mteb 2.7.14__py3-none-any.whl → 2.7.16__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/models/get_model_meta.py +2 -2
- mteb/models/model_implementations/misc_models.py +0 -48
- mteb/models/model_implementations/rerankers_custom.py +0 -87
- mteb/models/model_implementations/rerankers_monot5_based.py +0 -26
- mteb/models/model_meta.py +47 -14
- {mteb-2.7.14.dist-info → mteb-2.7.16.dist-info}/METADATA +1 -1
- {mteb-2.7.14.dist-info → mteb-2.7.16.dist-info}/RECORD +11 -11
- {mteb-2.7.14.dist-info → mteb-2.7.16.dist-info}/WHEEL +0 -0
- {mteb-2.7.14.dist-info → mteb-2.7.16.dist-info}/entry_points.txt +0 -0
- {mteb-2.7.14.dist-info → mteb-2.7.16.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.7.14.dist-info → mteb-2.7.16.dist-info}/top_level.txt +0 -0
mteb/models/get_model_meta.py
CHANGED
|
@@ -140,7 +140,7 @@ def get_model_meta(
|
|
|
140
140
|
model_name: Name of the model to fetch
|
|
141
141
|
revision: Revision of the model to fetch
|
|
142
142
|
fetch_from_hf: Whether to fetch the model from HuggingFace Hub if not found in the registry
|
|
143
|
-
fill_missing:
|
|
143
|
+
fill_missing: Fill missing attributes from the metadata including number of parameters and memory usage.
|
|
144
144
|
|
|
145
145
|
Returns:
|
|
146
146
|
A model metadata object
|
|
@@ -161,7 +161,7 @@ def get_model_meta(
|
|
|
161
161
|
|
|
162
162
|
if fill_missing and fetch_from_hf:
|
|
163
163
|
original_meta_dict = model_meta.model_dump()
|
|
164
|
-
new_meta = ModelMeta.from_hub(model_name)
|
|
164
|
+
new_meta = ModelMeta.from_hub(model_name, fill_missing=fill_missing)
|
|
165
165
|
new_meta_dict = new_meta.model_dump(exclude_none=True)
|
|
166
166
|
|
|
167
167
|
updates = {
|
|
@@ -1007,54 +1007,6 @@ thenlper__gte_small = ModelMeta(
|
|
|
1007
1007
|
year={2023}
|
|
1008
1008
|
}""",
|
|
1009
1009
|
)
|
|
1010
|
-
OrlikB__KartonBERT_USE_base_v1 = ModelMeta(
|
|
1011
|
-
name="OrlikB/KartonBERT-USE-base-v1",
|
|
1012
|
-
model_type=["dense"],
|
|
1013
|
-
revision="1f59dd58fe57995c0e867d5e29f03763eae99645",
|
|
1014
|
-
release_date="2024-09-30",
|
|
1015
|
-
languages=["pol-Latn"],
|
|
1016
|
-
loader=sentence_transformers_loader,
|
|
1017
|
-
n_parameters=103705344,
|
|
1018
|
-
n_embedding_parameters=None,
|
|
1019
|
-
memory_usage_mb=396,
|
|
1020
|
-
max_tokens=512.0,
|
|
1021
|
-
embed_dim=768,
|
|
1022
|
-
license="gpl-3.0",
|
|
1023
|
-
open_weights=True,
|
|
1024
|
-
public_training_code=None,
|
|
1025
|
-
public_training_data=None,
|
|
1026
|
-
framework=["PyTorch"],
|
|
1027
|
-
reference="https://huggingface.co/OrlikB/KartonBERT-USE-base-v1",
|
|
1028
|
-
similarity_fn_name=ScoringFunction.COSINE,
|
|
1029
|
-
use_instructions=None,
|
|
1030
|
-
training_datasets=None,
|
|
1031
|
-
adapted_from="KartonBERT-USE-base-v1",
|
|
1032
|
-
superseded_by=None,
|
|
1033
|
-
)
|
|
1034
|
-
OrlikB__st_polish_kartonberta_base_alpha_v1 = ModelMeta(
|
|
1035
|
-
name="OrlikB/st-polish-kartonberta-base-alpha-v1",
|
|
1036
|
-
model_type=["dense"],
|
|
1037
|
-
revision="5590a0e2d7bb43674e44d7076b3ff157f7d4a1cb",
|
|
1038
|
-
release_date="2023-11-12",
|
|
1039
|
-
languages=["pol-Latn"],
|
|
1040
|
-
loader=sentence_transformers_loader,
|
|
1041
|
-
n_parameters=None,
|
|
1042
|
-
n_embedding_parameters=None,
|
|
1043
|
-
memory_usage_mb=None,
|
|
1044
|
-
max_tokens=514.0,
|
|
1045
|
-
embed_dim=768,
|
|
1046
|
-
license="lgpl",
|
|
1047
|
-
open_weights=True,
|
|
1048
|
-
public_training_code=None,
|
|
1049
|
-
public_training_data=None,
|
|
1050
|
-
framework=["PyTorch"],
|
|
1051
|
-
reference="https://huggingface.co/OrlikB/st-polish-kartonberta-base-alpha-v1",
|
|
1052
|
-
similarity_fn_name=ScoringFunction.COSINE,
|
|
1053
|
-
use_instructions=None,
|
|
1054
|
-
training_datasets=None,
|
|
1055
|
-
adapted_from="st-polish-kartonberta-base-alpha-v1",
|
|
1056
|
-
superseded_by=None,
|
|
1057
|
-
)
|
|
1058
1010
|
sdadas__mmlw_e5_base = ModelMeta(
|
|
1059
1011
|
name="sdadas/mmlw-e5-base",
|
|
1060
1012
|
model_type=["dense"],
|
|
@@ -103,68 +103,6 @@ class BGEReranker(RerankerWrapper):
|
|
|
103
103
|
return scores
|
|
104
104
|
|
|
105
105
|
|
|
106
|
-
class MonoBERTReranker(RerankerWrapper):
|
|
107
|
-
name: str = "MonoBERT"
|
|
108
|
-
|
|
109
|
-
def __init__(
|
|
110
|
-
self,
|
|
111
|
-
model_name_or_path="castorini/monobert-large-msmarco",
|
|
112
|
-
torch_compile=False,
|
|
113
|
-
**kwargs,
|
|
114
|
-
):
|
|
115
|
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
|
116
|
-
|
|
117
|
-
super().__init__(model_name_or_path, **kwargs)
|
|
118
|
-
if not self.device:
|
|
119
|
-
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
120
|
-
model_args = {}
|
|
121
|
-
if self.fp_options:
|
|
122
|
-
model_args["torch_dtype"] = self.fp_options
|
|
123
|
-
self.model = AutoModelForSequenceClassification.from_pretrained(
|
|
124
|
-
model_name_or_path,
|
|
125
|
-
**model_args,
|
|
126
|
-
)
|
|
127
|
-
self.model.to(self.device)
|
|
128
|
-
self.tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
|
|
129
|
-
self.max_length = self.tokenizer.model_max_length
|
|
130
|
-
logger.info(f"Using max_length of {self.max_length}")
|
|
131
|
-
|
|
132
|
-
self.model.eval()
|
|
133
|
-
|
|
134
|
-
@torch.inference_mode()
|
|
135
|
-
def predict(
|
|
136
|
-
self,
|
|
137
|
-
inputs1: DataLoader[BatchedInput],
|
|
138
|
-
inputs2: DataLoader[BatchedInput],
|
|
139
|
-
*,
|
|
140
|
-
task_metadata: TaskMetadata,
|
|
141
|
-
hf_split: str,
|
|
142
|
-
hf_subset: str,
|
|
143
|
-
prompt_type: PromptType | None = None,
|
|
144
|
-
**kwargs: Any,
|
|
145
|
-
) -> Array:
|
|
146
|
-
queries = [text for batch in inputs1 for text in batch["query"]]
|
|
147
|
-
instructions = None
|
|
148
|
-
if "instruction" in inputs2.dataset.features:
|
|
149
|
-
instructions = [text for batch in inputs1 for text in batch["instruction"]]
|
|
150
|
-
passages = [text for batch in inputs2 for text in batch["text"]]
|
|
151
|
-
|
|
152
|
-
if instructions is not None and instructions[0] is not None:
|
|
153
|
-
queries = [f"{q} {i}".strip() for i, q in zip(instructions, queries)]
|
|
154
|
-
|
|
155
|
-
tokens = self.tokenizer(
|
|
156
|
-
queries,
|
|
157
|
-
passages,
|
|
158
|
-
padding=True,
|
|
159
|
-
truncation="only_second",
|
|
160
|
-
return_tensors="pt",
|
|
161
|
-
max_length=self.max_length,
|
|
162
|
-
).to(self.device)
|
|
163
|
-
output = self.model(**tokens)[0]
|
|
164
|
-
batch_scores = torch.nn.functional.log_softmax(output, dim=1)
|
|
165
|
-
return batch_scores[:, 1].exp()
|
|
166
|
-
|
|
167
|
-
|
|
168
106
|
class JinaReranker(RerankerWrapper):
|
|
169
107
|
name = "Jina"
|
|
170
108
|
|
|
@@ -219,31 +157,6 @@ class JinaReranker(RerankerWrapper):
|
|
|
219
157
|
return scores
|
|
220
158
|
|
|
221
159
|
|
|
222
|
-
monobert_large = ModelMeta(
|
|
223
|
-
loader=MonoBERTReranker,
|
|
224
|
-
loader_kwargs=dict(
|
|
225
|
-
fp_options="float16",
|
|
226
|
-
),
|
|
227
|
-
name="castorini/monobert-large-msmarco",
|
|
228
|
-
model_type=["cross-encoder"],
|
|
229
|
-
languages=["eng-Latn"],
|
|
230
|
-
open_weights=True,
|
|
231
|
-
revision="0a97706f3827389da43b83348d5d18c9d53876fa",
|
|
232
|
-
release_date="2020-05-28",
|
|
233
|
-
n_parameters=None,
|
|
234
|
-
n_embedding_parameters=31_254_528,
|
|
235
|
-
memory_usage_mb=None,
|
|
236
|
-
max_tokens=None,
|
|
237
|
-
embed_dim=None,
|
|
238
|
-
license=None,
|
|
239
|
-
public_training_code=None,
|
|
240
|
-
public_training_data=None,
|
|
241
|
-
similarity_fn_name=None,
|
|
242
|
-
use_instructions=None,
|
|
243
|
-
training_datasets=None,
|
|
244
|
-
framework=["Sentence Transformers", "PyTorch", "Transformers"],
|
|
245
|
-
)
|
|
246
|
-
|
|
247
160
|
# languages unclear: https://huggingface.co/jinaai/jina-reranker-v2-base-multilingual/discussions/28
|
|
248
161
|
jina_reranker_multilingual = ModelMeta(
|
|
249
162
|
loader=JinaReranker,
|
|
@@ -34,7 +34,6 @@ prediction_tokens = {
|
|
|
34
34
|
"unicamp-dl/mt5-base-en-msmarco": ["▁no", "▁yes"],
|
|
35
35
|
"unicamp-dl/mt5-base-mmarco-v2": ["▁no", "▁yes"],
|
|
36
36
|
"unicamp-dl/mt5-base-mmarco-v1": ["▁no", "▁yes"],
|
|
37
|
-
"unicamp-dl/mt5-13b-mmarco-100k": ["▁", "▁true"],
|
|
38
37
|
}
|
|
39
38
|
|
|
40
39
|
|
|
@@ -919,28 +918,3 @@ mt5_base_mmarco_v2 = ModelMeta(
|
|
|
919
918
|
use_instructions=None,
|
|
920
919
|
framework=["PyTorch", "Transformers"],
|
|
921
920
|
)
|
|
922
|
-
|
|
923
|
-
mt5_13b_mmarco_100k = ModelMeta(
|
|
924
|
-
loader=MonoT5Reranker,
|
|
925
|
-
loader_kwargs=dict(
|
|
926
|
-
fp_options="float16",
|
|
927
|
-
),
|
|
928
|
-
name="unicamp-dl/mt5-13b-mmarco-100k",
|
|
929
|
-
model_type=["cross-encoder"],
|
|
930
|
-
languages=mt5_languages,
|
|
931
|
-
open_weights=True,
|
|
932
|
-
revision="e1a4317e102a525ea9e16745ad21394a4f1bffbc",
|
|
933
|
-
release_date="2022-11-04",
|
|
934
|
-
n_parameters=None,
|
|
935
|
-
n_embedding_parameters=1_024_458_752,
|
|
936
|
-
memory_usage_mb=None,
|
|
937
|
-
max_tokens=None,
|
|
938
|
-
embed_dim=None,
|
|
939
|
-
license=None,
|
|
940
|
-
public_training_code=None,
|
|
941
|
-
public_training_data=None,
|
|
942
|
-
similarity_fn_name=None,
|
|
943
|
-
use_instructions=None,
|
|
944
|
-
training_datasets=None,
|
|
945
|
-
framework=["PyTorch", "Transformers"],
|
|
946
|
-
)
|
mteb/models/model_meta.py
CHANGED
|
@@ -422,14 +422,16 @@ class ModelMeta(BaseModel):
|
|
|
422
422
|
cls,
|
|
423
423
|
model_name: str | None,
|
|
424
424
|
revision: str | None = None,
|
|
425
|
-
|
|
425
|
+
fill_missing: bool = True,
|
|
426
|
+
compute_metadata: bool | None = None,
|
|
426
427
|
) -> Self:
|
|
427
428
|
"""Generates a ModelMeta from a HuggingFace model name.
|
|
428
429
|
|
|
429
430
|
Args:
|
|
430
431
|
model_name: The HuggingFace model name.
|
|
431
432
|
revision: Revision of the model
|
|
432
|
-
|
|
433
|
+
fill_missing: Fill missing attributes from the metadata including number of parameters and memory usage.
|
|
434
|
+
compute_metadata: Deprecated. Use fill_missing instead.
|
|
433
435
|
|
|
434
436
|
Returns:
|
|
435
437
|
The generated ModelMeta.
|
|
@@ -437,6 +439,15 @@ class ModelMeta(BaseModel):
|
|
|
437
439
|
loader: Callable[..., MTEBModels] | None
|
|
438
440
|
model_type: MODEL_TYPES
|
|
439
441
|
|
|
442
|
+
if compute_metadata is not None:
|
|
443
|
+
warnings.warn(
|
|
444
|
+
"The compute_metadata parameter is deprecated and will be removed in a future version. "
|
|
445
|
+
f"Use fill_missing instead. Setting `fill_missing={compute_metadata}`.",
|
|
446
|
+
DeprecationWarning,
|
|
447
|
+
stacklevel=2,
|
|
448
|
+
)
|
|
449
|
+
fill_missing = compute_metadata
|
|
450
|
+
|
|
440
451
|
loader, model_type = cls._detect_model_type_and_loader(model_name, revision)
|
|
441
452
|
|
|
442
453
|
frameworks: list[FRAMEWORKS] = ["PyTorch"]
|
|
@@ -448,7 +459,7 @@ class ModelMeta(BaseModel):
|
|
|
448
459
|
embedding_dim = None
|
|
449
460
|
max_tokens = None
|
|
450
461
|
|
|
451
|
-
if model_name and
|
|
462
|
+
if model_name and fill_missing and _repo_exists(model_name):
|
|
452
463
|
reference = "https://huggingface.co/" + model_name
|
|
453
464
|
card = ModelCard.load(model_name)
|
|
454
465
|
card_data: ModelCardData = card.data
|
|
@@ -505,14 +516,16 @@ class ModelMeta(BaseModel):
|
|
|
505
516
|
cls,
|
|
506
517
|
model: SentenceTransformer,
|
|
507
518
|
revision: str | None = None,
|
|
508
|
-
|
|
519
|
+
fill_missing: bool = False,
|
|
520
|
+
compute_metadata: bool | None = None,
|
|
509
521
|
) -> Self:
|
|
510
522
|
"""Generates a ModelMeta from a SentenceTransformer model.
|
|
511
523
|
|
|
512
524
|
Args:
|
|
513
525
|
model: SentenceTransformer model.
|
|
514
526
|
revision: Revision of the model
|
|
515
|
-
|
|
527
|
+
fill_missing: Fill missing attributes from the metadata including number of parameters and memory usage.
|
|
528
|
+
compute_metadata: Deprecated. Use fill_missing instead.
|
|
516
529
|
|
|
517
530
|
Returns:
|
|
518
531
|
The generated ModelMeta.
|
|
@@ -522,7 +535,9 @@ class ModelMeta(BaseModel):
|
|
|
522
535
|
if model.model_card_data.model_name
|
|
523
536
|
else model.model_card_data.base_model
|
|
524
537
|
)
|
|
525
|
-
meta = cls._from_hub(
|
|
538
|
+
meta = cls._from_hub(
|
|
539
|
+
name, revision, fill_missing=fill_missing, compute_metadata=compute_metadata
|
|
540
|
+
)
|
|
526
541
|
try:
|
|
527
542
|
first = model[0]
|
|
528
543
|
|
|
@@ -535,7 +550,9 @@ class ModelMeta(BaseModel):
|
|
|
535
550
|
meta.max_tokens = model.max_seq_length
|
|
536
551
|
meta.embed_dim = model.get_sentence_embedding_dimension()
|
|
537
552
|
meta.similarity_fn_name = ScoringFunction.from_str(model.similarity_fn_name)
|
|
538
|
-
meta.modalities = ["text"]
|
|
553
|
+
meta.modalities = ["text"] # best guess
|
|
554
|
+
if "Sentence Transformers" not in meta.framework:
|
|
555
|
+
meta.framework.append("Sentence Transformers")
|
|
539
556
|
return meta
|
|
540
557
|
|
|
541
558
|
@classmethod
|
|
@@ -543,22 +560,29 @@ class ModelMeta(BaseModel):
|
|
|
543
560
|
cls,
|
|
544
561
|
model: str,
|
|
545
562
|
revision: str | None = None,
|
|
546
|
-
|
|
563
|
+
fill_missing: bool = True,
|
|
564
|
+
compute_metadata: bool | None = None,
|
|
547
565
|
) -> Self:
|
|
548
566
|
"""Generates a ModelMeta for model from HuggingFace hub.
|
|
549
567
|
|
|
550
568
|
Args:
|
|
551
569
|
model: Name of the model from HuggingFace hub. For example, `intfloat/multilingual-e5-large`
|
|
552
570
|
revision: Revision of the model
|
|
553
|
-
|
|
571
|
+
fill_missing: Fill missing attributes from the metadata including number of parameters and memory usage.
|
|
572
|
+
compute_metadata: Deprecated. Use fill_missing instead.
|
|
554
573
|
|
|
555
574
|
Returns:
|
|
556
575
|
The generated ModelMeta.
|
|
557
576
|
"""
|
|
558
|
-
meta = cls._from_hub(
|
|
577
|
+
meta = cls._from_hub(
|
|
578
|
+
model,
|
|
579
|
+
revision,
|
|
580
|
+
fill_missing=fill_missing,
|
|
581
|
+
compute_metadata=compute_metadata,
|
|
582
|
+
)
|
|
559
583
|
meta.modalities = ["text"]
|
|
560
584
|
|
|
561
|
-
if model and
|
|
585
|
+
if model and fill_missing and _repo_exists(model):
|
|
562
586
|
# have max_seq_length field
|
|
563
587
|
sbert_config = _get_json_from_hub(
|
|
564
588
|
model, "sentence_bert_config.json", "model", revision=revision
|
|
@@ -587,21 +611,28 @@ class ModelMeta(BaseModel):
|
|
|
587
611
|
cls,
|
|
588
612
|
model: CrossEncoder,
|
|
589
613
|
revision: str | None = None,
|
|
590
|
-
|
|
614
|
+
fill_missing: bool = False,
|
|
615
|
+
compute_metadata: bool | None = None,
|
|
591
616
|
) -> Self:
|
|
592
617
|
"""Generates a ModelMeta from a CrossEncoder.
|
|
593
618
|
|
|
594
619
|
Args:
|
|
595
620
|
model: The CrossEncoder model
|
|
596
621
|
revision: Revision of the model
|
|
597
|
-
|
|
622
|
+
fill_missing: Fill missing attributes from the metadata including number of parameters and memory usage.
|
|
623
|
+
compute_metadata: Deprecated. Use fill_missing instead.
|
|
598
624
|
|
|
599
625
|
Returns:
|
|
600
626
|
The generated ModelMeta
|
|
601
627
|
"""
|
|
602
628
|
from mteb.models import CrossEncoderWrapper
|
|
603
629
|
|
|
604
|
-
meta = cls._from_hub(
|
|
630
|
+
meta = cls._from_hub(
|
|
631
|
+
model.model.name_or_path,
|
|
632
|
+
revision,
|
|
633
|
+
fill_missing=fill_missing,
|
|
634
|
+
compute_metadata=compute_metadata,
|
|
635
|
+
)
|
|
605
636
|
try:
|
|
606
637
|
emb = model.model.get_input_embeddings()
|
|
607
638
|
|
|
@@ -616,6 +647,8 @@ class ModelMeta(BaseModel):
|
|
|
616
647
|
meta.embed_dim = None
|
|
617
648
|
meta.modalities = ["text"]
|
|
618
649
|
meta.model_type = ["cross-encoder"]
|
|
650
|
+
if "Sentence Transformers" not in meta.framework:
|
|
651
|
+
meta.framework.append("Sentence Transformers")
|
|
619
652
|
return meta
|
|
620
653
|
|
|
621
654
|
def is_zero_shot_on(self, tasks: Sequence[AbsTask] | Sequence[str]) -> bool | None:
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: mteb
|
|
3
|
-
Version: 2.7.
|
|
3
|
+
Version: 2.7.16
|
|
4
4
|
Summary: Massive Text Embedding Benchmark
|
|
5
5
|
Author-email: MTEB Contributors <niklas@huggingface.co>, Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Nouamane Tazi <nouamane@huggingface.co>, Nils Reimers <info@nils-reimers.de>
|
|
6
6
|
Maintainer-email: Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Roman Solomatin <risolomatin@gmail.com>, Isaac Chung <chungisaac1217@gmail.com>
|
|
@@ -1479,9 +1479,9 @@ mteb/leaderboard/table.py,sha256=U5mWtrVUTk_6t8T4KAp5qlbFgKh1PD0iKICqNMfhsoY,104
|
|
|
1479
1479
|
mteb/leaderboard/text_segments.py,sha256=iMIkS04QQjPbT-SkU0x6fOcS8xRbUYevryu9HydipKM,6570
|
|
1480
1480
|
mteb/models/__init__.py,sha256=ABTuoqiBjBtBWW3LYY7ItBHdylR6jWoy06HH0g6j6fU,910
|
|
1481
1481
|
mteb/models/abs_encoder.py,sha256=We9HlwWP61P4cMyZ080gywvDErA1eVsU9t46PtcNrCM,16830
|
|
1482
|
-
mteb/models/get_model_meta.py,sha256=
|
|
1482
|
+
mteb/models/get_model_meta.py,sha256=EUy3F2A57qfm046lDJQ2eaAaD_buHALD7XHJeYsx8vY,7234
|
|
1483
1483
|
mteb/models/instruct_wrapper.py,sha256=XAvvbPnXiTxKhFbmusm2uS8E9BMq8QXRSzQQI1jqKzE,9781
|
|
1484
|
-
mteb/models/model_meta.py,sha256=
|
|
1484
|
+
mteb/models/model_meta.py,sha256=B2BpzOZAxBgNwMrZ-saN0sw-Y4tjBKIbt2byDoQz3ac,38873
|
|
1485
1485
|
mteb/models/models_protocols.py,sha256=HTB4-SYa3SeJXMMSA8o05lHTiLBbq314VW60K_PfcZY,9509
|
|
1486
1486
|
mteb/models/search_wrappers.py,sha256=PXE1VVDWUd0LgTPJ-FxqIbGpIDWLRKo5CjrwIuu5nzw,21567
|
|
1487
1487
|
mteb/models/sentence_transformer_wrapper.py,sha256=RsOxj-b7qzeYcxUTVJyb-lZDY4bINl4jEAEkPvKYB10,13578
|
|
@@ -1556,7 +1556,7 @@ mteb/models/model_implementations/llm2clip_models.py,sha256=X3W16uipaZ0t4Mco4lhh
|
|
|
1556
1556
|
mteb/models/model_implementations/llm2vec_models.py,sha256=n86YQ8fAHU1gVtlY7tZcXq-1ab_ISxBmuk-X4MDnY4o,13348
|
|
1557
1557
|
mteb/models/model_implementations/mcinext_models.py,sha256=T3vO9JQSmh3BICp6Y_q7j4anuA8P8LGZ4ZWnwGnF7cs,19299
|
|
1558
1558
|
mteb/models/model_implementations/mdbr_models.py,sha256=AqsRZ-IDekIjq-FDWu0zx7Nk9ySJxaWTdRb8YhUZeu4,2828
|
|
1559
|
-
mteb/models/model_implementations/misc_models.py,sha256=
|
|
1559
|
+
mteb/models/model_implementations/misc_models.py,sha256=JkJsyha-B5M8myLvHIwFUV14yo2lnSuBzHeO5fE9i74,73191
|
|
1560
1560
|
mteb/models/model_implementations/mixedbread_ai_models.py,sha256=1-RD4M-16M-Rcf5CTD_R7LVoLv3cNFbmEjataQ__q94,10666
|
|
1561
1561
|
mteb/models/model_implementations/mme5_models.py,sha256=V7BCGFkfZxkZ3ANJImvSFfP7in8OSfmkbqX-zXc_iF8,1574
|
|
1562
1562
|
mteb/models/model_implementations/moco_models.py,sha256=6eEGpGTlI4StFRYsaNtXejhYE9GCqasUYCqB_SQy9cE,5714
|
|
@@ -1590,8 +1590,8 @@ mteb/models/model_implementations/random_baseline.py,sha256=YsITQoLbea_Iz2X84WNG
|
|
|
1590
1590
|
mteb/models/model_implementations/rasgaard_models.py,sha256=_uNYP_nqJcOyoKnHNcvfJnP9gRvsv7HCWhZX2LJzQ9s,1322
|
|
1591
1591
|
mteb/models/model_implementations/reasonir_model.py,sha256=WNWGqa9wANBL9vTdcFx51TEFXz6yHq_ygK0rij3LCL8,5217
|
|
1592
1592
|
mteb/models/model_implementations/repllama_models.py,sha256=k6BgN2Cn41p0gQ0F1FdOTQ9OXlmFgG-2RtdvzOcCSZg,7543
|
|
1593
|
-
mteb/models/model_implementations/rerankers_custom.py,sha256=
|
|
1594
|
-
mteb/models/model_implementations/rerankers_monot5_based.py,sha256=
|
|
1593
|
+
mteb/models/model_implementations/rerankers_custom.py,sha256=WBSA7kBRqxgb1549UwRYdtYzUovdwmW8C0PWzvGR54g,8087
|
|
1594
|
+
mteb/models/model_implementations/rerankers_monot5_based.py,sha256=U9ChokUEDXtkoFno-o4GeT4fXEEoFtnZn2denIafxi8,34583
|
|
1595
1595
|
mteb/models/model_implementations/richinfoai_models.py,sha256=FsXamY-bvR5LLagtKK8fP-I5oc6B_bKp_i6_xzUYL8Y,1069
|
|
1596
1596
|
mteb/models/model_implementations/ru_sentence_models.py,sha256=W4R985LnThJ-9XFbPnTGKb3L1QnoS3i3VXBFq94DK_w,43034
|
|
1597
1597
|
mteb/models/model_implementations/ruri_models.py,sha256=3zYOqacB3JEnGJkMGYHqFgVkbmLo4uceJs9kzV54ivU,10819
|
|
@@ -2646,9 +2646,9 @@ mteb/types/_metadata.py,sha256=NN-W0S6a5TDV7UkpRx1pyWtGF4TyyCyoPUfHOwdeci8,2290
|
|
|
2646
2646
|
mteb/types/_result.py,sha256=UKNokV9pu3G74MGebocU512aU_fFU9I9nPKnrG9Q0iE,1035
|
|
2647
2647
|
mteb/types/_string_validators.py,sha256=PY-dYq4E8O50VS3bLYdldPWp400fl_WzUjfVSkNWe8U,523
|
|
2648
2648
|
mteb/types/statistics.py,sha256=gElgSShKBXpfcqaZHhU_d2UHln1CyzUj8FN8KFun_UA,4087
|
|
2649
|
-
mteb-2.7.
|
|
2650
|
-
mteb-2.7.
|
|
2651
|
-
mteb-2.7.
|
|
2652
|
-
mteb-2.7.
|
|
2653
|
-
mteb-2.7.
|
|
2654
|
-
mteb-2.7.
|
|
2649
|
+
mteb-2.7.16.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
|
2650
|
+
mteb-2.7.16.dist-info/METADATA,sha256=a-Rt1xa9ZgNdKf-JlM6EUZE_pKzEHoT6KGpFZUvnPo0,14348
|
|
2651
|
+
mteb-2.7.16.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
|
|
2652
|
+
mteb-2.7.16.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
|
|
2653
|
+
mteb-2.7.16.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
|
|
2654
|
+
mteb-2.7.16.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|