc.py,sha256=0WNd6jJLjIBO7aR-Pmdgj7gdxtgxHgNMU_uf-vu3ttc,4069
2106
+ mteb/tasks/pair_classification/eng/pub_chem_smilespc.py,sha256=nynu5-RfmKXiHD-9_ROF3409rCFDBC-mdKy7rnkkByM,4087
2107
2107
  mteb/tasks/pair_classification/eng/pub_chem_synonym_pc.py,sha256=8jZhgZ9Xj5wV8zH4xQNuT-Ko7Rs0cAfDri6MhcnXnsA,2247
2108
2108
  mteb/tasks/pair_classification/eng/pub_chem_wiki_paragraphs_pc.py,sha256=f1vhvLYgzL46iPZkgkCefPqxkZdG2dbyMbhyIvalBnM,2264
2109
2109
  mteb/tasks/pair_classification/eng/sprint_duplicate_questions_pc.py,sha256=qTv9-TIWaB5k05IhIfOGSGpYd3Ovd58QT9cZdIyjF9E,2104
@@ -2644,9 +2644,9 @@ mteb/types/_metadata.py,sha256=NN-W0S6a5TDV7UkpRx1pyWtGF4TyyCyoPUfHOwdeci8,2290
2644
2644
  mteb/types/_result.py,sha256=UKNokV9pu3G74MGebocU512aU_fFU9I9nPKnrG9Q0iE,1035
2645
2645
  mteb/types/_string_validators.py,sha256=PY-dYq4E8O50VS3bLYdldPWp400fl_WzUjfVSkNWe8U,523
2646
2646
  mteb/types/statistics.py,sha256=gElgSShKBXpfcqaZHhU_d2UHln1CyzUj8FN8KFun_UA,4087
2647
- mteb-2.7.8.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
2648
- mteb-2.7.8.dist-info/METADATA,sha256=RAYZsiC60kj245hhOJBIhiqxz2t-lSHrETiQSKhoQcA,14457
2649
- mteb-2.7.8.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
2650
- mteb-2.7.8.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
2651
- mteb-2.7.8.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
2652
- mteb-2.7.8.dist-info/RECORD,,
2647
+ mteb-2.7.10.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
2648
+ mteb-2.7.10.dist-info/METADATA,sha256=eT_71NOIURglAbnihIm_UKjwB6zn5c_uLYiYetWXqpE,14458
2649
+ mteb-2.7.10.dist-info/WHEEL,sha256=qELbo2s1Yzl39ZmrAibXA2jjPLUYfnVhUNTlyF1rq0Y,92
2650
+ mteb-2.7.10.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
2651
+ mteb-2.7.10.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
2652
+ mteb-2.7.10.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (80.9.0)
2
+ Generator: setuptools (80.10.1)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5