mteb 2.7.21__py3-none-any.whl → 2.7.22__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/abstasks/regression.py +0 -1
- mteb/tasks/clustering/deu/ten_k_gnad_clustering_p2p.py +9 -7
- mteb/tasks/clustering/deu/ten_k_gnad_clustering_s2s.py +13 -11
- mteb/tasks/clustering/fra/hal_clustering_s2s.py +1 -1
- mteb/tasks/clustering/multilingual/wiki_clustering_p2p.py +1 -1
- mteb/tasks/clustering/nob/vg_clustering.py +1 -1
- mteb/tasks/clustering/rom/romani_bible_clustering.py +1 -1
- mteb/tasks/pair_classification/eng/twitter_sem_eval2015_pc.py +1 -1
- mteb/tasks/pair_classification/eng/twitter_url_corpus_pc.py +1 -1
- mteb/tasks/pair_classification/multilingual/indic_xnli_pair_classification.py +1 -1
- mteb/tasks/pair_classification/pol/polish_pc.py +2 -2
- mteb/tasks/retrieval/eng/cqa_dupstack_android_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/cqa_dupstack_english_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/cqa_dupstack_gaming_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/cqa_dupstack_gis_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/cqa_dupstack_mathematica_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/cqa_dupstack_physics_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/cqa_dupstack_programmers_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/cqa_dupstack_stats_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/cqa_dupstack_tex_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/cqa_dupstack_unix_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/cqa_dupstack_webmasters_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/cqa_dupstack_wordpress_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/fever_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/fi_qa2018_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/msmarc_ov2_retrieval.py +1 -1
- mteb/tasks/retrieval/eng/msmarco_retrieval.py +2 -2
- mteb/tasks/retrieval/eng/nf_corpus_retrieval.py +6 -6
- mteb/tasks/retrieval/eng/nq_retrieval.py +8 -8
- mteb/tasks/retrieval/eng/quora_retrieval.py +1 -1
- mteb/tasks/retrieval/fas/beir_fa.py +43 -36
- mteb/tasks/retrieval/fas/fa_mteb_retrieval.py +12 -5
- mteb/tasks/retrieval/fra/alloprof_retrieval.py +1 -1
- mteb/tasks/retrieval/fra/syntec_retrieval.py +1 -1
- mteb/tasks/retrieval/pol/fi_qapl_retrieval.py +1 -1
- mteb/tasks/retrieval/pol/nqpl_retrieval.py +5 -5
- mteb/tasks/sts/eng/biosses_sts.py +1 -1
- mteb/tasks/sts/eng/humests_benchmark.py +1 -1
- mteb/tasks/sts/eng/sts_benchmark_sts.py +1 -1
- mteb/tasks/sts/fin/fin_para_sts.py +1 -1
- mteb/tasks/sts/kor/klue_sts.py +1 -1
- mteb/tasks/sts/ron/ron_sts.py +1 -1
- {mteb-2.7.21.dist-info → mteb-2.7.22.dist-info}/METADATA +1 -1
- {mteb-2.7.21.dist-info → mteb-2.7.22.dist-info}/RECORD +48 -48
- {mteb-2.7.21.dist-info → mteb-2.7.22.dist-info}/WHEEL +0 -0
- {mteb-2.7.21.dist-info → mteb-2.7.22.dist-info}/entry_points.txt +0 -0
- {mteb-2.7.21.dist-info → mteb-2.7.22.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.7.21.dist-info → mteb-2.7.22.dist-info}/top_level.txt +0 -0
mteb/abstasks/regression.py
CHANGED
|
@@ -93,7 +93,6 @@ class AbsTaskRegression(AbsTaskClassification):
|
|
|
93
93
|
n_samples: Number of samples to use for training the regression model. If the dataset has fewer samples than n_samples, all samples are used.
|
|
94
94
|
abstask_prompt: Prompt to use for the task for instruction model if not prompt is provided in TaskMetadata.prompt.
|
|
95
95
|
evaluator_model: The model to use for evaluation. Can be any sklearn compatible model. Default is `LinearRegression`.
|
|
96
|
-
|
|
97
96
|
"""
|
|
98
97
|
|
|
99
98
|
evaluator: type[SklearnEvaluator] = SklearnEvaluator
|
|
@@ -18,14 +18,17 @@ class TenKGnadClusteringP2P(AbsTaskClusteringLegacy):
|
|
|
18
18
|
eval_splits=["test"],
|
|
19
19
|
eval_langs=["deu-Latn"],
|
|
20
20
|
main_score="v_measure",
|
|
21
|
-
date=
|
|
21
|
+
date=(
|
|
22
|
+
"2000-01-01",
|
|
23
|
+
"2020-12-31",
|
|
24
|
+
), # since it is news it is guessed that it is from 2000 to 2020
|
|
22
25
|
domains=["Web", "Written"],
|
|
23
26
|
task_subtypes=[],
|
|
24
27
|
license="cc-by-nc-sa-4.0",
|
|
25
|
-
annotations_creators=
|
|
28
|
+
annotations_creators="derived",
|
|
26
29
|
dialect=[],
|
|
27
30
|
sample_creation="found",
|
|
28
|
-
bibtex_citation=
|
|
31
|
+
bibtex_citation="", # none found
|
|
29
32
|
superseded_by="TenKGnadClusteringP2P.v2",
|
|
30
33
|
)
|
|
31
34
|
|
|
@@ -36,7 +39,7 @@ class TenKGnadClusteringP2PFast(AbsTaskClustering):
|
|
|
36
39
|
|
|
37
40
|
metadata = TaskMetadata(
|
|
38
41
|
name="TenKGnadClusteringP2P.v2",
|
|
39
|
-
description="Clustering of news article titles+subheadings+texts. Clustering of 10 splits on the news article category.",
|
|
42
|
+
description="Clustering of news article titles+subheadings+texts. Clustering of 10 splits on the news article category. v2 uses a faster evaluation method used in the MMTEB paper, which allow for notably faster evaluation.",
|
|
40
43
|
reference="https://tblock.github.io/10kGNAD/",
|
|
41
44
|
dataset={
|
|
42
45
|
"path": "slvnwhrl/tenkgnad-clustering-p2p",
|
|
@@ -53,13 +56,12 @@ class TenKGnadClusteringP2PFast(AbsTaskClustering):
|
|
|
53
56
|
"2020-12-31",
|
|
54
57
|
), # since it is news it is guessed that it is from 2000 to 2020
|
|
55
58
|
domains=["News", "Non-fiction", "Written"],
|
|
56
|
-
task_subtypes=
|
|
59
|
+
task_subtypes=["Thematic clustering"],
|
|
57
60
|
license="cc-by-sa-4.0",
|
|
58
61
|
annotations_creators="derived",
|
|
59
62
|
dialect=[],
|
|
60
63
|
sample_creation="found",
|
|
61
|
-
bibtex_citation=
|
|
62
|
-
# due to duplicates
|
|
64
|
+
bibtex_citation="", # none found
|
|
63
65
|
adapted_from=["TenKGnadClusteringP2P"],
|
|
64
66
|
)
|
|
65
67
|
|
|
@@ -18,14 +18,17 @@ class TenKGnadClusteringS2S(AbsTaskClusteringLegacy):
|
|
|
18
18
|
eval_splits=["test"],
|
|
19
19
|
eval_langs=["deu-Latn"],
|
|
20
20
|
main_score="v_measure",
|
|
21
|
-
date=
|
|
21
|
+
date=(
|
|
22
|
+
"2000-01-01",
|
|
23
|
+
"2020-12-31",
|
|
24
|
+
), # since it is news it is guessed that it is from 2000 to 2020
|
|
22
25
|
domains=["News", "Non-fiction", "Written"],
|
|
23
|
-
task_subtypes=["
|
|
24
|
-
license=
|
|
25
|
-
annotations_creators=
|
|
26
|
-
dialect=
|
|
27
|
-
sample_creation=
|
|
28
|
-
bibtex_citation=
|
|
26
|
+
task_subtypes=["Thematic clustering"],
|
|
27
|
+
license="cc-by-nc-sa-4.0",
|
|
28
|
+
annotations_creators="derived",
|
|
29
|
+
dialect=[],
|
|
30
|
+
sample_creation="found",
|
|
31
|
+
bibtex_citation="", # none found
|
|
29
32
|
superseded_by="TenKGnadClusteringS2S.v2",
|
|
30
33
|
)
|
|
31
34
|
|
|
@@ -36,7 +39,7 @@ class TenKGnadClusteringS2SFast(AbsTaskClustering):
|
|
|
36
39
|
|
|
37
40
|
metadata = TaskMetadata(
|
|
38
41
|
name="TenKGnadClusteringS2S.v2",
|
|
39
|
-
description="Clustering of news article titles. Clustering of 10 splits on the news article category.",
|
|
42
|
+
description="Clustering of news article titles. Clustering of 10 splits on the news article category. v2 uses a faster evaluation method used in the MMTEB paper, which allow for notably faster evaluation.",
|
|
40
43
|
reference="https://tblock.github.io/10kGNAD/",
|
|
41
44
|
dataset={
|
|
42
45
|
"path": "slvnwhrl/tenkgnad-clustering-s2s",
|
|
@@ -53,13 +56,12 @@ class TenKGnadClusteringS2SFast(AbsTaskClustering):
|
|
|
53
56
|
"2020-12-31",
|
|
54
57
|
), # since it is news it is guessed that it is from 2000 to 2020
|
|
55
58
|
domains=["News", "Non-fiction", "Written"],
|
|
56
|
-
task_subtypes=["
|
|
59
|
+
task_subtypes=["Thematic clustering"],
|
|
57
60
|
license="cc-by-sa-4.0",
|
|
58
61
|
annotations_creators="derived",
|
|
59
62
|
dialect=[],
|
|
60
63
|
sample_creation="found",
|
|
61
|
-
bibtex_citation=
|
|
62
|
-
# due to duplicates
|
|
64
|
+
bibtex_citation="", # none found
|
|
63
65
|
adapted_from=["TenKGnadClusteringS2S"],
|
|
64
66
|
)
|
|
65
67
|
|
|
@@ -33,7 +33,7 @@ class HALClusteringS2S(AbsTaskClusteringLegacy):
|
|
|
33
33
|
task_subtypes=["Thematic clustering"],
|
|
34
34
|
license="apache-2.0",
|
|
35
35
|
annotations_creators="human-annotated",
|
|
36
|
-
dialect=
|
|
36
|
+
dialect=[],
|
|
37
37
|
sample_creation="found",
|
|
38
38
|
bibtex_citation=r"""
|
|
39
39
|
@misc{ciancone2024extending,
|
|
@@ -42,7 +42,7 @@ class VGClustering(AbsTaskClusteringLegacy):
|
|
|
42
42
|
main_score="v_measure",
|
|
43
43
|
date=("2020-01-01", "2024-12-31"), # best guess
|
|
44
44
|
domains=["News", "Non-fiction", "Written"],
|
|
45
|
-
license=
|
|
45
|
+
license="not specified",
|
|
46
46
|
annotations_creators="derived",
|
|
47
47
|
dialect=[],
|
|
48
48
|
task_subtypes=["Thematic clustering"],
|
|
@@ -17,7 +17,7 @@ class TwitterSemEval2015PC(AbsTaskPairClassification):
|
|
|
17
17
|
eval_splits=["test"],
|
|
18
18
|
eval_langs=["eng-Latn"],
|
|
19
19
|
main_score="max_ap",
|
|
20
|
-
date=
|
|
20
|
+
date=("2015-01-01", "2015-12-31"), # publication year
|
|
21
21
|
domains=["Social", "Written"],
|
|
22
22
|
task_subtypes=[],
|
|
23
23
|
license="not specified",
|
|
@@ -17,7 +17,7 @@ class TwitterURLCorpus(AbsTaskPairClassification):
|
|
|
17
17
|
eval_splits=["test"],
|
|
18
18
|
eval_langs=["eng-Latn"],
|
|
19
19
|
main_score="max_ap",
|
|
20
|
-
date=
|
|
20
|
+
date=("2017-01-01", "2017-12-31"), # publication year
|
|
21
21
|
domains=["Social", "Written"],
|
|
22
22
|
task_subtypes=[],
|
|
23
23
|
license="not specified",
|
|
@@ -41,7 +41,7 @@ class IndicXnliPairClassification(AbsTaskPairClassification):
|
|
|
41
41
|
main_score="max_ap",
|
|
42
42
|
date=("2022-04-22", "2022-10-06"),
|
|
43
43
|
domains=["Non-fiction", "Fiction", "Government", "Written"],
|
|
44
|
-
task_subtypes=
|
|
44
|
+
task_subtypes=[],
|
|
45
45
|
license="cc-by-4.0",
|
|
46
46
|
annotations_creators="derived",
|
|
47
47
|
dialect=[],
|
|
@@ -77,7 +77,7 @@ class PpcPC(AbsTaskPairClassification):
|
|
|
77
77
|
eval_splits=["test"],
|
|
78
78
|
eval_langs=["pol-Latn"],
|
|
79
79
|
main_score="max_ap",
|
|
80
|
-
date=
|
|
80
|
+
date=("2022-01-01", "2022-12-31"), # publication year
|
|
81
81
|
domains=[
|
|
82
82
|
"Fiction",
|
|
83
83
|
"Non-fiction",
|
|
@@ -125,7 +125,7 @@ class CdscePC(AbsTaskPairClassification):
|
|
|
125
125
|
eval_splits=["test"],
|
|
126
126
|
eval_langs=["pol-Latn"],
|
|
127
127
|
main_score="max_ap",
|
|
128
|
-
date=
|
|
128
|
+
date=("2017-01-01", "2017-12-31"), # publication year
|
|
129
129
|
domains=["Written"],
|
|
130
130
|
task_subtypes=[],
|
|
131
131
|
license="cc-by-nc-sa-4.0",
|
|
@@ -17,7 +17,7 @@ class CQADupstackAndroidRetrieval(AbsTaskRetrieval):
|
|
|
17
17
|
eval_splits=["test"],
|
|
18
18
|
eval_langs=["eng-Latn"],
|
|
19
19
|
main_score="ndcg_at_10",
|
|
20
|
-
date=
|
|
20
|
+
date=("2015-01-01", "2015-12-31"), # publication year
|
|
21
21
|
domains=["Programming", "Web", "Written", "Non-fiction"],
|
|
22
22
|
task_subtypes=["Question answering", "Duplicate Detection"],
|
|
23
23
|
license="apache-2.0",
|
|
@@ -17,7 +17,7 @@ class CQADupstackEnglishRetrieval(AbsTaskRetrieval):
|
|
|
17
17
|
eval_splits=["test"],
|
|
18
18
|
eval_langs=["eng-Latn"],
|
|
19
19
|
main_score="ndcg_at_10",
|
|
20
|
-
date=
|
|
20
|
+
date=("2015-01-01", "2015-12-31"), # publication year
|
|
21
21
|
domains=["Written"],
|
|
22
22
|
task_subtypes=["Question answering", "Duplicate Detection"],
|
|
23
23
|
license="apache-2.0",
|
|
@@ -17,7 +17,7 @@ class CQADupstackGamingRetrieval(AbsTaskRetrieval):
|
|
|
17
17
|
eval_splits=["test"],
|
|
18
18
|
eval_langs=["eng-Latn"],
|
|
19
19
|
main_score="ndcg_at_10",
|
|
20
|
-
date=
|
|
20
|
+
date=("2015-01-01", "2015-12-31"), # publication year
|
|
21
21
|
domains=["Web", "Written"],
|
|
22
22
|
task_subtypes=["Question answering", "Duplicate Detection"],
|
|
23
23
|
license="apache-2.0",
|
|
@@ -17,7 +17,7 @@ class CQADupstackGisRetrieval(AbsTaskRetrieval):
|
|
|
17
17
|
eval_splits=["test"],
|
|
18
18
|
eval_langs=["eng-Latn"],
|
|
19
19
|
main_score="ndcg_at_10",
|
|
20
|
-
date=
|
|
20
|
+
date=("2015-01-01", "2015-12-31"), # publication year
|
|
21
21
|
domains=["Written", "Non-fiction"],
|
|
22
22
|
task_subtypes=["Question answering", "Duplicate Detection"],
|
|
23
23
|
license="apache-2.0",
|
|
@@ -17,7 +17,7 @@ class CQADupstackMathematicaRetrieval(AbsTaskRetrieval):
|
|
|
17
17
|
eval_splits=["test"],
|
|
18
18
|
eval_langs=["eng-Latn"],
|
|
19
19
|
main_score="ndcg_at_10",
|
|
20
|
-
date=
|
|
20
|
+
date=("2015-01-01", "2015-12-31"), # publication year
|
|
21
21
|
domains=["Written", "Academic", "Non-fiction"],
|
|
22
22
|
task_subtypes=["Question answering", "Duplicate Detection"],
|
|
23
23
|
license="apache-2.0",
|
|
@@ -17,7 +17,7 @@ class CQADupstackPhysicsRetrieval(AbsTaskRetrieval):
|
|
|
17
17
|
eval_splits=["test"],
|
|
18
18
|
eval_langs=["eng-Latn"],
|
|
19
19
|
main_score="ndcg_at_10",
|
|
20
|
-
date=
|
|
20
|
+
date=("2015-01-01", "2015-12-31"), # publication year
|
|
21
21
|
domains=["Written", "Academic", "Non-fiction"],
|
|
22
22
|
task_subtypes=["Question answering", "Duplicate Detection"],
|
|
23
23
|
license="apache-2.0",
|
|
@@ -17,7 +17,7 @@ class CQADupstackProgrammersRetrieval(AbsTaskRetrieval):
|
|
|
17
17
|
eval_splits=["test"],
|
|
18
18
|
eval_langs=["eng-Latn"],
|
|
19
19
|
main_score="ndcg_at_10",
|
|
20
|
-
date=
|
|
20
|
+
date=("2015-01-01", "2015-12-31"), # publication year
|
|
21
21
|
domains=["Programming", "Written", "Non-fiction"],
|
|
22
22
|
task_subtypes=[],
|
|
23
23
|
license="apache-2.0",
|
|
@@ -17,7 +17,7 @@ class CQADupstackStatsRetrieval(AbsTaskRetrieval):
|
|
|
17
17
|
eval_splits=["test"],
|
|
18
18
|
eval_langs=["eng-Latn"],
|
|
19
19
|
main_score="ndcg_at_10",
|
|
20
|
-
date=
|
|
20
|
+
date=("2015-01-01", "2015-12-31"), # publication year
|
|
21
21
|
domains=["Written", "Academic", "Non-fiction"],
|
|
22
22
|
task_subtypes=["Question answering", "Duplicate Detection"],
|
|
23
23
|
license="apache-2.0",
|
|
@@ -17,7 +17,7 @@ class CQADupstackTexRetrieval(AbsTaskRetrieval):
|
|
|
17
17
|
eval_splits=["test"],
|
|
18
18
|
eval_langs=["eng-Latn"],
|
|
19
19
|
main_score="ndcg_at_10",
|
|
20
|
-
date=
|
|
20
|
+
date=("2015-01-01", "2015-12-31"), # publication year
|
|
21
21
|
domains=["Written", "Non-fiction"],
|
|
22
22
|
task_subtypes=["Question answering", "Duplicate Detection"],
|
|
23
23
|
license="apache-2.0",
|
|
@@ -17,7 +17,7 @@ class CQADupstackUnixRetrieval(AbsTaskRetrieval):
|
|
|
17
17
|
eval_splits=["test"],
|
|
18
18
|
eval_langs=["eng-Latn"],
|
|
19
19
|
main_score="ndcg_at_10",
|
|
20
|
-
date=
|
|
20
|
+
date=("2015-01-01", "2015-12-31"), # publication year
|
|
21
21
|
domains=["Written", "Web", "Programming"],
|
|
22
22
|
task_subtypes=["Question answering", "Duplicate Detection"],
|
|
23
23
|
license="apache-2.0",
|
|
@@ -17,7 +17,7 @@ class CQADupstackWebmastersRetrieval(AbsTaskRetrieval):
|
|
|
17
17
|
eval_splits=["test"],
|
|
18
18
|
eval_langs=["eng-Latn"],
|
|
19
19
|
main_score="ndcg_at_10",
|
|
20
|
-
date=
|
|
20
|
+
date=("2015-01-01", "2015-12-31"), # publication year
|
|
21
21
|
domains=["Written", "Web"],
|
|
22
22
|
task_subtypes=["Question answering"],
|
|
23
23
|
license="apache-2.0",
|
|
@@ -17,7 +17,7 @@ class CQADupstackWordpressRetrieval(AbsTaskRetrieval):
|
|
|
17
17
|
eval_splits=["test"],
|
|
18
18
|
eval_langs=["eng-Latn"],
|
|
19
19
|
main_score="ndcg_at_10",
|
|
20
|
-
date=
|
|
20
|
+
date=("2015-01-01", "2015-12-31"), # publication year
|
|
21
21
|
domains=["Written", "Web", "Programming"],
|
|
22
22
|
task_subtypes=["Question answering"],
|
|
23
23
|
license="apache-2.0",
|
|
@@ -9,7 +9,7 @@ _fever_metadata = dict(
|
|
|
9
9
|
eval_splits=["test"],
|
|
10
10
|
eval_langs=["eng-Latn"],
|
|
11
11
|
main_score="ndcg_at_10",
|
|
12
|
-
date=
|
|
12
|
+
date=("2018-01-01", "2018-12-31"), # publication year
|
|
13
13
|
domains=["Encyclopaedic", "Written"],
|
|
14
14
|
task_subtypes=["Claim verification"],
|
|
15
15
|
license="cc-by-nc-sa-3.0",
|
|
@@ -19,7 +19,7 @@ class FiQA2018(AbsTaskRetrieval):
|
|
|
19
19
|
eval_splits=["test"],
|
|
20
20
|
eval_langs=["eng-Latn"],
|
|
21
21
|
main_score="ndcg_at_10",
|
|
22
|
-
date=
|
|
22
|
+
date=("2018-01-01", "2018-12-31"), # publication year
|
|
23
23
|
domains=["Written", "Financial"],
|
|
24
24
|
task_subtypes=["Question answering"],
|
|
25
25
|
license="not specified",
|
|
@@ -19,7 +19,7 @@ class MSMARCO(AbsTaskRetrieval):
|
|
|
19
19
|
eval_splits=["dev"],
|
|
20
20
|
eval_langs=["eng-Latn"],
|
|
21
21
|
main_score="ndcg_at_10",
|
|
22
|
-
date=
|
|
22
|
+
date=("2016-01-01", "2016-12-31"), # publication year
|
|
23
23
|
domains=[
|
|
24
24
|
"Encyclopaedic",
|
|
25
25
|
"Academic",
|
|
@@ -81,7 +81,7 @@ class MSMARCOHardNegatives(AbsTaskRetrieval):
|
|
|
81
81
|
eval_splits=["test"],
|
|
82
82
|
eval_langs=["eng-Latn"],
|
|
83
83
|
main_score="ndcg_at_10",
|
|
84
|
-
date=
|
|
84
|
+
date=("2016-01-01", "2016-12-31"), # publication year
|
|
85
85
|
domains=[
|
|
86
86
|
"Encyclopaedic",
|
|
87
87
|
"Academic",
|
|
@@ -17,13 +17,13 @@ class NFCorpus(AbsTaskRetrieval):
|
|
|
17
17
|
eval_splits=["test"],
|
|
18
18
|
eval_langs=["eng-Latn"],
|
|
19
19
|
main_score="ndcg_at_10",
|
|
20
|
-
date=
|
|
20
|
+
date=("2016-01-01", "2016-12-31"), # publication year
|
|
21
21
|
domains=["Medical", "Academic", "Written"],
|
|
22
|
-
task_subtypes=
|
|
23
|
-
license=
|
|
24
|
-
annotations_creators=
|
|
25
|
-
dialect=
|
|
26
|
-
sample_creation=
|
|
22
|
+
task_subtypes=[],
|
|
23
|
+
license="not specified",
|
|
24
|
+
annotations_creators="derived",
|
|
25
|
+
dialect=[],
|
|
26
|
+
sample_creation="found",
|
|
27
27
|
bibtex_citation=r"""
|
|
28
28
|
@inproceedings{boteva2016,
|
|
29
29
|
author = {Boteva, Vera and Gholipour, Demian and Sokolov, Artem and Riezler, Stefan},
|
|
@@ -17,7 +17,7 @@ class NQ(AbsTaskRetrieval):
|
|
|
17
17
|
eval_splits=["test"],
|
|
18
18
|
eval_langs=["eng-Latn"],
|
|
19
19
|
main_score="ndcg_at_10",
|
|
20
|
-
date=
|
|
20
|
+
date=("2019-01-01", "2019-12-31"), # publication year
|
|
21
21
|
domains=["Written", "Encyclopaedic"],
|
|
22
22
|
task_subtypes=["Question answering"],
|
|
23
23
|
license="cc-by-nc-sa-3.0",
|
|
@@ -57,13 +57,13 @@ class NQHardNegatives(AbsTaskRetrieval):
|
|
|
57
57
|
eval_splits=["test"],
|
|
58
58
|
eval_langs=["eng-Latn"],
|
|
59
59
|
main_score="ndcg_at_10",
|
|
60
|
-
date=
|
|
61
|
-
domains=
|
|
62
|
-
task_subtypes=
|
|
63
|
-
license=
|
|
64
|
-
annotations_creators=
|
|
65
|
-
dialect=
|
|
66
|
-
sample_creation=
|
|
60
|
+
date=("2019-01-01", "2019-12-31"), # publication year
|
|
61
|
+
domains=["Written", "Encyclopaedic"],
|
|
62
|
+
task_subtypes=["Question answering"],
|
|
63
|
+
license="cc-by-nc-sa-3.0",
|
|
64
|
+
annotations_creators="human-annotated",
|
|
65
|
+
dialect=[],
|
|
66
|
+
sample_creation="found",
|
|
67
67
|
bibtex_citation=r"""
|
|
68
68
|
@article{47761,
|
|
69
69
|
author = {Tom Kwiatkowski and Jennimaria Palomaki and Olivia Redfield and Michael Collins and Ankur Parikh
|
|
@@ -9,7 +9,7 @@ _quora_metadata = dict(
|
|
|
9
9
|
eval_splits=["test"],
|
|
10
10
|
eval_langs=["eng-Latn"],
|
|
11
11
|
main_score="ndcg_at_10",
|
|
12
|
-
date=
|
|
12
|
+
date=("2017-01-01", "2017-12-31"), # original publication year
|
|
13
13
|
domains=["Written", "Web", "Blog"],
|
|
14
14
|
task_subtypes=["Question answering"],
|
|
15
15
|
license="not specified",
|