mteb 2.7.6__py3-none-any.whl → 2.7.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -263,7 +263,7 @@ class AbsTaskRetrieval(AbsTask):
263
263
  return
264
264
 
265
265
  dataset_path = self.metadata.dataset["path"]
266
- eval_splits = self.metadata.eval_splits
266
+ eval_splits = self.eval_splits
267
267
  trust_remote_code = self.metadata.dataset.get("trust_remote_code", False)
268
268
  revision = self.metadata.dataset["revision"]
269
269
 
@@ -284,7 +284,7 @@ class AbsTaskRetrieval(AbsTask):
284
284
  )
285
285
 
286
286
  if self.metadata.is_multilingual:
287
- for lang in self.metadata.eval_langs:
287
+ for lang in self.hf_subsets:
288
288
  for split in eval_splits:
289
289
  _process_data(split, lang)
290
290
  else:
@@ -139,9 +139,9 @@ class RetrievalDatasetLoader:
139
139
  )
140
140
 
141
141
  def _load_corpus(self, num_proc: int) -> CorpusDatasetType:
142
- logger.info("Loading Corpus...")
143
-
144
142
  config = f"{self.config}-corpus" if self.config is not None else "corpus"
143
+ logger.info("Loading corpus subset: %s", config)
144
+
145
145
  corpus_ds = self._load_dataset_split(config, num_proc)
146
146
  if "_id" in corpus_ds.column_names:
147
147
  corpus_ds = corpus_ds.cast_column("_id", Value("string")).rename_column(
@@ -152,9 +152,9 @@ class RetrievalDatasetLoader:
152
152
  return corpus_ds
153
153
 
154
154
  def _load_queries(self, num_proc: int) -> QueryDatasetType:
155
- logger.info("Loading Queries...")
156
-
157
155
  config = f"{self.config}-queries" if self.config is not None else "queries"
156
+ logger.info("Loading queries subset: %s", config)
157
+
158
158
  if "query" in self.dataset_configs:
159
159
  config = "query"
160
160
  queries_ds = self._load_dataset_split(config, num_proc)
@@ -169,9 +169,9 @@ class RetrievalDatasetLoader:
169
169
  return queries_ds
170
170
 
171
171
  def _load_qrels(self, num_proc: int) -> RelevantDocumentsType:
172
- logger.info("Loading qrels...")
173
-
174
172
  config = f"{self.config}-qrels" if self.config is not None else "default"
173
+
174
+ logger.info("Loading qrels subset: %s", config)
175
175
  if config == "default" and config not in self.dataset_configs:
176
176
  if "qrels" in self.dataset_configs:
177
177
  config = "qrels"
@@ -204,11 +204,10 @@ class RetrievalDatasetLoader:
204
204
  return qrels_dict
205
205
 
206
206
  def _load_top_ranked(self, num_proc: int) -> TopRankedDocumentsType:
207
- logger.info("Loading Top Ranked")
208
-
209
207
  config = (
210
208
  f"{self.config}-top_ranked" if self.config is not None else "top_ranked"
211
209
  )
210
+ logger.info("Loading top ranked subset: %s", config)
212
211
  top_ranked_ds = self._load_dataset_split(config, num_proc)
213
212
  top_ranked_ds = top_ranked_ds.cast(
214
213
  Features(
@@ -228,11 +227,10 @@ class RetrievalDatasetLoader:
228
227
  return top_ranked_dict
229
228
 
230
229
  def _load_instructions(self, num_proc: int) -> InstructionDatasetType:
231
- logger.info("Loading Instructions")
232
-
233
230
  config = (
234
231
  f"{self.config}-instruction" if self.config is not None else "instruction"
235
232
  )
233
+ logger.info("Loading instruction subset: %s", config)
236
234
  instructions_ds = self._load_dataset_split(config, num_proc)
237
235
  instructions_ds = instructions_ds.cast(
238
236
  Features(
@@ -119,7 +119,6 @@ def _create_summary_table_from_benchmark_results(
119
119
 
120
120
  # Build joint table
121
121
  joint_table = mean_per_type.copy()
122
- joint_table = joint_table.drop(models_to_remove, axis=0)
123
122
  joint_table.insert(0, "mean", overall_mean)
124
123
  joint_table.insert(1, "mean_by_task_type", typed_mean)
125
124
  joint_table["borda_rank"] = _get_borda_rank(per_task)
@@ -359,7 +358,6 @@ def _create_summary_table_mean_public_private(
359
358
 
360
359
  # Build joint table
361
360
  joint_table = mean_per_type.copy()
362
- joint_table = joint_table.drop(models_to_remove, axis=0)
363
361
  joint_table.insert(0, "mean(public)", public_mean)
364
362
  joint_table.insert(1, "mean(private)", private_mean)
365
363
  if exclude_private_from_borda:
@@ -486,7 +484,6 @@ def _create_summary_table_mean_subset(
486
484
 
487
485
  # Build joint table
488
486
  joint_table = mean_per_type.copy()
489
- joint_table = joint_table.drop(models_to_remove, axis=0)
490
487
  joint_table.insert(0, "mean(subset)", overall_subset_mean)
491
488
  joint_table["borda_rank"] = _get_borda_rank(per_subset)
492
489
  joint_table = joint_table.sort_values("mean(subset)", ascending=False)
@@ -605,7 +602,6 @@ def _create_summary_table_mean_task_type(
605
602
 
606
603
  # Build joint table
607
604
  joint_table = mean_per_type.copy()
608
- joint_table = joint_table.drop(models_to_remove, axis=0)
609
605
  joint_table.insert(0, "mean_by_task_type", typed_mean)
610
606
  joint_table = joint_table.sort_values("mean_by_task_type", ascending=False)
611
607
  joint_table["borda_rank"] = _get_borda_rank(per_task)
mteb/leaderboard/app.py CHANGED
@@ -550,7 +550,10 @@ def get_leaderboard_app(cache: ResultCache = ResultCache()) -> gr.Blocks:
550
550
 
551
551
  logger.info("Step 7/7: Building Gradio interface and callbacks...")
552
552
  interface_start = time.time()
553
- with gr.Blocks(fill_width=True) as demo:
553
+ with gr.Blocks(
554
+ title="MTEB Leaderboard",
555
+ fill_width=True,
556
+ ) as demo:
554
557
  with gr.Sidebar(
555
558
  position="left",
556
559
  label="Benchmark Selection and Customization",
@@ -123,7 +123,10 @@ def get_model(
123
123
 
124
124
 
125
125
  def get_model_meta(
126
- model_name: str, revision: str | None = None, fetch_from_hf: bool = True
126
+ model_name: str,
127
+ revision: str | None = None,
128
+ fetch_from_hf: bool = True,
129
+ fill_missing: bool = False,
127
130
  ) -> ModelMeta:
128
131
  """A function to fetch a model metadata object by name.
129
132
 
@@ -131,6 +134,7 @@ def get_model_meta(
131
134
  model_name: Name of the model to fetch
132
135
  revision: Revision of the model to fetch
133
136
  fetch_from_hf: Whether to fetch the model from HuggingFace Hub if not found in the registry
137
+ fill_missing: Computes missing attributes from the metadata including number of parameters and memory usage.
134
138
 
135
139
  Returns:
136
140
  A model metadata object
@@ -142,10 +146,25 @@ def get_model_meta(
142
146
  raise ValueError(
143
147
  f"Model revision {revision} not found for model {model_name}. Expected {model_meta.revision}."
144
148
  )
149
+
150
+ if fill_missing and fetch_from_hf:
151
+ original_meta_dict = model_meta.model_dump()
152
+ new_meta = ModelMeta.from_hub(model_name)
153
+ new_meta_dict = new_meta.model_dump(exclude_none=True)
154
+
155
+ updates = {
156
+ k: v
157
+ for k, v in new_meta_dict.items()
158
+ if original_meta_dict.get(k) is None
159
+ }
160
+
161
+ if updates:
162
+ return model_meta.model_copy(update=updates)
145
163
  return model_meta
164
+
146
165
  if fetch_from_hf:
147
166
  logger.info(
148
- "Model not found in model registry. Attempting to extract metadata by loading the model ({model_name}) using HuggingFace."
167
+ f"Model not found in model registry. Attempting to extract metadata by loading the model ({model_name}) using HuggingFace."
149
168
  )
150
169
  meta = ModelMeta.from_hub(model_name, revision)
151
170
  return meta
@@ -75,6 +75,7 @@ gritlm8x7b = ModelMeta(
75
75
  release_date="2024-02-15",
76
76
  n_parameters=57_920_000_000,
77
77
  n_embedding_parameters=None,
78
+ n_active_parameters_override=13_000_000_000,
78
79
  memory_usage_mb=89079,
79
80
  embed_dim=32768,
80
81
  license="apache-2.0",
@@ -484,7 +484,8 @@ nomic_embed_text_v2_moe = ModelMeta(
484
484
  revision="1066b6599d099fbb93dfcb64f9c37a7c9e503e85",
485
485
  release_date="2025-02-07",
486
486
  n_parameters=475292928,
487
- n_embedding_parameters=None,
487
+ n_embedding_parameters=192036864,
488
+ n_active_parameters_override=141628032,
488
489
  memory_usage_mb=1813,
489
490
  max_tokens=512,
490
491
  embed_dim=768,
@@ -182,6 +182,7 @@ class VoyageModel(AbsEncoder):
182
182
  model=self._model_name,
183
183
  input_type=input_type,
184
184
  output_dtype=output_dtype,
185
+ output_dimension=self.mteb_model_meta.embed_dim,
185
186
  ).embeddings
186
187
  )
187
188
  pbar.update(len(batch))
@@ -215,6 +216,32 @@ model_prompts = {
215
216
  PromptType.document.value: "document",
216
217
  }
217
218
 
219
+ voyage_4_large_2048d = ModelMeta(
220
+ name="voyageai/voyage-4-large (embed_dim=2048)",
221
+ model_type=["dense"],
222
+ revision="1",
223
+ release_date="2026-01-15",
224
+ languages=None, # supported languages not specified
225
+ loader=VoyageModel,
226
+ loader_kwargs=dict(
227
+ max_tokens=32000,
228
+ model_prompts=model_prompts,
229
+ ),
230
+ max_tokens=32000,
231
+ embed_dim=2048,
232
+ open_weights=False,
233
+ n_parameters=None,
234
+ memory_usage_mb=None,
235
+ license=None,
236
+ reference="https://blog.voyageai.com/2026/01/15/voyage-4/",
237
+ similarity_fn_name="cosine",
238
+ framework=["API"],
239
+ use_instructions=True,
240
+ training_datasets=VOYAGE_TRAINING_DATA,
241
+ public_training_code=None,
242
+ public_training_data=None,
243
+ )
244
+
218
245
  voyage_4 = ModelMeta(
219
246
  name="voyageai/voyage-4",
220
247
  model_type=["dense"],
@@ -647,16 +647,26 @@ class TaskResult(BaseModel):
647
647
  if split not in splits:
648
648
  continue
649
649
  seen_subsets = set()
650
- # Use list comprehension for better performance
651
- new_scores[split] = [
652
- _scores
653
- for _scores in self.scores[split]
654
- if _scores["hf_subset"] in hf_subsets
655
- ]
650
+ if task.is_aggregate:
651
+ # aggregate tasks only have the default subset, but in metadata can be multiple
652
+ new_scores[split] = [
653
+ _scores
654
+ for _scores in self.scores[split]
655
+ if _scores["hf_subset"] == "default"
656
+ ]
657
+ seen_subsets = {"default"}
658
+ else:
659
+ new_scores[split] = [
660
+ _scores
661
+ for _scores in self.scores[split]
662
+ if _scores["hf_subset"] in hf_subsets
663
+ ]
656
664
  for _scores in new_scores[split]:
657
665
  seen_subsets.add(_scores["hf_subset"])
658
666
 
659
- if seen_subsets != hf_subsets:
667
+ if seen_subsets != hf_subsets and not (
668
+ task.is_aggregate and "default" in seen_subsets
669
+ ):
660
670
  missing_subsets = hf_subsets - seen_subsets
661
671
  if len(missing_subsets) > 2:
662
672
  subset1, subset2 = list(missing_subsets)[:2]
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mteb
3
- Version: 2.7.6
3
+ Version: 2.7.8
4
4
  Summary: Massive Text Embedding Benchmark
5
5
  Author-email: MTEB Contributors <niklas@huggingface.co>, Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Nouamane Tazi <nouamane@huggingface.co>, Nils Reimers <info@nils-reimers.de>
6
6
  Maintainer-email: Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Roman Solomatin <risolomatin@gmail.com>, Isaac Chung <chungisaac1217@gmail.com>
@@ -42,8 +42,8 @@ mteb/abstasks/dataset_card_template.md,sha256=aD6l8qc3_jxwoIGJNYLzse-jpRa8hu92Ax
42
42
  mteb/abstasks/multilabel_classification.py,sha256=rFa_Pw2OsUzqhZS-jh2zFD7I-TNl8bVNJ-DW7EpPapU,9708
43
43
  mteb/abstasks/pair_classification.py,sha256=MpjOeIcM_RMqSpkXc8PFDAwDgmb54gEqj6ZOUcOa1aQ,14122
44
44
  mteb/abstasks/regression.py,sha256=ZuMZfOwU3G4hr__eHsgdagKKdrbN4-wQMLz45jr9YUc,8946
45
- mteb/abstasks/retrieval.py,sha256=bw7-5QnLzfclvw5o8RO2sljhajsplmpEPdVZ9nYKj_g,27761
46
- mteb/abstasks/retrieval_dataset_loaders.py,sha256=XDJHh_11R3o4L0Y80kL0ia3DHMmZw3EqWslEQakvMOc,9900
45
+ mteb/abstasks/retrieval.py,sha256=BPyRibStAD70JfR0Z1x-VVVfzJDRVSmbOS6uREfpmok,27743
46
+ mteb/abstasks/retrieval_dataset_loaders.py,sha256=p0y1nrWlUrt_aeoR4ocDLEQMLuD_SlMH0gBiUsOwrww,9983
47
47
  mteb/abstasks/sts.py,sha256=Xta3KVQE7hHqkPTDptemvNVEG0CsZSVjA-Z52EIBvDE,9576
48
48
  mteb/abstasks/task_metadata.py,sha256=_yVgX3yjaxVvK-Cs2nw2wMEkI0xf-QhcGb_byCeyo-w,27210
49
49
  mteb/abstasks/zeroshot_classification.py,sha256=UrUErSH4owJujRn-HQI6KUe4By12oRjZeOnvB6lBnNA,6360
@@ -57,7 +57,7 @@ mteb/abstasks/text/bitext_mining.py,sha256=an9ZlcraS9ZN5tCT8ZQFtMbCrPE4-n7anAAbn
57
57
  mteb/abstasks/text/reranking.py,sha256=mCzy0-TnZ46_GC9Czl4zWKAPnYK5ur0qtFbPt47m9jQ,7917
58
58
  mteb/abstasks/text/summarization.py,sha256=bSgb0XhUzJVuLV1Wjr3HYB_Tn7SjmCDMnkBIEWHO4EQ,7381
59
59
  mteb/benchmarks/__init__.py,sha256=MQEVeli-zLaJ7Xg0z7RhXQwsdmm7Ht_W2Ln0rZo1Szc,225
60
- mteb/benchmarks/_create_table.py,sha256=rsckziAot5EuD-aarQ6JnGurNsq6X2zn_nl43_Ge9ng,22651
60
+ mteb/benchmarks/_create_table.py,sha256=CJL8U0adUbaxr5G26trfYo1tGx8cU2IWWx_ZHU6q6do,22407
61
61
  mteb/benchmarks/benchmark.py,sha256=YCGIvJ5Vc6GdCAYSjzwrnfj2A8MkbzNLvvtPBLMSSp8,6327
62
62
  mteb/benchmarks/get_benchmark.py,sha256=nzR6cu5yXu1kIJKhd4A2R62xp43Z62bluPbOpNXHMWQ,2545
63
63
  mteb/benchmarks/benchmarks/__init__.py,sha256=-o3EMWEfP0eQ8iZpWvTj5r4yuGOUuL9mHk8IgFcpPtk,2330
@@ -1472,14 +1472,14 @@ mteb/languages/language_family.json,sha256=OUGcHeOIPcZPb2FWmYLhxTS0JxjK5y3Fo6x0P
1472
1472
  mteb/languages/language_scripts.py,sha256=AjtdlJlVRE3TWASdmREKw0P-xAoVFdl_Rut5DgX6k6c,4149
1473
1473
  mteb/languages/programming_languages.py,sha256=zxAakT3OSUnAuTnQ34VyeFIECnNXMlleZmAake6jsZE,211
1474
1474
  mteb/leaderboard/__init__.py,sha256=991roXmtRwEQysV-37hWEzWpkvPgMCGRqZTHR-hm2io,88
1475
- mteb/leaderboard/app.py,sha256=te9F3F5u6pMYzEsLtBnOWSr-6ZQ4ZvXVSmbfxuu3cfQ,42500
1475
+ mteb/leaderboard/app.py,sha256=Y3G93VJq6eZMD4_CNzLwSEEGnuNJDqYEYztmzYR85eA,42549
1476
1476
  mteb/leaderboard/benchmark_selector.py,sha256=qd-2L20RQ4ACke01UlytkhZok1dkWgfUlXzfET52kGc,7956
1477
1477
  mteb/leaderboard/figures.py,sha256=cfOK82rRf-7sCjyP7GBxh4ezhOIt0OhD0_86mKtzLrg,7530
1478
1478
  mteb/leaderboard/table.py,sha256=U5mWtrVUTk_6t8T4KAp5qlbFgKh1PD0iKICqNMfhsoY,10462
1479
1479
  mteb/leaderboard/text_segments.py,sha256=iMIkS04QQjPbT-SkU0x6fOcS8xRbUYevryu9HydipKM,6570
1480
1480
  mteb/models/__init__.py,sha256=ABTuoqiBjBtBWW3LYY7ItBHdylR6jWoy06HH0g6j6fU,910
1481
1481
  mteb/models/abs_encoder.py,sha256=We9HlwWP61P4cMyZ080gywvDErA1eVsU9t46PtcNrCM,16830
1482
- mteb/models/get_model_meta.py,sha256=_3gbC9I9fHJuqW4EzfM3xAv-heOBwEPswLVkCGO4BBI,6201
1482
+ mteb/models/get_model_meta.py,sha256=h6Z2Q3D_L4BeJbi1gPHTSgelbQjsQn1ALpI8uwNa0ac,6832
1483
1483
  mteb/models/instruct_wrapper.py,sha256=XAvvbPnXiTxKhFbmusm2uS8E9BMq8QXRSzQQI1jqKzE,9781
1484
1484
  mteb/models/model_meta.py,sha256=5seQwce893SbgSywFsphLuZGQ9rRn1fLl9fj1SfKnXE,32887
1485
1485
  mteb/models/models_protocols.py,sha256=HTB4-SYa3SeJXMMSA8o05lHTiLBbq314VW60K_PfcZY,9509
@@ -1534,7 +1534,7 @@ mteb/models/model_implementations/geogpt_models.py,sha256=sujXljj5R4BlNsFEqpBlaQ
1534
1534
  mteb/models/model_implementations/gme_v_models.py,sha256=Hr_AcaQom9Lv4ejJ06Z3uXlQDOp3aYa0t9pBwBdhkH8,13975
1535
1535
  mteb/models/model_implementations/google_models.py,sha256=4VE-hDAu_rfvEQKRK9i8nGjTh_jd3DKiJNdNceTHfAg,11435
1536
1536
  mteb/models/model_implementations/granite_vision_embedding_models.py,sha256=jxyRL9kIUfFUpokzyuJpbUkn3I0nz1fJPmd9gGLGHNc,7418
1537
- mteb/models/model_implementations/gritlm_models.py,sha256=dDdiuX4e3GqcikwvNSGVQh4Q19IfMfxvcA9ZfNIxYm0,3192
1537
+ mteb/models/model_implementations/gritlm_models.py,sha256=756vgZGADy5FhKlFuzuD6huevC_AYD5b88V1Y5yFht8,3241
1538
1538
  mteb/models/model_implementations/gte_models.py,sha256=-ASkoAuAiVytVtsYMtuKonUf39i0U69HSEnJy_-PwXA,14574
1539
1539
  mteb/models/model_implementations/hinvec_models.py,sha256=SYWGFr8XALmM7B9tIHEQnrqq9kZOZIBkW7m7QpzerHI,1756
1540
1540
  mteb/models/model_implementations/human.py,sha256=MTw560BrwuvUsHUb5_Gjq7ZRfrBmaT8dGnrubFFDB_o,591
@@ -1565,7 +1565,7 @@ mteb/models/model_implementations/model2vec_models.py,sha256=qXcPhV0hGRFBsvRBrb8
1565
1565
  mteb/models/model_implementations/moka_models.py,sha256=4Esujv_fVJjHuX1nRH6sGtmrmF04A90F4Xo2uN0YTzs,5205
1566
1566
  mteb/models/model_implementations/nbailab.py,sha256=iv2xdqVM5HoTAlBR6e_UdzJu6rSPujqWXFYwyCv69hU,2684
1567
1567
  mteb/models/model_implementations/no_instruct_sentence_models.py,sha256=DTb-eHZYSY6lGJkkdkC0tZ_n0GHLQwVlUehVg59T5N4,4198
1568
- mteb/models/model_implementations/nomic_models.py,sha256=pg9od3Dq71qAsik665gx3eUCNiCzDHFR158jjbj4i0I,15440
1568
+ mteb/models/model_implementations/nomic_models.py,sha256=dDCto9qE83Qfk76CxQQeHNJxwvd5ovrJOpE6MZy6ZQc,15489
1569
1569
  mteb/models/model_implementations/nomic_models_vision.py,sha256=AzTCWbXBonUAVub0TTxWCsBtg4WYex3vPiLlz3ULdHc,6916
1570
1570
  mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py,sha256=5jYzS0qc4x82T5_c1HFt4uy9kksTt9Fs24pdLioq4Oc,7033
1571
1571
  mteb/models/model_implementations/nvidia_models.py,sha256=r-AW1dVQbteWjexjvZgFEt_90OHNRYer_5GLuqSXRS0,26924
@@ -1615,7 +1615,7 @@ mteb/models/model_implementations/vdr_models.py,sha256=IGvpE2F42IWBN5QwKSWjsAehT
1615
1615
  mteb/models/model_implementations/vi_vn_models.py,sha256=7hot8CF5B1UeC4WJXnAAs1C1vbqK2lq7Bw338ztKFDE,6566
1616
1616
  mteb/models/model_implementations/vista_models.py,sha256=mcI0La6__LasuLd5P-nkc4Z-r9X_8sYhGFLdVPGPmkw,11033
1617
1617
  mteb/models/model_implementations/vlm2vec_models.py,sha256=1iq2i1ZbsPINE8nXoVZsX1Km-4dTTAd6St6J38I8Tew,11951
1618
- mteb/models/model_implementations/voyage_models.py,sha256=L8-9kKgIzp_BIS_NIK6rVf4TtvjCeW4KEgR8H6LD2Wk,23125
1618
+ mteb/models/model_implementations/voyage_models.py,sha256=g7WET4MibXN6eABrmhn8uTGXdjwf5Kk4ddqQmHA7v6A,23920
1619
1619
  mteb/models/model_implementations/voyage_v.py,sha256=_mJGhskJj9zeHYebEJFuYheLPb-YDyiu6Hny_5LQcAE,8280
1620
1620
  mteb/models/model_implementations/xyz_models.py,sha256=69JyOCQHVq19nAG3zQFi-UYYT6I7uHmvTcmRxHvjyc8,1361
1621
1621
  mteb/models/model_implementations/youtu_models.py,sha256=P5fh34UJZQObJAbz3Wuzqh9Nw5S7LraqxdtwAX3sDJ8,6028
@@ -1628,7 +1628,7 @@ mteb/models/search_encoder_index/search_indexes/faiss_search_index.py,sha256=jwC
1628
1628
  mteb/results/__init__.py,sha256=EXQqK4Am5eIYzD52dpcGAFSdqnC38oE6JHN302oidHc,158
1629
1629
  mteb/results/benchmark_results.py,sha256=unBUBJ92ud0UXlkZJLn71WVcf-oUlF6XcITTccz5OBA,20318
1630
1630
  mteb/results/model_result.py,sha256=u1eUynaf_KVsdYdz29MACsCDR_48xODapkIGLG-lZa0,15321
1631
- mteb/results/task_result.py,sha256=3j-zHyzsMRUrNWkDrgGalCc2-QmlxMYryb67P3m2VV8,33813
1631
+ mteb/results/task_result.py,sha256=TL9V7P7cXqLljnCHdzzaQ9vZZSXh9qXYFnPRG049alw,34247
1632
1632
  mteb/tasks/__init__.py,sha256=izAxU0ip1F_YUwx0dFCuN35BaktdmePh6vlDiHC0kLo,503
1633
1633
  mteb/tasks/aggregated_tasks/__init__.py,sha256=Ufgbh1AirxCQkojO3AUhUFWM8zQG10cfdVTkj_PeyLI,104
1634
1634
  mteb/tasks/aggregated_tasks/eng/__init__.py,sha256=HgaSyAX8Is5CGE006RgJkLQQVxrx2FmMnm6NHQBDi-4,358
@@ -2644,9 +2644,9 @@ mteb/types/_metadata.py,sha256=NN-W0S6a5TDV7UkpRx1pyWtGF4TyyCyoPUfHOwdeci8,2290
2644
2644
  mteb/types/_result.py,sha256=UKNokV9pu3G74MGebocU512aU_fFU9I9nPKnrG9Q0iE,1035
2645
2645
  mteb/types/_string_validators.py,sha256=PY-dYq4E8O50VS3bLYdldPWp400fl_WzUjfVSkNWe8U,523
2646
2646
  mteb/types/statistics.py,sha256=gElgSShKBXpfcqaZHhU_d2UHln1CyzUj8FN8KFun_UA,4087
2647
- mteb-2.7.6.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
2648
- mteb-2.7.6.dist-info/METADATA,sha256=Z3M0aYld_wkz4xbPZoHMyWVtT33B6W1oj6OscvReJ9k,14457
2649
- mteb-2.7.6.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
2650
- mteb-2.7.6.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
2651
- mteb-2.7.6.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
2652
- mteb-2.7.6.dist-info/RECORD,,
2647
+ mteb-2.7.8.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
2648
+ mteb-2.7.8.dist-info/METADATA,sha256=RAYZsiC60kj245hhOJBIhiqxz2t-lSHrETiQSKhoQcA,14457
2649
+ mteb-2.7.8.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
2650
+ mteb-2.7.8.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
2651
+ mteb-2.7.8.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
2652
+ mteb-2.7.8.dist-info/RECORD,,
File without changes