mteb 2.7.12__py3-none-any.whl → 2.7.13__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/models/model_implementations/nomic_models.py +40 -0
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +110 -10
- mteb/models/model_implementations/ops_colqwen3_models.py +267 -0
- mteb/models/model_implementations/querit_models.py +245 -0
- {mteb-2.7.12.dist-info → mteb-2.7.13.dist-info}/METADATA +1 -3
- {mteb-2.7.12.dist-info → mteb-2.7.13.dist-info}/RECORD +10 -8
- {mteb-2.7.12.dist-info → mteb-2.7.13.dist-info}/WHEEL +0 -0
- {mteb-2.7.12.dist-info → mteb-2.7.13.dist-info}/entry_points.txt +0 -0
- {mteb-2.7.12.dist-info → mteb-2.7.13.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.7.12.dist-info → mteb-2.7.13.dist-info}/top_level.txt +0 -0
|
@@ -7,6 +7,7 @@ import torch
|
|
|
7
7
|
import torch.nn.functional as F
|
|
8
8
|
from packaging.version import Version
|
|
9
9
|
|
|
10
|
+
from mteb.models import sentence_transformers_loader
|
|
10
11
|
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
11
12
|
from mteb.models.sentence_transformer_wrapper import SentenceTransformerEncoderWrapper
|
|
12
13
|
from mteb.types import PromptType
|
|
@@ -509,3 +510,42 @@ nomic_embed_text_v2_moe = ModelMeta(
|
|
|
509
510
|
url={https://arxiv.org/abs/2502.07972},
|
|
510
511
|
}""",
|
|
511
512
|
)
|
|
513
|
+
|
|
514
|
+
nomic_embed_code = ModelMeta(
|
|
515
|
+
loader=sentence_transformers_loader,
|
|
516
|
+
loader_kwargs={
|
|
517
|
+
"trust_remote_code": True,
|
|
518
|
+
"model_prompts": model_prompts,
|
|
519
|
+
},
|
|
520
|
+
name="nomic-ai/nomic-embed-code",
|
|
521
|
+
revision="11114029805cee545ef111d5144b623787462a52",
|
|
522
|
+
release_date="2025-03-24",
|
|
523
|
+
languages=["eng-Latn"],
|
|
524
|
+
n_parameters=7_070_619_136,
|
|
525
|
+
n_embedding_parameters=None,
|
|
526
|
+
memory_usage_mb=26972.0,
|
|
527
|
+
max_tokens=32768,
|
|
528
|
+
embed_dim=3584,
|
|
529
|
+
license="apache-2.0",
|
|
530
|
+
open_weights=True,
|
|
531
|
+
public_training_code="https://github.com/gangiswag/cornstack/",
|
|
532
|
+
public_training_data="https://huggingface.co/collections/nomic-ai/cornstack",
|
|
533
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors"],
|
|
534
|
+
reference="https://huggingface.co/nomic-ai/nomic-embed-code",
|
|
535
|
+
similarity_fn_name=ScoringFunction.COSINE,
|
|
536
|
+
use_instructions=True,
|
|
537
|
+
training_datasets={"CoRNStack"},
|
|
538
|
+
adapted_from=None,
|
|
539
|
+
superseded_by=None,
|
|
540
|
+
modalities=["text"],
|
|
541
|
+
model_type=["dense"],
|
|
542
|
+
citation="""@misc{suresh2025cornstackhighqualitycontrastivedata,
|
|
543
|
+
title={CoRNStack: High-Quality Contrastive Data for Better Code Retrieval and Reranking},
|
|
544
|
+
author={Tarun Suresh and Revanth Gangi Reddy and Yifei Xu and Zach Nussbaum and Andriy Mulyar and Brandon Duderstadt and Heng Ji},
|
|
545
|
+
year={2025},
|
|
546
|
+
eprint={2412.01007},
|
|
547
|
+
archivePrefix={arXiv},
|
|
548
|
+
primaryClass={cs.CL},
|
|
549
|
+
url={https://arxiv.org/abs/2412.01007},
|
|
550
|
+
}""",
|
|
551
|
+
)
|
|
@@ -3,7 +3,7 @@ from __future__ import annotations
|
|
|
3
3
|
from typing import TYPE_CHECKING, Any
|
|
4
4
|
|
|
5
5
|
import torch
|
|
6
|
-
from packaging.
|
|
6
|
+
from packaging.specifiers import SpecifierSet
|
|
7
7
|
from torch.utils.data import DataLoader
|
|
8
8
|
from transformers import __version__ as transformers_version
|
|
9
9
|
|
|
@@ -31,18 +31,20 @@ class LlamaNemoretrieverColembed(AbsEncoder):
|
|
|
31
31
|
model_name_or_path: str,
|
|
32
32
|
revision: str,
|
|
33
33
|
trust_remote_code: bool,
|
|
34
|
+
transformers_version_constraint: str | None = None,
|
|
34
35
|
device_map="cuda",
|
|
35
36
|
torch_dtype=torch.bfloat16,
|
|
36
37
|
attn_implementation="flash_attention_2",
|
|
37
38
|
**kwargs,
|
|
38
39
|
):
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
40
|
+
if transformers_version_constraint is not None:
|
|
41
|
+
spec = SpecifierSet(transformers_version_constraint)
|
|
42
|
+
if transformers_version not in spec:
|
|
43
|
+
raise RuntimeError(
|
|
44
|
+
f"Model `{model_name_or_path}` requires transformers{transformers_version_constraint}, "
|
|
45
|
+
f"but {transformers_version} is installed. "
|
|
46
|
+
f"Run: pip install 'transformers{transformers_version_constraint}'"
|
|
47
|
+
)
|
|
46
48
|
|
|
47
49
|
from transformers import AutoModel
|
|
48
50
|
|
|
@@ -150,10 +152,24 @@ TRAINING_DATA = {
|
|
|
150
152
|
"wiki-ss-nq",
|
|
151
153
|
}
|
|
152
154
|
|
|
155
|
+
|
|
156
|
+
TRAINING_DATA_v2 = {
|
|
157
|
+
"VidoreDocVQARetrieval",
|
|
158
|
+
"VidoreInfoVQARetrieval",
|
|
159
|
+
"VidoreTatdqaRetrieval",
|
|
160
|
+
"VidoreArxivQARetrieval",
|
|
161
|
+
"docmatix-ir",
|
|
162
|
+
"VDRMultilingualRetrieval",
|
|
163
|
+
"VisRAG-Ret-Train-Synthetic-data",
|
|
164
|
+
"VisRAG-Ret-Train-In-domain-data",
|
|
165
|
+
"wiki-ss-nq",
|
|
166
|
+
}
|
|
167
|
+
|
|
153
168
|
llama_nemoretriever_colembed_1b_v1 = ModelMeta(
|
|
154
169
|
loader=LlamaNemoretrieverColembed,
|
|
155
170
|
loader_kwargs=dict(
|
|
156
171
|
trust_remote_code=True,
|
|
172
|
+
transformers_version_constraint="==4.49.0",
|
|
157
173
|
),
|
|
158
174
|
name="nvidia/llama-nemoretriever-colembed-1b-v1",
|
|
159
175
|
model_type=["late-interaction"],
|
|
@@ -168,7 +184,7 @@ llama_nemoretriever_colembed_1b_v1 = ModelMeta(
|
|
|
168
184
|
embed_dim=2048,
|
|
169
185
|
license="https://huggingface.co/nvidia/llama-nemoretriever-colembed-1b-v1/blob/main/LICENSE",
|
|
170
186
|
open_weights=True,
|
|
171
|
-
public_training_code=
|
|
187
|
+
public_training_code=None,
|
|
172
188
|
public_training_data="https://huggingface.co/nvidia/llama-nemoretriever-colembed-1b-v1#training-dataset",
|
|
173
189
|
framework=["PyTorch", "Transformers", "safetensors"],
|
|
174
190
|
reference="https://huggingface.co/nvidia/llama-nemoretriever-colembed-1b-v1",
|
|
@@ -182,6 +198,7 @@ llama_nemoretriever_colembed_3b_v1 = ModelMeta(
|
|
|
182
198
|
loader=LlamaNemoretrieverColembed,
|
|
183
199
|
loader_kwargs=dict(
|
|
184
200
|
trust_remote_code=True,
|
|
201
|
+
transformers_version_constraint="==4.49.0",
|
|
185
202
|
),
|
|
186
203
|
name="nvidia/llama-nemoretriever-colembed-3b-v1",
|
|
187
204
|
model_type=["late-interaction"],
|
|
@@ -196,7 +213,7 @@ llama_nemoretriever_colembed_3b_v1 = ModelMeta(
|
|
|
196
213
|
embed_dim=3072,
|
|
197
214
|
license="https://huggingface.co/nvidia/llama-nemoretriever-colembed-1b-v1/blob/main/LICENSE",
|
|
198
215
|
open_weights=True,
|
|
199
|
-
public_training_code=
|
|
216
|
+
public_training_code=None,
|
|
200
217
|
public_training_data="https://huggingface.co/nvidia/llama-nemoretriever-colembed-1b-v1#training-dataset",
|
|
201
218
|
framework=["PyTorch", "Transformers", "safetensors"],
|
|
202
219
|
reference="https://huggingface.co/nvidia/llama-nemoretriever-colembed-3b-v1",
|
|
@@ -205,3 +222,86 @@ llama_nemoretriever_colembed_3b_v1 = ModelMeta(
|
|
|
205
222
|
training_datasets=TRAINING_DATA,
|
|
206
223
|
citation=LLAMA_NEMORETRIEVER_CITATION,
|
|
207
224
|
)
|
|
225
|
+
|
|
226
|
+
llama_nemotron_colembed_vl_3b_v2 = ModelMeta(
|
|
227
|
+
loader=LlamaNemoretrieverColembed,
|
|
228
|
+
loader_kwargs=dict(
|
|
229
|
+
trust_remote_code=True,
|
|
230
|
+
transformers_version_constraint="==4.49.0",
|
|
231
|
+
),
|
|
232
|
+
name="nvidia/llama-nemotron-colembed-vl-3b-v2",
|
|
233
|
+
model_type=["late-interaction"],
|
|
234
|
+
languages=["eng-Latn"],
|
|
235
|
+
revision="75f03c712cb3a252e062295f9a0966e5d95d6156",
|
|
236
|
+
release_date="2026-01-21",
|
|
237
|
+
modalities=["image", "text"],
|
|
238
|
+
n_parameters=4_407_000_000,
|
|
239
|
+
memory_usage_mb=8403,
|
|
240
|
+
max_tokens=8192,
|
|
241
|
+
embed_dim=3072,
|
|
242
|
+
license="https://huggingface.co/nvidia/llama-nemotron-colembed-vl-3b-v2/blob/main/LICENSE",
|
|
243
|
+
open_weights=True,
|
|
244
|
+
public_training_code=None,
|
|
245
|
+
public_training_data="https://huggingface.co/nvidia/llama-nemotron-colembed-vl-3b-v2#training-dataset",
|
|
246
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
247
|
+
reference="https://huggingface.co/nvidia/llama-nemotron-colembed-vl-3b-v2",
|
|
248
|
+
similarity_fn_name="MaxSim",
|
|
249
|
+
use_instructions=True,
|
|
250
|
+
training_datasets=TRAINING_DATA,
|
|
251
|
+
citation=LLAMA_NEMORETRIEVER_CITATION,
|
|
252
|
+
)
|
|
253
|
+
|
|
254
|
+
nemotron_colembed_vl_4b_v2 = ModelMeta(
|
|
255
|
+
loader=LlamaNemoretrieverColembed,
|
|
256
|
+
loader_kwargs=dict(
|
|
257
|
+
trust_remote_code=True,
|
|
258
|
+
transformers_version_constraint="==5.0.0rc0",
|
|
259
|
+
),
|
|
260
|
+
name="nvidia/nemotron-colembed-vl-4b-v2",
|
|
261
|
+
revision="823b1625c15fe3da73fa094205e538a7a2301a2a",
|
|
262
|
+
languages=["eng-Latn"],
|
|
263
|
+
release_date="2026-01-07",
|
|
264
|
+
modalities=["image", "text"],
|
|
265
|
+
n_parameters=4_800_000_000,
|
|
266
|
+
memory_usage_mb=9206,
|
|
267
|
+
max_tokens=262144,
|
|
268
|
+
embed_dim=2560,
|
|
269
|
+
license="https://huggingface.co/nvidia/nemotron-colembed-vl-4b-v2/blob/main/LICENSE",
|
|
270
|
+
open_weights=True,
|
|
271
|
+
public_training_code=None,
|
|
272
|
+
public_training_data="https://huggingface.co/nvidia/nemotron-colembed-vl-4b-v2#training-dataset",
|
|
273
|
+
framework=["PyTorch", "Transformers"],
|
|
274
|
+
reference="https://huggingface.co/nvidia/nemotron-colembed-vl-4b-v2",
|
|
275
|
+
similarity_fn_name="MaxSim",
|
|
276
|
+
use_instructions=True,
|
|
277
|
+
training_datasets=TRAINING_DATA_v2,
|
|
278
|
+
citation=LLAMA_NEMORETRIEVER_CITATION,
|
|
279
|
+
)
|
|
280
|
+
|
|
281
|
+
|
|
282
|
+
nemotron_colembed_vl_8b_v2 = ModelMeta(
|
|
283
|
+
loader=LlamaNemoretrieverColembed,
|
|
284
|
+
loader_kwargs=dict(
|
|
285
|
+
trust_remote_code=True,
|
|
286
|
+
transformers_version_constraint="==5.0.0rc0",
|
|
287
|
+
),
|
|
288
|
+
name="nvidia/nemotron-colembed-vl-8b-v2",
|
|
289
|
+
revision="6cbe43579dda6237768fc373768ad372cc5cdfec",
|
|
290
|
+
languages=["eng-Latn"],
|
|
291
|
+
release_date="2026-01-07",
|
|
292
|
+
modalities=["image", "text"],
|
|
293
|
+
n_parameters=8_700_000_000,
|
|
294
|
+
memory_usage_mb=16722,
|
|
295
|
+
max_tokens=262144,
|
|
296
|
+
embed_dim=4096,
|
|
297
|
+
license="https://huggingface.co/nvidia/nemotron-colembed-vl-8b-v2/blob/main/LICENSE",
|
|
298
|
+
open_weights=True,
|
|
299
|
+
public_training_code=None,
|
|
300
|
+
public_training_data="https://huggingface.co/nvidia/nemotron-colembed-vl-8b-v2#training-dataset",
|
|
301
|
+
framework=["PyTorch", "Transformers"],
|
|
302
|
+
reference="https://huggingface.co/nvidia/nemotron-colembed-vl-8b-v2",
|
|
303
|
+
similarity_fn_name="MaxSim",
|
|
304
|
+
use_instructions=True,
|
|
305
|
+
training_datasets=TRAINING_DATA_v2,
|
|
306
|
+
citation=LLAMA_NEMORETRIEVER_CITATION,
|
|
307
|
+
)
|
|
@@ -0,0 +1,267 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
from typing import TYPE_CHECKING, Any
|
|
4
|
+
|
|
5
|
+
import torch
|
|
6
|
+
from tqdm.auto import tqdm
|
|
7
|
+
from transformers import AutoModel, AutoProcessor
|
|
8
|
+
|
|
9
|
+
from mteb._requires_package import requires_image_dependencies
|
|
10
|
+
from mteb.models.abs_encoder import AbsEncoder
|
|
11
|
+
from mteb.models.model_meta import ModelMeta, ScoringFunction
|
|
12
|
+
|
|
13
|
+
if TYPE_CHECKING:
|
|
14
|
+
from torch.utils.data import DataLoader
|
|
15
|
+
|
|
16
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
17
|
+
from mteb.types import Array, BatchedInput, PromptType
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
class OpsColQwen3Wrapper(AbsEncoder):
|
|
21
|
+
"""Wrapper for OpsColQwen3 model."""
|
|
22
|
+
|
|
23
|
+
def __init__(
|
|
24
|
+
self,
|
|
25
|
+
model_name: str = "OpenSearch-AI/Ops-Colqwen3-4B",
|
|
26
|
+
revision: str | None = None,
|
|
27
|
+
device: str | None = None,
|
|
28
|
+
attn_implementation: str | None = None,
|
|
29
|
+
**kwargs,
|
|
30
|
+
):
|
|
31
|
+
requires_image_dependencies()
|
|
32
|
+
from transformers.utils.import_utils import is_flash_attn_2_available
|
|
33
|
+
|
|
34
|
+
if attn_implementation is None:
|
|
35
|
+
attn_implementation = (
|
|
36
|
+
"flash_attention_2" if is_flash_attn_2_available() else None
|
|
37
|
+
)
|
|
38
|
+
|
|
39
|
+
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
|
|
40
|
+
|
|
41
|
+
self.mdl = AutoModel.from_pretrained(
|
|
42
|
+
model_name,
|
|
43
|
+
device_map=self.device,
|
|
44
|
+
attn_implementation=attn_implementation,
|
|
45
|
+
trust_remote_code=True,
|
|
46
|
+
revision=revision,
|
|
47
|
+
**kwargs,
|
|
48
|
+
)
|
|
49
|
+
self.mdl.eval()
|
|
50
|
+
|
|
51
|
+
self.processor = AutoProcessor.from_pretrained(
|
|
52
|
+
model_name,
|
|
53
|
+
trust_remote_code=True,
|
|
54
|
+
)
|
|
55
|
+
|
|
56
|
+
def encode(
|
|
57
|
+
self,
|
|
58
|
+
inputs: DataLoader[BatchedInput],
|
|
59
|
+
*,
|
|
60
|
+
task_metadata: TaskMetadata,
|
|
61
|
+
hf_split: str,
|
|
62
|
+
hf_subset: str,
|
|
63
|
+
prompt_type: PromptType | None = None,
|
|
64
|
+
**kwargs: Any,
|
|
65
|
+
) -> Array:
|
|
66
|
+
text_embeddings = None
|
|
67
|
+
image_embeddings = None
|
|
68
|
+
|
|
69
|
+
if "text" in inputs.dataset.features:
|
|
70
|
+
text_embeddings = self.get_text_embeddings(inputs, **kwargs)
|
|
71
|
+
if "image" in inputs.dataset.features:
|
|
72
|
+
image_embeddings = self.get_image_embeddings(inputs, **kwargs)
|
|
73
|
+
|
|
74
|
+
if text_embeddings is not None and image_embeddings is not None:
|
|
75
|
+
if len(text_embeddings) != len(image_embeddings):
|
|
76
|
+
raise ValueError(
|
|
77
|
+
"The number of texts and images must have the same length"
|
|
78
|
+
)
|
|
79
|
+
fused_embeddings = text_embeddings + image_embeddings
|
|
80
|
+
return fused_embeddings
|
|
81
|
+
elif text_embeddings is not None:
|
|
82
|
+
return text_embeddings
|
|
83
|
+
elif image_embeddings is not None:
|
|
84
|
+
return image_embeddings
|
|
85
|
+
raise ValueError("No text or image inputs found")
|
|
86
|
+
|
|
87
|
+
def encode_input(self, inputs):
|
|
88
|
+
return self.mdl(**inputs)
|
|
89
|
+
|
|
90
|
+
def get_image_embeddings(
|
|
91
|
+
self,
|
|
92
|
+
images: DataLoader,
|
|
93
|
+
batch_size: int = 32,
|
|
94
|
+
**kwargs,
|
|
95
|
+
) -> torch.Tensor:
|
|
96
|
+
import torchvision.transforms.functional as F
|
|
97
|
+
from PIL import Image
|
|
98
|
+
|
|
99
|
+
all_embeds = []
|
|
100
|
+
|
|
101
|
+
with torch.no_grad():
|
|
102
|
+
for batch in tqdm(images, desc="Encoding images"):
|
|
103
|
+
# batch may be list of tensors or PIL
|
|
104
|
+
imgs = [
|
|
105
|
+
F.to_pil_image(b.to(self.device))
|
|
106
|
+
if not isinstance(b, Image.Image)
|
|
107
|
+
else b
|
|
108
|
+
for b in batch["image"]
|
|
109
|
+
]
|
|
110
|
+
inputs = self.processor.process_images(imgs)
|
|
111
|
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
|
112
|
+
outs = self.encode_input(inputs)
|
|
113
|
+
all_embeds.extend(outs.cpu().to(torch.float32))
|
|
114
|
+
|
|
115
|
+
padded = torch.nn.utils.rnn.pad_sequence(
|
|
116
|
+
all_embeds, batch_first=True, padding_value=0
|
|
117
|
+
)
|
|
118
|
+
return padded
|
|
119
|
+
|
|
120
|
+
def get_text_embeddings(
|
|
121
|
+
self,
|
|
122
|
+
texts: DataLoader,
|
|
123
|
+
batch_size: int = 32,
|
|
124
|
+
**kwargs,
|
|
125
|
+
) -> torch.Tensor:
|
|
126
|
+
all_embeds = []
|
|
127
|
+
|
|
128
|
+
with torch.no_grad():
|
|
129
|
+
for batch in tqdm(texts, desc="Encoding texts"):
|
|
130
|
+
batch_texts = batch["text"]
|
|
131
|
+
inputs = self.processor.process_queries(batch_texts)
|
|
132
|
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
|
133
|
+
outs = self.encode_input(inputs)
|
|
134
|
+
all_embeds.extend(outs.cpu().to(torch.float32))
|
|
135
|
+
|
|
136
|
+
padded = torch.nn.utils.rnn.pad_sequence(
|
|
137
|
+
all_embeds, batch_first=True, padding_value=0
|
|
138
|
+
)
|
|
139
|
+
return padded
|
|
140
|
+
|
|
141
|
+
def similarity(self, a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
|
|
142
|
+
return self.processor.score_multi_vector(a, b, device=self.device)
|
|
143
|
+
|
|
144
|
+
|
|
145
|
+
OPS_COLQWEN3_TRAINING_DATA = {
|
|
146
|
+
"VDRMultilingualRetrieval",
|
|
147
|
+
# from https://huggingface.co/datasets/vidore/colpali_train_set
|
|
148
|
+
"VidoreDocVQARetrieval",
|
|
149
|
+
"VidoreInfoVQARetrieval",
|
|
150
|
+
"VidoreTatdqaRetrieval",
|
|
151
|
+
"VidoreArxivQARetrieval",
|
|
152
|
+
"docmatix-ir",
|
|
153
|
+
"HotpotQA",
|
|
154
|
+
"FEVER",
|
|
155
|
+
"NQ",
|
|
156
|
+
"MIRACLRetrieval",
|
|
157
|
+
"WebInstructSub", # MathStackExchange and ScienceStackExchange only
|
|
158
|
+
"MrTyDi",
|
|
159
|
+
}
|
|
160
|
+
|
|
161
|
+
multilingual_langs = [
|
|
162
|
+
"afr-Latn",
|
|
163
|
+
"ara-Arab",
|
|
164
|
+
"aze-Latn",
|
|
165
|
+
"bel-Cyrl",
|
|
166
|
+
"bul-Cyrl",
|
|
167
|
+
"ben-Beng",
|
|
168
|
+
"cat-Latn",
|
|
169
|
+
"ceb-Latn",
|
|
170
|
+
"ces-Latn",
|
|
171
|
+
"cym-Latn",
|
|
172
|
+
"dan-Latn",
|
|
173
|
+
"deu-Latn",
|
|
174
|
+
"ell-Grek",
|
|
175
|
+
"eng-Latn",
|
|
176
|
+
"spa-Latn",
|
|
177
|
+
"est-Latn",
|
|
178
|
+
"eus-Latn",
|
|
179
|
+
"fas-Arab",
|
|
180
|
+
"fin-Latn",
|
|
181
|
+
"fra-Latn",
|
|
182
|
+
"glg-Latn",
|
|
183
|
+
"guj-Gujr",
|
|
184
|
+
"heb-Hebr",
|
|
185
|
+
"hin-Deva",
|
|
186
|
+
"hrv-Latn",
|
|
187
|
+
"hat-Latn",
|
|
188
|
+
"hun-Latn",
|
|
189
|
+
"hye-Armn",
|
|
190
|
+
"ind-Latn",
|
|
191
|
+
"isl-Latn",
|
|
192
|
+
"ita-Latn",
|
|
193
|
+
"jpn-Jpan",
|
|
194
|
+
"jav-Latn",
|
|
195
|
+
"kat-Geor",
|
|
196
|
+
"kaz-Cyrl",
|
|
197
|
+
"khm-Khmr",
|
|
198
|
+
"kan-Knda",
|
|
199
|
+
"kor-Hang",
|
|
200
|
+
"kir-Cyrl",
|
|
201
|
+
"lao-Laoo",
|
|
202
|
+
"lit-Latn",
|
|
203
|
+
"lav-Latn",
|
|
204
|
+
"mkd-Cyrl",
|
|
205
|
+
"mal-Mlym",
|
|
206
|
+
"mon-Cyrl",
|
|
207
|
+
"mar-Deva",
|
|
208
|
+
"msa-Latn",
|
|
209
|
+
"mya-Mymr",
|
|
210
|
+
"nep-Deva",
|
|
211
|
+
"nld-Latn",
|
|
212
|
+
"nor-Latn",
|
|
213
|
+
"nob-Latn",
|
|
214
|
+
"nno-Latn",
|
|
215
|
+
"pan-Guru",
|
|
216
|
+
"pol-Latn",
|
|
217
|
+
"por-Latn",
|
|
218
|
+
"que-Latn",
|
|
219
|
+
"ron-Latn",
|
|
220
|
+
"rus-Cyrl",
|
|
221
|
+
"sin-Sinh",
|
|
222
|
+
"slk-Latn",
|
|
223
|
+
"slv-Latn",
|
|
224
|
+
"swa-Latn",
|
|
225
|
+
"tam-Taml",
|
|
226
|
+
"tel-Telu",
|
|
227
|
+
"tha-Thai",
|
|
228
|
+
"tgl-Latn",
|
|
229
|
+
"tur-Latn",
|
|
230
|
+
"ukr-Cyrl",
|
|
231
|
+
"urd-Arab",
|
|
232
|
+
"vie-Latn",
|
|
233
|
+
"yor-Latn",
|
|
234
|
+
"zho-Hans",
|
|
235
|
+
]
|
|
236
|
+
|
|
237
|
+
OPS_COLQWEN3_CITATION = """
|
|
238
|
+
@misc{ops_colqwen3_4b,
|
|
239
|
+
author = {OpenSearch-AI},
|
|
240
|
+
title = {Ops-ColQwen3: State-of-the-Art Multimodal Embedding Model for Visual Document Retrieval},
|
|
241
|
+
year = {2026},
|
|
242
|
+
url = {https://huggingface.co/OpenSearch-AI/Ops-ColQwen3-4B},
|
|
243
|
+
}"""
|
|
244
|
+
|
|
245
|
+
ops_colqwen3_4b = ModelMeta(
|
|
246
|
+
loader=OpsColQwen3Wrapper,
|
|
247
|
+
name="OpenSearch-AI/Ops-Colqwen3-4B",
|
|
248
|
+
loader_kwargs=dict(dtype=torch.float16, trust_remote_code=True),
|
|
249
|
+
languages=multilingual_langs,
|
|
250
|
+
revision="4894b7d451ff33981650acc693bb482dbef302d3",
|
|
251
|
+
release_date="2026-01-24",
|
|
252
|
+
modalities=["image", "text"],
|
|
253
|
+
n_parameters=4_800_000_000,
|
|
254
|
+
memory_usage_mb=9206,
|
|
255
|
+
max_tokens=32768,
|
|
256
|
+
embed_dim=2560,
|
|
257
|
+
license="apache-2.0",
|
|
258
|
+
open_weights=True,
|
|
259
|
+
public_training_code="https://github.com/illuin-tech/colpali",
|
|
260
|
+
public_training_data=None,
|
|
261
|
+
framework=["PyTorch"],
|
|
262
|
+
reference="https://huggingface.co/OpenSearch-AI/Ops-Colqwen3-4B",
|
|
263
|
+
similarity_fn_name=ScoringFunction.MAX_SIM,
|
|
264
|
+
use_instructions=True,
|
|
265
|
+
training_datasets=OPS_COLQWEN3_TRAINING_DATA,
|
|
266
|
+
citation=OPS_COLQWEN3_CITATION,
|
|
267
|
+
)
|
|
@@ -0,0 +1,245 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
import logging
|
|
4
|
+
from typing import TYPE_CHECKING, Any
|
|
5
|
+
|
|
6
|
+
import torch
|
|
7
|
+
from tqdm.auto import tqdm
|
|
8
|
+
|
|
9
|
+
from mteb.models.model_meta import ModelMeta
|
|
10
|
+
|
|
11
|
+
from .rerankers_custom import RerankerWrapper
|
|
12
|
+
|
|
13
|
+
if TYPE_CHECKING:
|
|
14
|
+
from torch.utils.data import DataLoader
|
|
15
|
+
|
|
16
|
+
from mteb.abstasks.task_metadata import TaskMetadata
|
|
17
|
+
from mteb.types import BatchedInput, PromptType
|
|
18
|
+
|
|
19
|
+
logger = logging.getLogger(__name__)
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
class QueritWrapper(RerankerWrapper):
|
|
23
|
+
"""
|
|
24
|
+
Multi-GPU / multi-process reranker wrapper for mteb.mteb evaluation.
|
|
25
|
+
Supports flattening all query-passage pairs without explicit grouping.
|
|
26
|
+
"""
|
|
27
|
+
|
|
28
|
+
def __init__(
|
|
29
|
+
self,
|
|
30
|
+
model_name: str,
|
|
31
|
+
**kwargs: Any,
|
|
32
|
+
) -> None:
|
|
33
|
+
super().__init__(model_name, **kwargs)
|
|
34
|
+
from transformers import AutoModel, AutoTokenizer
|
|
35
|
+
|
|
36
|
+
if not self.device:
|
|
37
|
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
38
|
+
model_args = {}
|
|
39
|
+
if self.fp_options:
|
|
40
|
+
model_args["torch_dtype"] = self.fp_options
|
|
41
|
+
self.model = AutoModel.from_pretrained(
|
|
42
|
+
model_name, trust_remote_code=True, **model_args
|
|
43
|
+
)
|
|
44
|
+
logger.info(f"Using model {model_name}")
|
|
45
|
+
|
|
46
|
+
self.model.to(self.device)
|
|
47
|
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
|
48
|
+
model_name, trust_remote_code=True
|
|
49
|
+
)
|
|
50
|
+
if "[CLS]" not in self.tokenizer.get_vocab():
|
|
51
|
+
raise ValueError("Tokenizer missing required special token '[CLS]'")
|
|
52
|
+
self.cls_token_id = self.tokenizer.convert_tokens_to_ids("[CLS]")
|
|
53
|
+
self.pad_token_id = self.tokenizer.pad_token_id or 0
|
|
54
|
+
|
|
55
|
+
self.max_length = (
|
|
56
|
+
min(kwargs.get("max_length", 4096), self.tokenizer.model_max_length) - 1
|
|
57
|
+
) # sometimes it's a v large number/max int
|
|
58
|
+
logger.info(f"Using max_length of {self.max_length}, 1 token for [CLS]")
|
|
59
|
+
self.model.eval()
|
|
60
|
+
|
|
61
|
+
def process_inputs(
|
|
62
|
+
self,
|
|
63
|
+
pairs: list[str],
|
|
64
|
+
) -> dict[str, torch.Tensor]:
|
|
65
|
+
"""
|
|
66
|
+
Encode a batch of (query, document) pairs:
|
|
67
|
+
- Concatenate prompt + Query + Content
|
|
68
|
+
- Append [CLS] at the end
|
|
69
|
+
- Left-pad to max_length
|
|
70
|
+
- Generate custom attention mask based on block types
|
|
71
|
+
"""
|
|
72
|
+
# Construct input texts
|
|
73
|
+
enc = self.tokenizer(
|
|
74
|
+
pairs,
|
|
75
|
+
add_special_tokens=False,
|
|
76
|
+
truncation=True,
|
|
77
|
+
max_length=self.max_length,
|
|
78
|
+
padding=False,
|
|
79
|
+
)
|
|
80
|
+
|
|
81
|
+
input_ids_list: list[list[int]] = []
|
|
82
|
+
attn_mask_list: list[torch.Tensor] = []
|
|
83
|
+
|
|
84
|
+
for ids in enc["input_ids"]:
|
|
85
|
+
# Append [CLS] token
|
|
86
|
+
ids = ids + [self.cls_token_id]
|
|
87
|
+
block_types = [1] * (len(ids) - 1) + [2] # content + CLS
|
|
88
|
+
|
|
89
|
+
# Pad or truncate
|
|
90
|
+
if len(ids) < self.max_length:
|
|
91
|
+
pad_len = self.max_length - len(ids)
|
|
92
|
+
ids = [self.pad_token_id] * pad_len + ids
|
|
93
|
+
block_types = [0] * pad_len + block_types
|
|
94
|
+
else:
|
|
95
|
+
ids = ids[-self.max_length :]
|
|
96
|
+
block_types = block_types[-self.max_length :]
|
|
97
|
+
|
|
98
|
+
attn = self.compute_mask_content_cls(block_types)
|
|
99
|
+
input_ids_list.append(ids)
|
|
100
|
+
attn_mask_list.append(attn)
|
|
101
|
+
|
|
102
|
+
input_ids = torch.tensor(input_ids_list, dtype=torch.long, device=self.device)
|
|
103
|
+
attention_mask = torch.stack(attn_mask_list, dim=0).to(self.device)
|
|
104
|
+
|
|
105
|
+
return {"input_ids": input_ids, "attention_mask": attention_mask}
|
|
106
|
+
|
|
107
|
+
@torch.inference_mode()
|
|
108
|
+
def predict(
|
|
109
|
+
self,
|
|
110
|
+
inputs1: DataLoader[BatchedInput],
|
|
111
|
+
inputs2: DataLoader[BatchedInput],
|
|
112
|
+
*,
|
|
113
|
+
task_metadata: TaskMetadata,
|
|
114
|
+
hf_split: str,
|
|
115
|
+
hf_subset: str,
|
|
116
|
+
prompt_type: PromptType | None = None,
|
|
117
|
+
**kwargs: Any,
|
|
118
|
+
) -> list[float]:
|
|
119
|
+
"""
|
|
120
|
+
Predict relevance scores for query-passage pairs.
|
|
121
|
+
Supports both single-process and multi-process/multi-GPU modes.
|
|
122
|
+
"""
|
|
123
|
+
# Flatten all pairs from mteb.mteb DataLoaders
|
|
124
|
+
queries = [text for batch in inputs1 for text in batch["text"]]
|
|
125
|
+
passages = [text for batch in inputs2 for text in batch["text"]]
|
|
126
|
+
|
|
127
|
+
instructions = None
|
|
128
|
+
if "instruction" in inputs2.dataset.features:
|
|
129
|
+
instructions = [text for batch in inputs1 for text in batch["instruction"]]
|
|
130
|
+
|
|
131
|
+
num_pairs = len(queries)
|
|
132
|
+
if num_pairs == 0:
|
|
133
|
+
return []
|
|
134
|
+
final_scores: list[float] = []
|
|
135
|
+
|
|
136
|
+
batch_size = kwargs.get("batch_size", self.batch_size)
|
|
137
|
+
with tqdm(total=num_pairs, desc="Scoring", ncols=100) as pbar:
|
|
138
|
+
for start in range(0, num_pairs, batch_size):
|
|
139
|
+
end = min(start + batch_size, num_pairs)
|
|
140
|
+
batch_q = queries[start:end]
|
|
141
|
+
batch_d = passages[start:end]
|
|
142
|
+
|
|
143
|
+
batch_instructions = (
|
|
144
|
+
instructions[start:end]
|
|
145
|
+
if instructions is not None
|
|
146
|
+
else [None] * len(batch_q)
|
|
147
|
+
)
|
|
148
|
+
pairs = [
|
|
149
|
+
self.format_instruction(instr, query, doc)
|
|
150
|
+
for instr, query, doc in zip(batch_instructions, batch_q, batch_d)
|
|
151
|
+
]
|
|
152
|
+
enc = self.process_inputs(pairs)
|
|
153
|
+
out = self.model(**enc)
|
|
154
|
+
scores = out["score"].squeeze(-1).detach().float().cpu().tolist()
|
|
155
|
+
|
|
156
|
+
if not isinstance(scores, list):
|
|
157
|
+
scores = [scores]
|
|
158
|
+
|
|
159
|
+
final_scores.extend(scores)
|
|
160
|
+
pbar.update(len(scores))
|
|
161
|
+
|
|
162
|
+
return final_scores
|
|
163
|
+
|
|
164
|
+
@staticmethod
|
|
165
|
+
def format_instruction(instruction: str | None, query: str, doc: str) -> str:
|
|
166
|
+
if instruction is None:
|
|
167
|
+
output = f"Judge whether the Content meets the requirements based on the Query. Query: {query}; Content: {doc}"
|
|
168
|
+
else:
|
|
169
|
+
output = f"{instruction} Query: {query}; Content: {doc}"
|
|
170
|
+
return output
|
|
171
|
+
|
|
172
|
+
@staticmethod
|
|
173
|
+
def compute_mask_content_cls(block_types: list[int]) -> torch.Tensor:
|
|
174
|
+
"""
|
|
175
|
+
Create custom attention mask based on token block types:
|
|
176
|
+
- 0: padding → ignored
|
|
177
|
+
- 1: content → causal attention to previous content only
|
|
178
|
+
- 2: [CLS] → causal attention to all non-padding tokens
|
|
179
|
+
|
|
180
|
+
Args:
|
|
181
|
+
block_types: List of token types for one sequence
|
|
182
|
+
|
|
183
|
+
Returns:
|
|
184
|
+
[1, seq_len, seq_len] boolean attention mask (True = allowed to attend)
|
|
185
|
+
"""
|
|
186
|
+
pos = torch.tensor(block_types, dtype=torch.long)
|
|
187
|
+
n = pos.shape[0]
|
|
188
|
+
if n == 0:
|
|
189
|
+
return torch.empty((0, 0), dtype=torch.bool, device=pos.device)
|
|
190
|
+
|
|
191
|
+
row_types = pos.view(n, 1)
|
|
192
|
+
col_types = pos.view(1, n)
|
|
193
|
+
|
|
194
|
+
row_idx = torch.arange(n, device=pos.device).view(n, 1)
|
|
195
|
+
col_idx = torch.arange(n, device=pos.device).view(1, n)
|
|
196
|
+
causal_mask = col_idx <= row_idx
|
|
197
|
+
|
|
198
|
+
# Content tokens only attend to previous content
|
|
199
|
+
mask_content = (row_types == 1) & (col_types == 1) & causal_mask
|
|
200
|
+
|
|
201
|
+
# [CLS] attends to all non-pad tokens (causal)
|
|
202
|
+
mask_cls = (row_types == 2) & (col_types != 0) & causal_mask
|
|
203
|
+
|
|
204
|
+
type_mask = mask_content | mask_cls
|
|
205
|
+
return type_mask.unsqueeze(0)
|
|
206
|
+
|
|
207
|
+
|
|
208
|
+
querit_reranker_training_data = {
|
|
209
|
+
"MIRACLRanking", # https://huggingface.co/datasets/mteb/MIRACLReranking
|
|
210
|
+
"MrTidyRetrieval", # https://huggingface.co/datasets/mteb/mrtidy
|
|
211
|
+
"ruri-v3-dataset-reranker", # https://huggingface.co/datasets/cl-nagoya/ruri-v3-dataset-reranker
|
|
212
|
+
"MultiLongDocReranking", # https://huggingface.co/datasets/Shitao/MLDR
|
|
213
|
+
"MindSmallReranking", # https://huggingface.co/datasets/mteb/MindSmallReranking
|
|
214
|
+
"MSMARCO", # https://huggingface.co/datasets/mteb/msmarco
|
|
215
|
+
"CQADupStack", # https://huggingface.co/datasets/mteb/cqadupstack-*
|
|
216
|
+
"AskUbuntuDupQuestions", # https://github.com/taolei87/askubuntu & The corpus and queries that overlap with mteb/askubuntudupquestions-reranking have been removed.
|
|
217
|
+
"T2Reranking", # https://huggingface.co/datasets/THUIR/T2Ranking & The corpus and queries that overlap with mteb/T2Reranking have been removed.
|
|
218
|
+
}
|
|
219
|
+
|
|
220
|
+
model_meta = ModelMeta(
|
|
221
|
+
loader=QueritWrapper,
|
|
222
|
+
loader_kwargs={
|
|
223
|
+
"fp_options": "bfloat16",
|
|
224
|
+
},
|
|
225
|
+
name="Querit/Querit",
|
|
226
|
+
model_type=["cross-encoder"],
|
|
227
|
+
languages=["eng-Latn"],
|
|
228
|
+
open_weights=True,
|
|
229
|
+
revision="5ad2649cc4defb7e1361262260e9a781f14b08bc",
|
|
230
|
+
release_date="2026-01-24",
|
|
231
|
+
n_parameters=4919636992,
|
|
232
|
+
n_embedding_parameters=131907584,
|
|
233
|
+
embed_dim=1024,
|
|
234
|
+
memory_usage_mb=9383.0,
|
|
235
|
+
max_tokens=4096,
|
|
236
|
+
reference="https://huggingface.co/Querit/Querit",
|
|
237
|
+
similarity_fn_name=None,
|
|
238
|
+
training_datasets=querit_reranker_training_data,
|
|
239
|
+
license="apache-2.0",
|
|
240
|
+
framework=["PyTorch"],
|
|
241
|
+
use_instructions=None,
|
|
242
|
+
public_training_code=None,
|
|
243
|
+
public_training_data=None,
|
|
244
|
+
citation=None,
|
|
245
|
+
)
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: mteb
|
|
3
|
-
Version: 2.7.
|
|
3
|
+
Version: 2.7.13
|
|
4
4
|
Summary: Massive Text Embedding Benchmark
|
|
5
5
|
Author-email: MTEB Contributors <niklas@huggingface.co>, Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Nouamane Tazi <nouamane@huggingface.co>, Nils Reimers <info@nils-reimers.de>
|
|
6
6
|
Maintainer-email: Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Roman Solomatin <risolomatin@gmail.com>, Isaac Chung <chungisaac1217@gmail.com>
|
|
@@ -32,8 +32,6 @@ Requires-Dist: rich>=0.0.0
|
|
|
32
32
|
Requires-Dist: pytrec-eval-terrier>=0.5.6
|
|
33
33
|
Requires-Dist: pydantic>=2.0.0
|
|
34
34
|
Requires-Dist: polars>=0.20.22
|
|
35
|
-
Requires-Dist: torch; python_full_version < "3.14"
|
|
36
|
-
Requires-Dist: torch>=2.9.0; python_full_version >= "3.14"
|
|
37
35
|
Provides-Extra: image
|
|
38
36
|
Requires-Dist: torchvision>0.2.1; extra == "image"
|
|
39
37
|
Requires-Dist: transformers[torch-vision,vision]; extra == "image"
|
|
@@ -1565,14 +1565,15 @@ mteb/models/model_implementations/model2vec_models.py,sha256=qXcPhV0hGRFBsvRBrb8
|
|
|
1565
1565
|
mteb/models/model_implementations/moka_models.py,sha256=4Esujv_fVJjHuX1nRH6sGtmrmF04A90F4Xo2uN0YTzs,5205
|
|
1566
1566
|
mteb/models/model_implementations/nbailab.py,sha256=iv2xdqVM5HoTAlBR6e_UdzJu6rSPujqWXFYwyCv69hU,2684
|
|
1567
1567
|
mteb/models/model_implementations/no_instruct_sentence_models.py,sha256=DTb-eHZYSY6lGJkkdkC0tZ_n0GHLQwVlUehVg59T5N4,4198
|
|
1568
|
-
mteb/models/model_implementations/nomic_models.py,sha256=
|
|
1568
|
+
mteb/models/model_implementations/nomic_models.py,sha256=BO6XQbX4PFa5By0opAYkxz95CcHmjxbG5DYcklxJ1l8,16986
|
|
1569
1569
|
mteb/models/model_implementations/nomic_models_vision.py,sha256=AzTCWbXBonUAVub0TTxWCsBtg4WYex3vPiLlz3ULdHc,6916
|
|
1570
|
-
mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py,sha256
|
|
1570
|
+
mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py,sha256=-5_kd9jeDcgVv9gdwWuvX_-bNQdhAxInf1Mqo8_BdS8,10653
|
|
1571
1571
|
mteb/models/model_implementations/nvidia_models.py,sha256=r-AW1dVQbteWjexjvZgFEt_90OHNRYer_5GLuqSXRS0,26924
|
|
1572
1572
|
mteb/models/model_implementations/octen_models.py,sha256=5z-t2O-iIFiOOLdZ_AK9f7GrVRg-9_vx3JNAG9dJNPE,8562
|
|
1573
1573
|
mteb/models/model_implementations/openai_models.py,sha256=y1wMknrrcu1L5CNwniG0mFThPVMON1c2Fj22jkKsw7Y,9730
|
|
1574
1574
|
mteb/models/model_implementations/openclip_models.py,sha256=z2gQum16O0QhJPyxqKor3oO-_uWfnep6wSXqOFQQ2Q8,11969
|
|
1575
1575
|
mteb/models/model_implementations/opensearch_neural_sparse_models.py,sha256=O6ewgGKZtw-kpspbz8-dXArDf5tUWy_vY6AxFs7fsZ8,8936
|
|
1576
|
+
mteb/models/model_implementations/ops_colqwen3_models.py,sha256=5vg5d1_WfVGMgtIwkh6zf2-Paum6V35XcKEvLfRyRzs,7437
|
|
1576
1577
|
mteb/models/model_implementations/ops_moa_models.py,sha256=Ah7L78mqC9pH8t6sf1OWXOLjouVUpAutt6lZ0np7eMM,2655
|
|
1577
1578
|
mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py,sha256=xv1ftJeMND4lpeKYC3RLQB4nhdiYy0wCxrzEjUj4gSg,1114
|
|
1578
1579
|
mteb/models/model_implementations/pawan_models.py,sha256=iyzh6NSPZKU9znJYEDPjJNIqvkyuKPAol5TcILuq1Is,1225
|
|
@@ -1582,6 +1583,7 @@ mteb/models/model_implementations/promptriever_models.py,sha256=tDXysEKbvoDNtidV
|
|
|
1582
1583
|
mteb/models/model_implementations/pylate_models.py,sha256=EwpDJf5yjONmmiv9zHSEbc3e7kMRJUHYv7K59QTrNAE,17525
|
|
1583
1584
|
mteb/models/model_implementations/qodo_models.py,sha256=AwYRGctJbjEkcIh1pcSeeEXYiYiizAbfTyw6CaZBJfU,2224
|
|
1584
1585
|
mteb/models/model_implementations/qtack_models.py,sha256=vw_2O4ZABR-_nYV4g1Ud8bW1DTP-wwtQS2eGqN70vT4,1304
|
|
1586
|
+
mteb/models/model_implementations/querit_models.py,sha256=P7lAw5IDe47DA_5srMwGPqxjMIFuvOW0BJ7xwB4GOro,8917
|
|
1585
1587
|
mteb/models/model_implementations/qwen3_models.py,sha256=857UnUEil9o8xcw7vSr2fMRlEegyE2Q86e5yLeRL_mQ,5517
|
|
1586
1588
|
mteb/models/model_implementations/qzhou_models.py,sha256=mfG70JrNJCo-s3MykRn6lg9gFPcKMeMI7Y8VrBhNo7I,3684
|
|
1587
1589
|
mteb/models/model_implementations/random_baseline.py,sha256=YsITQoLbea_Iz2X84WNGBGkhlsQ3hB7yx1oJwXghimE,7561
|
|
@@ -2644,9 +2646,9 @@ mteb/types/_metadata.py,sha256=NN-W0S6a5TDV7UkpRx1pyWtGF4TyyCyoPUfHOwdeci8,2290
|
|
|
2644
2646
|
mteb/types/_result.py,sha256=UKNokV9pu3G74MGebocU512aU_fFU9I9nPKnrG9Q0iE,1035
|
|
2645
2647
|
mteb/types/_string_validators.py,sha256=PY-dYq4E8O50VS3bLYdldPWp400fl_WzUjfVSkNWe8U,523
|
|
2646
2648
|
mteb/types/statistics.py,sha256=gElgSShKBXpfcqaZHhU_d2UHln1CyzUj8FN8KFun_UA,4087
|
|
2647
|
-
mteb-2.7.
|
|
2648
|
-
mteb-2.7.
|
|
2649
|
-
mteb-2.7.
|
|
2650
|
-
mteb-2.7.
|
|
2651
|
-
mteb-2.7.
|
|
2652
|
-
mteb-2.7.
|
|
2649
|
+
mteb-2.7.13.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
|
2650
|
+
mteb-2.7.13.dist-info/METADATA,sha256=Fy5yLv2nllzE1LSF6S33tHCnWsaiGZzI5HTEUC02ufU,14348
|
|
2651
|
+
mteb-2.7.13.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
|
|
2652
|
+
mteb-2.7.13.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
|
|
2653
|
+
mteb-2.7.13.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
|
|
2654
|
+
mteb-2.7.13.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|