mteb 2.7.2__py3-none-any.whl → 2.7.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/_create_dataloaders.py +63 -14
- mteb/_evaluators/any_sts_evaluator.py +12 -5
- mteb/_evaluators/clustering_evaluator.py +12 -4
- mteb/_evaluators/evaluator.py +11 -5
- mteb/_evaluators/image/imagetext_pairclassification_evaluator.py +14 -5
- mteb/_evaluators/pair_classification_evaluator.py +13 -5
- mteb/_evaluators/retrieval_evaluator.py +22 -13
- mteb/_evaluators/retrieval_metrics.py +9 -3
- mteb/_evaluators/sklearn_evaluator.py +20 -11
- mteb/_evaluators/text/bitext_mining_evaluator.py +10 -3
- mteb/_evaluators/text/summarization_evaluator.py +10 -4
- mteb/_evaluators/zeroshot_classification_evaluator.py +12 -3
- mteb/_helpful_enum.py +5 -1
- mteb/abstasks/_data_filter/filters.py +8 -2
- mteb/abstasks/_data_filter/task_pipelines.py +7 -2
- mteb/abstasks/_statistics_calculation.py +6 -4
- mteb/abstasks/abstask.py +48 -21
- mteb/abstasks/aggregate_task_metadata.py +20 -9
- mteb/abstasks/aggregated_task.py +15 -8
- mteb/abstasks/classification.py +25 -9
- mteb/abstasks/clustering.py +23 -10
- mteb/abstasks/clustering_legacy.py +22 -8
- mteb/abstasks/image/image_text_pair_classification.py +23 -9
- mteb/abstasks/multilabel_classification.py +13 -5
- mteb/abstasks/pair_classification.py +27 -11
- mteb/abstasks/regression.py +14 -6
- mteb/abstasks/retrieval.py +56 -30
- mteb/abstasks/retrieval_dataset_loaders.py +48 -37
- mteb/abstasks/sts.py +29 -13
- mteb/abstasks/task_metadata.py +17 -8
- mteb/abstasks/text/bitext_mining.py +23 -12
- mteb/abstasks/text/reranking.py +2 -2
- mteb/abstasks/text/summarization.py +19 -8
- mteb/abstasks/zeroshot_classification.py +23 -9
- mteb/benchmarks/_create_table.py +13 -7
- mteb/benchmarks/benchmark.py +11 -1
- mteb/benchmarks/benchmarks/__init__.py +2 -0
- mteb/benchmarks/benchmarks/benchmarks.py +41 -2
- mteb/benchmarks/benchmarks/rteb_benchmarks.py +20 -9
- mteb/cache.py +10 -5
- mteb/cli/_display_tasks.py +9 -3
- mteb/cli/build_cli.py +5 -2
- mteb/cli/generate_model_card.py +9 -2
- mteb/deprecated_evaluator.py +16 -12
- mteb/descriptive_stats/Retrieval/BrightAopsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightLeetcodeRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQAQuestionsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQATheoremsRetrieval.json +35 -0
- mteb/evaluate.py +33 -20
- mteb/filter_tasks.py +12 -7
- mteb/get_tasks.py +9 -4
- mteb/languages/language_scripts.py +8 -3
- mteb/leaderboard/app.py +11 -4
- mteb/leaderboard/table.py +7 -2
- mteb/load_results.py +9 -3
- mteb/models/abs_encoder.py +22 -12
- mteb/models/cache_wrappers/cache_backend_protocol.py +5 -3
- mteb/models/cache_wrappers/cache_backends/_hash_utils.py +8 -4
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py +8 -3
- mteb/models/cache_wrappers/cache_wrapper.py +14 -9
- mteb/models/get_model_meta.py +32 -6
- mteb/models/instruct_wrapper.py +13 -5
- mteb/models/model_implementations/align_models.py +10 -4
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +2 -0
- mteb/models/model_implementations/ara_models.py +1 -0
- mteb/models/model_implementations/arctic_models.py +8 -0
- mteb/models/model_implementations/b1ade_models.py +1 -0
- mteb/models/model_implementations/bedrock_models.py +20 -6
- mteb/models/model_implementations/bge_models.py +40 -1
- mteb/models/model_implementations/bica_model.py +1 -0
- mteb/models/model_implementations/blip2_models.py +11 -4
- mteb/models/model_implementations/blip_models.py +17 -4
- mteb/models/model_implementations/bm25.py +24 -14
- mteb/models/model_implementations/bmretriever_models.py +10 -2
- mteb/models/model_implementations/cadet_models.py +1 -0
- mteb/models/model_implementations/cde_models.py +11 -5
- mteb/models/model_implementations/clip_models.py +12 -4
- mteb/models/model_implementations/clips_models.py +3 -0
- mteb/models/model_implementations/codefuse_models.py +5 -0
- mteb/models/model_implementations/codesage_models.py +3 -0
- mteb/models/model_implementations/cohere_models.py +14 -4
- mteb/models/model_implementations/cohere_v.py +14 -4
- mteb/models/model_implementations/colpali_models.py +7 -3
- mteb/models/model_implementations/colqwen_models.py +17 -31
- mteb/models/model_implementations/colsmol_models.py +3 -1
- mteb/models/model_implementations/conan_models.py +11 -4
- mteb/models/model_implementations/dino_models.py +28 -4
- mteb/models/model_implementations/e5_instruct.py +4 -0
- mteb/models/model_implementations/e5_models.py +9 -0
- mteb/models/model_implementations/e5_v.py +10 -4
- mteb/models/model_implementations/eagerworks_models.py +11 -4
- mteb/models/model_implementations/emillykkejensen_models.py +3 -0
- mteb/models/model_implementations/en_code_retriever.py +1 -0
- mteb/models/model_implementations/euler_models.py +1 -0
- mteb/models/model_implementations/evaclip_models.py +13 -4
- mteb/models/model_implementations/fa_models.py +9 -0
- mteb/models/model_implementations/facebookai.py +2 -0
- mteb/models/model_implementations/geogpt_models.py +1 -0
- mteb/models/model_implementations/gme_v_models.py +7 -3
- mteb/models/model_implementations/google_models.py +15 -4
- mteb/models/model_implementations/granite_vision_embedding_models.py +7 -5
- mteb/models/model_implementations/gritlm_models.py +3 -0
- mteb/models/model_implementations/gte_models.py +9 -0
- mteb/models/model_implementations/hinvec_models.py +6 -1
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +6 -0
- mteb/models/model_implementations/inf_models.py +2 -0
- mteb/models/model_implementations/jasper_models.py +14 -5
- mteb/models/model_implementations/jina_clip.py +10 -4
- mteb/models/model_implementations/jina_models.py +17 -5
- mteb/models/model_implementations/kalm_models.py +24 -12
- mteb/models/model_implementations/kblab.py +1 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +2 -0
- mteb/models/model_implementations/kfst.py +1 -0
- mteb/models/model_implementations/kowshik24_models.py +1 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +1 -0
- mteb/models/model_implementations/linq_models.py +7 -1
- mteb/models/model_implementations/listconranker.py +10 -4
- mteb/models/model_implementations/llm2clip_models.py +12 -4
- mteb/models/model_implementations/llm2vec_models.py +20 -6
- mteb/models/model_implementations/mcinext_models.py +8 -2
- mteb/models/model_implementations/mdbr_models.py +2 -0
- mteb/models/model_implementations/misc_models.py +63 -0
- mteb/models/model_implementations/mixedbread_ai_models.py +3 -0
- mteb/models/model_implementations/mme5_models.py +2 -1
- mteb/models/model_implementations/moco_models.py +11 -4
- mteb/models/model_implementations/mod_models.py +2 -1
- mteb/models/model_implementations/model2vec_models.py +23 -4
- mteb/models/model_implementations/moka_models.py +3 -0
- mteb/models/model_implementations/nbailab.py +3 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +13 -5
- mteb/models/model_implementations/nomic_models.py +17 -4
- mteb/models/model_implementations/nomic_models_vision.py +5 -3
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +9 -3
- mteb/models/model_implementations/nvidia_models.py +15 -4
- mteb/models/model_implementations/octen_models.py +3 -1
- mteb/models/model_implementations/openai_models.py +14 -4
- mteb/models/model_implementations/openclip_models.py +17 -4
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +15 -4
- mteb/models/model_implementations/ops_moa_models.py +9 -2
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -0
- mteb/models/model_implementations/pawan_models.py +1 -0
- mteb/models/model_implementations/piccolo_models.py +2 -0
- mteb/models/model_implementations/promptriever_models.py +16 -6
- mteb/models/model_implementations/pylate_models.py +32 -13
- mteb/models/model_implementations/qodo_models.py +2 -0
- mteb/models/model_implementations/qtack_models.py +1 -0
- mteb/models/model_implementations/qwen3_models.py +11 -1
- mteb/models/model_implementations/qzhou_models.py +2 -0
- mteb/models/model_implementations/random_baseline.py +4 -3
- mteb/models/model_implementations/rasgaard_models.py +1 -0
- mteb/models/model_implementations/reasonir_model.py +65 -0
- mteb/models/model_implementations/repllama_models.py +15 -6
- mteb/models/model_implementations/rerankers_custom.py +13 -4
- mteb/models/model_implementations/rerankers_monot5_based.py +24 -4
- mteb/models/model_implementations/richinfoai_models.py +1 -0
- mteb/models/model_implementations/ru_sentence_models.py +20 -0
- mteb/models/model_implementations/ruri_models.py +10 -0
- mteb/models/model_implementations/salesforce_models.py +10 -1
- mteb/models/model_implementations/samilpwc_models.py +1 -0
- mteb/models/model_implementations/sarashina_embedding_models.py +2 -0
- mteb/models/model_implementations/searchmap_models.py +1 -0
- mteb/models/model_implementations/seed_1_6_embedding_models.py +5 -2
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +6 -2
- mteb/models/model_implementations/seed_models.py +2 -1
- mteb/models/model_implementations/sentence_transformers_models.py +18 -0
- mteb/models/model_implementations/shuu_model.py +1 -0
- mteb/models/model_implementations/siglip_models.py +19 -4
- mteb/models/model_implementations/slm_models.py +7 -4
- mteb/models/model_implementations/sonar_models.py +2 -1
- mteb/models/model_implementations/spartan8806_atles_champion.py +1 -0
- mteb/models/model_implementations/stella_models.py +6 -0
- mteb/models/model_implementations/tarka_models.py +2 -0
- mteb/models/model_implementations/text2vec_models.py +3 -0
- mteb/models/model_implementations/ua_sentence_models.py +1 -0
- mteb/models/model_implementations/uae_models.py +10 -4
- mteb/models/model_implementations/vdr_models.py +8 -1
- mteb/models/model_implementations/vi_vn_models.py +6 -0
- mteb/models/model_implementations/vista_models.py +11 -4
- mteb/models/model_implementations/vlm2vec_models.py +11 -4
- mteb/models/model_implementations/voyage_models.py +52 -4
- mteb/models/model_implementations/voyage_v.py +11 -6
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +1 -0
- mteb/models/model_implementations/yuan_models.py +1 -0
- mteb/models/model_implementations/yuan_models_en.py +2 -1
- mteb/models/model_meta.py +47 -9
- mteb/models/models_protocols.py +23 -18
- mteb/models/search_encoder_index/search_backend_protocol.py +7 -3
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +12 -4
- mteb/models/search_wrappers.py +31 -12
- mteb/models/sentence_transformer_wrapper.py +4 -3
- mteb/models/vllm_wrapper.py +8 -6
- mteb/results/benchmark_results.py +22 -17
- mteb/results/model_result.py +21 -15
- mteb/results/task_result.py +32 -16
- mteb/similarity_functions.py +8 -2
- mteb/tasks/aggregated_tasks/eng/cqadupstack_retrieval.py +3 -3
- mteb/tasks/aggregated_tasks/eng/sts17_multilingual_visual_sts_eng.py +3 -3
- mteb/tasks/aggregated_tasks/eng/sts_benchmark_multilingual_visual_sts_eng.py +3 -3
- mteb/tasks/aggregated_tasks/fas/cqadupstack_retrieval_fa.py +3 -3
- mteb/tasks/aggregated_tasks/fas/syn_per_chatbot_conv_sa_classification.py +3 -3
- mteb/tasks/aggregated_tasks/multilingual/sts17_multilingual_vision_sts.py +3 -3
- mteb/tasks/aggregated_tasks/multilingual/sts_benchmark_multilingual_visual_sts.py +3 -3
- mteb/tasks/aggregated_tasks/nld/cqadupstack_nl_retrieval.py +3 -3
- mteb/tasks/aggregated_tasks/pol/cqadupstack_retrieval_pl.py +3 -3
- mteb/tasks/bitext_mining/eng/pub_chem_smiles_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/fas/fa_mteb_summary_retrieval.py +3 -3
- mteb/tasks/bitext_mining/multilingual/bucc_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/flores_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/in22_conv_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/in22_gen_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/norwegian_courts_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/ntrex_bitext_mining.py +1 -1
- mteb/tasks/bitext_mining/multilingual/roma_tales_bitext_mining.py +2 -2
- mteb/tasks/bitext_mining/multilingual/web_faq_bitext_mining.py +2 -2
- mteb/tasks/classification/ara/online_store_review_sentiment_classification.py +1 -1
- mteb/tasks/classification/ara/restaurant_review_sentiment_classification.py +1 -1
- mteb/tasks/classification/ara/tweet_sarcasm_classification.py +1 -1
- mteb/tasks/classification/ben/bengali_hate_speech_classification.py +1 -1
- mteb/tasks/classification/ben/bengali_sentiment_analysis.py +1 -1
- mteb/tasks/classification/bul/bulgarian_store_review_sentiment_classfication.py +1 -1
- mteb/tasks/classification/ces/csfdcz_movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/dan/ddisco_cohesion_classification.py +1 -1
- mteb/tasks/classification/dan/dk_hate_classification.py +1 -1
- mteb/tasks/classification/deu/german_politicians_twitter_sentiment_classification.py +1 -1
- mteb/tasks/classification/ell/greek_legal_code_classification.py +1 -1
- mteb/tasks/classification/eng/dbpedia_classification.py +2 -2
- mteb/tasks/classification/eng/toxic_chat_classification.py +2 -2
- mteb/tasks/classification/eng/toxic_conversations_classification.py +2 -2
- mteb/tasks/classification/eng/tweet_topic_single_classification.py +1 -1
- mteb/tasks/classification/eng/yahoo_answers_topics_classification.py +1 -1
- mteb/tasks/classification/eng/yelp_review_full_classification.py +2 -2
- mteb/tasks/classification/est/estonian_valence.py +1 -1
- mteb/tasks/classification/fas/fa_mteb_classification.py +6 -6
- mteb/tasks/classification/fas/persian_food_sentiment_classification.py +1 -1
- mteb/tasks/classification/fil/filipino_shopee_reviews_classification.py +1 -1
- mteb/tasks/classification/fin/fin_toxicity_classification.py +1 -1
- mteb/tasks/classification/fra/french_book_reviews.py +2 -2
- mteb/tasks/classification/fra/movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/guj/gujarati_news_classification.py +1 -1
- mteb/tasks/classification/hin/hindi_discourse_classification.py +1 -1
- mteb/tasks/classification/hin/sentiment_analysis_hindi.py +1 -1
- mteb/tasks/classification/ind/indonesian_id_clickbait_classification.py +2 -2
- mteb/tasks/classification/ind/indonesian_mongabay_conservation_classification.py +1 -1
- mteb/tasks/classification/ita/dado_eval_coarse_classification.py +1 -1
- mteb/tasks/classification/ita/ita_casehold_classification.py +1 -1
- mteb/tasks/classification/ita/sardi_stance_classification.py +1 -1
- mteb/tasks/classification/jav/javanese_imdb_classification.py +1 -1
- mteb/tasks/classification/jpn/wrime_classification.py +1 -1
- mteb/tasks/classification/kan/kannada_news_classification.py +2 -2
- mteb/tasks/classification/kor/klue_tc.py +2 -2
- mteb/tasks/classification/kor/kor_fin.py +1 -1
- mteb/tasks/classification/kor/kor_hate_classification.py +1 -1
- mteb/tasks/classification/kor/kor_sarcasm_classification.py +1 -1
- mteb/tasks/classification/mal/malayalam_news_classification.py +1 -1
- mteb/tasks/classification/mar/marathi_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/afri_senti_lang_classification.py +1 -1
- mteb/tasks/classification/multilingual/catalonia_tweet_classification.py +1 -1
- mteb/tasks/classification/multilingual/cyrillic_turkic_lang_classification.py +1 -1
- mteb/tasks/classification/multilingual/indic_nlp_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/masakha_news_classification.py +1 -1
- mteb/tasks/classification/multilingual/multi_hate_classification.py +1 -1
- mteb/tasks/classification/multilingual/multilingual_sentiment_classification.py +1 -1
- mteb/tasks/classification/multilingual/scala_classification.py +1 -1
- mteb/tasks/classification/multilingual/sib200_classification.py +1 -1
- mteb/tasks/classification/multilingual/turkic_classification.py +1 -1
- mteb/tasks/classification/multilingual/tweet_sentiment_classification.py +1 -1
- mteb/tasks/classification/nep/nepali_news_classification.py +2 -2
- mteb/tasks/classification/nld/dutch_sarcastic_headlines_classification.py +1 -1
- mteb/tasks/classification/nld/vaccin_chat_nl_classification.py +1 -1
- mteb/tasks/classification/ory/odia_news_classification.py +2 -2
- mteb/tasks/classification/pan/punjabi_news_classification.py +1 -1
- mteb/tasks/classification/ron/moroco.py +1 -1
- mteb/tasks/classification/ron/romanian_reviews_sentiment.py +1 -1
- mteb/tasks/classification/ron/romanian_sentiment_classification.py +1 -1
- mteb/tasks/classification/rus/georeview_classification.py +1 -1
- mteb/tasks/classification/rus/headline_classification.py +2 -2
- mteb/tasks/classification/rus/inappropriateness_classification.py +2 -2
- mteb/tasks/classification/rus/ru_reviews_classification.py +2 -2
- mteb/tasks/classification/rus/ru_sci_bench_grnti_classification.py +1 -1
- mteb/tasks/classification/rus/ru_sci_bench_oecd_classification.py +1 -1
- mteb/tasks/classification/rus/ru_toixic_classification_okmlcup.py +1 -1
- mteb/tasks/classification/san/sanskrit_shlokas_classification.py +1 -1
- mteb/tasks/classification/sin/sinhala_news_classification.py +2 -2
- mteb/tasks/classification/sin/sinhala_news_source_classification.py +2 -2
- mteb/tasks/classification/slk/csfdsk_movie_review_sentiment_classification.py +2 -2
- mteb/tasks/classification/slv/frenk_sl_classification.py +1 -1
- mteb/tasks/classification/spa/spanish_news_classification.py +2 -2
- mteb/tasks/classification/ssw/siswati_news_classification.py +1 -1
- mteb/tasks/classification/tam/tamil_news_classification.py +2 -2
- mteb/tasks/classification/tel/telugu_andhra_jyoti_news_classification.py +2 -2
- mteb/tasks/classification/tha/wongnai_reviews_classification.py +1 -1
- mteb/tasks/classification/tur/turkish_movie_sentiment_classification.py +2 -2
- mteb/tasks/classification/ukr/ukr_formality_classification.py +2 -2
- mteb/tasks/classification/vie/toxic_conversations_vn_classification.py +1 -1
- mteb/tasks/classification/vie/vie_student_feedback_classification.py +1 -1
- mteb/tasks/classification/zho/yue_openrice_review_classification.py +2 -2
- mteb/tasks/classification/zul/isi_zulu_news_classification.py +1 -1
- mteb/tasks/clustering/deu/blurbs_clustering_p2p.py +1 -1
- mteb/tasks/clustering/deu/blurbs_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/arxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/arxiv_hierarchical_clustering.py +2 -2
- mteb/tasks/clustering/eng/big_patent_clustering.py +1 -1
- mteb/tasks/clustering/eng/biorxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/biorxiv_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/medrxiv_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/medrxiv_clustering_s2s.py +1 -1
- mteb/tasks/clustering/eng/reddit_clustering.py +1 -1
- mteb/tasks/clustering/eng/reddit_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/stack_exchange_clustering.py +1 -1
- mteb/tasks/clustering/eng/stack_exchange_clustering_p2p.py +1 -1
- mteb/tasks/clustering/eng/twenty_newsgroups_clustering.py +1 -1
- mteb/tasks/clustering/fas/fa_mteb_clustering.py +4 -4
- mteb/tasks/clustering/fra/hal_clustering_s2s.py +2 -2
- mteb/tasks/clustering/multilingual/mlsum_clustering_p2p.py +2 -2
- mteb/tasks/clustering/multilingual/mlsum_clustering_s2s.py +2 -2
- mteb/tasks/clustering/multilingual/sib200_clustering_s2s.py +1 -1
- mteb/tasks/clustering/multilingual/wiki_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/dutch_news_articles_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nld/iconclass_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nld/open_tender_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/vabb_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nld/vabb_clustering_s2s.py +1 -1
- mteb/tasks/clustering/nob/snl_clustering.py +8 -3
- mteb/tasks/clustering/nob/vg_clustering.py +8 -3
- mteb/tasks/clustering/pol/polish_clustering.py +3 -3
- mteb/tasks/clustering/rus/ru_sci_bench_grnti_clustering_p2p.py +1 -1
- mteb/tasks/clustering/rus/ru_sci_bench_oecd_clustering_p2p.py +1 -1
- mteb/tasks/clustering/zho/cmteb_clustering.py +4 -4
- mteb/tasks/image_text_pair_classification/eng/image_co_de.py +1 -1
- mteb/tasks/image_text_pair_classification/eng/sugar_crepe.py +1 -1
- mteb/tasks/instruction_reranking/multilingual/m_follow_ir.py +2 -2
- mteb/tasks/multichoice/eng/cv_bench.py +4 -4
- mteb/tasks/multilabel_classification/ita/emit_classification.py +1 -1
- mteb/tasks/multilabel_classification/mlt/maltese_news_classification.py +1 -1
- mteb/tasks/multilabel_classification/rus/ru_toixic_multilabelclassification_okmlcup.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_group_classification.py +1 -1
- mteb/tasks/multilabel_classification/swe/swedish_patent_cpc_subclass_classification.py +1 -1
- mteb/tasks/pair_classification/ara/ar_entail.py +1 -1
- mteb/tasks/pair_classification/dan/talemaader_pc.py +1 -1
- mteb/tasks/pair_classification/deu/false_friends_de_en_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_ai_sentence_paraphrase_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_smilespc.py +4 -3
- mteb/tasks/pair_classification/eng/pub_chem_synonym_pc.py +1 -1
- mteb/tasks/pair_classification/eng/pub_chem_wiki_paragraphs_pc.py +1 -1
- mteb/tasks/pair_classification/eng/sprint_duplicate_questions_pc.py +1 -1
- mteb/tasks/pair_classification/eng/twitter_sem_eval2015_pc.py +1 -1
- mteb/tasks/pair_classification/eng/twitter_url_corpus_pc.py +1 -1
- mteb/tasks/pair_classification/fas/fa_mteb_pair_classification.py +5 -5
- mteb/tasks/pair_classification/fas/fars_tail.py +2 -2
- mteb/tasks/pair_classification/hye/armenian_paraphrase_pc.py +1 -1
- mteb/tasks/pair_classification/ita/dis_co_tex_pair_classification.py +1 -1
- mteb/tasks/pair_classification/kor/klue_nli.py +1 -1
- mteb/tasks/pair_classification/multilingual/rte3.py +2 -2
- mteb/tasks/pair_classification/multilingual/xnli.py +1 -1
- mteb/tasks/pair_classification/pol/polish_pc.py +4 -4
- mteb/tasks/pair_classification/por/assin2_rte.py +1 -1
- mteb/tasks/pair_classification/por/sick_br_pc.py +1 -1
- mteb/tasks/pair_classification/rus/terra.py +2 -2
- mteb/tasks/pair_classification/vie/sprint_duplicate_questions_pcvn.py +1 -1
- mteb/tasks/pair_classification/vie/twitter_sem_eval2015_pcvn.py +1 -1
- mteb/tasks/pair_classification/vie/twitter_url_corpus_pcvn.py +1 -1
- mteb/tasks/pair_classification/zho/cmteb_pair_classification.py +2 -2
- mteb/tasks/retrieval/ara/sadeem_question_retrieval.py +1 -1
- mteb/tasks/retrieval/code/code_edit_search_retrieval.py +1 -1
- mteb/tasks/retrieval/code/code_rag.py +4 -4
- mteb/tasks/retrieval/code/code_search_net_cc_retrieval.py +1 -1
- mteb/tasks/retrieval/code/coir_code_search_net_retrieval.py +1 -1
- mteb/tasks/retrieval/code/ds1000_retrieval.py +1 -1
- mteb/tasks/retrieval/code/fresh_stack_retrieval.py +1 -1
- mteb/tasks/retrieval/code/human_eval_retrieval.py +1 -1
- mteb/tasks/retrieval/code/mbpp_retrieval.py +1 -1
- mteb/tasks/retrieval/code/wiki_sql_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/dan_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/dan/tv2_nordretrieval.py +1 -1
- mteb/tasks/retrieval/dan/twitter_hjerne_retrieval.py +1 -1
- mteb/tasks/retrieval/deu/german_gov_service_retrieval.py +1 -1
- mteb/tasks/retrieval/deu/german_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/ell/greek_civics_qa.py +1 -1
- mteb/tasks/retrieval/eng/__init__.py +42 -0
- mteb/tasks/retrieval/eng/bright_retrieval.py +10 -2
- mteb/tasks/retrieval/eng/bright_v1_1_retrieval.py +968 -0
- mteb/tasks/retrieval/eng/chat_doctor_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/fin_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/finance_bench_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hateful_memes_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hateful_memes_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/hc3_finance_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_narrative_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_needle_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_passkey_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_summ_screen_fd_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lemb_wikim_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/lembqm_sum_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/limit_retrieval.py +6 -1
- mteb/tasks/retrieval/eng/lit_search_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/memotion_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/memotion_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/ml_questions.py +1 -1
- mteb/tasks/retrieval/eng/nano_argu_ana_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_climate_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_db_pedia_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_fever_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_fi_qa2018_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_hotpot_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_msmarco_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_nf_corpus_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_nq_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_quora_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_sci_fact_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_scidocs_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/nano_touche2020_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/narrative_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/r2_med_retrieval.py +8 -8
- mteb/tasks/retrieval/eng/sci_mmir_i2t_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/sci_mmir_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/vidore_bench_retrieval.py +10 -10
- mteb/tasks/retrieval/fra/f_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/fra/syntec_retrieval.py +1 -1
- mteb/tasks/retrieval/hun/hun_sum2.py +1 -1
- mteb/tasks/retrieval/kat/georgian_faq_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt19.py +1 -1
- mteb/tasks/retrieval/multilingual/cross_lingual_semantic_discrimination_wmt21.py +1 -1
- mteb/tasks/retrieval/multilingual/cur_ev1_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/jina_vdr_bench_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/miracl_vision_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/mr_tidy_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/public_health_qa_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/ru_sci_bench_retrieval.py +5 -5
- mteb/tasks/retrieval/multilingual/statcan_dialogue_dataset_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/vdr_multilingual_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/vidore2_bench_retrieval.py +14 -4
- mteb/tasks/retrieval/multilingual/wit_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/x_flickr30k_co_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/x_qu_ad_retrieval.py +1 -1
- mteb/tasks/retrieval/multilingual/xm3600_t2i_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_android_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_english_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_gaming_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_gis_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_mathematica_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_physics_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_programmers_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_stats_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_tex_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_unix_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_webmasters_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nld/cqa_dupstack_wordpress_nl_retrieval.py +1 -1
- mteb/tasks/retrieval/nob/norquad.py +1 -1
- mteb/tasks/retrieval/nob/snl_retrieval.py +1 -1
- mteb/tasks/retrieval/slk/slovak_sum_retrieval.py +1 -1
- mteb/tasks/retrieval/vie/vie_qu_ad_retrieval.py +1 -1
- mteb/tasks/sts/fao/faroese_sts.py +1 -1
- mteb/tasks/sts/fra/sick_fr_sts.py +1 -1
- mteb/tasks/sts/kor/klue_sts.py +1 -1
- mteb/tasks/sts/por/sick_br_sts.py +1 -1
- mteb/tasks/sts/rus/ru_para_phraser_sts.py +1 -1
- mteb/tasks/zeroshot_classification/eng/sci_mmir.py +1 -1
- mteb/types/_encoder_io.py +1 -1
- mteb/types/statistics.py +9 -2
- {mteb-2.7.2.dist-info → mteb-2.7.9.dist-info}/METADATA +1 -1
- {mteb-2.7.2.dist-info → mteb-2.7.9.dist-info}/RECORD +486 -465
- {mteb-2.7.2.dist-info → mteb-2.7.9.dist-info}/WHEEL +1 -1
- {mteb-2.7.2.dist-info → mteb-2.7.9.dist-info}/entry_points.txt +0 -0
- {mteb-2.7.2.dist-info → mteb-2.7.9.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.7.2.dist-info → mteb-2.7.9.dist-info}/top_level.txt +0 -0
|
@@ -1,15 +1,21 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
import logging
|
|
2
|
-
from typing import Any
|
|
4
|
+
from typing import TYPE_CHECKING, Any
|
|
3
5
|
|
|
4
6
|
import torch
|
|
5
|
-
from torch.utils.data import DataLoader
|
|
6
7
|
|
|
7
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
8
8
|
from mteb.models.model_meta import ModelMeta
|
|
9
|
-
from mteb.types import Array, BatchedInput, PromptType
|
|
10
9
|
|
|
11
10
|
from .rerankers_custom import RerankerWrapper
|
|
12
11
|
|
|
12
|
+
if TYPE_CHECKING:
|
|
13
|
+
from torch.utils.data import DataLoader
|
|
14
|
+
|
|
15
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
16
|
+
from mteb.types import Array, BatchedInput, PromptType
|
|
17
|
+
|
|
18
|
+
|
|
13
19
|
logger = logging.getLogger(__name__)
|
|
14
20
|
|
|
15
21
|
|
|
@@ -321,6 +327,7 @@ monot5_small = ModelMeta(
|
|
|
321
327
|
revision="77f8e3f7b1eb1afe353aa21a7c3a2fc8feca702e",
|
|
322
328
|
release_date="2022-03-28",
|
|
323
329
|
n_parameters=None,
|
|
330
|
+
n_embedding_parameters=16_449_536,
|
|
324
331
|
memory_usage_mb=None,
|
|
325
332
|
max_tokens=None,
|
|
326
333
|
embed_dim=None,
|
|
@@ -363,6 +370,7 @@ monot5_base = ModelMeta(
|
|
|
363
370
|
url={https://arxiv.org/abs/2206.02873},
|
|
364
371
|
}""",
|
|
365
372
|
n_parameters=None,
|
|
373
|
+
n_embedding_parameters=24_674_304,
|
|
366
374
|
memory_usage_mb=None,
|
|
367
375
|
max_tokens=None,
|
|
368
376
|
embed_dim=None,
|
|
@@ -387,6 +395,7 @@ monot5_large = ModelMeta(
|
|
|
387
395
|
revision="48cfad1d8dd587670393f27ee8ec41fde63e3d98",
|
|
388
396
|
release_date="2022-03-28",
|
|
389
397
|
n_parameters=None,
|
|
398
|
+
n_embedding_parameters=32_899_072,
|
|
390
399
|
memory_usage_mb=None,
|
|
391
400
|
max_tokens=None,
|
|
392
401
|
embed_dim=None,
|
|
@@ -420,6 +429,7 @@ monot5_3b = ModelMeta(
|
|
|
420
429
|
revision="bc0c419a438c81f592f878ce32430a1823f5db6c",
|
|
421
430
|
release_date="2022-03-28",
|
|
422
431
|
n_parameters=None,
|
|
432
|
+
n_embedding_parameters=32_899_072,
|
|
423
433
|
memory_usage_mb=None,
|
|
424
434
|
max_tokens=None,
|
|
425
435
|
embed_dim=None,
|
|
@@ -476,6 +486,7 @@ flant5_base = ModelMeta(
|
|
|
476
486
|
# "qed": ["train"],
|
|
477
487
|
),
|
|
478
488
|
n_parameters=None,
|
|
489
|
+
n_embedding_parameters=24_674_304,
|
|
479
490
|
memory_usage_mb=944,
|
|
480
491
|
max_tokens=None,
|
|
481
492
|
embed_dim=None,
|
|
@@ -522,6 +533,7 @@ flant5_large = ModelMeta(
|
|
|
522
533
|
# "qed": ["train"],
|
|
523
534
|
),
|
|
524
535
|
n_parameters=None,
|
|
536
|
+
n_embedding_parameters=32_899_072,
|
|
525
537
|
memory_usage_mb=2987,
|
|
526
538
|
max_tokens=None,
|
|
527
539
|
embed_dim=None,
|
|
@@ -568,6 +580,7 @@ flant5_xl = ModelMeta(
|
|
|
568
580
|
# "qed": ["train"],
|
|
569
581
|
),
|
|
570
582
|
n_parameters=None,
|
|
583
|
+
n_embedding_parameters=65_798_144,
|
|
571
584
|
memory_usage_mb=10871,
|
|
572
585
|
max_tokens=None,
|
|
573
586
|
embed_dim=None,
|
|
@@ -614,6 +627,7 @@ flant5_xxl = ModelMeta(
|
|
|
614
627
|
# "qed": ["train"],
|
|
615
628
|
),
|
|
616
629
|
n_parameters=None,
|
|
630
|
+
n_embedding_parameters=131_596_288,
|
|
617
631
|
memory_usage_mb=42980,
|
|
618
632
|
max_tokens=None,
|
|
619
633
|
embed_dim=None,
|
|
@@ -638,6 +652,7 @@ llama2_7b = ModelMeta(
|
|
|
638
652
|
revision="01c7f73d771dfac7d292323805ebc428287df4f9",
|
|
639
653
|
release_date="2023-07-18",
|
|
640
654
|
n_parameters=None,
|
|
655
|
+
n_embedding_parameters=131_072_000,
|
|
641
656
|
memory_usage_mb=None,
|
|
642
657
|
max_tokens=None,
|
|
643
658
|
embed_dim=None,
|
|
@@ -680,6 +695,7 @@ llama2_7b_chat = ModelMeta(
|
|
|
680
695
|
url={https://arxiv.org/abs/2307.09288},
|
|
681
696
|
}""",
|
|
682
697
|
n_parameters=None,
|
|
698
|
+
n_embedding_parameters=131_072_000,
|
|
683
699
|
memory_usage_mb=None,
|
|
684
700
|
max_tokens=None,
|
|
685
701
|
embed_dim=None,
|
|
@@ -704,6 +720,7 @@ mistral_7b = ModelMeta(
|
|
|
704
720
|
revision="3ad372fc79158a2148299e3318516c786aeded6c",
|
|
705
721
|
release_date="2023-12-11",
|
|
706
722
|
n_parameters=None,
|
|
723
|
+
n_embedding_parameters=None,
|
|
707
724
|
memory_usage_mb=None,
|
|
708
725
|
max_tokens=None,
|
|
709
726
|
embed_dim=None,
|
|
@@ -740,6 +757,7 @@ followir_7b = ModelMeta(
|
|
|
740
757
|
# "jhu-clsp/FollowIR-train"
|
|
741
758
|
),
|
|
742
759
|
n_parameters=None,
|
|
760
|
+
n_embedding_parameters=None,
|
|
743
761
|
memory_usage_mb=13813,
|
|
744
762
|
max_tokens=None,
|
|
745
763
|
embed_dim=None,
|
|
@@ -890,6 +908,7 @@ mt5_base_mmarco_v2 = ModelMeta(
|
|
|
890
908
|
""",
|
|
891
909
|
training_datasets={"MSMARCO"},
|
|
892
910
|
n_parameters=None,
|
|
911
|
+
n_embedding_parameters=192_086_016,
|
|
893
912
|
memory_usage_mb=None,
|
|
894
913
|
max_tokens=None,
|
|
895
914
|
embed_dim=None,
|
|
@@ -913,6 +932,7 @@ mt5_13b_mmarco_100k = ModelMeta(
|
|
|
913
932
|
revision="e1a4317e102a525ea9e16745ad21394a4f1bffbc",
|
|
914
933
|
release_date="2022-11-04",
|
|
915
934
|
n_parameters=None,
|
|
935
|
+
n_embedding_parameters=1_024_458_752,
|
|
916
936
|
memory_usage_mb=None,
|
|
917
937
|
max_tokens=None,
|
|
918
938
|
embed_dim=None,
|
|
@@ -244,6 +244,7 @@ rubert_tiny = ModelMeta(
|
|
|
244
244
|
revision="5441c5ea8026d4f6d7505ec004845409f1259fb1",
|
|
245
245
|
release_date="2021-05-24",
|
|
246
246
|
n_parameters=11_900_000,
|
|
247
|
+
n_embedding_parameters=9_223_968,
|
|
247
248
|
memory_usage_mb=45,
|
|
248
249
|
embed_dim=312,
|
|
249
250
|
license="mit",
|
|
@@ -270,6 +271,7 @@ rubert_tiny2 = ModelMeta(
|
|
|
270
271
|
revision="dad72b8f77c5eef6995dd3e4691b758ba56b90c3",
|
|
271
272
|
release_date="2021-10-28",
|
|
272
273
|
n_parameters=29_400_000,
|
|
274
|
+
n_embedding_parameters=26_154_336,
|
|
273
275
|
memory_usage_mb=112,
|
|
274
276
|
embed_dim=312,
|
|
275
277
|
license="mit",
|
|
@@ -297,6 +299,7 @@ sbert_large_nlu_ru = ModelMeta(
|
|
|
297
299
|
revision="af977d5dfa46a3635e29bf0ef383f2df2a08d47a",
|
|
298
300
|
release_date="2020-11-20",
|
|
299
301
|
n_parameters=427_000_000,
|
|
302
|
+
n_embedding_parameters=123_021_312,
|
|
300
303
|
memory_usage_mb=1629,
|
|
301
304
|
embed_dim=1024,
|
|
302
305
|
license="mit",
|
|
@@ -323,6 +326,7 @@ sbert_large_mt_nlu_ru = ModelMeta(
|
|
|
323
326
|
revision="05300876c2b83f46d3ddd422a7f17e45cf633bb0",
|
|
324
327
|
release_date="2021-05-18",
|
|
325
328
|
n_parameters=427_000_000,
|
|
329
|
+
n_embedding_parameters=123_021_312,
|
|
326
330
|
memory_usage_mb=1629,
|
|
327
331
|
embed_dim=1024,
|
|
328
332
|
license="not specified",
|
|
@@ -351,6 +355,7 @@ user_base_ru = ModelMeta(
|
|
|
351
355
|
revision="436a489a2087d61aa670b3496a9915f84e46c861",
|
|
352
356
|
release_date="2024-06-10",
|
|
353
357
|
n_parameters=427_000_000,
|
|
358
|
+
n_embedding_parameters=38_603_520,
|
|
354
359
|
memory_usage_mb=473,
|
|
355
360
|
embed_dim=768,
|
|
356
361
|
license="apache-2.0",
|
|
@@ -412,6 +417,7 @@ user_bge_m3 = ModelMeta(
|
|
|
412
417
|
revision="0cc6cfe48e260fb0474c753087a69369e88709ae",
|
|
413
418
|
release_date="2024-07-05",
|
|
414
419
|
n_parameters=359_026_688,
|
|
420
|
+
n_embedding_parameters=47_273_984,
|
|
415
421
|
memory_usage_mb=1370,
|
|
416
422
|
embed_dim=1024,
|
|
417
423
|
license="apache-2.0",
|
|
@@ -463,6 +469,7 @@ deberta_v1_ru = ModelMeta(
|
|
|
463
469
|
revision="bdd30b0e19757e6940c92c7aff19e8fc0a60dff4",
|
|
464
470
|
release_date="2023-02-07",
|
|
465
471
|
n_parameters=124_000_000,
|
|
472
|
+
n_embedding_parameters=38_603_520,
|
|
466
473
|
memory_usage_mb=473,
|
|
467
474
|
embed_dim=768,
|
|
468
475
|
license="apache-2.0",
|
|
@@ -494,6 +501,7 @@ rubert_base_cased = ModelMeta(
|
|
|
494
501
|
revision="4036cab694767a299f2b9e6492909664d9414229",
|
|
495
502
|
release_date="2020-03-04",
|
|
496
503
|
n_parameters=1280_000_000,
|
|
504
|
+
n_embedding_parameters=91_812_096,
|
|
497
505
|
memory_usage_mb=4883,
|
|
498
506
|
embed_dim=768,
|
|
499
507
|
license="not specified",
|
|
@@ -530,6 +538,7 @@ distilrubert_small_cased_conversational = ModelMeta(
|
|
|
530
538
|
revision="e348066b4a7279b97138038299bddc6580a9169a",
|
|
531
539
|
release_date="2022-06-28",
|
|
532
540
|
n_parameters=107_000_000,
|
|
541
|
+
n_embedding_parameters=91_812_096,
|
|
533
542
|
memory_usage_mb=408,
|
|
534
543
|
embed_dim=768,
|
|
535
544
|
license="not specified",
|
|
@@ -565,6 +574,7 @@ rubert_base_cased_sentence = ModelMeta(
|
|
|
565
574
|
revision="78b5122d6365337dd4114281b0d08cd1edbb3bc8",
|
|
566
575
|
release_date="2020-03-04",
|
|
567
576
|
n_parameters=107_000_000,
|
|
577
|
+
n_embedding_parameters=91_812_096,
|
|
568
578
|
memory_usage_mb=408,
|
|
569
579
|
embed_dim=768,
|
|
570
580
|
license="not specified",
|
|
@@ -590,6 +600,7 @@ labse_en_ru = ModelMeta(
|
|
|
590
600
|
revision="cf0714e606d4af551e14ad69a7929cd6b0da7f7e",
|
|
591
601
|
release_date="2021-06-10",
|
|
592
602
|
n_parameters=129_000_000,
|
|
603
|
+
n_embedding_parameters=42_303_744,
|
|
593
604
|
memory_usage_mb=492,
|
|
594
605
|
embed_dim=768,
|
|
595
606
|
license="not specified",
|
|
@@ -618,6 +629,7 @@ rubert_tiny_turbo = ModelMeta(
|
|
|
618
629
|
revision="8ce0cf757446ce9bb2d5f5a4ac8103c7a1049054",
|
|
619
630
|
release_date="2024-06-21",
|
|
620
631
|
n_parameters=29_200_000,
|
|
632
|
+
n_embedding_parameters=26_154_336,
|
|
621
633
|
memory_usage_mb=111,
|
|
622
634
|
embed_dim=312,
|
|
623
635
|
license="mit",
|
|
@@ -641,6 +653,7 @@ rubert_mini_frida = ModelMeta(
|
|
|
641
653
|
revision="19b279b78afd945b5ccae78f63e284909814adc2",
|
|
642
654
|
release_date="2025-03-02",
|
|
643
655
|
n_parameters=32_300_000,
|
|
656
|
+
n_embedding_parameters=26_154_336,
|
|
644
657
|
memory_usage_mb=123,
|
|
645
658
|
embed_dim=312,
|
|
646
659
|
license="mit",
|
|
@@ -669,6 +682,7 @@ labse_ru_turbo = ModelMeta(
|
|
|
669
682
|
revision="1940b046c6b5e125df11722b899130329d0a46da",
|
|
670
683
|
release_date="2024-06-27",
|
|
671
684
|
n_parameters=129_000_000,
|
|
685
|
+
n_embedding_parameters=42_303_744,
|
|
672
686
|
memory_usage_mb=490,
|
|
673
687
|
embed_dim=768,
|
|
674
688
|
license="mit",
|
|
@@ -720,6 +734,7 @@ rosberta_ru_en = ModelMeta(
|
|
|
720
734
|
use_instructions=True,
|
|
721
735
|
reference="https://huggingface.co/ai-forever/ru-en-RoSBERTa",
|
|
722
736
|
n_parameters=404_000_000,
|
|
737
|
+
n_embedding_parameters=100_869_120,
|
|
723
738
|
memory_usage_mb=1540,
|
|
724
739
|
max_tokens=512,
|
|
725
740
|
embed_dim=1024,
|
|
@@ -886,6 +901,7 @@ frida = ModelMeta(
|
|
|
886
901
|
use_instructions=True,
|
|
887
902
|
reference="https://huggingface.co/ai-forever/FRIDA",
|
|
888
903
|
n_parameters=823_000_000,
|
|
904
|
+
n_embedding_parameters=143_847_936,
|
|
889
905
|
memory_usage_mb=3141,
|
|
890
906
|
max_tokens=512,
|
|
891
907
|
embed_dim=1536,
|
|
@@ -918,6 +934,7 @@ giga_embeddings = ModelMeta(
|
|
|
918
934
|
revision="0ad5b29bfecd806cecc9d66b927d828a736594dc",
|
|
919
935
|
release_date="2025-09-23",
|
|
920
936
|
n_parameters=3_227_176_961,
|
|
937
|
+
n_embedding_parameters=None,
|
|
921
938
|
memory_usage_mb=12865,
|
|
922
939
|
embed_dim=2048,
|
|
923
940
|
license="mit",
|
|
@@ -950,6 +967,7 @@ berta = ModelMeta(
|
|
|
950
967
|
revision="914c8c8aed14042ed890fc2c662d5e9e66b2faa7",
|
|
951
968
|
release_date="2025-03-10",
|
|
952
969
|
n_parameters=128_000_000,
|
|
970
|
+
n_embedding_parameters=42_303_744,
|
|
953
971
|
memory_usage_mb=489,
|
|
954
972
|
embed_dim=768,
|
|
955
973
|
license="mit",
|
|
@@ -1025,6 +1043,7 @@ user2_small = ModelMeta(
|
|
|
1025
1043
|
use_instructions=True,
|
|
1026
1044
|
reference="https://huggingface.co/collections/deepvk/user2-6802650d7210f222ec60e05f",
|
|
1027
1045
|
n_parameters=34_400_000,
|
|
1046
|
+
n_embedding_parameters=None,
|
|
1028
1047
|
memory_usage_mb=131,
|
|
1029
1048
|
max_tokens=8192,
|
|
1030
1049
|
embed_dim=384,
|
|
@@ -1058,6 +1077,7 @@ user2_base = ModelMeta(
|
|
|
1058
1077
|
use_instructions=True,
|
|
1059
1078
|
reference="https://huggingface.co/collections/deepvk/user2-6802650d7210f222ec60e05f",
|
|
1060
1079
|
n_parameters=149_000_000,
|
|
1080
|
+
n_embedding_parameters=None,
|
|
1061
1081
|
memory_usage_mb=568,
|
|
1062
1082
|
max_tokens=8192,
|
|
1063
1083
|
embed_dim=768,
|
|
@@ -38,6 +38,7 @@ cl_nagoya_ruri_v3_30m = ModelMeta(
|
|
|
38
38
|
revision="24899e5de370b56d179604a007c0d727bf144504",
|
|
39
39
|
release_date="2025-04-07",
|
|
40
40
|
n_parameters=36_705_536,
|
|
41
|
+
n_embedding_parameters=None,
|
|
41
42
|
memory_usage_mb=140,
|
|
42
43
|
embed_dim=256,
|
|
43
44
|
license="apache-2.0",
|
|
@@ -69,6 +70,7 @@ cl_nagoya_ruri_v3_70m = ModelMeta(
|
|
|
69
70
|
revision="07a8b0aba47d29d2ca21f89b915c1efe2c23d1cc",
|
|
70
71
|
release_date="2025-04-09",
|
|
71
72
|
n_parameters=36_705_536,
|
|
73
|
+
n_embedding_parameters=None,
|
|
72
74
|
memory_usage_mb=140,
|
|
73
75
|
embed_dim=256,
|
|
74
76
|
license="apache-2.0",
|
|
@@ -98,6 +100,7 @@ cl_nagoya_ruri_v3_130m = ModelMeta(
|
|
|
98
100
|
revision="e3114c6ee10dbab8b4b235fbc6dcf9dd4d5ac1a6",
|
|
99
101
|
release_date="2025-04-09",
|
|
100
102
|
n_parameters=132_140_544,
|
|
103
|
+
n_embedding_parameters=None,
|
|
101
104
|
memory_usage_mb=504,
|
|
102
105
|
embed_dim=512,
|
|
103
106
|
license="apache-2.0",
|
|
@@ -127,6 +130,7 @@ cl_nagoya_ruri_v3_310m = ModelMeta(
|
|
|
127
130
|
revision="18b60fb8c2b9df296fb4212bb7d23ef94e579cd3",
|
|
128
131
|
release_date="2025-04-09",
|
|
129
132
|
n_parameters=314_611_968,
|
|
133
|
+
n_embedding_parameters=None,
|
|
130
134
|
memory_usage_mb=1200,
|
|
131
135
|
embed_dim=768,
|
|
132
136
|
license="apache-2.0",
|
|
@@ -157,6 +161,7 @@ cl_nagoya_ruri_small_v2 = ModelMeta(
|
|
|
157
161
|
revision="db18646e673b713cd0518a5bb0fefdce21e77cd9",
|
|
158
162
|
release_date="2024-12-05",
|
|
159
163
|
n_parameters=68_087_808,
|
|
164
|
+
n_embedding_parameters=25_165_824,
|
|
160
165
|
memory_usage_mb=260,
|
|
161
166
|
embed_dim=768,
|
|
162
167
|
license="apache-2.0",
|
|
@@ -186,6 +191,7 @@ cl_nagoya_ruri_base_v2 = ModelMeta(
|
|
|
186
191
|
revision="8ce03882903668a01c83ca3b8111ac025a3bc734",
|
|
187
192
|
release_date="2024-12-05",
|
|
188
193
|
n_parameters=111_207_168,
|
|
194
|
+
n_embedding_parameters=25_165_824,
|
|
189
195
|
memory_usage_mb=424,
|
|
190
196
|
embed_dim=768,
|
|
191
197
|
license="apache-2.0",
|
|
@@ -215,6 +221,7 @@ cl_nagoya_ruri_large_v2 = ModelMeta(
|
|
|
215
221
|
revision="42898ef34a5574977380ebf0dfd28cbfbd36438b",
|
|
216
222
|
release_date="2024-12-06",
|
|
217
223
|
n_parameters=337_441_792,
|
|
224
|
+
n_embedding_parameters=33_554_432,
|
|
218
225
|
memory_usage_mb=1287,
|
|
219
226
|
embed_dim=1024,
|
|
220
227
|
license="apache-2.0",
|
|
@@ -245,6 +252,7 @@ cl_nagoya_ruri_small_v1 = ModelMeta(
|
|
|
245
252
|
revision="bc56ce90cd7a979f6eb199fc52dfe700bfd94bc3",
|
|
246
253
|
release_date="2024-08-28",
|
|
247
254
|
n_parameters=68_087_808,
|
|
255
|
+
n_embedding_parameters=25_165_824,
|
|
248
256
|
memory_usage_mb=130,
|
|
249
257
|
embed_dim=768,
|
|
250
258
|
license="apache-2.0",
|
|
@@ -274,6 +282,7 @@ cl_nagoya_ruri_base_v1 = ModelMeta(
|
|
|
274
282
|
revision="1ae40b8b6c78518a499425086bab8fc16c2e4b0e",
|
|
275
283
|
release_date="2024-08-28",
|
|
276
284
|
n_parameters=111_207_168,
|
|
285
|
+
n_embedding_parameters=25_165_824,
|
|
277
286
|
memory_usage_mb=212,
|
|
278
287
|
embed_dim=768,
|
|
279
288
|
license="apache-2.0",
|
|
@@ -304,6 +313,7 @@ cl_nagoya_ruri_large_v1 = ModelMeta(
|
|
|
304
313
|
revision="a011c39b13e8bc137ee13c6bc82191ece46c414c",
|
|
305
314
|
release_date="2024-08-28",
|
|
306
315
|
n_parameters=337_441_792,
|
|
316
|
+
n_embedding_parameters=33_554_432,
|
|
307
317
|
memory_usage_mb=644,
|
|
308
318
|
embed_dim=1024,
|
|
309
319
|
license="apache-2.0",
|
|
@@ -1,12 +1,18 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
from typing import TYPE_CHECKING
|
|
4
|
+
|
|
1
5
|
from mteb.models.instruct_wrapper import (
|
|
2
6
|
InstructSentenceTransformerModel,
|
|
3
7
|
instruct_wrapper,
|
|
4
8
|
)
|
|
5
9
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
6
|
-
from mteb.types import PromptType
|
|
7
10
|
|
|
8
11
|
from .e5_instruct import E5_MISTRAL_TRAINING_DATA
|
|
9
12
|
|
|
13
|
+
if TYPE_CHECKING:
|
|
14
|
+
from mteb.types import PromptType
|
|
15
|
+
|
|
10
16
|
|
|
11
17
|
def instruction_template(
|
|
12
18
|
instruction: str, prompt_type: PromptType | None = None
|
|
@@ -52,6 +58,7 @@ SFR_Embedding_2_R = ModelMeta(
|
|
|
52
58
|
revision="91762139d94ed4371a9fa31db5551272e0b83818",
|
|
53
59
|
release_date="2024-06-14", # initial commit of hf model.
|
|
54
60
|
n_parameters=7_110_000_000,
|
|
61
|
+
n_embedding_parameters=None,
|
|
55
62
|
memory_usage_mb=13563,
|
|
56
63
|
embed_dim=4096,
|
|
57
64
|
license="cc-by-nc-4.0",
|
|
@@ -90,6 +97,7 @@ SFR_Embedding_Code_2B_R = ModelMeta(
|
|
|
90
97
|
revision="c73d8631a005876ed5abde34db514b1fb6566973",
|
|
91
98
|
release_date="2025-01-17", # initial commit of hf model.
|
|
92
99
|
n_parameters=2_610_000_000,
|
|
100
|
+
n_embedding_parameters=None,
|
|
93
101
|
memory_usage_mb=4986,
|
|
94
102
|
embed_dim=2304,
|
|
95
103
|
license="cc-by-nc-4.0",
|
|
@@ -128,6 +136,7 @@ SFR_Embedding_Mistral = ModelMeta(
|
|
|
128
136
|
revision="938c560d1c236aa563b2dbdf084f28ab28bccb11",
|
|
129
137
|
release_date="2024-01-24", # initial commit of hf model.
|
|
130
138
|
n_parameters=7_110_000_000,
|
|
139
|
+
n_embedding_parameters=None,
|
|
131
140
|
memory_usage_mb=13563,
|
|
132
141
|
embed_dim=4096,
|
|
133
142
|
license="cc-by-nc-4.0",
|
|
@@ -124,6 +124,7 @@ sbintuitions_sarashina_embedding_v2_1b = ModelMeta(
|
|
|
124
124
|
revision="1f3408afaa7b617e3445d891310a9c26dd0c68a5",
|
|
125
125
|
release_date="2025-07-30",
|
|
126
126
|
n_parameters=1_224_038_144,
|
|
127
|
+
n_embedding_parameters=183_500_800,
|
|
127
128
|
memory_usage_mb=4669,
|
|
128
129
|
embed_dim=1792,
|
|
129
130
|
license="https://huggingface.co/sbintuitions/sarashina-embedding-v2-1b/blob/main/LICENSE",
|
|
@@ -150,6 +151,7 @@ sbintuitions_sarashina_embedding_v1_1b = ModelMeta(
|
|
|
150
151
|
revision="d060fcd8984075071e7fad81baff035cbb3b6c7e",
|
|
151
152
|
release_date="2024-11-22",
|
|
152
153
|
n_parameters=1_224_038_144,
|
|
154
|
+
n_embedding_parameters=183_500_800,
|
|
153
155
|
memory_usage_mb=4669,
|
|
154
156
|
embed_dim=1792,
|
|
155
157
|
license="https://huggingface.co/sbintuitions/sarashina-embedding-v1-1b/blob/main/LICENSE",
|
|
@@ -13,16 +13,18 @@ import torch
|
|
|
13
13
|
from torch.utils.data import DataLoader
|
|
14
14
|
|
|
15
15
|
from mteb._requires_package import requires_package
|
|
16
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
17
16
|
from mteb.models.abs_encoder import AbsEncoder
|
|
18
17
|
from mteb.models.model_implementations.bge_models import bge_chinese_training_data
|
|
19
18
|
from mteb.models.model_implementations.nvidia_models import nvidia_training_datasets
|
|
20
19
|
from mteb.models.model_meta import ModelMeta
|
|
21
|
-
from mteb.types import
|
|
20
|
+
from mteb.types import PromptType
|
|
22
21
|
|
|
23
22
|
if TYPE_CHECKING:
|
|
24
23
|
from PIL import Image
|
|
25
24
|
|
|
25
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
26
|
+
from mteb.types import Array, BatchedInput
|
|
27
|
+
|
|
26
28
|
|
|
27
29
|
logger = logging.getLogger(__name__)
|
|
28
30
|
|
|
@@ -429,6 +431,7 @@ seed_embedding = ModelMeta(
|
|
|
429
431
|
embed_dim=2048,
|
|
430
432
|
open_weights=False,
|
|
431
433
|
n_parameters=None,
|
|
434
|
+
n_embedding_parameters=None,
|
|
432
435
|
memory_usage_mb=None,
|
|
433
436
|
license=None,
|
|
434
437
|
reference="https://seed1-6-embedding.github.io/",
|
|
@@ -15,15 +15,18 @@ from torch.utils.data import DataLoader
|
|
|
15
15
|
from tqdm import tqdm
|
|
16
16
|
|
|
17
17
|
from mteb._requires_package import requires_package
|
|
18
|
-
from mteb.abstasks.task_metadata import TaskMetadata
|
|
19
18
|
from mteb.models.abs_encoder import AbsEncoder
|
|
20
19
|
from mteb.models.model_implementations.bge_models import bge_chinese_training_data
|
|
21
20
|
from mteb.models.model_implementations.nvidia_models import nvidia_training_datasets
|
|
22
21
|
from mteb.models.model_meta import ModelMeta
|
|
23
|
-
from mteb.types import
|
|
22
|
+
from mteb.types import PromptType
|
|
24
23
|
|
|
25
24
|
if TYPE_CHECKING:
|
|
26
25
|
from PIL import Image
|
|
26
|
+
from torch.utils.data import DataLoader
|
|
27
|
+
|
|
28
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
29
|
+
from mteb.types import Array, BatchedInput
|
|
27
30
|
|
|
28
31
|
|
|
29
32
|
logger = logging.getLogger(__name__)
|
|
@@ -613,6 +616,7 @@ seed_embedding = ModelMeta(
|
|
|
613
616
|
embed_dim=2048,
|
|
614
617
|
open_weights=False,
|
|
615
618
|
n_parameters=None,
|
|
619
|
+
n_embedding_parameters=None,
|
|
616
620
|
memory_usage_mb=None,
|
|
617
621
|
license=None,
|
|
618
622
|
reference="https://console.volcengine.com/ark/region:ark+cn-beijing/model/detail?Id=doubao-embedding-vision",
|
|
@@ -9,7 +9,7 @@ from tqdm.auto import tqdm
|
|
|
9
9
|
from mteb._requires_package import requires_package
|
|
10
10
|
from mteb.models.abs_encoder import AbsEncoder
|
|
11
11
|
from mteb.models.model_meta import ModelMeta
|
|
12
|
-
from mteb.
|
|
12
|
+
from mteb.types import PromptType
|
|
13
13
|
|
|
14
14
|
from .bge_models import bge_chinese_training_data
|
|
15
15
|
from .nvidia_models import nvidia_training_datasets
|
|
@@ -253,6 +253,7 @@ seed_embedding = ModelMeta(
|
|
|
253
253
|
embed_dim=2048,
|
|
254
254
|
open_weights=False,
|
|
255
255
|
n_parameters=None,
|
|
256
|
+
n_embedding_parameters=None,
|
|
256
257
|
memory_usage_mb=None,
|
|
257
258
|
license=None,
|
|
258
259
|
reference="https://seed1-5-embedding.github.io/",
|
|
@@ -121,6 +121,7 @@ all_minilm_l6_v2 = ModelMeta(
|
|
|
121
121
|
revision="8b3219a92973c328a8e22fadcfa821b5dc75636a",
|
|
122
122
|
release_date="2021-08-30",
|
|
123
123
|
n_parameters=22_700_000,
|
|
124
|
+
n_embedding_parameters=11_720_448,
|
|
124
125
|
memory_usage_mb=87,
|
|
125
126
|
embed_dim=384,
|
|
126
127
|
license="apache-2.0",
|
|
@@ -152,6 +153,7 @@ all_minilm_l12_v2 = ModelMeta(
|
|
|
152
153
|
revision="364dd28d28dcd3359b537f3cf1f5348ba679da62",
|
|
153
154
|
release_date="2021-08-30",
|
|
154
155
|
n_parameters=33_400_000,
|
|
156
|
+
n_embedding_parameters=11_720_448,
|
|
155
157
|
memory_usage_mb=127,
|
|
156
158
|
embed_dim=384,
|
|
157
159
|
license="apache-2.0",
|
|
@@ -183,6 +185,7 @@ paraphrase_multilingual_minilm_l12_v2 = ModelMeta(
|
|
|
183
185
|
revision="bf3bf13ab40c3157080a7ab344c831b9ad18b5eb",
|
|
184
186
|
release_date="2019-11-01", # release date of paper
|
|
185
187
|
n_parameters=118_000_000,
|
|
188
|
+
n_embedding_parameters=96_014_208,
|
|
186
189
|
memory_usage_mb=449,
|
|
187
190
|
embed_dim=768,
|
|
188
191
|
license="apache-2.0",
|
|
@@ -214,6 +217,7 @@ paraphrase_multilingual_mpnet_base_v2 = ModelMeta(
|
|
|
214
217
|
revision="79f2382ceacceacdf38563d7c5d16b9ff8d725d6",
|
|
215
218
|
release_date="2019-11-01", # release date of paper
|
|
216
219
|
n_parameters=278_000_000,
|
|
220
|
+
n_embedding_parameters=192_001_536,
|
|
217
221
|
memory_usage_mb=1061,
|
|
218
222
|
embed_dim=768,
|
|
219
223
|
license="apache-2.0",
|
|
@@ -256,6 +260,7 @@ labse = ModelMeta(
|
|
|
256
260
|
revision="e34fab64a3011d2176c99545a93d5cbddc9a91b7",
|
|
257
261
|
release_date="2019-11-01", # release date of paper
|
|
258
262
|
n_parameters=471_000_000,
|
|
263
|
+
n_embedding_parameters=384_885_504,
|
|
259
264
|
memory_usage_mb=1796,
|
|
260
265
|
embed_dim=768,
|
|
261
266
|
license="apache-2.0",
|
|
@@ -294,6 +299,7 @@ multi_qa_minilm_l6_cos_v1 = ModelMeta(
|
|
|
294
299
|
revision="b207367332321f8e44f96e224ef15bc607f4dbf0",
|
|
295
300
|
release_date="2021-08-30",
|
|
296
301
|
n_parameters=22_700_000,
|
|
302
|
+
n_embedding_parameters=11_720_448,
|
|
297
303
|
memory_usage_mb=87,
|
|
298
304
|
embed_dim=384,
|
|
299
305
|
license="apache-2.0",
|
|
@@ -325,6 +331,7 @@ all_mpnet_base_v2 = ModelMeta(
|
|
|
325
331
|
revision="9a3225965996d404b775526de6dbfe85d3368642",
|
|
326
332
|
release_date="2021-08-30",
|
|
327
333
|
n_parameters=109_000_000,
|
|
334
|
+
n_embedding_parameters=23_444_736,
|
|
328
335
|
memory_usage_mb=418,
|
|
329
336
|
embed_dim=768,
|
|
330
337
|
license="apache-2.0",
|
|
@@ -435,6 +442,7 @@ static_similarity_mrl_multilingual_v1 = ModelMeta(
|
|
|
435
442
|
revision="7264ea07c5365a11d7e6d87dbb6195889a13054f",
|
|
436
443
|
release_date="2025-01-15",
|
|
437
444
|
n_parameters=108_420_096,
|
|
445
|
+
n_embedding_parameters=None,
|
|
438
446
|
memory_usage_mb=413,
|
|
439
447
|
embed_dim=1024,
|
|
440
448
|
license="apache-2.0",
|
|
@@ -468,6 +476,7 @@ contriever = ModelMeta(
|
|
|
468
476
|
revision="abe8c1493371369031bcb1e02acb754cf4e162fa",
|
|
469
477
|
release_date="2022-06-25", # release date of model on HF
|
|
470
478
|
n_parameters=150_000_000,
|
|
479
|
+
n_embedding_parameters=23_440_896,
|
|
471
480
|
memory_usage_mb=572,
|
|
472
481
|
embed_dim=768,
|
|
473
482
|
license=None,
|
|
@@ -498,6 +507,7 @@ microllama_text_embedding = ModelMeta(
|
|
|
498
507
|
revision="98f70f14cdf12d7ea217ed2fd4e808b0195f1e7e",
|
|
499
508
|
release_date="2024-11-10",
|
|
500
509
|
n_parameters=272_000_000,
|
|
510
|
+
n_embedding_parameters=32_769_024,
|
|
501
511
|
memory_usage_mb=1037,
|
|
502
512
|
embed_dim=1024,
|
|
503
513
|
license="apache-2.0",
|
|
@@ -544,6 +554,7 @@ sentence_t5_base = ModelMeta(
|
|
|
544
554
|
revision="50c53e206f8b01c9621484a3c0aafce4e55efebf",
|
|
545
555
|
release_date="2022-02-09",
|
|
546
556
|
n_parameters=110_000_000,
|
|
557
|
+
n_embedding_parameters=24_674_304,
|
|
547
558
|
memory_usage_mb=209,
|
|
548
559
|
embed_dim=768,
|
|
549
560
|
license="apache-2.0",
|
|
@@ -567,6 +578,7 @@ sentence_t5_large = ModelMeta(
|
|
|
567
578
|
revision="1fc08ea477205aa54a3e5b13f0971ae16b86410a",
|
|
568
579
|
release_date="2022-02-09",
|
|
569
580
|
n_parameters=335_000_000,
|
|
581
|
+
n_embedding_parameters=32_899_072,
|
|
570
582
|
memory_usage_mb=639,
|
|
571
583
|
embed_dim=768,
|
|
572
584
|
license="apache-2.0",
|
|
@@ -590,6 +602,7 @@ sentence_t5_xl = ModelMeta(
|
|
|
590
602
|
revision="2965d31b368fb14117688e0bde77cbd720e91f53",
|
|
591
603
|
release_date="2024-03-27",
|
|
592
604
|
n_parameters=3_000_000_000,
|
|
605
|
+
n_embedding_parameters=32_899_072,
|
|
593
606
|
memory_usage_mb=2367,
|
|
594
607
|
embed_dim=768,
|
|
595
608
|
license="apache-2.0",
|
|
@@ -613,6 +626,7 @@ sentence_t5_xxl = ModelMeta(
|
|
|
613
626
|
revision="4d122282ba80e807e9e6eb8c358269e92796365d",
|
|
614
627
|
release_date="2024-03-27",
|
|
615
628
|
n_parameters=11_000_000_000,
|
|
629
|
+
n_embedding_parameters=None,
|
|
616
630
|
memory_usage_mb=9279,
|
|
617
631
|
embed_dim=768,
|
|
618
632
|
license="apache-2.0",
|
|
@@ -646,6 +660,7 @@ gtr_t5_large = ModelMeta(
|
|
|
646
660
|
revision="a2c8ac47f998531948d4cbe32a0b577a7037a5e3",
|
|
647
661
|
release_date="2022-02-09",
|
|
648
662
|
n_parameters=335_000_000,
|
|
663
|
+
n_embedding_parameters=32_899_072,
|
|
649
664
|
memory_usage_mb=639,
|
|
650
665
|
embed_dim=768,
|
|
651
666
|
license="apache-2.0",
|
|
@@ -681,6 +696,7 @@ gtr_t5_xl = ModelMeta(
|
|
|
681
696
|
revision="23a8d667a1ad2578af181ce762867003c498d1bf",
|
|
682
697
|
release_date="2022-02-09",
|
|
683
698
|
n_parameters=1_240_000_000,
|
|
699
|
+
n_embedding_parameters=32_899_072,
|
|
684
700
|
memory_usage_mb=2367,
|
|
685
701
|
embed_dim=768,
|
|
686
702
|
license="apache-2.0",
|
|
@@ -715,6 +731,7 @@ gtr_t5_xxl = ModelMeta(
|
|
|
715
731
|
revision="73f2a9156a3dcc2194dfdb2bf201cd7d17e17884",
|
|
716
732
|
release_date="2022-02-09",
|
|
717
733
|
n_parameters=4_860_000_000,
|
|
734
|
+
n_embedding_parameters=None,
|
|
718
735
|
memory_usage_mb=9279,
|
|
719
736
|
embed_dim=768,
|
|
720
737
|
license="apache-2.0",
|
|
@@ -750,6 +767,7 @@ gtr_t5_base = ModelMeta(
|
|
|
750
767
|
revision="7027e9594267928589816394bdd295273ddc0739",
|
|
751
768
|
release_date="2022-02-09",
|
|
752
769
|
n_parameters=110_000_000,
|
|
770
|
+
n_embedding_parameters=24_674_304,
|
|
753
771
|
memory_usage_mb=209,
|
|
754
772
|
embed_dim=768,
|
|
755
773
|
license="apache-2.0",
|